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Abstract

Factorizing low-rank matrices has many applications in machine learning and statistics.
For probabilistic models in the Bayes optimal setting, a general expression for the mutual
information has been proposed using heuristic statistical physics computations, and proven
in few specific cases. Here, we show how to rigorously prove the conjectured formula for
the symmetric rank-one case. This allows to express the minimal mean-square-error and to
characterize the detectability phase transitions in a large set of estimation problems ranging
from community detection to sparse PCA. We also show that for a large set of parameters,
an iterative algorithm called approximate message-passing is Bayes optimal. There exists,
however, a gap between what currently known polynomial algorithms can do and what
is expected information theoretically. Additionally, the proof technique has an interest of
its own and exploits three essential ingredients: the interpolation method introduced in
statistical physics by Guerra, the analysis of the approximate message-passing algorithm
and the theory of spatial coupling and threshold saturation in coding. Our approach is
generic and applicable to other open problems in statistical estimation where heuristic
statistical physics predictions are available.

Consider the following probabilistic rank-one matrix estimation problem: one has access
to noisy observations w=(wij)

n
i,j=1 of the pair-wise product of the components of a vector

s=(s1, . . . , sn)ᵀ∈Rn with i.i.d components distributed as Si∼P0, i=1, . . . , n. The entries
of w are observed through a noisy element-wise (possibly non-linear) output probabilistic
channel Pout(wij |sisj/

√
n). The goal is to estimate the vector s from w assuming that both

P0 and Pout are known and independent of n (noise is symmetric so that wij =wji). Many
important problems in statistics and machine learning can be expressed in this way, such as
sparse PCA [Zou et al. (2006)], the Wigner spike model [Johnstone and Lu (2012); Deshpande
and Montanari (2014)], community detection [Deshpande et al. (2015)] or matrix completion
[Candès and Recht (2009)].

Proving a result initially derived by a heuristic method from statistical physics, we give
an explicit expression for the mutual information and the information theoretic minimal
mean-square-error (MMSE) in the asymptotic n→+∞ limit. Our results imply that for
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a large region of parameters, the posterior marginal expectations of the underlying signal
components (often assumed intractable to compute) can be obtained in the leading order in
n using a polynomial-time algorithm called approximate message-passing (AMP) [Rangan
and Fletcher (2012); Deshpande and Montanari (2014); Deshpande et al. (2015); Lesieur
et al. (2015b)]. We also demonstrate the existence of a region where both AMP and spectral
methods [Baik et al. (2005)] fail to provide a good answer to the estimation problem, while
it is nevertheless information theoretically possible to do so. We illustrate our theorems with
examples and also briefly discuss the implications in terms of computational complexity.

1. Setting and main results

1.1 The additive white Gaussian noise setting

A standard and natural setting is the case of additive white Gaussian noise (AWGN) of
known variance ∆,

wij =
sisj√
n

+ zij
√

∆, (1)

where z=(zij)
n
i,j=1 is a symmetric matrix with i.i.d entries Zij∼N (0, 1), 1≤ i≤j≤n. Perhaps

surprisingly, it turns out that this Gaussian setting is sufficient to completely characterize
all the problems discussed in the introduction, even if these have more complicated output
channels. This is made possible by a theorem of channel universality [Krzakala et al. (2016)]
(already proven for community detection in [Deshpande et al. (2015)] and conjectured in
[Lesieur et al. (2015a)]). This theorem states that given an output channel Pout(w|y),
such that logPout(w|y = 0) is three times differentiable with bounded second and third
derivatives, then the mutual information satisfies I(S;W)=I(S;SSᵀ/

√
n+Z

√
∆)+O(

√
n),

where ∆ is the inverse Fisher information (evaluated at y = 0) of the output channel:
∆−1 := EPout(w|0)[(∂y logPout(W |y)|y=0)

2]. Informally, this means that we only have to
compute the mutual information for an AWGN channel to take care of a wide range of
problems, which can be expressed in terms of their Fisher information. In this paper we
derive rigorously, for a large class of signal distributions P0, an explicit one-letter formula for
the mutual information per variable I(S;W)/n in the asymptotic limit n→+∞.

1.2 Main result

Our central result is a proof of the expression for the asymptotic n→+∞ mutual information
per variable via the so-called replica symmetric potential function iRS(E; ∆) defined as

iRS(E; ∆) :=
(v − E)2 + v2

4∆
− ES,Z

[
ln

(∫
dxP0(x)e

− x2

2Σ(E;∆)2
+x
(

S
Σ(E;∆)2

+ Z
Σ(E;∆)

))]
, (2)

with Z∼N (0, 1), S∼P0, E[S2]=v and Σ(E; ∆)2 :=∆/(v−E), E∈ [0, v]. Here we will assume
that P0 is a discrete distribution over a finite bounded real alphabet P0(s)=

∑ν
α=1 pαδ(s−aα).

