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Introduction

Le livre Biological Feedback par René Thomas et Richard D’Ari fut publié en
1990 par CRC Press, Inc. En 2003 le groupe Taylor & Francis acheta CRC
Press. C’est avec l'aimable autorisation de Taylor & Francis que ce livre est
maintenant mis a la disposition du public en trois fichiers « .pdf » gratuits. Le
livre présente une méthode de modélisation mathématique de systémes
biologiques et autres, permettant d’extraire aisément du schéma d'’interactions

du systéme son comportement et ses états stationnaires.

The book Biological Feedback by René Thomas and Richard D’Ari was published in
1990 by CRC Press, Inc. In 2003 the Taylor & Francis group purchased CRC Press.
With the kind authorisation of Taylor & Francis the book is now made available free of
charge to the general pubic in three “.pdf” files. The book presents a method of
mathematical modelisation of biological and other systems, allowing one to extract

readily from the graph of interactions the system’s behaviour and its steady states.

This introduction includes the following material:
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References to more recent work

Biological Feedback deals in part with conjectures first published in 1981. One of these is that
the presence of a positive feedback loop in the graph of interactions of a system (or in its
Jacobian matrix) is a necessary condition for the existence of multiple steady states
(multistationarity). This conjecture has recently been the subject of a number of formal
demonstrations of increasing generality (see Soulé, 2003). The biological interest of this
theorem is that, insofar as differentiation is a biological manifestation of the more general
concept of multistationarity (cf. Delbriick, 1949, in Part III, p. 200), any model of a
differentiation process must comprise at least one positive circuit. A more general
consequence is that, given a system of nonlinear equations, the existence of more than one
real solution requires the presence of a positive circuit in its Jacobian matrix.

A second conjecture states that the presence of a negative circuit is a necessary condition for
the existence of an attractor, be it a point (a stable steady state), oscillatory (a stable limit
cycle) or chaotic. The main biological interest is that homeostasis (with or without
oscillations) requires the presence of a negative circuit.

For readers interested in reading more recent work on kinetic logic and its offshoots, a small
number of selected references is presented below, each of which includes additional
references in its bibliography.

Formal demonstrations of our conjectures

Plahte E., Mestl T., Ombholt S.

Feedback loops, stability and multistationarity in dynamical systems

Journal of Biological Systems 3:409-413 (1995)
Abstract. By fairly simple considerations of stability and multistationarity in nonlinear systems of first
order differential equations it is shown that under quite mild restrictions a negative feedback loop is a
necessary condition for stability, and that a positive feedback loop is a necessary condition for
multistationarity.
Keywords: positive feedback/ negative feedback/ differential equations/ feedback loop

Snoussi E.H.

Necessary condition for multistationarity and stable periodicity

Journal of Biological Systems 6:3-9 (1998)
Abstract. We show in this paper that, for a differential system defined by a quasi-monotonous
function f (with constant sign partial derivatives) the existence of a positive loop in the interaction
graph associated to the Jacobian matrix of f is a necessary condition for multistationarity, and the
existence of a negative loop comprising at least two elements is a necessary condition for stable
periodicity. This gives a formal proof of R.Thomas's conjectures.

Gouzé J.-L.

Positive and negative circuits in dynamical systems

Journal of Biological Systems 6:11-15 (1998)
Abstract. We state precisely and demonstrate two conjectures of R. Thomas following which a) the
existence of a positive circuit in the oriented interaction graph of a differential system is a necessary
condition for the existence of several steady states, and b) the existence of a negative non-oriented
circuit of length at least two is a necessary condition for the existence of a stable periodic orbit.

Keywords: feedback loop/ differential equations/ multistationarity/ circuits/ stability/ graph
theory



Toni B., Thieffry D., Bulajich R.

Feedback loop analysis for chaotic dynamics with an application to the Lorenz system

In “Differential Equations with Applications to Biology”, Ruan S., Wolkowics G.S.K., Wu J.,
eds., Fields Institute Communications 21:473-483 (1999)
Abstract. The feedback loop analysis of the Lorenz system is described. Implications of this
work are discussed.
Keywords: feedback loop/ Lorenz system

Cinquin O., Demongeot J.
Positive and negative feedback: striking a balance between necessary antagonists

Journal of Theoretical Biology 216:229-241 (2002)

