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Introduction 

 

Le livre Biological Feedback par René Thomas et Richard D’Ari fut publié en 

1990 par CRC Press, Inc. En 2003 le groupe Taylor & Francis acheta CRC 

Press. C’est avec l’aimable autorisation de Taylor & Francis que ce livre est 

maintenant mis à la disposition du public en trois fichiers « .pdf » gratuits. Le 

livre présente une méthode de modélisation mathématique de systèmes 

biologiques et autres, permettant d’extraire aisément du schéma d’interactions 

du système son comportement et ses états stationnaires. 

 

 

The book Biological Feedback by René Thomas and Richard D’Ari was published in 

1990 by CRC Press, Inc. In 2003 the Taylor & Francis group purchased CRC Press. 

With the kind authorisation of Taylor & Francis the book is now made available free of 

charge to the general pubic in three “.pdf” files. The book presents a method of 

mathematical modelisation of biological and other systems, allowing one to extract 

readily from the graph of interactions the system’s behaviour and its steady states. 

 

This introduction includes the following material: 

 

Introduction ........................................................................................................1 

Bibliographic data ..............................................................................................2 

Table of contents of Biological Feedback ..........................................................4 

Errata ..................................................................................................................6 

References to more recent work .........................................................................7 
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ERRATA 
 
 
Table of contents, Chapter 11: “Logical Description” instead of “Differential Description” 
 

P. 25, Table 13:
The implication is equivalent to

_      _
a ! b

_              _
ab, or a + b

__

 
 

dx
dy

dx
dt

P. 28: replace         by
 

 
P. 46: 000 ! 010 ! 011 

 
 

dx
dt

P. 75, equations 2: replace the second        by dy
dt  

 
P. 86: suppress line 1 
 
P. 101, equation 5: F1 instead of F 
 
P. 102: delete lines 1-3 
 
P. 116, line 10: “steady states 01/01 and 10/10” 
 
P. 119, middle of second table: 1θ  2θ   instead of θ 2θ  
 
P. 120: first Boolean number in xy column, replace 01 by 00 
 
P. 142, line3: delete “second” 
 
P. 184, end of §3: delete “for m positive loops” 
 
P. 190, 6 lines before the end of the page: k12/k-1 sufficiently greater than ϑ21 and k21/k-2 

sufficiently greater than ϑ12 
 
P. 191, second table: replace K22 < 2 by K22 = 0 
 
P. 241, first table: circle the two stable states 
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References to more recent work 
 
Biological Feedback deals in part with conjectures first published in 1981. One of these is that 
the presence of a positive feedback loop in the graph of interactions of a system (or in its 
Jacobian matrix) is a necessary condition for the existence of multiple steady states 
(multistationarity). This conjecture has recently been the subject of a number of formal 
demonstrations of increasing generality (see Soulé, 2003). The biological interest of this 
theorem is that, insofar as differentiation is a biological manifestation of the more general 
concept of multistationarity (cf. Delbrück, 1949, in Part III, p. 200), any model of a 
differentiation process must comprise at least one positive circuit. A more general 
consequence is that, given a system of nonlinear equations, the existence of more than one 
real solution requires the presence of a positive circuit in its Jacobian matrix. 
 
A second conjecture states that the presence of a negative circuit is a necessary condition for 
the existence of an attractor, be it a point (a stable steady state), oscillatory (a stable limit 
cycle) or chaotic. The main biological interest is that homeostasis (with or without 
oscillations) requires the presence of a negative circuit. 
 
For readers interested in reading more recent work on kinetic logic and its offshoots, a small 
number of selected references is presented below, each of which includes additional 
references in its bibliography. 
 
 
Formal demonstrations of our conjectures 
 
Plahte E., Mestl T., Omholt S. 
Feedback loops, stability and multistationarity in dynamical systems 
Journal of Biological Systems 3:409-413 (1995) 
 Abstract. By fairly simple considerations of stability and multistationarity in nonlinear systems of first 

order differential equations it is shown that under quite mild restrictions a negative feedback loop is a 
necessary condition for stability, and that a positive feedback loop is a necessary condition for 
multistationarity. 