Thus the only continuous integral in (2) is the Gaussian over z. Our results can be extended
to mixtures of discrete and continuous signal distributions at the expense of technical
complications in some proofs.
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It turns out that both the information theoretical and algorithmic AMP thresholds are
determined by the set of stationary points of (2) (w.r.t E). It is possible to show that
for all ∆> 0 there always exist at least one stationary minimum. Note E = 0 is never a
stationary point (except for P0 a single Dirac mass) and E=v is stationary only if E[S]=0.
In this contribution we suppose that at most three stationary points exist, corresponding
to situations with at most one phase transition. We believe that situations with multiple
transitions can also be covered by our techniques.

Theorem 1 (One letter formula for the mutual information) Fix ∆>0 and assume
P0 is a discrete distribution such that iRS(E; ∆) given by (2) has at most three stationary
points. Then

lim
n→+∞

1

n
I(S;W) = min

E∈[0,v]
iRS(E; ∆). (3)

The proof of the existence of the limit does not require the above hypothesis on P0. Also, it
was first shown in [Krzakala et al. (2016)] that for all n, I(S;W)/n≤minE∈[0,v] iRS(E; ∆),
an inequality that we will use in the proof section. It is conceptually useful to define the
following threshold:

Definition 2 (Information theoretic threshold) Define ∆Opt as the first non-analyticity
point of the asymptotic mutual information per variable as ∆ increases, that is formally
∆Opt :=sup{∆| limn→+∞ I(S;W)/n is analytic in ]0,∆[}.

When P0 is such that (2) has at most three stationary points, as discussed below, then
minE∈[0,v] iRS(E; ∆) has at most one non-analyticity point denoted ∆RS (if minE∈[0,v] iRS(E; ∆)
is analytic over all R+ we set ∆RS = +∞). Theorem 1 gives us a mean to compute the
information theoretical threshold ∆Opt = ∆RS. A basic application of theorem 1 is the
expression of the MMSE:

Corollary 3 (Exact formula for the MMSE) For all ∆ 6= ∆RS, the matrix-MMSE
Mmmsen :=ES,W‖SSᵀ−E[XXᵀ|W]‖2F/n2 (‖−‖F being the Frobenius norm) is asymptotically
limn→+∞Mmmsen(∆−1)=v2−(v−argminE∈[0,v]iRS(E; ∆))2. Moreover, if ∆<∆AMP (where
∆AMP is the algorithmic threshold, see definition 4) or ∆>∆RS, then the usual vector-MMSE
Vmmsen :=ES,W‖S−E[X|W]‖22/n satisfies limn→+∞Vmmsen=argminE∈[0,v]iRS(E; ∆).

It is natural to conjecture that the vector-MMSE is given by argminE∈[0,v]iRS(E; ∆) for all
∆ 6=∆RS, but our proof does not quite yield the full statement.

A fundamental consequence concerns the performance of the AMP algorithm [Rangan and
Fletcher (2012)] for estimating s. AMP has been analysed rigorously in [Bayati and Montanari
(2011); Javanmard and Montanari (2013); Deshpande et al. (2015)] where it is shown that its
asymptotic performance is tracked by state evolution. Let Et :=limn→+∞ ES,Z[‖S−ŝt‖22]/n be
the asymptotic average vector-MSE of the AMP estimate ŝt at time t. Define mmse(Σ−2) :=
ES,Z [(S−E[X|S+ΣZ])2] as the usual scalar mmse function associated to a scalar AWGN
channel of noise variance Σ2, with S∼P0 and Z∼N (0, 1). Then

Et+1 = mmse(Σ(Et; ∆)−2), E0 = v, (4)
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is the state evolution recursion. Monotonicity properties of the mmse function imply that Et

is a decreasing sequence such that limt→+∞E
t=E∞ exists. Note that when E[S] = 0 and v

is an unstable fixed point, as such, state evolution “does not start”. While this is not really a
problem when one runs AMP in practice, for analysis purposes one can slightly bias P0 and
remove the bias at the end of the proofs.

Definition 4 (AMP algorithmic threshold) For ∆ > 0 small enough, the fixed point
equation corresponding to (4) has a unique solution for all noise values in ]0,∆[. We define
∆AMP as the supremum of all such ∆.

Corollary 5 (Performance of AMP) In the limit n→+∞, AMP initialized without any
knowledge other than P0 yields upon convergence the asymptotic matrix-MMSE as well as the
asymptotic vector-MMSE iff ∆<∆AMP or ∆>∆RS, namely E∞=argminE∈[0,v]iRS(E; ∆).

∆AMP can be read off the replica potential (2): by differentiation of (2) one finds a fixed
point equation that corresponds to (4). Thus ∆AMP is the smallest solution of ∂iRS/∂E=
∂2iRS/∂E

2 = 0; in other words it is the “first” horizontal inflexion point that appears in
iRS(E; ∆) when we increase ∆.