Abstract. Most biological regulation systems comprise feedback circuits as crucial components.
Negative feedback circuits have been well understood for a very long time; indeed, their
understanding has been the basis for the engineering of cybernetic machines exhibiting stable
behaviour. The importance of positive feedback circuits, considered as “vicious circles”, has however
been underestimated. In this article, we give a demonstration based on degree theory for vector
fields of the conjecture, made by Rene Thomas, that the presence of positive feedback circuits is a
necessary condition for autonomous differential systems, covering a wide class of biologically
relevant systems, to possess multiple steady states. We also show ways to derive constraints on the
weights of positive and negative feedback circuits. These qualitative and quantitative results provide,
respectively, structural constraints (i.e. related to the interaction graph) and numerical constraints
(i.e. related to the magnitudes of the interactions) on systems exhibiting complex behaviours, and
should make it easier to reverse-engineer the interaction networks animating those systems on the
basis of partial, sometimes unreliable, experimental data. We illustrate these concepts on a model
multistable switch, in the context of cellular differentiation, showing a requirement for sufficient
cooperativity. Further developments are expected in the discovery and modelling of regulatory
networks in general, and in the interpretation of bio-array hybridization and proteomics experiments
in particular.

Soulé C.
Graphic requirements for multistationarity

ComPlexUs 1:123-133 (2003)

Abstract. We discuss properties which must be satisfied by a genetic network in order for it to allow
differentiation. These conditions are expressed as follows in mathematical terms. Let F be a
differentiable mapping from a finite dimensional real vector space to itself. The signs of the entries of
the Jacobian matrix of F at a given point a define an interaction graph, i.e. a finite oriented finite
graph G(a) where each edge is equipped with a sign. René Thomas conjectured 20 years ago that if
F has at least two nondegenerate zeroes, there exists a such that G(a) contains a positive circuit.
Different authors proved this in special cases, and we give here a general proof of the conjecture. In
particular, in this way we get a necessary condition for genetic networks to lead to multistationarity,
and therefore to differentiation. We use for our proof the mathematical literature on global
univalence, and we show how to derive from it several variants of Thomas’ rule, some of which had
been anticipated by Kaufman and Thomas.

Keywords: interaction graph/ multistationarity/ Jacobian matrix/ global univalence

Remy E., Ruet P., Thieffry D.
Positive or negative regulatory circuit inference from multilevel dynamics

In Positive Systems.: Theory and Applications, Springer LNCIS (in press, 2006)
Abstract. In the course of his work on the analysis of genetic regulatory networks represented by
signed directed graphs, R. Thomas has proposed that the occurrence of a positive regulatory circuit
is a necessary condition for the occurrence of multiple stable states, whereas a negative circuit is
necessary to generate stable oscillations. Here, we enunciate and demonstrate one theorem
establishing these rules in a multilevel descrete framework.



More recent publications in related fields

Thomas R.
Regulatory networks seen as asynchronous automata: a logical description

Journal of Theoretical Biology 153:1-23 (1991)

Abstract. The aim of this paper is to provide a compact answer to the questions:

why treat complex biological systems in logical terms?

how can one do it conveniently?
Our initial description (Thomas, R. J. theor. Biol. 1973, 42, 563) is what we now call the “naive”
logical description. After recalling the essential elements of this asynchronous description, the
present paper introduces

—the use of logical variables with more than two values

—the notion of logical parameters

—the logical identification of all steady states of the differential description

—a compact matricial presentation
This is an essentially methodological paper. More extended developments including concrete
biological examples will be found elsewhere (Thomas & D’Ari, 1990).

Snoussi E.H., Thomas R.
Logical identification of all steady states: the concept of feedback loop characteristic states

Bulletin of Mathematical Biology 55:973-991 (1993)

Abstract. Generalized logical analysis aims at modelling complex biological systems, especially the
so-called regulatory systems like genetic networks. The main feature of that theory is its capacity to
find all steady states of a given system, and the functional positive and negative circuits which
generate respectively multistationarity and periodicity. So far this has been achieved by exhaustive
enumeration, which severely limits the size of the systems that can be analyzed. In this paper, we
introduce a mathematical function, called image function, which allows the representation of the
state table of a system in an analytical way. We then show how all steady states can be derived as
solutions of a system of steady state equations. Constraint programming, a mathematical method for
solving discrete equations, is applied for that purpose. To illustrate the potential of our approach we
present results from computer experiments carried out on very large randomly generated systems
(graphs) with hundreds or even thousands of interacting components and show that these systems
can be solved using moderate computing time.

Keywords: mathematical model/ cycle/ regulation(control)/ biological activity/ feedback
regulation/ threshold detection

Thieffry D., Colet M., Thomas R.
Formalisation of regulatory networks: a logical method and its automatization
Mathematical Modeling and Scientific Computing 2:144-151 (1993)

Thomas R.
Laws for the dynamics of regulatory circuits

International Journal of Developmental Biology 42:479-485 (1998)

Abstract. We start our analysis from historical but too seldom quoted papers by Delbriick, Novick &
Weiner, Cohn & Horibata and Monod & Jacob. We try to show how it became possible to draw a line
coupling cell differentiation to the physical concept of multistationarity, and the latter to the concept
of positive feedback circuits. Two laws give the minimal logical ingredients required for differentiative
and homeostatic regulations. It is briefly shown how they can be used to treat such complex
dynamics as deterministaic chaos, which, admittedly, does not yet belong to the corpus of
developmental biology. It was taken as a challenge to express our ideas here in purely verbal terms,
avoiding any formal treatment.

