An approximation of the squared Wasserstein distance and an application to Hamilton-Jacobi equations - Centre de mathématiques appliquées (CMAP)
Pré-Publication, Document De Travail Année : 2024

An approximation of the squared Wasserstein distance and an application to Hamilton-Jacobi equations

Résumé

We provide a simple $C^{1,1}$ approximation of the squared Wasserstein distance on R^d when one of the two measures is fixed. This approximation converges locally uniformly. More importantly, at points where the differential of the squared Wasserstein distance exists, it attracts the differentials of the approximations at nearby points. Our method relies on the Hilbertian lifting of PL Lions and on the regularization in Hilbert spaces of Lasry and Lions. We then provide an application of this result by using it to establish a comparison principle for an Hamilton-Jacobi equation on the set of probability measures.
Fichier principal
Vignette du fichier
note.pdf (268.69 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04700766 , version 1 (17-09-2024)

Identifiants

Citer

Charles Bertucci, Pierre Louis Lions. An approximation of the squared Wasserstein distance and an application to Hamilton-Jacobi equations. 2024. ⟨hal-04700766⟩
47 Consultations
15 Téléchargements

Altmetric

Partager

More