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Zassenhaus Lie idempotents, q-bracketing and a new

exponential/logarithm correspondence

G. Duchamp ∗ , D. Krob † and E. Vassilieva ‡

1 Introduction

The algebra of noncommutative symmetric functions Sym, introduced in [2], is the free associa-
tive algebra (over some field of characteristic zero) generated by an infinite sequence (Sn)n≥1 of
noncommutating inderminates (intended to correspond to the complete noncommutative sym-
metric functions) and endowed with some extra structure imitated from the usual algebra of
commutative symmetric functions. This point of view consists typically in defining other non-
commutative symmetric functions, in terms of the complete functions that are initially given, by
taking noncommutative analogues of the classical relations that exist between usual commutative
symmetric functions.

Noncommutative symmetric functions have already been used in several contexts. They
provide a simple and unified approach to several topics such as noncommutative continued
fractions, Padé approximants and various generalizations of the characteristic polynomial of
noncommutative matrices arising in the study of classical enveloping algebras and their quantum
analogues (cf [2, 10]). They also provided a new point of view regarding the classical connections
between the free Lie algebra and Solomon’s descent algebra (see [2, 4, 5, 11] for more details). One
can in particular use the theory of noncommutative symmetric functions in order to characterize
the Lie idempotents that belong to Solomon’s descent algebra (cf [2]) and obtain new families
of Lie idempotents within Solomon’s descent algebra that interpolate between all classical Lie
idempotents (cf [4]).

More recently quantum interpretations of the algebras of noncommutative symmetric func-
tions and of quasi-symmetric functions (the Hopf dual of Sym constructed initially by Gessel in
[3]) were obtained (cf [6, 8]). It indeed appears that the algebra of noncommutative symmetric
functions (resp. of quasi-symmetric functions) is isomorphic to the Grothendieck ring of finitely
generated projective (resp. finitely generated) modules over 0-Hecke algebras (cf [6]). A similar
interpretation of these two algebras can also be obtained in terms of the representation theory
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of Takeuchi’s version of Uq(Gln) (cf [14]) taken at q = 0 (see [7, 8]). Noncommutative ribbon
Schur functions and quasi-ribbon functions appear then respectively in these interpretations as

• the cocharacters of the irreducible and the projective comodules over the crystal limit of
the Dipper-Donkin version of the quantum linear group (see [6, 1] for more details),

• the characters of the irreducible and the projective polynomial modules over the crystal
limit of the Takeuchi version of the quantum enveloping algebra Uq(Gln) (see [7, 8, 14] for
more details).

In this paper, we are however going back to the beginning of the theory of noncommuta-
tive symmetric functions. Indeed, our article solves a conjecture, originally stated in [4], that
establishes a strange connection between the family of Zassenhaus Lie idempotents and the
Lie idempotents corresponding to the projection onto the Lie algebra associated with the q-
bracketing operator. This connection is obtained by introducing a new exponential/logarithm
like correspondence which allows us to describe in a very simple way the Lie idempotents asso-
ciated with the q-bracketing operator as mentioned above.

This paper is therefore organized as follows. In Section 2, we briefly present noncommutative
symmetric functions (the reader is referred to [2, 4] for more details on this subject). Section 3 is
devoted to the construction of our new analog of the exponential and the obtention of its main
properties. Section 4 makes then the connection between this analog of the exponential and
noncommutative symmetric functions in order to solve the above mentioned conjecture. In the
short concluding Section 5, we finally give some indications for a further possible generalization
of our work.

2 Preliminaries

2.1 Noncommutative symmetric functions

The algebra of formal noncommutative symmetric functions is the free associative algebra
Sym = K< S1, S2, . . . > (over some field K of characteristic zero) generated by an infinite
sequence of noncommutative indeterminates Sk, called the complete symmetric functions (see
[2] for more details). We set for convenience S0 = 1. Let t be another variable commuting with
all the Sk. Introducing the generating series

σ(t) :=
∞
∑

k=0

Sk t
k ,

one can define other noncommutative symmetric functions by the following relations

λ(t) = σ(−t)−1 ,
d

dt
σ(t) = σ(t)ψ(t) , σ(t) = exp(φ(t)) ,

where λ(t), ψ(t) and φ(t) are the generating series

λ(t) :=
∞
∑

k=0

Λk t
k , ψ(t) :=

∞
∑

k=1

Ψk t
k−1 , φ(t) :=

∞
∑

k=1

Φk

k
tk .

The noncommutative symmetric functions Λk are called elementary functions. The elements Ψk

(resp. Φk) are called power sums of first kind (resp. second kind).
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The algebra Sym is graded by the weight function w defined by w(Sk) = k. Its homogeneous
component of weight n will be denoted by Symn. If (Fn) is a sequence of noncommutative
symmetric functions with Fn ∈ Symn for every n ≥ 1, we set

F I = Fi1 Fi2 . . . Fir

for every composition I = (i1, i2, . . . , ir). The families (SI), (ΛI), (ΨI) and (ΦI) are then
homogeneous bases of Sym.

The set of all compositions of a given integer n is equipped with the reverse refinement order,
denoted �. For instance, the compositions J of 4 such that J � (1, 2, 1) are (1, 2, 1), (3, 1), (1, 3)
and (4). The ribbon Schur functions (RI) can then be defined by one of the two equivalent
relations

SI =
∑

J�I

RI , RI =
∑

J�I

(−1)`(I)−`(J) SJ ,

where `(I) denotes the length of the composition I. One can easily show that the family (RI) is
a homogeneous basis of Sym.

The commutative image of a noncommutative symmetric function F is the commutative
symmetric function f obtained by applying to F the algebra morphism which maps Sn onto hn,
using here the notations of [9]. The commutative image of Λn is then en. On the other hand,
Ψn is mapped to pn. Finally RI is sent to the ordinary ribbon Schur function rI .

One can endow Sym with a structure of Hopf algebra, its comultiplication ∆ being defined
by one of the following equivalent formulas

∆(Sn) =
n
∑

i=1

Si ⊗ Sn−i , ∆(Λn) =
n
∑

i=1

Λi ⊗ Λn−i ,

∆(Ψn) = 1 ⊗ Ψn + Ψn ⊗ 1 , ∆(Φn) = 1 ⊗ Φn + Φn ⊗ 1 .