 Keywords: positive feedback/ negative feedback/ differential equations/ feedback loop 
 
Snoussi E.H. 
Necessary condition for multistationarity and stable periodicity 
Journal of Biological Systems 6:3-9 (1998) 
 Abstract. We show in this paper that, for a differential system defined by a quasi-monotonous 

function f (with constant sign partial derivatives) the existence of a positive loop in the interaction 
graph associated to the Jacobian matrix of f is a necessary condition for multistationarity, and the 
existence of a negative loop comprising at least two elements is a necessary condition for stable 
periodicity. This gives a formal proof of R.Thomas's conjectures. 

 
Gouzé J.-L. 
Positive and negative circuits in dynamical systems 
Journal of Biological Systems 6:11-15 (1998) 
 Abstract. We state precisely and demonstrate two conjectures of R. Thomas following which a) the 

existence of a positive circuit in the oriented interaction graph of a differential system is a necessary 
condition for the existence of several steady states, and b) the existence of a negative non-oriented 
circuit of length at least two is a necessary condition for the existence of a stable periodic orbit. 

 Keywords: feedback loop/ differential equations/ multistationarity/ circuits/ stability/ graph 
theory 
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Toni B., Thieffry D., Bulajich R. 
Feedback loop analysis for chaotic dynamics with an application to the Lorenz system 
In “Differential Equations with Applications to Biology”, Ruan S., Wolkowics G.S.K., Wu J., 

eds., Fields Institute Communications 21:473-483 (1999) 
 Abstract. The feedback loop analysis of the Lorenz system is described. Implications of this 

work are discussed. 
 Keywords: feedback loop/ Lorenz system 
 
Cinquin O., Demongeot J. 
Positive and negative feedback: striking a balance between necessary antagonists 
Journal of Theoretical Biology 216:229-241 (2002) 
 Abstract. Most biological regulation systems comprise feedback circuits as crucial components. 

Negative feedback circuits have been well understood for a very long time; indeed, their 
understanding has been the basis for the engineering of cybernetic machines exhibiting stable 
behaviour. The importance of positive feedback circuits, considered as “vicious circles”, has however 
been underestimated. In this article, we give a demonstration based on degree theory for vector 
fields of the conjecture, made by Rene Thomas, that the presence of positive feedback circuits is a 
necessary condition for autonomous differential systems, covering a wide class of biologically 
relevant systems, to possess multiple steady states. We also show ways to derive constraints on the 
weights of positive and negative feedback circuits. These qualitative and quantitative results provide, 
respectively, structural constraints (i.e. related to the interaction graph) and numerical constraints 
(i.e. related to the magnitudes of the interactions) on systems exhibiting complex behaviours, and 
should make it easier to reverse-engineer the interaction networks animating those systems on the 
basis of partial, sometimes unreliable, experimental data. We illustrate these concepts on a model 
multistable switch, in the context of cellular differentiation, showing a requirement for sufficient 
cooperativity. Further developments are expected in the discovery and modelling of regulatory 
networks in general, and in the interpretation of bio-array hybridization and proteomics experiments 
in particular. 

 
Soulé C. 
Graphic requirements for multistationarity 
ComPlexUs 1:123-133 (2003) 
 Abstract. We discuss properties which must be satisfied by a genetic network in order for it to allow 

differentiation. These conditions are expressed as follows in mathematical terms. Let F be a 
differentiable mapping from a finite dimensional real vector space to itself. The signs of the entries of 
the Jacobian matrix of F at a given point a define an interaction graph, i.e. a finite oriented finite 
graph G(a) where each edge is equipped with a sign. René Thomas conjectured 20 years ago that if 
F has at least two nondegenerate zeroes, there exists a such that G(a) contains a positive circuit. 
Different authors proved this in special cases, and we give here a general proof of the conjecture. In 
particular, in this way we get a necessary condition for genetic networks to lead to multistationarity, 
and therefore to differentiation. We use for our proof the mathematical literature on global 
univalence, and we show how to derive from it several variants of Thomas’ rule, some of which had 
been anticipated by Kaufman and Thomas. 