1.3 Discussion

With our hypothesis on P0 there are only three possible scenarios: ∆AMP < ∆RS (one
“first order” phase transition); ∆AMP = ∆RS <+∞ (one “higher order” phase transition);
∆AMP = ∆RS = +∞ (no phase transition). In the sequel we will have in mind the most
interesting case, namely one first order phase transition, where we determine the gap between
the algorithmic AMP and information theoretic performance. The cases of no phase transition
or higher order phase transition, which present no algorithmic gap, are basically covered by
the analysis of [Deshpande and Montanari (2014)] and follow as a special case from our proof.
The only cases that would require more work are those where P0 is such that (2) develops
more than three stationary points and more than one phase transition is present.

For ∆AMP < ∆RS the structure of stationary points of (2) is as follows1 (figure 1).
There exist three branches Egood(∆), Eunstable(∆) and Ebad(∆) such that: 1) For 0 <
∆<∆AMP there is a single stationary point Egood(∆) which is a global minimum; 2) At
∆AMP a horizontal inflexion point appears, for ∆∈ [∆AMP,∆RS] there are three stationary
points satisfying Egood(∆AMP)<Eunstable(∆AMP)=Ebad(∆AMP), Egood(∆)<Eunstable(∆)<
Ebad(∆) otherwise, and moreover iRS(Egood; ∆)≤ iRS(Ebad; ∆) with equality only at ∆RS;
3) for ∆>∆RS there is at least the stationary point Ebad(∆) which is always the global
minimum, i.e. iRS(Ebad; ∆)<iRS(Egood; ∆). (For higher ∆ the Egood(∆) and Eunstable(∆)
branches may merge and disappear); 4) Egood(∆) is analytic for ∆∈]0,∆′[, ∆′>∆RS, and
Ebad(∆) is analytic for ∆>∆AMP.

We note for further use in the proof section that E∞ =Egood(∆) for ∆<∆AMP and
E∞=Ebad(∆) for ∆>∆AMP. Definition 4 is equivalent to ∆AMP=sup{∆|E∞=Egood(∆)}.
Moreover we will also use that iRS(Egood; ∆) is analytic on ]0,∆′[, iRS(Ebad; ∆) is analytic
on ]∆AMP,+∞[, and the only non-analyticity point of minE∈[0,v] iRS(E; ∆) is at ∆RS.

1. We take E[S] 6= 0. Once theorem 1 is proven for this case a limiting argument allows to extend it to
E[S]=0.
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Figure 1: The replica formula iRS(E) for four values of ∆ in the Wigner spike model. The mutual
information is min iRS(E) (the black dot, while the black cross corresponds to the local minimum)
and the asymptotic matrix-MMSE is v2−(v−argminEiRS(E))2, where v=ρ in this case with
ρ=0.02 as in the inset of figure 2. From top left to bottom right: (1) For low noise values, here
∆ = 0.0008<∆AMP, there exists a unique “good” minimum corresponding to the MMSE and
AMP is Bayes optimal. (2) As the noise increases, a second local “bad” minimum appears: this
is the situation at ∆AMP<∆=0.0012<∆RS. (3) For ∆=0.00125>∆RS, the “bad” minimum
becomes the global one and the MMSE suddenly deteriorates. (4) For even larger values of ∆,
only the “bad” minimum exists. The AMP algorithm can be seen as a naive minimizer of this
curve starting from E=v=0.02. It reaches the global minimum in situations (1), (3) and (4),
but in (2), when ∆AMP<∆<∆RS, it is trapped by the local minimum with large MSE instead
of reaching the global one corresponding to the MMSE.

1.4 Relation to other works

Explicit single-letter characterization of the mutual information in the rank-one problem has
attracted a lot of attention recently. Particular cases of (3) have been shown rigorously in a
number of situations. A special case when si=±1∼Ber(1/2) already appeared in [Korada
and Macris (2009)] where an equivalent spin glass model is analysed. Very recently, [Krzakala
et al. (2016)] has generalized the results of [Korada and Macris (2009)] and, notably, obtained
a generic matching upper bound. The same formula has been also rigorously computed
following the study of AMP in [Deshpande and Montanari (2014)] for spike models (provided,
however, that the signal was not too sparse) and in [Deshpande et al. (2015)] for strictly
symmetric community detection.

For rank-one symmetric matrix estimation problems, AMP has been introduced by
[Rangan and Fletcher (2012)], who also computed the state evolution formula to analyse
its performance, generalizing techniques developed by [Bayati and Montanari (2011)] and
[Javanmard and Montanari (2013)]. State evolution was further studied by [Deshpande
and Montanari (2014)] and [Deshpande et al. (2015)]. In [Lesieur et al. (2015b,a)], the
generalization to larger rank was also considered.