Thomas R.
Deterministic chaos seen in terms of feedback circuits: analysis, synthesis, “labyrinth chaos”



International Journal of Bifurcation and Chaos in Applied Sciences and Engineering 9:1889-

1905 (1999)

Abstract. This paper aims to show how complex nonlinear dynamic systems can be classified,
analyzed and synthesized in terms of feedback circuits. The Rossler equations for deterministic
chaos are revisited and generalized in this perspective. It is shown that once a proper set of
feedback circuits is present in the Jacobian matrix of the system, the chaotic character of trajectories
is remarkably robust versus changes in the nature of the nonlinearities. "Labyrinth chaos", whereby
simple differential systems generate large lattices of many unstable steady states embedded in a
chaotic attractor, is constructed using this technique. In the limit case of a single three-element
circuit without diagonal elements, one finds systems possessing an infinite lattice of unstable steady
states between which trajectories percolate in a deterministic chaotic way.

Keywords: chaos/ circuit feedback/ nonlinear dynamical systems

Thomas R., Kaufman M.
Multistationarity, the basis of cell differentiation and memory. I. Structural conditions of
multistationarity and other nontrivial behavior

Chaos 11:165-179 (2001)

Abstract. A biological introduction serves to remind us that differentiation is an epigenetic process, that
multistationarity can account for epigenetic differences, including those involved in cell
differentiation, and that positive feedback circuits are a necessary condition for multistationarity and,
by inference, for differentiation. The core of the paper is comprised of a formal description of
feedback circuits and unions of disjoint circuits. We introduce the concepts of full-circuit (a circuit or
union of disjoint circuits which involves all the variables of the system), and of ambiguous circuit (a
circuit whose sign depends on the location in phase space). We describe the partition of phase
space (a) according to the signs of the ambiguous circuits, and (b) according to the signs of the
eigenvalues or their real part. We introduce a normalization of the system versus one of the circuits;
in two variables, this permits an entirely general description in terms of a common diagram in the
"circuit space." The paper ends with general statements concerning the requirements for
multistationarity, stable periodicity, and deterministic chaos.

Thomas R., Kaufman M.

Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of
regulatory networks in terms of feedback circuits

Chaos 11:180-195 (2001)
Abstract. Circuits and their involvement in complex dynamics are described in differential terms in
Part | of this work. Here, we first explain why it may be appropriate to use a logical description, either
by itself or in symbiosis with the differential description. The major problem of a logical description is
to find an adequate way to involve time. The procedure we adopted differs radically from the
classical one by its fully asynchronous character. In Sec. Il we describe our “naive” logical approach,
and use it to illustrate the major laws of circuitry namely, the involvement of positive circuits in
multistationarity and of negative circuits in periodicity and in a biological example. Already in the
naive description, the major steps of the logical description are to: i describe a model as a set of
logical equations, ii derive the state table from the equations, iii derive the graph of the sequences of
states from the state table, and iv determine which of the possible pathways will be actually followed
in terms of time delays. In the following sections we consider multivalued variables where required,
the introduction of logical parameters and of logical values ascribed to the thresholds, and the
concept of characteristic state of a circuit. This generalized logical description provides an image
whose qualitative fit with the differential description is quite remarkable. A major interest of the
generalized logical description is that it implies a limited and often quite small number of possible
combinations of values of the logical parameters. The space of the logical parameters is thus cut into
a limited number of boxes, each of which is characterized by a defined qualitative behavior of the
system. Our analysis tells which constraints on the logical parameters must be fulfilled in order for
any circuit or combination of circuits to be functional. Functionality of a circuit will result in
multistationarity in the case of a positive circuit or in a cycle in the case of a negative circuit . The last
sections deal with “more about time delays” and “reverse logic”, an approach that aims to proceed
rationally from facts to models.
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Thomas R., D’Ari R.
An algorithm for targeted convergence of Euler or Newton iterations

Comptes Rendus de I’Académie des Sciences (Paris), Sciences de la Vie 324:285-296 (2001)
Abstract. The concept of multistationarity has become essential for understanding cell differentiation.
For this reason theoretical biologists have more and more frequently to determine the steady values,
often multiple, of systems of non-linear differential equations. It is well known that iteration processes
of current use converge or not towards a fixed point depending on the absolute value of the slope of
the iteration function in the vicinity of the considered fixed point. A number of methods have been
developed to obtain or accelerate convergence. As biologists, we do not pretend to review these
works. Rather, we propose here a simple algorithm which permits to converge at will towards a
chosen type of steady state. Others and we have used this procedure extensively for years for the
analysis of complex biological systems. A compact program (using Mathematica) is available.

