Estimating Infection Attack Rates and Severity in Real Time during an Influenza Pandemic: Analysis of Serial Cross-Sectional Serologic Surveillance Data. - Centre de Recherche Université de Hong-Kong-Pasteur
Article Dans Une Revue PLoS Medicine Année : 2011

Estimating Infection Attack Rates and Severity in Real Time during an Influenza Pandemic: Analysis of Serial Cross-Sectional Serologic Surveillance Data.

Résumé

BACKGROUND: In an emerging influenza pandemic, estimating severity (the probability of a severe outcome, such as hospitalization, if infected) is a public health priority. As many influenza infections are subclinical, sero-surveillance is needed to allow reliable real-time estimates of infection attack rate (IAR) and severity. METHODS AND FINDINGS: We tested 14,766 sera collected during the first wave of the 2009 pandemic in Hong Kong using viral microneutralization. We estimated IAR and infection-hospitalization probability (IHP) from the serial cross-sectional serologic data and hospitalization data. Had our serologic data been available weekly in real time, we would have obtained reliable IHP estimates 1 wk after, 1-2 wk before, and 3 wk after epidemic peak for individuals aged 5-14 y, 15-29 y, and 30-59 y. The ratio of IAR to pre-existing seroprevalence, which decreased with age, was a major determinant for the timeliness of reliable estimates. If we began sero-surveillance 3 wk after community transmission was confirmed, with 150, 350, and 500 specimens per week for individuals aged 5-14 y, 15-19 y, and 20-29 y, respectively, we would have obtained reliable IHP estimates for these age groups 4 wk before the peak. For 30-59 y olds, even 800 specimens per week would not have generated reliable estimates until the peak because the ratio of IAR to pre-existing seroprevalence for this age group was low. The performance of serial cross-sectional sero-surveillance substantially deteriorates if test specificity is not near 100% or pre-existing seroprevalence is not near zero. These potential limitations could be mitigated by choosing a higher titer cutoff for seropositivity. If the epidemic doubling time is longer than 6 d, then serial cross-sectional sero-surveillance with 300 specimens per week would yield reliable estimates when IAR reaches around 6%-10%. CONCLUSIONS: Serial cross-sectional serologic data together with clinical surveillance data can allow reliable real-time estimates of IAR and severity in an emerging pandemic. Sero-surveillance for pandemics should be considered. Please see later in the article for the Editors' Summary.

Domaines

Virologie
Fichier principal
Vignette du fichier
pmed.1001103.pdf (387.06 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

pasteur-00639818 , version 1 (15-11-2011)

Identifiants

Citer

Joseph T Wu, Andrew Ho, Edward S K Ma, Cheuk Kwong Lee, Daniel K W Chu, et al.. Estimating Infection Attack Rates and Severity in Real Time during an Influenza Pandemic: Analysis of Serial Cross-Sectional Serologic Surveillance Data.. PLoS Medicine, 2011, 8 (10), pp.e1001103. ⟨10.1371/journal.pmed.1001103⟩. ⟨pasteur-00639818⟩

Collections

RIIP RIIP_HONGKONG
95 Consultations
250 Téléchargements

Altmetric

Partager

More