Loading...
3IA Côte d'Azur - Interdisciplinary Institute for Artificial Intelligence
3IA Côte d'Azur est l'un des quatre "Instituts interdisciplinaires d'intelligence artificielle" créés en France en 2019. Son ambition est de créer un écosystème innovant et influent au niveau local, national et international. L'institut 3IA Côte d'Azur est piloté par Université Côte d'Azur en partenariat avec les grands partenaires de l'enseignement supérieur et de la recherche de la région niçoise et de Sophia Antipolis : CNRS, Inria, INSERM, EURECOM, SKEMA Business School. L'institut 3IA Côte d'Azur est également soutenu par l'ECA, le CHU de Nice, le CSTB, le CNES, l'Institut Data ScienceTech et l'INRAE. Le projet a également obtenu le soutien de plus de 62 entreprises et start-ups.
Derniers dépôts
-
Alessandro Viani, Boris A Gutman, Emile d'Angremont, Marco Lorenzi. Disease Progression Modelling and Stratification for detecting sub-trajectories in the natural history of pathologies: application to Parkinson's Disease trajectory modelling. Longitudinal Disease Tracking and Modelling with Medical Images and Data, Oct 2024, Marrachech, Morocco. ⟨hal-04833565⟩
-
Javier Villar-Valero, Jesus Jairo Rodríguez Padilla, Buntheng Ly, Juan F Gomez, Mihaela Pop, et al.. Exploring Chemotherapy-Induced Cardiotoxicity Combining A 3D Computational Model and Preclinical Cardiac Imaging Data. MICCAI 2024, STACOM Workshop, Oct 2024, Marrakesh, Maroc, Morocco. ⟨hal-04840698⟩
Documents en texte intégral
735
Notices
332
Statistiques par discipline
Mots clés
Semantic segmentation
Consensus
Federated Learning
Hyperspectral data
Chernoff information
Semantic Web
Anomaly detection
Knowledge graph
Machine learning
Spiking neural networks
Excursion sets
Isomanifolds
Atrial Fibrillation
Convolutional Neural Networks
Electrocardiogram
Healthcare
Computer vision
Cable-driven parallel robot
OPAL-Meso
Privacy
Caching
Graph signal processing
RDF
Fluorescence microscopy
Autoencoder
Linked data
FPGA
53B20
NLP Natural Language Processing
Arguments
Dense labeling
Adversarial classification
Deep learning
Explainable AI
Segmentation
Contrastive learning
Extreme value theory
Graph neural networks
Deep Learning
Computational Topology
Extracellular matrix
Clinical trials
Persistent homology
SPARQL
Convolutional neural networks
Artificial intelligence
Unsupervised learning
Knowledge graphs
Diffusion strategy
Argument mining
Super-resolution
Optimization
Topological Data Analysis
Echocardiography
Domain adaptation
Web of Things
Federated learning
Ontology Learning
Spiking Neural Networks
Uncertainty
Apprentissage profond
Clustering
Macroscopic traffic flow models
COVID-19
Visualization
Alzheimer's disease
Biomarkers
Neural networks
Diffusion MRI
Linked Data
Image segmentation
Atrial fibrillation
Artificial Intelligence
FDG PET
Computing methodologies
Sparsity
Multi-Agent Systems
CNN
MRI
Semantic web
Brain-inspired computing
Medical imaging
Change point detection
Convolutional neural network
SHACL
Argument Mining
Co-clustering
Hyperbolic systems of conservation laws
Electrophysiology
Grammatical Evolution
Geometric graphs
Distributed optimization
Image fusion
Predictive model
Coxeter triangulation
NLP
Latent block model
Autonomous vehicles
Convergence analysis
Information Extraction