Ghysen A., Thomas R.
The formation of sense organs in Drosophila: a logical approach
BioEssays 25:802-807 (2003)

Abstract. The genetic analysis of development has revealed the importance of small sets of
interacting genes in most morphogenetic processes. The results of gene interactions have so far
been examined intuitively. This approach is largely sufficient when one deals with simple
interactions, a feedback circuit for example. As more components become involved, however, it is
difficult to make sure that the intuitive approach gives a comprehensive view of the behaviour of the
system. In this paper, we illustrate the use of a logical approach to describe the genetic circuit that
underlies the singling out of sense organ precursor cells in Drosophila. We show how to apply logical
modelling to a realistic problem, and how this approach allows an easy assessment of the dynamic
properties of the system, i.e., of its possible evolutions and of its reactions to fluctuations and
perturbations.

Remy E., Mossé B., Chaouiya C., Thieffry D.
A description of dynamical graphs associated to elementary regulatory circuits

Bioinformatics 19 (Suppl. 2) 172-178 (2003)

Abstract. The biological and dynamical importance of feedback circuits in regulatory graphs has
often been emphasized. The work presented here aims at completely describing the dynamics of
isolated elementary regulatory circuits. Our analytical approach is based on a discrete formal
framework, built upon the logical approach of R. Thomas.

Given a regulatory circuit, we show that the structure of synchronous and asynchronous dynamical
graphs depends only on the length of the circuit (number of genes) and on its sign (which depends
on the parity of the number of negative interactions). This work constitutes a first step towards the
analytical characterisation of discrete dynamical graphs for more complex regulatory networks in
terms of contributions corresponding to their embedded elementary circuits.

Thomas R., Kaufman M.

Frontier diagrams: partition of phase space according to the signs of eigenvalues or sign
patterns of the circuits

International Journal of Bifurcation and Chaos 15:3051-3074 (2005)
Keywords: phase space partition/ feedback circuits/ nuclei/ Jacobian matrix

Corblin F., Fanchon E., Trilling L.
Inférer et simuler un mode¢le biologique décrivant I’adhérence entre cellules

Actes des Premieres Journées Francophones de Programmation par Contraintes (2005)
Abstract. L’adhésion entre cellules joue un réle critique dans la formation des tissus et des organes.
Elle intervient aussi dans le contréle des leucocytes traversant I'endothélium des vaisseaux
sanguins. Notre connaissance de ce phénoméne est actuellement partielle. Méme si certaines
protéines impliquées et leurs interactions sont identifiées, d’'une part d’autres intervenants restent
certainement a découvrir et d’'autre part les valeurs des parameétres cinétiques doivent étre
déterminées. De tels problémes rendent nécessaires des modélisations qui oeuvrent au niveau
qualitatif et qui fournissent au biologiste une large palette de fonctionnalités, allant de l'inférence de

11



modeles a partir de données comportementales, a la simulation, en passant par la vérification de
propriétés et la proposition d’expériences significatives. La Programmation Logique avec Contraintes
(PLC) apparait a priori comme un trés bon candidat face a cette problématique dans la mesure ou
elle propose une seule spécification pour plusieurs besoins. Nous présentons la définition et la mise
en oeuvre en PLC d'un type bien identifi¢ de modeéles : les réseaux logiques asynchrones
multivalués dus a R. Thomas, en soulignant I'intérét de la composition de contraintes (booléennes et
numeériques). Nous illustrons les capacités multi-fonctionnelles de cette approche en étudiant un
sous-systeme relatif a I'adhésion cellulaire représenté comme un réseau logique. Nous nous
intéressons particulierement a la présence d’états stationnaires et a celle de comportements
réparateurs de I'adhérence aprés une perturbation.

Thomas R.
Circular Causality
In Unravelling the Function and Kinetics of Biochemical Networks, a special issue of IEE

Proceedings - Systems Biology (in press, 2006)

Abstract. We define circular causality in terms of circuits, themselves defined in terms of non-zero
elements of the Jacobian matrix of systems. Our aim is to convince the reader that circular causality
is not a mere curiosity but an essential ingredient of organised systems, biological or not, whose
proper operation requires regulatory mechanisms.

This paper comprises:

1. An introduction about the occurrence (in biology and elsewhere) of two contrasting types of
regulation, one leading to homeostasis (with or without oscillations), the other responsible for
differentiation and memory. Both types of regulation involve retroactions (feedback) and
consequently have to be treated in terms of circuits.

