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Sandpile avalanche distribution on the wheel.

Arnaud Dartois® and Dominique Rossin "

aLIX, Ecole polytechnique, 91128 PALAISEAU Cedexr, FRANCE

PONRS, LIAFA, Université Paris 7,2 Place Jussieu, 75251 PARIS Cedex 05,
FRANCE

Abstract

This paper deals with the sandpile model on the wheel, a lattice with partic-
ular boundary conditions. It presents how transducers applied to the language of
recurrent configurations of the abelian sandpile model can help determining criti-
cal exponents of the underlying model. We present exact results for the avalanche
distribution on the simple wheel, and give some clues for the multiple one where
strange phenomena happen.
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Introduction

The standard abelian sandpile model (ASM) was introduced by Bak, Tang
and Wiesenfeld [1] in 1987. This model, based on a cellular automaton, is the
paradigm of a self-organized critical system. Its underlying abelian structure
was discovered by Dhar [2] and Creutz [3]. Other approaches to this model
can be found in [4, 5, 6, 7].

We can briefly describe this model as follows : take a regular two-dimensional
lattice and on each cell, put some grains. If the number of grains is greater
or equal than four, then take four of the grains and put one on each of the
neighbor’s cell. We say that the - unstable - vertex topples. If a grain falls
out of the lattice then it is lost. This corresponds to all boundaries open and
could be represented by a special cell which could never be toppled. We call
such a cell the sink. An addition of one grain can induce a high number of
different topplings all over the lattice before reaching a stable configuration -
a configuration with no unstable vertex -. This process is finite and is called
relaxation. The multi-set of topplings involved during the relaxation is called
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the avalanche. Then we can plot the avalanche - number of topplings involved
during the relaxation - distribution under the addition of a grain on a random
cell of the lattice. With all the boundaries open, this distribution has a power
law tail [8]. Therefore the sandpile model shows the same behavior as many
systems seen in the nature [9] (real sand piles, earthquakes or solar flares for
example).
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Fig. 1. Graph representation of the sandpile model on the lattice with open boundary
conditions. Toppling rule for a regular cell and for a cell near the border. The sink
is represented by a gray vertex.

The motivation of our work comes from the observation of a strange phe-
nomenon that occurs when we change the boundary conditions. In some
cases, one can observe peaks in the avalanche distribution. Figure 2 shows
two avalanche distributions on the 10 x 3 lattice. For the first case, there are
usual - open - boundary conditions. The second case corresponds to special
boundary conditions that we call (%) for convenience: there is a closed top
boundary, an open bottom boundary and a periodic boundary condition in
the horizontal direction.
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Fig. 2. Avalanche distribution on the 10 x 3 lattice with the usual - open - boundary
conditions on one hand, and with boundary conditions (x) - a closed top boundary,
an open bottom boundary and a periodic boundary condition in the horizontal
direction - on the other hand.



We will refer to a n X k lattice with boundary conditions (%) as a (n, k)-wheel,
noted R(n, k). Hence parameter n denote the period along the z-axis, and
parameter k£ the distance between the closed and the open border. Figure 3
gives an example of a (8, 3)-wheel.

Fig. 3. Two ways of seeing the (8, 3)-wheel.

Experimentally, the avalanche distribution is computed by iterating the fol-
lowing process, starting from the empty configuration:

(1) add one grain on a random site,
(2) relax to a stable configuration.

This process is a Markov chain. The stable configurations corresponding to
recurrent states of this Markov chain are called recurrent themselves.

The set of recurrent configurations has a group structure (the sandpile group)
with a natural addition, and every element of this group can be characterized
by Dhar’s criterion [10]. We denote SP(G) the sandpile group associated to
a graph G. Moreover, there are as many recurrent configurations as spanning
trees. Two bijective proofs exist [11].

The distribution diagrams presented in this paper - like Figure 2 for instance
- are obtained after 1 million of iterations. In all our cases, this number is high
enough to get good accuracy for the curves.