The general formula proposed by [Lesieur et al. (2015a)] for the conditional entropy
and the MMSE on the basis of the heuristic cavity method from statistical physics was not
demonstrated in full generality. Worst, all existing proofs could not reach the more interesting
regime where a gap between the algorithmic and information theoretic perfomances appears,
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leaving a gap with the statistical physics conjectured formula (and rigorous upper bound
from [Krzakala et al. (2016)]). Our result closes this conjecture and has interesting non-trivial
implications on the computational complexity of these tasks.

Our proof technique combines recent rigorous results in coding theory along the study
of capacity-achieving spatially coupled codes [Hassani et al. (2010); Kudekar et al. (2011);
Yedla et al. (2014); Barbier et al. (2016)] with other progress, coming from developments in
mathematical physics putting on a rigorous basis predictions of spin glass theory [Guerra
(2005)]. From this point of view, the theorem proved in this paper is relevant in a broader
context going beyond low-rank matrix estimation. Hundreds of papers have been published
in statistics, machine learning or information theory using the non-rigorous statistical physics
approach. We believe that our result helps setting a rigorous foundation of a broad line
of work. While we focus on rank-one symmetric matrix estimation, our proof technique is
readily extendable to more generic low-rank symmetric matrix or low-rank symmetric tensor
estimation. We also believe that it can be extended to other problems of interest in machine
learning and signal processing, such as generalized linear regression, features/dictionary
learning, compressed sensing or multi-layer neural networks.

2. Two examples: Wigner spike model and community detection

In order to illustrate the consequences of our results we shall present two examples. In the
first one we are given data distributed according to the spiked Wigner model where the vector
s is a Bernoulli random vector, Si∼Ber(ρ). For large enough densities (i.e. ρ>0.041(1)),
[Deshpande and Montanari (2014)] computed the matrix-MMSE and proved that AMP is
a computationally efficient algorithm that asymptotically achieves the matrix-MMSE for
any value of the noise ∆. Our results allow to close the gap left open by [Deshpande and
Montanari (2014)]: on one hand we now obtain rigorously the MMSE for ρ≤0.041(1), and on
the other one, we observe that for such values of ρ, and as ∆ decreases, there is a small region
where two local minima coexist in iRS(E; ∆). In particular for ∆AMP<∆<∆Opt = ∆RS the
global minimum corresponding to the MMSE differs from the local one that traps AMP, and
a computational gap appears (see figure 1). While the region where AMP is Bayes optimal
is quite large, the region where is it not, however, is perhaps the most interesting one. While
this is by no means evident, statistical physics analogies with physical phase transitions in
nature suggest that this region should be hard for a very broad class of algorithms.

For small ρ our results are consistent with the known optimal and algorithmic thresholds
predicted in sparse PCA [Amini and Wainwright (2008); Berthet and Rigollet (2013)], that
treats the case of sub-extensive ρ=O(1) values. Another interesting line of work for such
probabilistic models appeared in the context of random matrix theory (see [Baik et al. (2005)]
and references therein) and predicts that a sharp phase transition occurs at a critical value of
the noise ∆spectral=ρ2 below which an outlier eigenvalue (and its principal eigenvector) has
a positive correlation with the hidden signal. For larger noise values the spectral distribution
of the observation is indistinguishable from that of the pure random noise.

We now consider the problem of detecting two communities (groups) with different sizes
ρn and (1−ρ)n, that generalizes the one considered in [Deshpande et al. (2015)]. One
is given a graph where the probability to have a link between nodes in the first group
is p+µ(1− ρ)/(ρ

√
n), between those in the second group is p+µρ/(

√
n(1− ρ)), while

6
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Figure 2: Phase diagram in the noise variance ∆ versus density ρ plane for the rank-one spiked Wigner
model (left) and the asymmetric community detection (right). Left: [Deshpande and Montanari
(2014)] proved that AMP achieves the matrix-MMSE for all ∆ as long as ρ>0.041(1). Here we
show that AMP is actually achieving the optimal reconstruction in the whole phase diagram
except in the small region between the blue and red lines. Notice the large gap with spectral
methods (dashed black line). Inset: matrix-MMSE (blue) at ρ=0.02 as a function of ∆. AMP
(dashed red) provably achieves the matrix-MMSE except in the region ∆AMP<∆<∆Opt =∆RS.
We conjecture that no polynomial-time algorithm will do better than AMP in this region. Right:
Asymmetric community detection problem with two communities. For ρ>1/2−

√
1/12 (black

point) and when ∆>1, it is information theoretically impossible to find any overlap with the
true communities and the matrix-MMSE is 1, while it becomes possible for ∆<1. In this region,
AMP is always achieving the matrix-MMSE and spectral methods can find a non-trivial overlap
with the truth as well, starting from ∆< 1. For ρ < 1/2−