2. A section about circuits, their naive and rigorous definitions and their properties and roles.
Circuits are defined in terms of non zero elements of the Jacobian matrix (or in case of discrete
description, of the influence graph) of the system.

There are two types of circuits: negative and positive. The roles of the two types are contrasting, as
negative circuits are involved in homeostasis, while positive circuits are involved in multistationarity
(and hence in differentiation and memory).

Only those terms that belong to a circuit take part in the characteristic equation of the system, and
thus only those terms influence the nature of steady states.

Nuclei are circuits (or unions of disjoint circuits) that involve all the variables of the systems. It is
shown that in the absence of any nucleus a system has no non-degenerate steady state. An isolated
nucleus generates one or more steady states, whose nature is entirely determined by the sign
patterns of the nucleus.

3. A third section deals with principles that govern the operation of organised systems and
especially with the logical requirements for such “non trivial” behaviour as multistationarity, stable
periodicity (in the absence of an external periodicity) or deterministic chaos.

4. A fourth section deals with methods that can be used to analyze or synthesize systems endowed
with circular causality. In this section, we focus on discrete methods, more specifically on an
asynchronous logical description, and compare its results with the more familiar description based
on ordinary differential equations. Discrete and continuous descriptions are by no means exclusive
of each other, but rather complementary.

5. Whatever the type of description, it is often useful to clearly distinguish (and combine whenever
appropriate) deductive, or analytical approaches (for example, from a model to its implications) and
inductive, or synthetic approaches aimed to find a pathway as rational as possible from the
experimental facts to possible models. The second approach leads to a kind of “reverse” logics
whose hardware version (circuits builtin DNA) is one aspect of reverse genetics.

6. The last section emphasises the notion that dynamical systems can often be analysed (if pre-
existing) or synthesised (if to-be) extremely efficiently by a proper examination or construction of the
Jacobian matrix in terms of circuits. Hence the title “Circular causality”.

Fauré A., Naldi A., Chaouiya C., Thieffry D.

Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle

Bioinformatics (in press, 20006)
Abstract. To understand the behaviour of complex biological regulatory networks, a proper
integration of molecular data into a full-fledge formal dynamical model is ultimately required. As most
available data on regulatory interactions are qualitative, logical modelling offers an interesting

12



framework to delineate the main dynamical properties of the underlying networks. Transposing a
generic model of the core network controlling the mammalian cell cycle into the logical framework,
we compare different strategies to explore its dynamical properties. In particular, we assess the
respective advantages and limits of synchronous versus asynchronous updating assumptions to
delineate the asymptotical behaviour of regulatory networks. Furthermore, we propose several
intermediate strategies to optimize the computation of asymptotical properties depending on
available knowledge.

Keywords: regulatory networks/ cell cycle/ dynamical modelling/ logical modelling/
simulation
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PROLOGUE: PHILOSOPHY OF THE BOOK

I. REGULATION

Regulation is one of the most fascinating aspects of biology. The term “biological regu-
lation” covers such diverse phenomena as temperature control in warm-blooded animals; dif-
ferentiation of a zygote into the various specialized organs, tissues, and cells of the mature
organism; the fate of certain temperate bacteriophage, which after infection can either produce
more phage and kill their host or integrate into the host genome and repress expression of
phage genes. Ultimately, we expect most, if not all, biological regulation to be understand-
able at the level of gene expression.

Regulation may be defined as the constraints that adjust the rate of production of the
elements of a system to the state of the system and of relevant environmental variables. We
are particularly interested in specific, rather than general, regulation. If, for example, a gene
product specifically affects the rate of expression of another gene (or a small set of genes),
we consider the interaction regulatory, unlike, say, the increased rate of expression of all
genes observed in cold-blooded organisms when the temperature rises.

II. HOMEOSTATIC VS. EPIGENETIC REGULATION

When thinking about regulation — biological or other — people generally have in mind
homeostatic regulation, that is, regulation that maintains the level of a variable at or near a
fixed (supposedly optimal) value. The classic example of a homeostatic regulator is the ther-
mostat, of which many natural and man-made variants exist. When the temperature reaches a
particular value, heat production stops, and when it falls below this value, heat production
starts again. The temperature is thus adjusted by switching heat production on and off, i.e.,
by alternating between upward and downward corrections. Another example of homeostatic
regulation is the well-known phenomenon of end-product inhibition, whereby the final prod-
uct of a biosynthetic pathway inhibits the first reaction of the pathway; this tends to main-
tain a constant pool of the metabolite.

It is perhaps worth pointing out that this regulation not only maintains a variable at a
fixed level, but also adjusts the variable to that level, even if the initial value is quite
different. A thermostat will adjust the temperature to the same steady-state value regardless of
what the initial temperature of the system may be, and metabolite pools will be brought to
the same level whatever their initial size. Provided the initial conditions are not beyond the
range in which the regulation is operative, the homeostatic system will evolve toward the
same final state.