 Keywords: interaction graph/ multistationarity/ Jacobian matrix/ global univalence 
 
Remy E., Ruet P., Thieffry D. 
Positive or negative regulatory circuit inference from multilevel dynamics 
In Positive Systems: Theory and Applications, Springer LNCIS (in press, 2006) 
 Abstract. In the course of his work on the analysis of genetic regulatory networks represented by 

signed directed graphs, R. Thomas has proposed that the occurrence of a positive regulatory circuit 
is a necessary condition for the occurrence of multiple stable states, whereas a negative circuit is 
necessary to generate stable oscillations. Here, we enunciate and demonstrate one theorem 
establishing these rules in a multilevel descrete framework. 
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More recent publications in related fields 
 
Thomas R. 
Regulatory networks seen as asynchronous automata: a logical description 
Journal of Theoretical Biology 153:1-23 (1991) 
 Abstract. The aim of this paper is to provide a compact answer to the questions: 
  why treat complex biological systems in logical terms? 
  how can one do it conveniently? 
 Our initial description (Thomas, R. J. theor. Biol. 1973, 42, 563) is what we now call the “naive” 

logical description. After recalling the essential elements of this asynchronous description, the 
present paper introduces 

  —the use of logical variables with more than two values 
  —the notion of logical parameters 
  —the logical identification of all steady states of the differential description 
  —a compact matricial presentation 
 This is an essentially methodological paper. More extended developments including concrete 

biological examples will be found elsewhere (Thomas & D’Ari, 1990). 
 
Snoussi E.H., Thomas R. 
Logical identification of all steady states: the concept of feedback loop characteristic states 
Bulletin of Mathematical Biology 55:973-991 (1993) 
 Abstract. Generalized logical analysis aims at modelling complex biological systems, especially the 

so-called regulatory systems like genetic networks. The main feature of that theory is its capacity to 
find all steady states of a given system, and the functional positive and negative circuits which 
generate respectively multistationarity and periodicity. So far this has been achieved by exhaustive 
enumeration, which severely limits the size of the systems that can be analyzed. In this paper, we 
introduce a mathematical function, called image function, which allows the representation of the 
state table of a system in an analytical way. We then show how all steady states can be derived as 
solutions of a system of steady state equations. Constraint programming, a mathematical method for 
solving discrete equations, is applied for that purpose. To illustrate the potential of our approach we 
present results from computer experiments carried out on very large randomly generated systems 
(graphs) with hundreds or even thousands of interacting components and show that these systems 
can be solved using moderate computing time. 

 Keywords: mathematical model/ cycle/ regulation(control)/ biological activity/ feedback 
regulation/ threshold detection 

 
Thieffry D., Colet M., Thomas R. 
Formalisation of regulatory networks: a logical method and its automatization 
Mathematical Modeling and Scientific Computing 2:144-151 (1993) 
 
Thomas R. 
Laws for the dynamics of regulatory circuits 
International Journal of Developmental Biology 42:479-485 (1998) 
 Abstract. We start our analysis from historical but too seldom quoted papers by Delbrück, Novick & 

Weiner, Cohn & Horibata and Monod & Jacob. We try to show how it became possible to draw a line 
coupling cell differentiation to the physical concept of multistationarity, and the latter to the concept 
of positive feedback circuits. Two laws give the minimal logical ingredients required for differentiative 
and homeostatic regulations. It is briefly shown how they can be used to treat such complex 
dynamics as deterministaic chaos, which, admittedly, does not yet belong to the corpus of 
developmental biology. It was taken as a challenge to express our ideas here in purely verbal terms, 
avoiding any formal treatment. 

 
Thomas R. 
Deterministic chaos seen in terms of feedback circuits: analysis, synthesis, “labyrinth chaos” 
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International Journal of Bifurcation and Chaos in Applied Sciences and Engineering 9:1889-
1905 (1999) 

 Abstract. This paper aims to show how complex nonlinear dynamic systems can be classified, 
analyzed and synthesized in terms of feedback circuits. The Rossler equations for deterministic 
chaos are revisited and generalized in this perspective. It is shown that once a proper set of 
feedback circuits is present in the Jacobian matrix of the system, the chaotic character of trajectories 
is remarkably robust versus changes in the nature of the nonlinearities. "Labyrinth chaos", whereby 
simple differential systems generate large lattices of many unstable steady states embedded in a 
chaotic attractor, is constructed using this technique. In the limit case of a single three-element 
circuit without diagonal elements, one finds systems possessing an infinite lattice of unstable steady 
states between which trajectories percolate in a deterministic chaotic way. 

 Keywords: chaos/ circuit feedback/ nonlinear dynamical systems 
 
Thomas R., Kaufman M. 
Multistationarity, the basis of cell differentiation and memory. I. Structural conditions of 

multistationarity and other nontrivial behavior 
Chaos 11:165-179 (2001) 
Abstract. A biological introduction serves to remind us that differentiation is an epigenetic process, that 

multistationarity can account for epigenetic differences, including those involved in cell 
differentiation, and that positive feedback circuits are a necessary condition for multistationarity and, 
by inference, for differentiation. The core of the paper is comprised of a formal description of 
feedback circuits and unions of disjoint circuits. We introduce the concepts of full-circuit (a circuit or 
union of disjoint circuits which involves all the variables of the system), and of ambiguous circuit (a 
circuit whose sign depends on the location in phase space). We describe the partition of phase 
space (a) according to the signs of the ambiguous circuits, and (b) according to the signs of the 
eigenvalues or their real part. We introduce a normalization of the system versus one of the circuits; 
in two variables, this permits an entirely general description in terms of a common diagram in the 
"circuit space." The paper ends with general statements concerning the requirements for 
multistationarity, stable periodicity, and deterministic chaos. 

 
Thomas R., Kaufman M. 
Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of 

regulatory networks in terms of feedback circuits 
Chaos 11:180-195 (2001) 
 Abstract. Circuits and their involvement in complex dynamics are described in differential terms in 

Part I of this work. Here, we first explain why it may be appropriate to use a logical description, either 
by itself or in symbiosis with the differential description. The major problem of a logical description is 
to find an adequate way to involve time. The procedure we adopted differs radically from the 
classical one by its fully asynchronous character. In Sec. II we describe our “naive” logical approach, 
and use it to illustrate the major laws of circuitry namely, the involvement of positive circuits in 
multistationarity and of negative circuits in periodicity and in a biological example. Already in the 
naive description, the major steps of the logical description are to: i describe a model as a set of 
logical equations, ii derive the state table from the equations, iii derive the graph of the sequences of 
states from the state table, and iv determine which of the possible pathways will be actually followed 
in terms of time delays. In the following sections we consider multivalued variables where required, 
the introduction of logical parameters and of logical values ascribed to the thresholds, and the 
concept of characteristic state of a circuit. This generalized logical description provides an image 
whose qualitative fit with the differential description is quite remarkable. A major interest of the 
generalized logical description is that it implies a limited and often quite small number of possible 
combinations of values of the logical parameters. The space of the logical parameters is thus cut into 
a limited number of boxes, each of which is characterized by a defined qualitative behavior of the 
system. Our analysis tells which constraints on the logical parameters must be fulfilled in order for 
any circuit or combination of circuits to be functional. Functionality of a circuit will result in 
multistationarity in the case of a positive circuit or in a cycle in the case of a negative circuit . The last 
sections deal with “more about time delays” and “reverse logic”, an approach that aims to proceed 
rationally from facts to models.  
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Thomas R., D’Ari R. 
An algorithm for targeted convergence of Euler or Newton iterations 
Comptes Rendus de l’Académie des Sciences (Paris), Sciences de la Vie 324:285-296 (2001) 
 Abstract. The concept of multistationarity has become essential for understanding cell differentiation. 

For this reason theoretical biologists have more and more frequently to determine the steady values, 
often multiple, of systems of non-linear differential equations. It is well known that iteration processes 
of current use converge or not towards a fixed point depending on the absolute value of the slope of 
the iteration function in the vicinity of the considered fixed point. A number of methods have been 
developed to obtain or accelerate convergence. As biologists, we do not pretend to review these 
works. Rather, we propose here a simple algorithm which permits to converge at will towards a 
chosen type of steady state. Others and we have used this procedure extensively for years for the 
analysis of complex biological systems. A compact program (using Mathematica) is available. 

 
Ghysen A., Thomas R. 
The formation of sense organs in Drosophila: a logical approach 
BioEssays 25:802-807 (2003) 
 Abstract. The genetic analysis of development has revealed the importance of small sets of 

interacting genes in most morphogenetic processes. The results of gene interactions have so far 
been examined intuitively. This approach is largely sufficient when one deals with simple 
interactions, a feedback circuit for example. As more components become involved, however, it is 
difficult to make sure that the intuitive approach gives a comprehensive view of the behaviour of the 
system. In this paper, we illustrate the use of a logical approach to describe the genetic circuit that 
underlies the singling out of sense organ precursor cells in Drosophila. We show how to apply logical 
modelling to a realistic problem, and how this approach allows an easy assessment of the dynamic 
properties of the system, i.e., of its possible evolutions and of its reactions to fluctuations and 
perturbations. 

 
Remy E., Mossé B., Chaouiya C., Thieffry D. 
A description of dynamical graphs associated to elementary regulatory circuits 
Bioinformatics 19 (Suppl. 2) 172-178 (2003) 
 Abstract. The biological and dynamical importance of feedback circuits  in regulatory graphs has 

often been emphasized. The work presented  here aims at completely describing the dynamics of 
isolated elementary  regulatory circuits. Our analytical approach is based on a discrete  formal 
framework, built upon the logical approach of R.  Thomas. 

 Given a regulatory circuit, we show that the structure  of synchronous and asynchronous dynamical 
graphs depends only on the  length of the circuit (number of genes) and on its sign (which  depends 
on the parity of the number of negative interactions). This  work constitutes a first step towards the 
analytical characterisation  of discrete dynamical graphs for more complex regulatory networks in  
terms of contributions corresponding to their embedded elementary  circuits. 

 
Thomas R., Kaufman M. 
Frontier diagrams: partition of phase space according to the signs of eigenvalues or sign 

patterns of the circuits 
International Journal of Bifurcation and Chaos 15:3051-3074 (2005) 
 Keywords: phase space partition/ feedback circuits/ nuclei/ Jacobian matrix 
 
Corblin F., Fanchon E., Trilling L. 
Inférer et simuler un modèle biologique décrivant l’adhérence entre cellules 
Actes des Premières Journées Francophones de Programmation par Contraintes (2005) 
 Abstract. L’adhésion entre cellules joue un rôle critique dans la formation des tissus et des organes. 

Elle intervient aussi dans le contrôle des leucocytes traversant l’endothélium des vaisseaux 
sanguins. Notre connaissance de ce phénomène est actuellement partielle. Même si certaines 
protéines impliquées et leurs interactions sont identifiées, d’une part d’autres intervenants restent 
certainement à découvrir et d’autre part les valeurs des paramètres cinétiques doivent être 
déterminées. De tels problèmes rendent nécessaires des modélisations qui oeuvrent au niveau 
qualitatif et qui fournissent au biologiste une large palette de fonctionnalités, allant de l’inférence de 
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modèles à partir de données comportementales, à la simulation, en passant par la vérification de 
propriétés et la proposition d’expériences significatives. La Programmation Logique avec Contraintes 
(PLC) apparaît a priori comme un très bon candidat face à cette problématique dans la mesure où 
elle propose une seule spécification pour plusieurs besoins. Nous présentons la définition et la mise 
en oeuvre en PLC d’un type bien identifié de modèles : les réseaux logiques asynchrones 
multivalués dus à R. Thomas, en soulignant l’intérêt de la composition de contraintes (booléennes et 
numériques). Nous illustrons les capacités multi-fonctionnelles de cette approche en étudiant un 
sous-système relatif à l’adhésion cellulaire représenté comme un réseau logique. Nous nous 
intéressons particulièrement à la présence d’états stationnaires et à celle de comportements 
réparateurs de l’adhérence après une perturbation. 

 
Thomas R. 
Circular Causality 
In Unravelling the Function and Kinetics of Biochemical Networks, a special issue of IEE 

Proceedings - Systems Biology (in press, 2006) 
 Abstract. We define circular causality in terms of circuits, themselves defined in terms of non-zero 

elements of the Jacobian matrix of systems. Our aim is to convince the reader that circular causality 
is not a mere curiosity but an essential ingredient of organised systems, biological or not, whose 
proper operation requires regulatory mechanisms. 

 This paper comprises: 
 1. An introduction about the occurrence (in biology and elsewhere) of two contrasting types of 

regulation, one leading to homeostasis (with or without oscillations), the other responsible for 
differentiation and memory. Both types of regulation involve retroactions (feedback) and 
consequently have to be treated in terms of circuits. 

 2. A section about circuits, their naïve and rigorous definitions and their properties and roles. 
Circuits are defined in terms of non zero elements of the Jacobian matrix (or in case of discrete 
description, of the influence graph) of the system. 

 There are two types of circuits: negative and positive. The roles of the two types are contrasting, as 
negative circuits are involved in homeostasis, while positive circuits are involved in multistationarity 
(and hence in differentiation and memory). 

 Only those terms that belong to a circuit take part in the characteristic equation of the system, and 
thus only those terms influence the nature of steady states. 

 Nuclei are circuits (or unions of disjoint circuits) that involve all the variables of the systems. It is 
shown that in the absence of any nucleus a system has no non-degenerate steady state. An isolated 
nucleus generates one or more steady states, whose nature is entirely determined by the sign 
patterns of the nucleus. 

 3. A third section deals with principles that govern the operation of organised systems and 
especially with the logical requirements for such “non trivial” behaviour as multistationarity, stable 
periodicity (in the absence of an external periodicity) or deterministic chaos. 

 4. A fourth section deals with methods that can be used to analyze or synthesize systems endowed 
with circular causality. In this section, we focus on discrete methods, more specifically on an 
asynchronous logical description, and compare its results with the more familiar description based 
on ordinary differential equations. Discrete and continuous descriptions are by no means exclusive 
of each other, but rather complementary. 

 5. Whatever the type of description, it is often useful to clearly distinguish (and combine whenever 
appropriate) deductive, or analytical approaches (for example, from a model to its implications) and 
inductive, or synthetic approaches aimed to find a pathway as rational as possible from the 
experimental facts to possible models. The second approach leads to a kind of “reverse” logics 
whose hardware version (circuits built in DNA) is one aspect of reverse genetics. 

 6. The last section emphasises the notion that dynamical systems can often be analysed (if pre-
existing) or synthesised (if to-be) extremely efficiently by a proper examination or construction of the 
Jacobian matrix in terms of circuits. Hence the title “Circular causality”. 

 
Fauré A., Naldi A., Chaouiya C., Thieffry D. 
Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle 
Bioinformatics (in press, 2006) 
 Abstract. To understand the behaviour of complex biological regulatory networks, a proper 

integration of molecular data into a full-fledge formal dynamical model is ultimately required. As most 
available data on regulatory interactions are qualitative, logical modelling offers an interesting 
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framework to delineate the main dynamical properties of the underlying networks. Transposing a 
generic model of the core network controlling the mammalian cell cycle into the logical framework, 
we compare different strategies to explore its dynamical properties. In particular, we assess the 
respective advantages and limits of synchronous versus asynchronous updating assumptions to 
delineate the asymptotical behaviour of regulatory networks. Furthermore, we propose several 
intermediate strategies to optimize the computation of asymptotical properties depending on 
available knowledge. 

 Keywords: regulatory networks/ cell cycle/ dynamical modelling/ logical modelling/ 
simulation 

 






































































































































































































































































































































































































































































































































































































































