The paper is divided in two sections. In section 1 we study the case of the
simple wheel - (n, 1)-wheel -. For this graph, we show that recurrent configu-
rations could be seen as words of a regular language. Then we explain how to
determine the exact avalanche distribution with the help of transducers.

In section 2 we study the general (n,k)-wheel for some particular values of
the parameters that imply a distribution diagram with peaks. We give an
explanation of the last peak observed that could be generalized for other ones.



1 Simple wheel

1.1 Word representation of recurrent configurations

In this section we consider the simple wheel - (n, 1)-wheel -, often referred as
the wheel in the literature. It corresponds to the case k£ = 1. By introducing a
word representation of the configurations of the wheel, one can study the set
of recurrent configurations by studying the corresponding language, i.e. set of
words. Let choose a random site v. We will refer to it as site 1. The other sites

Fig. 4. Simple wheel (case n = 6) and a numeration of its vertices.

are defined by an orientation put on the plan (let say the trigonometric one
for instance). Such a numeration is shown on Figure 4 for the 6-wheel. Thus
we can associate a unique word of {0,1,2}" to each stable - resp. recurrent
- configuration. Given a stable configuration, we define the word w as w =
wy ... w, such that w; is the number of grains on site ¢. We will denote by
L the language corresponding to words associated to recurrent configurations
on simple wheels of any size: a word of length n belongs to £ if and only if
it corresponds to a recurrent configuration of the n-wheel. Applying Dhar’s
criterion [10], Cori and Rossin [7] showed that a configuration on the wheel is
recurrent if and only if the following two properties hold:

e there is at least one site with two grains,
e between any two sites with no grain, there is at least one site with two
grains.

These properties on configurations can easily be expressed in term of corre-
sponding words. Indeed Cori and Rossin computed a valid, simple and non-
ambiguous automaton (shown in figure 5) which recognizes the language L.

Definition 1 A deterministic finite automaton is a 5-uplet (A, S, q,O,0),
where A is a finite alphabet - set of letters -, S is a finite set of states, q
1s a special state of S called initial state, O a subset of S of out-states, and
an application from S x A to S called transition function.

Usually an automaton is represented by a graph: each element of S is a state
of the graph. The initial state is pointed by an in-arrow - without label -,
and the out-states are double circled. At last, oriented arrows between states



Fig. 5. Automaton recognizing L.

represent the transition function. They are labeled by a letter, i.e. by an
element of the alphabet A.

To any automaton with alphabet A, we associate a language on A - a set of
words on A - that the automaton is said to recognize. To know if a word w
belongs to the language recognized by an automaton, begin at the initial state
of the automaton - the one with an in-arrow -. Then, for each letter w; of w
follow the arrow labeled by w; and if at the end of this process you arrive in
an out-state - a double circled one - then the word w belongs to the language.
On the other hand if you cannot read a letter - no arrow labeled by w; - or
if the last state is not an out-state then the word is not in the language. For
example, the word 12 belongs to £, but the word 1020 does not: the reading
stops in a state that is not an out-state.

Theorem 1 There exists a deterministic finite automaton that recognizes a
language L if and only if L is a reqular language.

Proof : cf [12]. O

In particular, since £, the language of words corresponding to recurrent con-
figurations, is recognized by a deterministic finite automaton, it is a regular
language. The main reason to work with the word representation and all the
theory on regular languages and automata, is that the length of an avalanche
on a recurrent configuration has a simple expression in term of the associated
word. Suppose that a recurrent configuration has an avalanche of size m > 0
when adding a grain on site ¢, then it is clear that w; = 2 and that there exists
a unique k > 0 such that w,_y = Wi_jps1 = ... =W; = ... = Wi_pqm—1 = 2 .
In other words, site ¢ belongs to a greatest sub-sequence of 2 of length m if
m < n, and of length n—1 or n if m = n - for words of the form 2..212..2, there
is one greatest sub-sequence of 2 of length n — 1, but if one grain is added on a
site containing 2 grains, the avalanche will be of size n -. Thus counting these
greatest sub-sequences of 2 is equivalent as finding the avalanche distribution
on the set of recurrent configurations.