In practice, even though a thermostat (or end-product inhibition) tends to maintain a con-
stant temperature (or metabolite pool), the control exerted may result in an oscillation around
the desired value. More generally, homeostatic regulation tends to maintain a variable at or
near a fixed value which is intermediate between those that would prevail if the producer were
permanently on or permanently off. The oscillation (if any) around an average value may,
according to the case, be merely an imperfection of the stabilizing device or a fundamental
aspect of the regulation.

A Leitmotiv of this book is that one should attach at least equal importance to another
type of regulation, referred to here as epigenetic or differentiative. Instead of fixing a variable
at an intermediate level, it provides a choice between extreme levels. Once the choice is
made, in the absence of environmental change, the system will remain indefinitely in the
chosen state. A simple example of this type of regulation is the “safety” gas pilot light,
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designed to stop the gas flow if the flame goes out. The gas flows through a special valve
that is placed above the flame and is open only when heated. The system can be either on —
flame lit, valve heated, gas flowing — or off — no flame, valve closed, no gas flow. Any
autocatalytic process will exhibit this type of regulation. A biological example would be a
protein required for its own synthesis (many such are known). Again, there are two stable
states: the protein can be present (and actively synthesized) or absent (and not synthesized).
Temporary inactivation of the protein, e.g., by thermal denaturation during a heat shock,
will make it impossible to resume synthesis, even after the temperature has returned to its
normal value; the system is stably “off”.

The salient feature of this type of regulation is that a transient change in the environment
— e.g., temporary extinction of the flame or heat shock — can result in a stable change of
state of the system, continuing long after the perturbation. A second aspect of the regulation
is that it resembles a vicious circle: the system is unable to switch on spontaneously, but
once on, it maintains itself.

In general, systems of this type can stabilize in several different ways. There can be spe-
cific points (stable steady states) toward which the system tends to move. Alternatively, the
system can oscillate permanently around a steady state (stable cycles), or it can exhibit more
complex (aperiodic or chaotic) behavior. In all cases, the final state or path is called an ar-
tractor. The number of attractors of such a system need not be limited to two; examples will
be encountered with many stable states. One of our considerations in this book will be to
evaluate the number of attractors in a given system and to determine toward which final situ-
ation a given initial state will evolve. Why this type of regulation is called “epigenetic” will
appear in a later chapter. Its importance stems from the fact that it is probably a major mech-
anism in cell differentiation. This possibility was already mentioned by Delbriick! in an
epoch-making remark, whose translation from French can be found in Chapter 17, Section I.
He states, “The above proposition is not new, and many biologists have a fairly clear idea of
what it implies.” Ironically, most of us would be hard put to enumerate these “many biolo-
gists” — except perhaps Waddington. We finally, in a provocative review by Rosen?, found
references not only to Waddington,? but also to N anney,* and Needham;® however, none is
anterior to Delbriick. On the other hand, models generating multiple steady states (of which
epigenetic differences are clearly a special case) had been developed earlier by Rashevsky® and
by Turing.” The fundamental basis of this multistationarity is now understood in terms of
the thermodynamics of open systems (Glansdorff and Prigogine®, Nicolis and Prigogine?).

III. BIOLOGY: A HARD OR SOFT SCIENCE?

Biology, because of its complexity, has traditionally been a soft science. Has the fulgu-
rant progress in genetics and biochemistry made it harder? Our present detailed knowledge of
individual molecular mechanisms involved in biological reactions can certainly be considered
hard science. Indeed, there are many cases of gene regulation, for example, that are understood
in precise molecular detail. However, the global operation of biological systems has
remained a soft science. Symptomatic of this is the fact that networks of interactions are still
described in verbal terms or as cartoons rather than being formalized.

IV. LEVELS OF DESCRIPTION: VERBAL, LOGICAL,
9 DIFFERENTIAL '

The quantitative mathematical description of a biological system generally involves sys-
tems of differential equations. These implicitly contain the complete kinetic behavior of the
system, i.e., its state as a function of time, starting from any initial state; we call it a
differential description. The differential equations involved in biological regulation are often
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highly nonlinear, and even simple cases cannot be solved analytically; more complex
systems almost inevitably lead one to oversimplify the models.

Until recently there was no intermediate level of description between the purely verbal and
the differential descriptions. One particularity of our approach is the introduction and wide
use of a logical (or Boolean) description, which fills this gap (see references in Chapter 1).
Logical analysis uses discontinuous variables and functions with a limited number of values,
often only two. Basically, to each variable we try to attribute as few distinct values as there
are qualitatively distinct levels. This emphasizes the essential qualitative features of the
system at the expense of kinetic and mechanistic details. For example, if the biological role
of a certain protein is to turn on a specific gene, we may consider that the protein is either
present or absent, with the gene respectively on or off. Similarly, in the case of a thermo-
stat, the temperature can be essentially characterized as being above, within, or below the
narrow range toward which the system evolves.