√
1/12, however, it is information

theoretically possible to find an overlap with the hidden communities for ∆>1 (below the blue
line) but both AMP and spectral methods miss this information. Inset: matrix-MMSE (blue)
at ρ=0.05 as a function of ∆. AMP (dashed red) again provably achieves the matrix-MMSE
except in the region ∆AMP<∆<∆Opt.

interconnections appear with probability p−µ/
√
n. With this peculiar “balanced” setting,

the nodes in each group have the same degree distribution with mean pn, making them
harder to distinguish. According to the universality property described in section 1.1, this
is equivalent to a model with AWGN of variance ∆=p(1−p)/µ2 where each variable si is
chosen according to P0(s)=ρδ(s−

√
(1−ρ)/ρ)+(1−ρ)δ(s+

√
ρ/(1−ρ)). Our results for this

problem2 are summarized on the right hand side of figure 2. For ρ> ρc=1/2−
√

1/12 (black
point), it is asymptotically information theoretically possible to get an estimation better than
chance if and only if ∆<1. When ρ<ρc, however, it becomes possible for much larger values
of the noise. Interestingly, AMP and spectral methods have the same transition and can find
a positive correlation with the hidden communities for ∆<1, regardless of the value of ρ.
Again, a region [∆AMP,∆Opt=∆RS] exists where a computational gap appears when ρ<ρc.

One can investigate the very low ρ regime where we find that the information theoretic
transition goes as ∆Opt(ρ→ 0) = 1/(4ρ| log ρ|). Now if we assume that this result stays

2. Note that here since E=v=1 is an extremum of iRS(E; ∆), one must introduce a small bias in P0 and
let it then tend to zero at the end of the proofs.
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true even for ρ=O(1) (which is a speculation at this point), we can choose µ→(1−p)ρ
√
n

such that the small group is a clique. Then the problem corresponds to a “balanced”
version of the famous planted clique problem [d’Aspremont et al. (2007)]. We find that the
AMP/spectral approach finds the hidden clique when it is larger than

√
np/(1−p), while

the information theoretic transition translates into size of the clique 4p log(n)/(1−p). This
is indeed reminiscent of the more classical planted clique problem at p= 1/2 with its gap
between log(n) (information theoretic),

√
n/e (AMP [Deshpande and Montanari (2015)])

and
√
n (spectral [d’Aspremont et al. (2007)]). Since in our balanced case the spectral and

AMP limits match, this suggests that the small gain of AMP in the standard clique problem
is simply due to the information provided by the distribution of local degrees in the two
groups (which is absent in our balanced case). We believe this correspondence strengthens
the claim that the AMP gap is actually a fundamental one.

3. Proofs

The crux of our proof rests on an auxiliary “spatially coupled system”. The hallmark of
spatially coupled models is that one can tune them so that the gap between the algorithmic
and information theoretical limits can be eliminated, while at the same time the mutual
information is maintained unchanged for the coupled and original models. Roughly speaking,
this means that it is possible to algorithmically compute the information theoretical limit of
the original model because a suitable algorithm is optimal on the coupled system.

The spatially coupled construction used here is very similar to the one used for the
coupled Curie-Weiss model [Hassani et al. (2010)]. We consider a ring of length L+1 (L even)
with blocks positioned at µ∈{0, . . . , L} and coupled to neighboring blocks {µ−w, . . . , µ+w}.
The positions µ are taken modulo L+1 and w∈{0, . . . , L/2} is an integer equal to the size
of the coupling window. The coupled model is

wiµjν = siµsjν

√
Λµν
n

+ ziµjν
√

∆, (5)

where the index iµ∈{1, . . . , n} (resp. jν) belongs to the block µ (resp. ν) along the ring, Λ
is an (L+1)×(L+1) matrix which describes the strength of the coupling between blocks,
and Ziµjν ∼N (0, 1) are i.i.d. For the proof to work, the matrix elements have to be chosen
appropriately. We assume that: i) Λ is a doubly stochastic matrix; ii) Λµν depends on |µ−ν|;
iii) Λµν is not vanishing for |µ−ν| ≤ w and vanishes for |µ−ν|>w; iv) Λ is smooth in the
sense |Λµν−Λµ+1ν |=O(w−2); v) Λ has a non-negative Fourier transform. All these conditions
can easily be met, the simplest example being a triangle of base 2w+1 and height 1/(w+1).
The construction of the coupled system is completed by introducing a seed in the ring: we
assume perfect knowledge of the signal components {siµ} for µ∈B := {−w−1, . . . , w−1}
mod L+1. This seed is what allows to close the gap between the algorithmic and information
theoretical limits and therefore plays a crucial role. Note it can also be viewed as an “opening”
of the chain with pinned boundary conditions.

Our first crucial result states that the mutual information Iw,L(S;W) of the coupled and
original systems are the same in a suitable asymptotic limit.