! indices must be considered in Z/nZ



The next section explains how to count automatically greatest sub-sequences
of 2 in a language, i.e. to determine for each pair of values m,n > 0 the number
of words of length n in the language that contain a greatest sub-sequence of
2 of size m, counted with multiplicity.

1.2 Counting greatest sub-sequences of 2 in a - reqular - language

1.2.1 General frame of the method

To count greatest sub-sequences of 2 in a language £ means to find a serie § =
> omn>0 Amax™y" such that a,, , is the number of words of length n in £ that
contains a greatest sub-sequence of 2 of length m, counted with multiplicity.
As we have seen, to be given a regular language or a finite automaton is
the same. Similarly, to be given such a serie is equivalent as to be given a
transducer.

A transducer is basically an extension of an automaton but the arrows are la-
beled by both a letter and an expression, and each time you read a letter you
output the corresponding expression. But the transducers are not determinis-
tic. So there are multiple paths to read a word. Then the expression produced
when reading a word is the sum of the expressions output by the transducer
when reading the word on each path. See e.g. Figure 6 for an example.

1/y 1/y

Fig. 6. Transducer 72.

In this transducer, read the word 2202. There are two different paths reaching
an out-state - Lg, Ly or Lg -. The first one is LyLL;Lo,Lg and the second one
LoLgLgLgLy. The first path gives the monomial zy* and the second one z%y*.
Notice that the path LoL3L3L4L3 gives no monomial, because L3 is not an
out-state. The power of x gives the length of a greatest sub-sequence of 2 and
the power of y the number of letters of the word.

In this section, we exhibit an algorithm which takes as input an automaton
and as output gives a transducer.



1.2.2  Application to the case of Lo

As an example, we will apply the method to the case of Lo, the language
recognized by the automaton of Figure 7. L, is a sub-language of L - for
inclusion -. We note Sa(z,y) the associated serie.

The basic idea is to start with a non-ambiguous automaton which recognizes
the language - hence it works only for regular language -. We say that an au-
tomaton is non-ambiguous if there is only one way - path - to read a word on it.
For any automaton, there exists a non-ambiguous automaton that recognizes
the same language.

Fig. 7. Non-ambiguous automaton recognizing L.

The reader familiar with transducer will notice that the transducer of Figure
6 is the one needed to compute Sa(z,y).

The algorithm to build the transducer from the automaton is the following:
each time you have a transition labeled with 2 which can be the starting of
a sequence of 2 then duplicate the next states in order to have two different
paths. The first one which counts the sequence of 2 beginning at this point
and the other one which will count further sequences. Take for example the
language 2701*2%. A non-ambiguous automaton recognizing this language is
given in Figure 8 as well as the associated transducer. Notice that the two

loops labeled with 2 could not be the beginning of a sequence of 2.
2[zy 1ly 2ly

Fig. 8. Simple non-ambiguous automaton for 2+01*2" and the associated trans-
ducer.

So, take each edge of the automaton recognizing £, and for each one which
can be the beginning of a sequence of 2 draw the associated transducer which
counts only this sequence. Figures 9,10,11 show the three transducers built



from the three 2-edges o — 3, 3 — (3 and v — (3 of the automaton represented
in Figure 7.

1y

Fig. 11. Transducer associated with edge v1 — 31

For each of these edges, we first duplicate some part of the automaton in order
to isolate any greatest sub-sequence of 2 beginning with it, and to discriminate
the graph before and after taking the edge. We have then created a 2-edge
separator (the three edges pointing to f; in figures 9, 10,11 -a — (31,05 — (31
and ; — 1-. Then we can label by 2/xy the 2-labeled sub-path beginning by
this separator. We also have to make non-final all the states that are before
it ( states (2, f3 and ~; in Figure 11, and states B2 and ~; in Figure 10 are
no more out-states). As a consequence, each accepted word has one of its
greatest sub-sequence of 2 counted, because a greatest sub-sequence of 2 has
to be counted to reach an out-state. For the other edges, we add /y to their
label, to count the letters.