In this book, we will use all three levels of description — verbal, logical, and differential
— often in parallel. Our goals in formalizing the description of biological systems will be
to determine all the attractors of a system and, when there is more than one, to determine the
qualitative constraints on the parameter values that will direct the system from a given initial
state toward one or another attractor. As we shall see, the logical description is particularly
suited to this analysis, with simple algorithms for extracting the desired information. The
differential description can provide the detailed kinetic evolution of the system, using numer-
ical approximations with parameter values suggested by the logical analysis. .

V. REGULATORY FUNCTIONS, SIGMOID CURVES%XND
FEEDBACK LOOPS

Our analysis considers systems whose elements can interact positively or negatively, that
is, the level of an element may activate or reduce the rate of production of other elements or
of itself. If a product a acts to stimulate the synthesis of b, it is a positive regulator. In such
situations, the rate of synthesis of b increases with increasing concentration of a, generally
following a curve similar to that shown in Figure 1A. It can be seen that there is little effect
of a until it reaches a threshold concentration 0, and at higher concentrations a plateau is
reached, representing the maximal rate of synthesis of b. Such a nonlinear, bounded curve,
called a sigmoid, is typical of regulatory interactions in biology. It suggests that it is justifi-
able to reason as though a were “absent” for a < 8 and “present” for a > 0; in other words, we
approximate the sigmoid curve of Figure 1A by the step function of Figure 1B.

When elements are connected in a topologically circular way, thus exerting an influence
on their own rate of production, they form a feedback loop. Those familiar with graph
theory, in which the term “loop” refers to a specific structure, may object to our using it in
such a general way. However, “feedback loop” is such a familiar expression in modern biol-
ogy that we have preferred to keep it. Throughout this book, “loop” will be used only in the
general sense defined here. A loop containing n elements will thus involve n interactions,
each of which can be positive or negative. As we shall see, the two types of regulation men-
tioned above are based on two types of feedback loop. “Interesting” systems are often net-
works comprising several intertwined feedback loops. Much of our work, partly described in
this book, has consisted of establishing algorithms for treating complex systems involving
several interconnected feedback loops.

VI. LOGICAL VS. STRUCTURAL COMPLEXITIES

It may be worth pointing out here that descriptions of similar logical complexity may
apply to systems having very different degrees of structural complexity. The elements of the
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FIGURE I. (A) Sigmoid relation between the concentration of the regulator g and the rate of synthesis of b. (B)
Approximation by a step function.
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systems we analyze may be molecules, organelles, cells, organs, or organisms, if not soci-
eties and, accordingly, the physical nature of the interactions between elements will differ
widely from case to case. Nevertheless, if two systems have a similar logical structure, the
essential qualitative features of their dynamics will be similar. This is why the book will
deal with systems as different as bacteriophage, sets of neurons, and the immune response.
However, as geneticists, we will speak mostly in terms of gene expression.

Genes are segments of DNA, part of w
product, most generally a particular protein
First, the DNA sequence serves as a templ
“messenger RNA” (mRNA). This process is
the mRNA use the same alphabet of four m
certain chemical modifications and splicing.
specific protein, consisting of a sequence o
used. This process is called “translation” bec
another. The protein itself may then be modi
gene product. Most of the time, “gene expression” will be used here in a broad acceptation,
referring to the entire chain of events from transcription to formation of an active product.
This is sufficient for the frequently encountered situation in which regulation is exerted at the
transcriptional level: such a gene is “on” if it is being actively transcribed into mRNA, “off”
otherwise. If regulation is exerted at the level of mRNA modification, splicing, translation,
or posttranslational events, these features can be included in a more detailed description with
no particular difficulties.

VII. WHAT CAN BE DESCRIBED LOGICALLY?

Roughly speaking, logical formalism can give a rigorous description of a system which
is by its nature discontinuous, or an idealized description of a system which is fundamentally
continuous. Insofar as most systems are continuous at the scale we use, the logical descrip-
tion is often felt to be a crude simplification. In fact, this view is itself an oversimplifica-
tion. Both logical and differential descriptions involve simplifying assumptions, which will
be discussed in later chapters. Here, we will just mention several relevant points.

Unless a system has been subjected to a fully quantitative mathematical treatment (in
which the underlying logical relations are built into the equations), formal logic is routinely
used only in small, disjoint patches in the description of a biological system; sections whose
logical complexity does not exceed that of a simple svllagicm are
networks and treated separately. In fact, if a net
it can be formalized in its entirety, and the infc
tion is vastly richer and, furthermore, obtained
dures are described in Chapter 3. We also proy
logical description to cover situations of cons
syllogism (cf. Chapter 2).

