Volcanic Emissions, Plume Dispersion, and Downwind Radiative Impacts Following Mount Etna Series of Eruptions of February 21–26, 2021 - Département de mécanique Access content directly
Journal Articles (Review Article) Journal of Geophysical Research: Atmospheres Year : 2023

Volcanic Emissions, Plume Dispersion, and Downwind Radiative Impacts Following Mount Etna Series of Eruptions of February 21–26, 2021

Giuseppe Salerno
Sergey Khaykin
  • Function : Author
  • PersonId : 988019
Gérard Ancellet
  • Function : Author
  • PersonId : 915258
Luca Merucci
Lorenzo Guerrieri

Abstract

During the extended activity of Mount Etna volcano in February-April 2021, three distinct paroxysmal events took place from 21 to 26 February, which were associated with a very uncommon transport of the injected upper-tropospheric plumes towards the north. Using a synergy of observations and modelling, we characterised the emissions and three-dimensional dispersion for these three plumes, we monitor their downwind distribution and optical properties, and we estimate their radiative impacts at selected locations. With a satellite-based source inversion, we estimate the emitted sulphur dioxide (SO2) mass at an integrated value of 55 kt and plumes injections at up to 12 km altitudes, which qualifies this series as an extreme event for Mount Etna. Then, we combine Lagrangian dispersion modelling, initialised with measured temporally-resolved SO2 emission fluxes and altitudes, with satellite observations to track the dispersion of the three individual plumes. The transport towards the north allowed the height-resolved downwind monitoring of the plumes at selected observatories in France, Italy and Israel, using LiDARs and photometric aerosol observations. Volcanic-specific aerosol optical depths in the visible spectral range ranging from about 0.004 to 0.03 and local daily average shortwave radiative forcing ranging from about -0.2 to -1.2 W/m2 (at the top of atmosphere) and from about -0.2 to -3.0 W/m2 (at the surface) are found. The composition (possible presence of ash), aerosol optical depth and radiative forcing of the plume has a large inter- and intra-plume variability and thus depend strongly on the position of the sampled section of the plumes.
Fichier principal
Vignette du fichier
JGR Atmospheres - 2023 - Sellitto - Volcanic .pdf (5.57 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive
licence : CC BY - Attribution

Dates and versions

insu-03437407 , version 1 (19-11-2021)
insu-03437407 , version 2 (18-03-2023)

Identifiers

Cite

Pasquale Sellitto, Giuseppe Salerno, Stefano Corradini, Irène Xueref-Remy, Aurélie Riandet, et al.. Volcanic Emissions, Plume Dispersion, and Downwind Radiative Impacts Following Mount Etna Series of Eruptions of February 21–26, 2021. Journal of Geophysical Research: Atmospheres, 2023, 128 (6), pp.e2021JD035974. ⟨10.1029/2021JD035974⟩. ⟨insu-03437407v2⟩
314 View
39 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More