Then, we can merge the transducers, and we get the expected result. For
example, the transducer 72 in Figure 6 is the merged transducer of the three
represented on figures 9,10,11. We have to pay attention that no greatest sub-
sequence of 2 is counted twice, because the starting automaton (Figure 7 in



our example) is non-ambiguous. During the process, this property stays true
on pointed-word (word with one of its greatest sub-sequence of 2 pointed). We
can say that for such a word, there is only one accepted path, i.e. a path leading
to an out-state for the word, such that the pointed greatest sub-sequence of 2
is read by the (2/zy)-labeled edges. If the starting automaton is ambiguous,
then some greatest sub-sequences of 2 can be counted twice or more.

1.3 Counting the greatest sub-sequences of 2 in a word of L.

We divide in two the problem and build transducers for Lo and Lo = L\ Lo
instead of working with a bigger one for L.

Figure 6 points out a transducer which produces Sy(x,y). In fact, this serie
does not correspond exactly to the expected result: there are some side effects.
For example, the word w = 22011211102212 gives the contribution (2% +
27)ytt - two greatest sub-sequences of 2 of length 2, and two of length 1 -
instead of (x® + 2% + x)y** - one greatest sub-sequence of 2 of length 3, one of
length 2 and one of length 1 -. The side effects concern words beginning and

2/zy

2/xy
Fig. 12. Transducer 7 producing S (z,y).

ending by a greatest sub-sequence of 2 : the transducer of Figure 6 counts the
first one and the last one separately instead of merging them. A good way to
solve this problem is to consider two other transducers 7 and 7~ producing
two series S, (z,y) and S_(x,y), such that Sy(z,y) + S (z,y) —S_(x,y) is the
expected result for the special case Lo. Figure 12 shows a transducer producing

S+(ZL‘,y).

In what concerns Ly = L\ Ly, there are no side effects, and we can apply
the method directly. The transducer producing Sy(z,y) associated to Ly is
represented on Figure 13.

With all these transducers, we can produce the claimed series - see [12] for
details about computing them -. We get the following results:



Fig. 13. Transducer 7° producing So(z,y).

zy(l—y)°

ST Y) = A=y + 2P
_ P-p-y)
Si(w,y)= (1 —2y)2(1 = 3y + 4°)
B 22y%(2 — y)
Sy = A0 =3y 9
So(a.4) = xy*(1 —y)

(1 —2y)(1 = 3y + y?)?

It appears that Sp(z,y) = y Sa(x,y). Indeed, there is a natural bijection
between words in Lo of size n and words in Ly of size n + 1 with the same
greatest sub-sequences of 2 - considering the first letter and the last one not
being connected -. A word w in L is either in L if it begins by a 2 possibly
preceded by some 1s or in Ly if it begins by a 0 possibly preceded by some
1s. The bijection is the following: let w = w; ...w, be in Ly, then w ends by
a 2 or a 0 possibly followed by some 1s. In the first case we define V(w) =
Owy, ...w; and on the other case ¥(w) = lw,...w;. For both cases, ¥(w)
is in £. Moreover, it begins by a 0 possibly preceded by some 1s and has
length n + 1, i.e. ¥(w) is in {u € Ly, |u] = n + 1}. The reciprocal of ¥ is
straightforward: if w’ = wj ... w!, then U~!(w') = w!, ... w}. It results that ¥ is
a bijection that also keeps the greatest sub-sequences of 2 . That explains why
So(z,y) =y So(z,y). A direct corollary is that 7?2 is not minimal. Effectively,
we could have built from 79 a transducer equivalent to 7?2 with strictly less
states.

1.4 Asymptotic analysis of the series and comparison with experimentations

The number of greatest sub-sequences of 2 of size m > 0 in words of L of size
n is [™y"|S(z,y). The exact solution S(z,y) is:

S(.T,y) = 82('T7y) + 8+(.T,y) - 87<l’,y) —|—So<l’,y)

10



One can verify that the following equalities hold:

3 3 ’
W —y 1 —2y° + 3y
Sru—— Y9 =Y 4 1
(z,y) (1— 3y + y2)2 Yy Jr(1—$y> ((1—3y+y2)2+ )

N n>m>0 % K¢2("*m) ¢*2(n*m)) " (ng" ¢72n)} y"
+ > 2"yt + > na " (1)
n>0 n>1

With expression (1), we can predict the avalanche distribution on the wheel.
Indeed, there is a close link between greatest sub-sequences of 2 and avalanche
sizes. Let fix n and let take a word w of L of size n. We define P,(z) =

m=0 Uy, as the polynomial which counts the greatest sub-sequences of
2 of w, and Qu(r) = X7, ol ,2™ as the one counting the sizes of the n
avalanches that happen, when starting from w, we add a grain on site ¢ and
relax, for every site ¢. Then for any m > 0 we have the relations:

b =M Qo iE0 <m <n— 1, (2)
1 =0, (3)
lg,n - (’I’L - ]') a’quzjfl,n +n a;vmu,n' (4)

Indeed, if site ¢ has 2 grains in w, then site ¢ is at the middle of a greatest sub-
sequence of 2 of size strictly positive. Let m > 0 be the length of this greatest
sub-sequence of 2 . If m < n — 1, for each site of this greatest sub-sequence of
2, the fact to add a grain produces an avalanche of size m. If there are a,,
greatest sub-sequences of 2 of size m, them after the experiment, we have seen
ma,, , avalanches of size m. Hence may, , = 7 .
If w contains a greatest sub-sequence of 2 of size n—1, there are n—1 avalanches
of size n and one of size 0. In this case, a;, ,, =1, ), =0and [}, =n — 1.
At last, if w=22...2, then a;) , =0, ay,=1and [}}, =n.

For 0 < m < n, we define a,n = Xyer juwjen @ From equality (1), we get:

w
m,n*

- (qs?("—m) _ ¢—2<"—m>) if0<m<n—1
Am,n = [xmyn] S('ruy) =14 2n tfm=n-1

1 itm=n
Let note A(z,y) the serie corresponding to the avalanche distribution.
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The number of recurrent configurations on a simple n-wheel (|£N {0, 1,2}"|)
is equal to (@™ — ®~")? [7]. Hence from the definition of @, (x), we have the
following relation with A(z,y):

[
Alz,y) = — gy where 1, = ..
( ) n,mX;O n((I)n B (I)in)Q wel%q;v:n 7

For a fixed m > 0, relations (2) gives an asymptotic equivalent of the propor-
tion of avalanches of size m when n goes to infinity:

A ~ () o )

In particular, it means that the proportion of avalanches of a given size is
independent of n asymptotically. Besides, we have:

[z" 1y A(x,y) =0 and [y " A(z,y) ~ 2nd 2"

025 - _
n=1000 []
02 - n=100 X N
c EZ[\ prediction -----
o 015 - i
. =
s 01 i
D
005 - N _
X,
5. .
0 = m'-—&l---g“ 5454
= %A R
1 2 4 6 8 10

size of avalanches

Fig. 14. Avalanche distribution on the n-wheel: expected result (line) and values for
n = 100 (square) and n = 1000 (cross).

To determine the proportion of avalanches of size 0, we use the normalization
criterion. As A(z,y) is the generative serie of a distribution, we have the

12
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relation:

vn, [y"IR(1,y) =1

With equation (5) it gives [2°y"]A(x,y) ~ 1 — 1//5 for n great enough. In
conclusion, at m fixed and when n goes to infinity we have:

m) o2 if > 0
A, g) ~ 4 )

1—% if m=0

Figure 14 shows the expected distribution on a line, and the experimental
results for n = 100 and n = 1000 over 10% computations. The Independence
of the parameter n is clear on the diagram. We present only the values for
m > 0, because the value for m = 0 is much higher. However, in this case also,
the predicted value (1—1/+/5) is very well approached with 10° computations.

2 Case of the multiple wheel

The study of the avalanche distribution on the general (n, k)-wheel for k& >
1 is not as easy as in the simple case & = 1. Indeed, there is no simple
characterization of a recurrent configuration when k£ > 1. Nevertheless the
interest is high, because there are peaks in this distribution for some values of
the parameters. Figure 15, for instance, shows the avalanche distribution on
the (3,10)-wheel. In this case, we can observe many peaks of similar heights.
This phenomenon is very unusual for this type of experiments. The purpose of
this section is to show some clues to understand why this phenomenon exists.

0.045
004 - B
0.035 B
0.03 B
0.025 B
0.02 B
0.015 a
0.01 B

proportion

0 I I I [ I
0 20 40 60 80 100 120 140 160

size of avalanche

Fig. 15. Appearance of peaks in the avalanche distribution on the (3,10)-wheel.
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This was first observed in [13]. The author shows that there are k unexpected
peaks, and that their abscesses are: x1 = kn,xo = kn + (k — 1)n,..., x5, =
nk(k+1)/2. In particular, zj is the maximal value of the size of an avalanche on
the (n, k)-wheel. First we are going to study the last peak, which corresponds
to avalanches of size z, = nk(k + 1)/2. At last, we explain how the result can
be weakly extended to the other peaks.

2.1 Analysis of the last peak

The last peak corresponds to avalanches of maximal sizes. We denote L(u, 1)
the size of the avalanche obtained after adding a grain at site ¢ to the config-
uration u and relaxing. We also speak about the size of the avalanche of the
element (u,i). Considering the natural partial order on the set of configura-
tions (v < v < u(i) < wv(i) for each site i), a classical result states:

u<v = L(u,1) < L(v,1) for any site i (6)
In fact, this result comes from a stronger property: if a site j has been toppled

t times during the avalanche of (u,i) then the same site j has been toppled
at least ¢ times during the avalanche of (v,7). A direct corollary of Property

Fig. 16. Configuration 7,4, of the (8,3)-wheel.

(6) is that z; is the maximal size of an avalanche. Indeed, there is a unique
maximal recurrent configuration r,,,, for the natural partial order on the set
of recurrent configurations (every site ¢ is saturated, see Figure 16). For 7,4,
we can compute the size of any avalanche in function of the site at which
we add the grain. We have: L(7pe, 1) = nki(2k + 1 — k;)/2, where k; is the
distance from site ¢ to the open boundary. Hence the size of the avalanche is
maximal if and only if we add the grain at a site near the closed boundary.
We can apply Property (6) to any recurrent configuration u (v < 7paq). If
the element (u,7) has an avalanche of size xy, then 7 is necessarily a site near
the closed boundary. Figure 17 expresses this last property: we run the same
experimentation, but the random site is always chosen among those that are
near the closed boundary. As expected, the last peak seems to appear entirely.

14
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Fig. 17. Random site 7 is always taken among sites of the last stage. The last peak
for the (3,10)-wheel appears entirely (rate coefficient of 1/k, here 1/10).

At this point, if L(u, i) = x, we can say that i is near the closed border. What
can we say about the configuration u?

Still from the property mentioned above, we know that a site j topples &;
(distance from j to the open boundary) times during the avalanche of the
element (u,7). After the avalanche, the sites near the closed border are the
only one being modified: they all lost 1 grain (except ¢ which was given the
extra grain). In term of wheel (cf Figure 3), these sites correspond to the last
stage of the wheel. Restricted to this last stage, the configuration u has to be
very similar to 7,,4.. Indeed, it may contain at most one site different from i
with only 1 grain called 7', and the others containing 2 grains, since after the
nk(k +1)/2 topplings, the configuration obtained has to be recurrent (and at
this point only site ¢ among sites of the last stage contains 2 grains).

With the same argument, we get informations on the induced configuration u’
of R(n, k—1), corresponding to the sites at distance at least 2 from the closed
boundary. If i’ exists, then the configuration u’ belongs to SP(R(n,k—1)). On
the contrary, if no site of the last stage contains strictly less than 2 grains, then
the configuration u’ of R(n,k — 1) is either recurrent or equals to a recurrent
configuration with one grain less on a site j of the last stage of R(n,k — 1)
and which is not a neighbor of site . Putting this two remarks together, we
can find a major value M(n, k) and a minor value m(n, k) of the proportion
P of elements (u,i) whose avalanche size equals x;. We have:

n(n—1)|SP(R(n,k—1))| +n|SP(R(n,k — 1))
nk|SP(R(n,k))|
n(n—1)|SP(R(n,k— 1))+ n(l+n—1)|SP(R(n,k—1))|
nk|SP(R(n,k))]

P>

P<

Thus we can take for m(n, k) and M(n, k) the following values:

15



m(n, k)= n]SPR(nk—1))|

) k |SP(R(n, k)]
20 |SP(R(n,k —1))|

M k) = S PR 1))

The number of recurrent configurations of the (n, k)-wheel equals the number
of spanning trees of a m X k lattice with boundary conditions (). Rubey
computed this number in a note [14] inspired by a method due to Noam
Elkies described and applied to a similar problem by Kenyon and al. in [15].
It gives:

n—1k—1

ISP(R(n,k))| =TI I <4 — 2cos <2—T7r) — 2cos (;Zj; 17?))

r=0 s=0 n

This product behaves like an exponential for both n and k. Experimentally,
we observe |SP(R(n,k))| ~ expla(k +v)(n + )] with o ~ 1.1674 and v ~
—0.8210. Using this approximation, we get:

min, k) = e~ (7)
2
M(n, k)= ?ne_“("ﬂ) (8)

In particular, if & increases then w;, grows like k%, but the proportion of
avalanches of size xj decreases only like 1/k. In what concerns the param-
eter n, the behavior is much more common: the decreasing is exponential. We
can thus infer that peaks are better to be observed with small values of n and
possibly greater values of k. In practice, for n > 4, the last peak can not be
higher than 2%. The value of m(n, k) makes us understand why the distribu-
tion could have a great value for ;. In what concerns the other peaks, we can
find similarly a minor value, but with a coefficient e?™*7) . However, it still
explains qualitatively why peaks appear. On the other hand, we can not really
explain why they vanish, because we can not as easily obtain a major value.
It comes from the fact that avalanches of size x; for i < k can be the result
of the addition of a grain on the j-th stage, with j > 4. This phenomenon can
not exist when ¢ = k. It seems even seldom for ¢ < k as Figure 17 makes us
think, but we can not exclude it.

Conclusion

In this paper, we have completely characterized the sandpile model on the
simple wheel, a n x 1 lattice with unusual boundary conditions. In partic-
ular, we can predict the exact avalanche distribution. The set of recurrent
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configurations can be coded by a regular language. Thus, we built transduc-
ers to produce statistics on words of this language that are closely linked to
avalanche size on corresponding recurrent configurations.

Although complete, the k£ = 1 case is of interest not as important as in the
general case, in so far as some peaks in the avalanche distribution can be
seen for particular values of the two parameters, excluding £ = 1. But the
precedent method can not be applied to the general case k£ > 1. Indeed, there
is no precise characterization of recurrent configurations in this case. However,
it is possible to interpret the peaks by a qualitative approach. In particular,
we found a minor value and a major value of the height of the last peak, which
enable us to explain the phenomenon. This could be generalized to the other
peaks with less accuracy.
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