Not surprisingly, one problem has been to construct a logic in which time is included in
a logically acceptable, yet convenient, manner. Our logical description handles this problem
by the use of time delays for all relevant processes (e.g., the time required for a gene product
to reach its threshold concentration after the gene has been turned on). The number of time
delays used and their actual numerical values do not complicate the formal logical descrip-
tion, and it is a simiple matter to derive qualitative relations among the time delays which
determine the qualitative dynamic behavior of the system, i.e., the sequence of states fol-
lowed from a given initial state to one or another attractor (final stable cycle or state); these
procedures are described in Chapter 4. Curiously, the traditional differential description,
although it intrinsically contains the complete kinetic behavior of the system, is consider-
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ably less supple as regards time delays, the introduction of which constitutes a major
mathematical complication. This point is discussed in detail in Chapter 4.

As we shall see, our logical description extracts the qualitatively essential features of the
dynamics of a system and provides an image which is, mutatis mutandis, similar to that
given by differential analysis; the picture is more schematic, but there is little loss of quali-
tative resolution.

VIII. HOW TO USE THIS BOOK

Chapter 6, which deals with continuous descriptions, involves a certain amount of detail
about systems of differential equations. People allergic to such treatments can skip Chapters
6, 10, and 12 without missing the basic message. Similarly, those who do not care to mar
logical elegance with the crude realities of actual biological systems can skip Part 3. Elimi-
nation of all these sections would transform the work into a textbook on the formal logical
treatment of systems comprising feedback loops.
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L. LOGICAL VS. DIFFERENTIAL DESCRIPTIONS

The biological systems we are interested in are almost always described verbally or by car-
toons. When they are formalized, it is usually by sets of ordinary differential equations which
give the time derivative of each relevant element as a function of the state of the system
(concentration of the elements, temperature, etc.). We describe the differential formalization
in Chapter 6.

In addition, as already alluded to in the Prologue, we make extensive use of a “logical” (or
“Boolean”) description. This description uses variables and functions with a limited number
of values — in simple cases, only two: 0 and 1. To begin with, we associate logical vari-
ables with the relevant elements of the system and describe the state of the system by a logi-
cal vector, which consists of the logical values of these variables presented in a defined order.
Consider, for example, a system whose state is appropriately described by the levels of sub-
stances a, b, and ¢, each of which can be absent, present at low level, or present at high level
(logical values 0, 1, and 2, respectively). The situation in which a is absent, b is present at
high level, and ¢ is present at low level will be described by the logical vector 021.

A number of authors before us or more recently have proposed logical descriptions of bio-
logical processes and established important properties of systems comprising feedback loops
(Rashevsky', Sugita?, Kauffman?, Glass'?, Wolpert and Lewis!4). Despite superficial simi-
larities, our description*® differs considerably from previous ones. Our method, called kinetic
logic, will be outlined in Section IV of this chapter and described at length in Chapters 3, 4,
5, and 7. First, however, we must briefly introduce some fundamental notions of logic
(Chapter 2).

II. COMBINATORIAL VS. SEQUENTIAL LOGICAL CIRCUITS

A, COMBINATORIAL LOGICAL CIRCUITS

Combinatorial logical circuits can be compared to electrical circuits with switches and
lamps wired so that each lamp will be on or off, depending only on which switches are on or
off; the state (on or off) of each lamp is a function of the present state (on or off) of the set
of switches. The switches are the variables of the system and the lamps are functions of
these variables. More precisely, we call the switches input variables because their values can
be decided arbitrarily and the lamps output functions because they do not exert any retro-
action (feedback) on the state of the system. Combinatorial systems will be dealt with at
length in Chapter 2. However, this type of simple circuit is inadequate for describing biolog-
ical systems, in part because it does not include time and because in biology, feedback, both
positive and negative, is the heart of regulation.

B. SEQUENTIAL LOGICAL CIRCUITS

In sequential logical circuits, there are functions whose value depend not only on the pre-
sent values of the input variables, but also on former values of these variables and on the
order in which they have changed. Consider, for example, a system with a button (variable
x) and a lamp (function X) which can be lit by pushing the button (x = 1), but which will
then remain on even after the button is released (x = 0). When x = 1, the lamp is always on
(X = 1), but when x = 0, the lamp may be on or off, depending on whether the variable x
has had the value 1 sometime in the past, or, more simply, whether the function X had the
value 1 in the immediate past.

In this field, a fundamental, indeed ingenious, step forward consisted in the introduction of
so-called internal functions and variables, which formally permit one to convert a sequential
problem into a combinatorial one (Huffman®, Florine!?). