Numerically flat foliations and holomorphic Poisson geometry - Centre Henri Lebesgue
Pré-Publication, Document De Travail Année : 2024

Numerically flat foliations and holomorphic Poisson geometry

Résumé

We investigate the structure of smooth holomorphic foliations with numerically flat tangent bundles on compact K\"ahler manifolds. Extending earlier results on non-uniruled projective manifolds by the second and fourth authors, we show that such foliations induce a decomposition of the tangent bundle of the ambient manifold, have leaves uniformized by Euclidean spaces, and have torsion canonical bundle. Additionally, we prove that smooth two-dimensional foliations with numerically trivial canonical bundle on projective manifolds are either isotrivial fibrations or have numerically flat tangent bundles. This in turn implies a global Weinstein splitting theorem for rank-two Poisson structures on projective manifolds. We also derive new Hodge-theoretic conditions for the existence of zeros of Poisson structures on compact K\"ahler manifolds.
Fichier principal
Vignette du fichier
num_flat.pdf (461.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04781971 , version 1 (14-11-2024)

Identifiants

Citer

Stéphane Druel, Jorge Vitório Pereira, Brent Pym, Frédéric Touzet. Numerically flat foliations and holomorphic Poisson geometry. 2024. ⟨hal-04781971⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More