It is in fact this Hopf structure which explains in a unified way the properties of Lie idempotents
as we will see in the sequel.

2.2 Relations with Solomon’s descent algebra

Let σ ∈ Sn be a permutation with descent set E = { d1 < . . . < dk } ⊆ [n − 1]. The descent
composition I = C(σ) is the composition I = (i1, . . . , ik+1) of n defined by is = ds − ds−1

where d0 = 0 and dk+1 = n. The sum in the group algebra of all permutations with descent
composition I is denoted by DI . We also set I = C(E). Conversely the subset of [1, n−1]
associated with a composition I of n will be denoted by E = E(I). The DI with |I| = n form
a basis of a subalgebra of Z[Sn], called the descent algebra of Sn (cf [12]). We denote then by
Σn the same algebra, with scalars extended to our ground field K.

There is in fact a strong connection between noncommutative symmetric functions and the
descent algebras of the symmetric group. One can indeed define an isomorphism of graded
vector spaces by setting

α : Σ =
∞
⊕

n=0

Σn −→ Sym =
∞
⊕

n=0

Symn

DI −→ RI
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for any composition I. The existence of this isomorphism shows that an element of Symn is
just a certain encoding of an element of the descent algebra Σn. Note that the interpretation of
Sn and Λn in this encoding is simple since one has

{

α−1(Sn) = Dn = Idn ,

α−1(Λn) = D1n = ωn ,

where Idn denotes the identity permutation of order n and where ωn denotes the maximal
permutation nn−1 . . . 1 of Sn. We will see in the next section that there is also a strong con-
nection between noncommutative symmetric functions and Lie idempotents that passes through
Solomon’s descent algebra.

2.3 Lie idempotents

Let A be an alphabet. A Lie projector is a projection from the free associative algebra K<A>
onto the free Lie algebra L(A). In other words, a Lie projector is an endomorphism π of K<A>
that satisfies the two following properties :

• π2 = π (π is a projector);

• Im π = L(A) (π is a Lie projector).

The basic property of a Lie projector is that it maps any Lie element on itself.

Recall that the symmetric group Sn acts on the homogeneous component of order n of
Kn<A> (and hence on Ln(A)) by setting

a1 . . . an · σ = aσ(1) . . . aσ(n)

for ai ∈ A and σ ∈ Sn. Recall also that an endomorphism f of K<A> is said to commute
with letter substitutions if one has

f(s(w)) = s(f(w))

for every endomorphism s of K < A > which maps every letter a ∈ A onto another letter
s(a) ∈ A (such an endomorphism is called a letter substitution). Note that, according to Schur-
Weyl duality, an endomorphism commuting with letter substitutions also commutes with the
right action of Sn.

Suppose now that we work with an infinite alphabet A = { 1, 2, . . . }. We shall only consider
in the sequel Lie projectors with the following properties:

1. π is finely homogeneous (π(Kλ<A>) ⊂ Lλ(A) for every multidegree λ),

2. π commutes with letter substitutions.

If π is a Lie projector which satisfies these properties, it is easy to see that one can recover π
from the sequence (πn)n≥1 where πn is defined by setting

πn = π(1 2 . . . n) ∈ L1n(1, 2, . . . , n)

for every n ≥ 1 (these elements belong to the multilinear components L1n(1, . . . , n) of the free
Lie algebras on the alphabets [n] = {1, . . . , n}). Indeed,

π(a1 . . . an) = π(s(1 2 . . . n)) = s(πn)
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where s denotes the letter substitution of K< 1, 2, . . . , n> mapping i onto ai. Since π is finely
homogeneous, one can consider πn as an element of the group algebra K[Sn] (permutations
being identified with standard words) which is clearly an idempotent (i.e. π2

n = πn) of this
algebra. The study of Lie projectors that satisfy to the two conditions above can therefore be
reduced to the study of Lie idempotents in K[Sn], i.e. of those idempotents of K[Sn] that can
be expressed as Lie polynomials over the alphabet {1, 2, . . . , n}.

An element π of the group algebra K[Sn] is a Lie element if it can be expressed as a Lie
polynomial over the alphabet {1, 2, . . . , n}. A Lie quasi-idempotent is a Lie element of K[Sn]
which is a quasi-idempotent (an element x of a K-algebra is said to be quasi-idempotent if and
only if x2 = k x with k ∈ K).

It appears that one can use noncommutative symmetric functions in order to classify all the
Lie quasi-idempotents that belong to the descent algebra of the symmetric group. Indeed, let us
denote by L(Ψ) the free Lie algebra generated by the family (Ψn)n≥1 within Sym. We can then
state the following result that gives an explicit characterization of all Lie quasi-idempotents of
the descent algebra of the symmetric group.

Theorem 2.1 (Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon; [2]) Let Fn be an element of
Symn and let fn = α−1(Fn) be the associated element of Σn. The following assertions are then
equivalent:

1. fn is a Lie quasi-idempotent,

2. Fn belongs to the free Lie algebra L(Ψ),

3. Fn is a primitive element for the coproduct ∆.

It is interesting to stress the fact that the non commutative power sums of first and second
kinds correspond to some remarkable Lie idempotents. On can indeed check that the inverse
image under α of the noncommutative symmetric function Ψn is equal to Dynkin’s (quasi)-
idempotent, i.e.

α−1(Ψn) = [[. . . [[1, 2], 3], . . .], n] = ϑn .

On the other hand, the inverse image of Φn under α correspond to the so-called Solomon’s
(quasi)-idempotent, ϕn, that encodes (up to a constant) the projection onto the free Lie algebra
with respect to the classical Poincaré-Birkhoff-Witt decomposition of the free associative algebra
(see [2], [13] and [11] for more details).

2.4 The transformation A −→ (1 − q) A and the q-bracketing operator

The q-bracketing operator (of order n) is the linear operator ϑn(q) over the free associative
algebra K<A> defined by setting

ϑn(q)(a1 a2 . . . an) = [[. . . [[a1, a2]q, a3]q, . . .], an]q

for every word a1 a2 . . . an of A∗, where we set

[u, v]q = u v − q v u

for every u and v in K < A >. It happens that this operator can be interpreted in terms of
noncommutative symmetric functions. Let us indeed consider the noncommutative analogs of
commutative complete symmetric functions of the alphabet (1−q)A (in the generalized λ-ring
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style notation introduced in [4]) which are defined as follows (the generating series σ(t) and λ(t)
are here denoted by σ(A; t) and λ(A; t) in order to put the stress on the different alphabets that
we are using (cf [4] for more details)).

Definition 2.2 The generating series of the family (Sn((1−q)A))n≥1 of complete symmetric
functions of the alphabet (1−q)A is given by

σ((1−q)A); t) :=
∑

n≥0

Sn((1−q)A) tn = σ(A; qt)−1 σ(A; t) = λ(A;−qt)σ(A; t) . (1)

One can then show (see [4] for all the details) that

Sn((1−q)A) =

{

(1 − q) Θn(q) if n ≥ 1

1 if n = 0
.

where we set

Θn(q) = α−1(ϑn(q)) =
n−1
∑

i=0

(−q)i R1i,n−i

where ϑn(q) stands for the image of the identity by the q-bracketing operator, i.e. for the element

ϑn(q) = [[. . . [[1, 2]q , 3]q, . . .], n]q =
n−1
∑

i=0

(−q)i D1i,n−i

of Solomon’s descent algebra (we use here the same notation for the q-bracketing operator and
for the image of the identity by this operator). In other words, the q-bracketing operator is
essentially equal to the image through the isomorphism α of the noncommutative complete
symmetric function of the alphabet (1−q)A.

It appears that the q-bracketing operator is diagonalizable with eigenvalues

µλ =
1

1 − q
ψλ(1 − q) =

1

1 − q
(1 − qλ1) (1 − qλ2) . . . (1 − qλr)

where λ = (λ1, λ2, . . . , λr) runs through all partitions of the integer n (see [4] for all details).
The eigenspace corresponding to the eigenvalue

1

1 − q
(1 − qn)

is remarkable since it is exactly the free Lie algebra. In other words, we have the following
q-Dynkin criterion for a non commutative polynomial P of K<A> to belong to the free Lie
algebra:

P ∈ Ln(A) ⇐⇒ ϑn(q)(P ) =
1 − qn

1 − q
P .

Let us denote by Eλ(A) the eigenspace of the q-bracketing operator associated with the eigen-
value µλ. The diagonalizability of ϑn(q) allows then us to write

K<A>n = Ln(A) ⊕
⊕

λ`n

l(λ)≥2

Eλ(A)
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since we have En(A) = Ln(A) as explained above. There exists therefore a Lie projector associa-
ted with this decomposition of the homogeneous component of weight n of the free associative
algebra, i.e. a Lie projector with range Ln(A) and kernel

⊕

λ`n

l(λ)≥2

Eλ(A) .

It happens that the Lie idempotent, denoted Πn(q), corresponding to this Lie projector (in the
sense of Section 2.3) belongs to the descent algebra. We can therefore define a noncommutative
symmetric function, that we shall denote by πn(q), by setting

πn(q) = α−1(Πn(q))

for every n ≥ 1. These new noncommutative symmetric functions πn(q) can be characterized as
follows (see [4] for all the details).

Theorem 2.3 (Krob, Leclerc, Thibon; [4]) The noncommutative symmetric function πn(q) (as-
sociated with the Lie idempotent Πn(q)) is characterized by the property

πn(q)((1−q)A) = (1 − qn)πn(q)(A) . (2)

The aim of the present paper is to study in deep details these noncommutative symmetric
functions. We will in particular give in the sequel a solution for a conjecture, initially stated in
[4], that connects the specialization at q = 0 of these elements to the so-called Zassenhaus Lie
idempotents.

3 A new exponential/logarithm correspondence

3.1 A new analog of the exponential

Let us consider some infinite alphabet A = { ak, k ≥ 1 }. Let now

X(A) =
∑

w∈A∗

xw w

be a formal power series of K(q)<<A>>. We associate then with this formal power series the
two other formal power series X(q A) and X((1−q)A) of K(q)<<A>> defined by setting



















X(q A) =
∑

w∈A∗

xw q
‖w‖w ,

X((1−q)A) =
∑

w∈A∗

xw lq(w)w ,

where we have

‖w‖ =
r
∑

k=1

ik and lq(w) =
r
∏

k=1

(1 − qik)

for every w = ai1 ai2 . . . air of A∗. In other words, X(q A) (resp. X((1−q)A)) is obtained by
applying to X(A) the substitution ak −→ qk ak (resp. ak −→ (1 − qk) ak).

We can now state the following result that will allow us to introduce further a new analog
of the exponential.

7



Proposition 3.1 Let X(A) be a formal power series of K(q)<<A>>, i.e.

X(A) =
∑

w∈A∗

xw w

where xw ∈ K denotes the coefficient of X on w. Then the conditions given below are equivalent:

1. X satisfies the following functional equation

X(q A)X((1 − q)A) = X(A) , (3)

2. for every word w ∈ A∗, one has

xw (1 − x1 (q‖w‖ + lq(w)) =
∑

uv=w
u,v 6=1

xu xv q
‖u‖ lq(v) . (4)

When x1 = 1, all coefficients xw are in particular uniquely defined by the identity (4) when the
coefficients xai

are fixed for every ai ∈ A.

Proof — By taking the cofficients of a word w ∈ A∗ in both sides of the functional equation,
we can obtain the following relation:

xw =
∑

uv=w

xu xv q
‖u‖ lq(v) . (5)

Collecting all the terms containing xw, we get

xw = x1 xw lq(w) + xw x1 q
‖w‖ +

∑

uv=w
u,v 6=1

xu xv q
‖u‖ lq(v),

which immediately leads to the desired identity (4).

Let us now consider a word w = ai1 ai2 . . . air of A∗ and let us denote by Dw(q) the polyno-
mial involved in the left hand side of identity (4), i.e.

Dw(q) = 1 − x1 (lq(w) + q‖w‖) .

When x1 = 1, we then have

Dw(q) = 1 − q‖w‖ −
r
∏

k=1

(1 − qik) . (6)

Let us now define the two polynomials

D(1)
w (q) = 1 − q‖w‖ and D(2)

w (q) =
r
∏

k=1

(1 − qik) .

If r ≥ 2, the multiplicities of the root q = 1 in these two last polynomials are clearly different:

the multiplicity of the root q = 1 in D
(1)
w (q) is one when this multiplicity in D

(2)
w (q) equals r. It

follows that the difference of these two polynomials, which is exactly Dw(q), can not be zero.
It is now immediate to conclude that identity (4) defines in a unique way all the coefficients xw

when the coefficients xai
are fixed for every ai ∈ A. 2

We can now give the definition of the analog of the exponential that we will study in this
paper.
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Definition 3.2 The series Eq(A) is by definition the unique formal power series

Eq(A) =
∑

w∈A∗

xw w

of K(q)<<A>> which satisfies both to the functional equation (3) of Proposition (3.1) and to
the conditions x1 = 1 and xak

= 1 for every k ≥ 1.

Note 3.3 The coefficients xw of the series Eq defined above satisfy therefore to the following
induction relation

xw =
1

1 − q‖w‖ − lq(w)







∑

uv=w
u,v 6=1

xu xv q
‖u‖ lq(v)






(7)

that holds for every word w ∈ A∗ of length at least 2.

The series Eq defined by the previous definition has several connections with the ordinary
exponential (see for instance Section 3.3 and Proposition 3.11). In a first approach, we can
however immediately state the following result that gives a very first relation between Eq and
the ordinary exponential.

Proposition 3.4 Let k ≥ 1 be an integer and let Eq(0, . . . , 0, ak, 0, . . .) denote the formal power
series of K(q)<<A>> obtained by specializing ai to 0 for every i 6= k. Then one has

Eq(0, . . . , 0, ak, 0, . . .) = exp(ak) =
∞
∑

i=0

ai
k

i!
.

Proof — The announced result is equivalent to the fact that one has

xai
k

=
1

i!

for every i ≥ 0. This property beeing clearly true at i = 0 and i = 1, we can prove it by
induction on i. Note now that formula (7) shows that proving the corresponding induction step
at order i is equivalent to proving the following identity

1

i!

(

1 − qik − (1 − qk)i
)

=
i−1
∑

j=1

1

j!

1

(i− j)!
qjk (1 − qk)i−j ,

which is itself clearly equivalent to

i
∑

j=0

(qk)j

j!

(1 − qk)i−j

(i− j)!
=

1

i!
.

Note now that this last relation is obvious since it just expresses that the coefficient of order i
of the (commutative) series exp(t) is also the coefficient of order i of the Cauchy product

exp(qk t) exp((1 − qk) t)

(which is clearly equal to the series exp(t)). This ends our proof. 2
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3.2 Existence of an analog of the logarithm

Let us consider again some infinite alphabet A = { ak, k ≥ 1 } and let

X(A) =
∑

w∈A∗

xw w

be a formal power series of K(q)<<A>>. The coefficient x1 (over the empty word of A∗) of X
is called the constant coefficient of X. When a series has a constant coefficient equal to 0 (i.e.
when x1 is equal to 0), it is called a zero constant coefficient series.

Let now Y (A) be a zero constant coefficient series of K(q)<<A>>, i.e.

Y (A) =
∑

w∈A+

yw w

(where A+ stands for the set of all non empty words over A). Then one can use the grading δ
defined by setting δ(ai) = i in order to separate Y (A) into homogeneous components, i.e.

Y (A) =
+∞
∑

i=1

Yi(A)

where Yi(A) stands for the polynomial

Yi(A) =
∑

w∈A+

δ(w)=i

yw w .

We can now define the composition X(A) ◦ Y (A) of Y (A) with X(A) by setting

X(A) ◦ Y (A) = σY (X(A))

where σY stands for the algebra morphism from K(q)<<A>> into K(q)<<A>> which maps
every letter ai of A onto Yi(A). We are now in a position to state the following result that
shows the existence of an analog of the logarithm (more exactly of the series log(1 +X)) as the
reciprocal (in the sense of our series composition) of our analog of the exponential.

Theorem 3.5 There exists a unique series Lq(A) of K(q)<<A>> with zero constant coefficient
such that the two following properties hold:



























Eq(A) ◦ Lq(A) = 1 +
+∞
∑

i=1

ai ,

Lq(A) ◦ (Eq(A) − 1) =
+∞
∑

i=1

ai .

Proof — Let us first prove that there exists a unique series Lq(A) of K(q)<<A>> that satisfies
to the first property above. By definition, there exists a series

Lq(A) =
∑

w∈A+

yw w =
+∞
∑

i=1

(

yai
ai +

∑

|w|≥2
δ(w)=i

yw w
)
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of K(q)<<A>> with zero constant coefficient such that

Eq(A) ◦ Lq(A) = 1 +
+∞
∑

i=1

ai (8)

if and only if one has

1 +
∑

i1,...,ir≥1
r≥1

xai1
... air

r
∏

j=1

(

yaij
aij +

∑

|w|≥2
δ(w)=ij

yw w
)

= 1 +
+∞
∑

i=1

ai

where the xw’s stand for the coefficients of our analog of the exponential. It is now easy to see
that the above identity is equivalent to the fact that one has first yai

= 1 for every i ≥ 1 and
next

|w|
∑

r=1









∑

u1,...,ur∈A+

u1...ur=w

xaδ(u1) ... aδ(ur)
yu1 . . . yur









= 0

for every word w of length at least 2. Note now that this condition is equivalent to

yw = −xw −

|w|−1
∑

r=2









∑

u1,...,ur∈A+

u1...ur=w

xaδ(u1) ... aδ(ur)
yu1 . . . yur









for every word w of length at least 2. Since these last relations together with the requirement
that yai

= 1 for every i ≥ 1, define in a unique way the family (yw)w∈A+ , it is now immediate to
conclude to the existence of a unique series Lq(A) of K(q)<<A>> that satisfies Equation (8).

It follows now immediately that one has

Lq(A) ◦ (Eq(A) − 1) ◦ Lq(A) = Lq(A) ◦ (Eq(A) ◦ Lq(A) − 1) = Lq(A) ◦
(

+∞
∑

i=1

ai

)

= Lq(A) .

However, using the same method as above, it is easy to prove that there exists a series T with
zero constant coefficient in K(q)<<A>> such that

Lq(A) ◦ T =
+∞
∑

i=1

ai .

Composing at the right this identity by T the last identity, we now get

Lq(A) ◦ (Eq(A) − 1) ◦ Lq(A) ◦ T = Lq(A) ◦ T .

This last identity is therefore equivalent to the relation

Lq(A) ◦ (Eq(A) − 1) ◦
(

+∞
∑

i=1

ai

)

=
+∞
∑

i=1

ai

which is itself clearly equivalent to

Lq(A) ◦ (Eq(A) − 1) =
+∞
∑

i=1

ai ,

i.e. to the second required identity. 2
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Note 3.6 Note that the above theorem shows essentially that the pair of series (Eq(A), Lq(A))
have the same formal properties than the pair of formal power series (exp(X), log(1 +X)). In
other words, the series Lq plays exactly the role of a q-logarithm naturally associated with the
series Eq.

3.3 The exponential/logarithm correspondence

Before giving the main result of this subsection, let us first introduce some new notations. Let
A = { ai, i ≥ 1 } and B = { bi, i ≥ 1 } be two noncommutative alphabets. Then Eq(A + B)
stands for the series of K(q)<<A ∪B>> defined by setting

Eq(A+B) = σA,B(Eq(A))

where σA,B stands for the algebra morphism from K(q)<<A>> into K(q)<<A ∪ B>> which
maps every letter ai of A onto ai + bi. For every composition I = (i1, . . . , in), we shall also
denote by aI the monomial defined by

aI = ai1 . . . air .

Let us finally also recall that the shuffle product is the bilinear product of K<A> which is
defined on words of A∗ by requiring that one has

{

1 w = w 1 = w ,

(a u) (b v) = a (u b v) + b (a u v)

for every words u, v, w in A∗ and every letters a, b in A. Let us now recall that one can define
for every words u, v, w of A∗ the coefficient

(

w

u , v

)

(which is a generalization of the classical binomial coefficient) by setting

u v =
∑

w∈A∗

(

w

u , v

)

w .

In other words, this last coefficient is just the number of times that the word w can be obtained
in the shuffle product of u with v. We are now in a position to state the following theorem.

Theorem 3.7 Let A = { ai, i ≥ 1 } and B = { bi, i ≥ 1 } be two noncommutative alphabets
such that ai bj = bj ai for every i, j ≥ 1. Then one has

Eq(A+B) = Eq(A)Eq(B) = Eq(B)Eq(A) .

Proof — Let A = { ai, i ≥ 1 } and B = { bi, i ≥ 1 } be two alphabets such that ai bj = bj ai for
every i, j ≥ 1. Then we can write

Eq(A+B) =
∑

i1,...,ir≥1
r≥1

xai1
... air

(ai1 + bi1) . . . (air + bir)

=
∑

i1,...,ir≥1
r≥1

xai1
... air

(

∑

I,J

(i1,...,ir)∈I J

(

(i1, . . . , ir)

I , J

)

aI bJ
)

12



where the xw’s stand for the coefficients of our analog of the exponential. This leads us to the
relation

Eq(A+B) =
∑

I,J

aI bJ
(

∑

(i1,...,ir)∈I J

(

(i1, . . . , ir)

I , J

)

xai1
... air

)

. (9)

Let us now give the following lemma that shows an important (and rather surprising) property
of the coefficients xw of our analog of the exponential which means exactly that the functional
x(w) = xw is a character of the shuffle algebra.

Lemma 3.8 For every words u and v of A∗, one has

xu xv =
∑

w∈u v

(

w

u , v

)

xw . (10)

Proof of the lemma – The proof goes by induction on L(u, v) = |u| + |v|. Note first that there
is nothing to prove when L(u, v) = 0, i.e. when u and v are both equal to the empty word.

Let now u = u1 . . . ur and v = v1 . . . vs be two words of A∗ (where ui and vi stand for letters
of A) such that Identity (10) holds for every pair (x, y) of words of A∗ such that L(x, y) < L(u, v).
Using the defining relation (7) of the coefficients of the series Eq, we can then write

∑

w∈u v

(

w

u , v

)

xw =
1

Du,v(q)









∑

w∈u v

(

w

u , v

)









∑

αβ=w

αβ 6=1

xα xβ q
‖α‖ lq(β)

















(11)

where Du,v(q) stands for the polynomial defined by

Du,v(q) = 1 − q‖u‖+‖v‖ − lq(u) lq(v) .

Note now that Identity (11) can be clearly rewritten as follows

∑

w∈u v

(

w

u , v

)

xw =
1

Du,v(q)









∑

w∈u v

∑

αβ=w

αβ 6=1

(

αβ

u , v

)

xα xβ q
‖α‖ lq(β)









. (12)

However a pair (α, β) of non empty words satisfies to the relation αβ = w with w ∈ u v if and
only if there exists a pair (i, j) ∈ [0, r] × [0, s] with (i, j) /∈ { (0, 0), (r, s) } such that

α ∈ u1 . . . ui v1 . . . vj and β ∈ ui+1 . . . ur vj+1 . . . vs

(with the convention that a sequence of letters is empty when its indexation is decreasing). The
right hand-side of Identity (12) is therefore equal to

1

Du,v(q)















∑

(i,j)∈[0,r]×[0,s]

(i,j)6=(0,0), (r,s)









∑

α∈u1 ... ui v1 ... vj

(

α

u1 . . . ui , v1 . . . vj

)

xα



 q‖α‖





×









∑

β∈ui+1 ... ur vj+1 ... vs

(

β

ui+1 . . . ur , vj+1 . . . vs

)

xβ



 lq(β)























13



since it is quite immediate to see that one has
(

αβ

u , v

)

=
∑

(i,j)∈[0,r]×[0,s]

(i,j)6=(0,0), (r,s)

(

α

u1 . . . ui , v1 . . . vj

) (

β

ui+1 . . . ur , vj+1 . . . vs

)

for every non empty words α and β of A∗. By using our induction hypothesis, we can now see
that our last expression is equal to

1

Du,v(q)















∑

(i,j)∈[0,r]×[0,s]

(i,j)6=(0,0), (r,s)

(

xu1 ... ui
xv1 ... vj

q‖u1 ... ui‖ q‖v1 ... vj‖
)

×
(

xui+1 ... ur xvj+1 ... vs lq(ui+1 . . . ur) lq(vj+1 . . . vs)
)



















which can be itself rewritten in the following way

1

Du,v(q)

{ (

r
∑

i=0

xu1 ... ui
xui+1 ... ur q

‖u1 ... ui‖ lq(ui+1 . . . ur)

)

×





s
∑

j=0

xv1 ... vj
xvj+1 ... vs q

‖v1 ... vj‖ lq(vj+1 . . . vs)



− xu xv (q‖u‖+‖v‖ + lq(u) lq(v))



















.

Using now the defining relation (5) of the coefficients of the series Eq, we can immediately
simplify the previous expression and rewrite it as follows

1

Du,v(q)

{

xu xv − xu xv (q‖u‖+‖v‖ + lq(u) lq(v))
}

= xu xv .

This ends therefore our induction and the proof of our lemma. 2

Using the previous lemma in connexion with Equation (9) leads us now immediately to the
following identity

Eq(A+B) =
∑

I,J

xI xJ aI bJ =

(

∑

I

xI aI

) (

∑

J

xJ bJ

)

= Eq(A)Eq(B)

which was one of the relation to prove. The other identity can be immediately obtained from
this last one. 2

The following corollary is now immediate to obtain. It is important to note that this corollary
essentially shows that our analog of the exponential transforms Lie elements into group like
elements for the natural comultiplication on K(q)<<A>> (which is clearly a basic property of
any exponential/logarithm correspondence).

Corollary 3.9 Let ∆ be the comultiplication of K(q)<<A>> defined by setting

∆(ai) = 1 ⊗ ai + ai ⊗ 1 .

Then the series Eq(A) is a group-like element for ∆, i.e.

∆(Eq(A)) = Eq(A) ⊗Eq(A) .

14



3.4 Specialization properties

The first result stated below gives the specialization of the series Eq at q = 0. We begin by
proving the following lemma.

Lemma 3.10 Let I = (i1, . . . , ir) be a composition, let w = ai1 . . . air be the word indexed by I
and let mw be the minimal part of I, i.e.

mw = min
1≤k≤r

{ik} .

Then the term of the polynomial Dw(q) (defined by relation (6)) including the lowest power of q
is exactly αw q

mw , where αw is the number of parts of I equal to mw, i.e.

αw = ] { j, ij = mw } .

In other words, we can write :

Dw(q) = αw q
mw +

∑

ij>mw

αij q
ij .

Proof — It suffices to notice that one has

Dw(q) = 1 − qi1+...+ir − (1 −
r
∑

k=1

qik +
r
∑

k,l=1

qik+il + . . . + (−1)r qi1+...+ir) .

This last expression can be clearly rewritten as follows :

Dw(q) =
r
∑

k=1

qik −
r
∑

k,l=1

qik+il + . . . + (−1 − (−1)r) qi1+...+ir .

Note now that only the first summand in the right-hand side of the above identity can give a
contribution to the coefficient of the lowest power of q within Dw(q). The lemma follows now
immediately from this remark. 2

Proposition 3.11 Let A = { ai, i ≥ 1 } be a noncommutative alphabet. Then the specialization
E0 of the series Eq at q = 0 is given by the following formula:

E0(A) = exp(a1) exp(a2) . . . exp(an) . . . .

Proof — According to Lemma 3.10, the defining equation (7) of the coefficients (that we will
denote here by xw(q)) of the series Eq reduces to

xw(q) =
1

qmw (αw + q Pw(q))







∑

uv=w
u,v 6=1

xu(q)xv(q) q
‖u‖ lq(v)






,

where Pw(q) denotes some polynomial. This last identity can now be rewritten as follows

xw(q) =
1

αw + q Pw(q)





r−1
∑

k=1

xai1
...aik

(q)xaik+1
...air

(q) qi1+...+ik−mw

r
∏

j=k+1

(1 − qij )



 .
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Due to the fact that one has

i1 + . . .+ ik −mw = i1 + . . . + ik − min
1≤j≤r

{ij} ≥ 0 ,

one can immediately deduce (by induction) from the last relation that xw(0) is well defined.
Putting q = 0 in this relation, we now get the following recurrence relation for the specialization
at q = 0 of the generic coefficient xw(q) of the series Eq:

xw(0) =
1

αw

(

r−1
∑

k=1

xai1
...aik

(0)xaik+1
...air

(0) qi1+...+ik−mw |q=0

)

. (13)

We can now proceed with the calculation of xw(0). We consider separately the following two
cases: when w is an increasing word (i.e. when one has i1 ≤ i2 ≤ . . . ≤ ir) and when w is not
increasing.

Let us begin with the case when w is not an increasing word. We shall now prove by induction
on the length |w| of w that xw(0) = 0 for every non increasing word w. The first non increasing
words are of length 2. Let us take such a word, i.e. w = aij aij+1 with ij > ij+1. Using the last
equation we obtain immediately

xaij
aij+1

(0) = xaij
(0)xaij+1

(0) qij−ij+1 |q=0 = 0

as required. Assume now the induction hypothesis, i.e. xw(0) = 0 for every non decreasing word
w such that |w| ≤ m − 1. Note that if w = ai1 . . . air is not increasing, then either ai1 . . . aij

or aij+1 . . . aim is not increasing. From this, it is now immediate to obtain from the recurrence
relation (13) that xw(0) = 0. This ends therefore the first part of our reasoning.

It remains to consider the case when w is increasing, i.e. w = aγ1
i1
. . . aγr

ir
with ij < ij+1 for

every j. In this case, the recurrence relation can be written as

xw(0) =
1

γ1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

xai1
(0)x

a
γ1−1
i1

... a
γr
ir

(0) qi1−i1 |q=0

+ xai1
ai1

(0)x
a

γ1−2
i1

a
γ2
i2

... a
γr
ir

(0) qi1+i1−i1 |q=0

+ . . .

Note that the only nonzero summand in the above relation is the first one. Thus this relation
reduces to

xa
γ1
i1

... a
γr
ir

(0) =
1

γ1
x

a
γ1−1
i1

... a
γr
ir

(0) .

By an easy induction argument, it is now immediate to get that

xw(0) = xa
γ1
i1

... a
γr
ir

(0) =
1

γ1! . . . γr!

for every increasing word w = aγ1
i1
. . . aγr

ir
.

We can now summarize our calculation with the following table:

xw(0) =











1

γ1! . . . γr!
if w = aγ1

i1
. . . aγr

ir
is increasing ,

0 if w is not increasing .

The reader will easily see that this last result is exactly equivalent to the identity claimed by
our proposition. 2

The second result given below gives the specialization of the series Eq at q = 1.
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Proposition 3.12 Let A = { ai, i ≥ 1 } be a noncommutative alphabet. Then the specialization
E1 of the series Eq at q = 1 is given by the following formula:

E1(A) = 1 +
∑

i1,...,ir≥1
r≥1

(

r
∏

k=1

ik
i1 + . . .+ ik

)

ai1 . . . air .

Proof — Let us denote by Qw(q) the right-hand side of equation (4) (considered in the case x1 =
1 which corresponds to the series Eq), i.e. the element of K(q) defined by Qw(q) = xw(q)Dw(q),
which is equal to

Qw(q) = (1 − q) [ir]q





r−1
∑

k=1

xai1
... aik

(q)xaik+1
... air

(q) qi1+...+ik (1 − q)r−k−1
r−1
∏

j=k+1

[ij ]q



 .

On the other hand, we have

Dw(q) = (1 − q)

(

[i1 + . . .+ ir]q − (1 − q)r−1
r
∏

k=1

[ik]q

)

.

So we immediately obtain

xw(q) =
Qw(q)

Dw(q)
=

[ir]q





r−1
∑

k=1

xai1
... aik

(q)xaik+1
... air

(q) qi1+...+ik (1 − q)r−k−1
r−1
∏

j=k+1

[ij ]q





[i1 + . . . + ir]q − (1 − q)r−1

(

r
∏

k=1

[ik]q

)

from which it is immediate to deduce that

xw(1) =
ir

i1 + . . . + ir
xai1

...air−1
(1) .

By induction on the length of the word w, we then easily get

xw(1) =
r
∏

k=1

ik
i1 + . . . + ik

for every word w = ai1 . . . air as required. 2

4 Relations with q−bracketing

In this section, we will show the relation between our analog of the exponential and the family
(πn(q))n≥1 of q-idempotents associated with the q-bracketing (cf Section 2.4).

4.1 The main result

Before going further, we must first define some new notations. Let us consider again some
infinite alphabet A = { ak, k ≥ 1 } and let

X(A) =
∑

w∈A∗

xw w

17



be a formal power series of K(q)<<A>>. Let now

Y =
+∞
∑

i=1

yi t
i

be a series of Sym[[t]] with zero constant coefficient such that yi is an homogeneous noncommu-
tative symmetric function of weight i. We can now define the composition X(A) ◦ Y (or more
simply X(Y )) of Y with X by setting

X(Y ) = X(A) ◦ Y = σY (X(A))

where σY stands for the algebra morphism from K(q)<<A>> into Sym[[t]] which maps every
letter ai of A onto yi.

We can now state the main result of this section (and of the paper) which gives an expres-
sion (involving our analog of the exponential) for the generating series of the Lie idempotents
(πn(q))n≥1 associated with the q-bracketing.

Theorem 4.1 Let (πn(q))n≥1 be the family of Lie idempotents associated with the q-bracketing
operator introduced at the end of Section 2.4. Then one has

Eq

(

+∞
∑

n=1

πn(q) tn
)

= σ(t) .

Proof — Let us define a family (Pn(A))n≥1 of homogeneous noncommutative symmetric func-
tions defined by setting

+∞
∑

n=1

Pn(A) tn = Lq(σ(t) − 1) . (14)

Let us first prove the following lemma.

Lemma 4.2 The elements (Pn)n≥1 defined by equation (14) are primitive for the natural co-
multiplication ∆ on Sym.

Proof of the Lemma – Note that according to Theorem 3.5, we have

Eq

(

+∞
∑

n=1

Pn(A) tn
)

= σ(t) (15)

from which we immediately deduce that



























Eq

(

+∞
∑

n=1

(1 ⊗ Pn(A)) tn
)

= 1 ⊗ σ(t) ,

Eq

(

+∞
∑

n=1

(Pn(A) ⊗ 1) tn
)

= σ(t) ⊗ 1 .

Hence we have

Eq

(

+∞
∑

n=1

(1 ⊗ Pn(A)) tn
)

Eq

(

+∞
∑

n=1

(Pn(A) ⊗ 1) tn
)

= σ(t) ⊗ σ(t) = ∆(σ(t)) .
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Since we always have

(Pn ⊗ 1) (1 ⊗ Pm) = (1 ⊗ Pm) (Pn ⊗ 1) = Pn ⊗ Pm

for every n,m ≥ 1, we are clearly again in a position to apply Theorem 3.7 which gives us here

Eq

(

+∞
∑

n=1

(1 ⊗ Pn + Pn ⊗ 1) tn
)

= ∆(σ(t)) .

On the other hand, it is easy to deduce from relation (15) that one has

∆(σ(t)) = Eq

(

+∞
∑

n=1

∆(Pn) tn
)

.

The last two relations now lead to the identity

Eq

(

+∞
∑

n=1

∆(Pn) tn
)

= Eq

(

+∞
∑

n=1

(1 ⊗ Pn + Pn ⊗ 1) tn
)

.

According to Theorem 3.5, the composition on the left by Lq of both sides of this last relation
leads finally to the identity

+∞
∑

n=1

∆(Pn) tn =
+∞
∑

n=1

(1 ⊗ Pn + Pn ⊗ 1) tn ,

which shows that every element Pn is primitive for ∆ as required. 2

We are now in a position to prove that the elements Pn are in fact encoding Lie idempotents.

Lemma 4.3 For every n ≥ 1, α−1(Pn) is a Lie idempotent.

Proof of the Lemma – According to the previous lemma and to Theorem 2.1, pn = α−1(Pn) is
a Lie quasi-idempotent. Showing that pn is a Lie idempotent amounts to show that

Pn =
Ψn

n
+ L(Ψ)

(see [4]), i.e. to show that the coefficient of Pn on Ψn in the basis of Sym associated with
the power sums of first kind is exactly equal to 1/n. Note now that it is easy to deduce from
Equation (15) that this coefficient is the coefficient of Sn on Ψn with respect to the same basis,
i.e. to 1/n (see [2]) as required. This ends therefore the proof of our lemma. 2

We can now prove our last lemma.

Lemma 4.4 For every n ≥ 1, one has Pn = πn(q).

Proof of the Lemma – According to the previous lemma, the noncommutative symmetric function
Pn encodes a Lie idempotent. Hence it suffices to show that

Pn((1−q)A) = (1 − qn)Pn

for every n ≥ 1 in order to prove that Pn is equal to πn(q) since this last property is a charac-
terization of this Lie idempotent according to Theorem 2.3.
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According to Equation (15), we can write

σ((1−q)A; t) = Eq

(

+∞
∑

n=1

Pn((1−q)A) tn
)

using here the notations of Definition 2.2. But we also have

σ((1−q)A; t) = σ(A; qt)−1 σ(A; t)

by definition. Using again Equation (15), we can easily see that we have

σ(A; qt) = Eq

(

+∞
∑

n=1

Pn q
n tn

)

.

Hence we immediately get that

σ((1−q)A; t) = Eq

(

+∞
∑

n=1

Pn q
n tn

)−1

Eq

(

+∞
∑

n=1

Pn t
n

)

using again Equation (15). By using now the characteristic property of the series Eq, i.e.
Equation (3), we now get

σ((1−q)A; t) = Eq

(

+∞
∑

n=1

(1 − qn)Pn t
n

)

.

Comparing now this equality with the very first one obtained at the beginning of our proof, we
can now write

Eq

(

+∞
∑

n=1

Pn((1−q)A) tn
)

= Eq

(

+∞
∑

n=1

(1 − qn)Pn t
n

)

.

Applying Lq at the left of the two sides of this equality brings us now immediately to the
following relation

+∞
∑

n=1

Pn((1−q)A) tn =
+∞
∑

n=1

(1 − qn)Pn t
n

according to Theorem 3.5. Hence we have proved that Pn((1−q)A) = (1− qn)Pn for every n ≥ 1
as required. 2

It is now immediate to conclude our proof. 2

4.2 Zassenhaus Lie idempotents

Before going further, let us recall the definition of Zassenhaus noncommutative symmetric func-
tions (also called power sums of the third type) that were introduced in [4]. This last family is
the family (Zn)n≥1 of homogeneous noncommutative symmetric functions (with Zn ∈ Symn for
every n ≥ 1) defined by setting

σ(t) := exp(Z1 t) exp(
Z2

2
t2) . . . exp(

Zn

n
tn) . . . (16)

The Fer-Zassenhaus formula (cf [15]) shows that these new noncommutative symmetric functions
are primitive elements for the natural comultiplication on Sym and thus encode Lie quasi-
idempotents.
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Example 4.5 The first values of Zn are listed below

Z1 = Ψ1, Z2 = Ψ2, Z3 = Ψ3 + [Ψ2,Ψ1],

Z4 = Ψ4 +
1

3
[Ψ3,Ψ1] +

1

6
[[Ψ2,Ψ1],Ψ1],

Z5 = Ψ5 +
1

4
[Ψ4,Ψ1] +

1

3
[Ψ3,Ψ2] +

1

12
[[Ψ3,Ψ1],Ψ1]

−
7

24
[Ψ2, [Ψ2,Ψ1]] +

1

24
[[[Ψ2,Ψ1],Ψ1],Ψ1] .

Note 4.6 It is also interesting to note that Goldberg’s explicit formula for the Hausdorff series
(see [11]) gives the decomposition of Φn over the basis (ZI).

We can now give the following immediate consequence of the last theorem, which solves a
conjecture of Krob, Leclerc and Thibon (see [4]).

Corollary 4.7 The specialization at q = 0 of the Lie idempotent πn(q) is the Zassenhaus idem-
potent Zn/n, i.e. one has

πn(0) =
Zn

n

for every integer n ≥ 0.

Proof — The result is an immediate consequence of Theorem 4.1 and Proposition 3.11. 2

5 Conclusion

The main result of this paper is clearly Theorem 4.1 in which we obtained the identity

Eq

(

+∞
∑

n=1

πn(q) tn
)

= σ(t)

which related the generating series of the family (πn(q))n≥1 with the generating series of the
complete functions. Taking now into account the fact that πn(1) = Ψn/n for every n ≥ 1 (as
shown in [4]), it is interesting to write down the following relations

σ(t) =



























































exp(
+∞
∑

n=1

Φn

n
tn ) ,

E1(
+∞
∑

n=1

Ψn

n
tn ) ,

E0(
+∞
∑

n=1

Zn

n
tn ) ,

that hold between the generating series of all kinds of noncommutative power sums that we
introduced up to now. All these relations have in common that the generating series of non-
commutative complete symmetric functions is equal to some exponential-like operator applied
to the generating series of the corresponding noncommutative power sums.
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On the other hand, let us recall that it was shown in [5] that an homogeneous noncommutative
symmetric function Pn of weight n is the encoding of a Lie idempotent if and only if there exists
a totally ordered commutative alphabet X such that

Pn = Πn(X A)

where Πn is an arbitrary fixed Lie idempotent of weight n. It seems therefore likely to conjecture
that there exists some general quasi-symmetric analog EX of the exponential such that the
identity

EX

(

+∞
∑

n=1

πn

n
tn
)

= σ(t)

holds if and only if and only if the sequence (πn/n)n≥1 of homogeneous noncommutative sym-
metric functions consists only in Lie idempotents. Note also that this conjecture is clearly
supported by the fact that one can associate a Lie projector with the operator Sn(X A) (see [4])
in the same line than the Lie idempotent πn(q) was associated with the q-bracketing operator
(that corresponds to the situation X = 1 − q in the sense of [4]).
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