Lemma 6 (Equality of mutual informations) For any w ∈ {0, . . . , L/2} the following
limits exist and are equal: limL→+∞ limn→+∞ Iw,L(S;W)/(n(L+1))=limn→+∞ I(S;W)/n.
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An immediate corollary is that non-analyticity points (w.r.t ∆) of the mutual informations
are the same in the coupled and original models. In particular, defining ∆Opt,coup :=sup{∆ |
limL→+∞ limn→+∞ Iw,L(S;W)/(n(L+1)) is analytic in ]0,∆[}, we have ∆Opt,coup=∆Opt.

The second crucial result states that the AMP threshold of the spatially coupled system is
at least as good as ∆RS. The analysis of AMP applies to the coupled system as well [Bayati
and Montanari (2011); Javanmard and Montanari (2013)] and it can be shown that the
performance of AMP is assessed by state evolution. Let Etµ :=limn→+∞ ES,Z[‖Sµ−ŝtµ‖22]/n
be the asymptotic average vector-MSE of the AMP estimate ŝtµ at time t for the µ-th “block”
of S. We associate to each position µ∈{0, . . . , L} an independent scalar system with AWGN
noise of the form Y =S+Σµ(E; ∆)Z with Σµ(E; ∆)2 := ∆/(v−

∑L
ν=0 ΛµνEν) and S ∼P0,

Z∼N (0, 1). Taking into account knowledge of the signal in B, state evolution reads:

Et+1
µ = mmse(Σµ(Et; ∆)−2), E0

µ = v for µ ∈ {0, . . . , L} \ B, Etµ = 0 for µ ∈ B, t ≥ 0, (6)

where the mmse function is defined as in section 1.2. From the monotonicity of the mmse
function we have Et+1

µ ≤ Etµ for all µ ∈ {0, . . . , L}, a partial order which implies that
limt→+∞Et = E∞ exists. This allows to define an algorithmic threshold: ∆AMP,w,L :=
sup{∆|E∞µ ≤Egood(∆) ∀ µ}. We show (equality holds but is not directly needed)

Lemma 7 (Threshold saturation) Let ∆AMP,coup :=lim infw→+∞ lim infL→+∞∆AMP,w,L.
We have ∆AMP,coup≥∆RS.

Proof sketch of theorem 1 First we prove (3) for ∆ ≤ ∆Opt. It is known [Deshpande
and Montanari (2014)] that the matrix-MSE of AMP when n→+∞ is equal to v2−(v−Et)2.
This cannot improve the matrix-MMSE, hence

1

4
(v2 − (v − E∞)2) ≥ lim sup

n→+∞

1

4n2
ES,W‖SSᵀ − E[XXᵀ|W]‖2F. (7)

For ∆≤∆AMP we have E∞=Egood(∆) which is the global minimum of (2) so the left hand
side of (7) is equal to the derivative of minE∈[0,v] iRS(E; ∆) w.r.t ∆−1. Thus using a matrix
version of the well known I-MMSE relation [Guo et al. (2005)] we get

d

d∆−1
min
E∈[0,v]

iRS(E; ∆) ≥ lim sup
n→+∞

1

n

dI(S;W)

d∆−1
. (8)

Integrating this relation on [0,∆]⊂ [0,∆AMP] and checking that minE∈[0,v] iRS(E; 0)=H(S)
(the Shannon entropy of P0) we obtain minE∈[0,v] iRS(E; ∆)≤ lim infn→+∞ I(S;W)/n. But
we know I(S;W)/n≤minE∈[0,v] iRS(E; ∆) [Krzakala et al. (2016)], thus we already get (3)
for ∆≤∆AMP. We notice that ∆AMP≤∆Opt. While this might seem intuitively clear, it
follows from ∆RS≥∆AMP (by their definitions) which together with ∆AMP>∆Opt would
imply from (3) that limn→+∞ I(S;W)/n is analytic at ∆Opt, a contradiction. The next step
is to extend (3) to the range [∆AMP,∆Opt]. Suppose for a moment ∆RS≥∆Opt. Then both
functions on each side of (3) are analytic on the whole range ]0,∆Opt[ and since they are
equal for ∆≤∆AMP, they must be equal on their whole analyticity range and by continuity,
they must also be equal at ∆Opt (that the functions are continuous follows from independent
arguments on the existence of the n→+∞ limit of concave functions). It remains to show
that ∆RS ∈ ]∆AMP,∆Opt[ is impossible. We proceed by contradiction, so suppose this is
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true. Then both functions on each side of (3) are analytic on ]0,∆RS[ and since they are
equal for ]0,∆AMP[⊂]0,∆RS[ they must be equal on the whole range ]0,∆RS[ and also at
∆RS by continuity. For ∆>∆RS the fixed point of state evolution is E∞=Ebad(∆) which is
also the global minimum of iRS(E; ∆), hence (8) is verified. Integrating this inequality on
]∆RS,∆[⊂]∆RS,∆Opt[ and using I(S;W)/n≤minE∈[0,v] iRS(E; ∆) again, we find that (3)
holds for all ∆∈ [0,∆Opt]. But this implies that minE∈[0,v] iRS(E; ∆) is analytic at ∆RS, a
contradiction.

We now prove (3) for ∆≥∆Opt. Note that the previous arguments showed that necessarily
∆Opt≤∆RS. Thus by lemmas 6 and 7 (and the sub-optimality of AMP as shown as before)
we obtain ∆RS ≤ ∆AMP,coup≤∆Opt,coup=∆Opt≤∆RS. This shows that ∆Opt=∆RS (this is
the point where spatial coupling came in the game and we do not know of other means to
prove such an equality). For ∆>∆RS we have E∞=Ebad(∆) which is the global minimum
of iRS(E; ∆). Therefore we again have (8) in this range and the proof can be completed by
using once more the integration argument, this time over the range [∆RS,∆]=[∆Opt,∆].

Proof sketch of corollaries 3 and 5 Let E∗(∆)=argminEiRS(E; ∆) for ∆ 6=∆RS. By ex-
plicit calculation one checks that diRS(E∗,∆)/d∆−1=(v2−(v−E∗(∆))2)/4, so from theorem 1
and the matrix form of the I-MMSE relation we find Mmmsen→v2−(v−E∗(∆))2 as n→+∞
which is the first part of the statement of corollary 3. Let us now turn to corollary 5. For
n→+∞ the vector-MSE of the AMP estimator at time t equals Et, and since the fixed point
equation corresponding to state evolution is precisely the stationarity equation for iRS(E; ∆),
we conclude that for ∆ /∈ [∆AMP,∆RS] we must have E∞=E∗(∆). It remains to prove that
E∗(∆)=limn→+∞Vmmsen(∆) at least for ∆ /∈ [∆AMP,∆RS] (we believe this is in fact true
for all ∆). This will settle the second part of corollary 3 as well as 5. Using (Nishimori)
identities ES,W[SiSjE[XiXj |W]]=ES,W[E[XiXj |W]2] (see e.g. [Krzakala et al. (2016)]) and
the law of large numbers we can show limn→+∞Mmmsen≤ limn→+∞(v2−(v−Vmmsen(∆))2).
Concentration techniques similar to [Korada and Macris (2009)] suggest that the equality
in fact holds (for ∆ 6= ∆RS) but there are technicalities that prevent us from completing
the proof of equality. However it is interesting to note that this equality would imply
E∗(∆)=limn→+∞Vmmsen(∆) for all ∆ 6=∆RS. Nevertheless, another argument can be used
when AMP is optimal. On one hand the right hand side of the inequality is necessarily
smaller than v2− (v−E∞)2. On the other hand the left hand side of the inequality is
equal to v2−(v−E∗(∆))2. Since E∗(∆) = E∞ when ∆ /∈ [∆AMP,∆RS], we can conclude
limn→+∞Vmmsen(∆)=argminEiRS(E; ∆) for this range of ∆.

Proof sketch of lemma 6 Here we prove the lemma for a ring that is not seeded. An
easy argument shows that a seed of size w does not change the mutual information per
variable when L→+∞. The statistical physics formulation is convenient: up to a trivial
additive term equal to n(L+1)v2/4, the mutual information Iw,L(S;W) is equal to the free
energy −ES,Z[lnZw,L], where Zw,L :=

∫
dxP0(x) exp(−H(x, z,Λ)) is the partition function
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with Hamiltonian

H(x, z,Λ) =
1

∆

L∑
µ=0

Λµµ
∑
iµ≤jµ

(
x2iµx

2
jµ

2n
−
siµsjµxiµxjµ

n
−
xiµxjµziµjµ

√
∆√

nΛµµ

)

+
1

∆

L∑
µ=0

µ+w∑
ν=µ+1

Λµν
∑
iµ,jν

(
x2iµx

2
jν

2n
−
siµsjνxiµxjν

n
−
xiµxjνziµjν

√
∆√

nΛµν

)
. (9)

Consider a pair of systems with coupling matrices Λ and Λ′ and i.i.d noize realizations z, z′,
an interpolated Hamiltonian H(x, z, tΛ)+H(x, z′, (1−t)Λ′), t ∈ [0, 1], and the corresponding
partition function Zt. The main idea of the proof is to show that for suitable choices of
matrices, − d

dtES,Z,Z′ [lnZt] is negative for all t∈ [0, 1] (up to negligible terms), so that by the
fundamental theorem of calculus, we get a comparison between the free energies of H(x, z,Λ)
and H(x, z′,Λ′). Performing the t-derivative brings down a Gibbs average of a polynomial
in all variables siµ , xiµ , ziµjν and z′iµjν . This expectation over S, Z, Z′ of this Gibbs average
can be greatly simplified using integration by parts over the Gaussian noise ziµjν , z′iµjν and
Nishimori identities (see e.g. proof of corollary 3 for one of them). This algebra leads to

− 1

n(L+ 1)

d

dt
ES,Z,Z′ [lnZt] =

1

4∆(L+ 1)
ES,Z,Z′ [〈qᵀΛq− qᵀΛ′q〉t] +O(1/(nL)), (10)

where 〈−〉t is the Gibbs average w.r.t the interpolated Hamiltonian, q is the vector of overlaps
qµ :=

∑n
iµ=1 siµxiµ/n. If we can choose matrices such that Λ′>Λ, the difference of quadratic

forms in the Gibbs bracket is negative and we obtain an inequality in the large size limit.
We use this scheme to interpolate between the fully decoupled system w=0 and the coupled
one 1≤w<L/2 and then between 1≤w <L/2 and the fully connected system w=L/2. The
w=0 system has Λµν =δµν with eigenvalues (1, 1, . . . , 1). For the 1≤w<L/2 system, we take
any stochastic translation invariant matrix with non-negative discrete Fourier transform (of
its rows): such matrices have an eigenvalue equal to 1 and all others in [0, 1[ (the eigenvalues
are precisely equal to the discrete Fourier transform). For w=L/2 we choose Λµν =1/(L+1)
which is a projector with eigenvalues (0, 0, . . . , 1). With these choices we deduce that the free
energies and mutual informations are ordered as Iw=0,L+O(1)≤Iw,L+O(1)≤Iw=L/2,L+O(1).
To conclude the proof we divide by n(L+1) and note that the limits of the leftmost and
rightmost mutual informations are equal, provided the limit exists. Indeed the leftmost term
equals L times I(S;W) and the rightmost term is the same mutual information for a system
of n(L+1) variables. Existence of the limit follows by a subadditivity inequality which itself
is proven by a similar interpolation [Guerra (2005)].

Proof sketch of lemma 7 Fix ∆<∆RS. We show that, for w large enough, the coupled
state evolution recursion (6) must converge to a fixed point E∞µ ≤Egood(∆) for all µ. The
main intuition behind the proof is to use a “potential function” whose “energy” can be
lowered by small perturbation of a fixed point that would go above Egood(∆) [Yedla et al.
(2014); Barbier et al. (2016)]. The relevant potential function iw,L(E,∆) is in fact the replica
potential of the coupled system, and equals up to a constant (2w+1)Lv2/4∆∑
µ

{ µ+w∑
ν=µ−w

Λµν
4∆

(v−Eµ)(v−Eν)−ES,Z
[
ln

(∫
dxP0(x)e

− x2

2Σµ(E;∆)2
+x
(

S
Σµ(E;∆)2

+ Z
Σµ(E;∆)

))]}
.
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We note that the stationarity condition for this potential is precisely (6) (without the seeding
condition). Monotonicity properties of state evolution ensure that any fixed point has a
“unimodal” shape (and recall that it vanishes for µ∈B= {0, . . . , w−1} ∪ {L−w, . . . , L}).
Consider a position µmax∈{w, . . . , L−w−1} where it is maximal and suppose that E∞µmax

>
Egood(∆). We associate to the fixed point E∞ a so-called saturated profile Es defined on the
whole of Z as follows: Es

µ=Egood(∆) for all µ≤µ∞ where µ∞+1 is the smallest position
such that E∞µ > Egood(∆); Es

µ = E∞µ for µ ∈ {µ∞+1, . . . , µmax−1}; Es
µ = E∞µmax

for all
µ≥ µmax. We show that Es cannot exist for w large enough. To this end define a shift
operator by [S(Es)]µ :=Es

µ−1. On one hand the shifted profile is a small perturbation of Es

which matches a fixed point, except where it is constant, so if we Taylor expand, the first
order vanishes and the second order and higher orders can be estimated as |iw,L(S(Es); ∆)−
iw,L(Es; ∆)|=O(1/w) uniformly in L. On the other hand, by explicit cancellation of telescopic
sums iw,L(S(Es); ∆)−iw,L(Es; ∆)= iRS(Egood; ∆)−iRS(E∞µmax

; ∆). Now one can show from
monotonicity properties of state evolution that if E∞ is a fixed point then E∞µmax

cannot be
in the basin of attraction of Egood(∆) for the uncoupled recursion. Consequently as can
be seen on the plot of iRS(E; ∆) (e.g. figure 1) we must have iRS(E∞µmax

; ∆)≥ iRS(Ebad; ∆).
Therefore iw,L(S(Es); ∆)−iw,L(Es; ∆)≤−|iRS(Ebad; ∆)−iRS(Egood; ∆)| which is an energy
gain independent of w, and for large enough w we get a contradiction with the previous
estimate coming from the Taylor expansion.
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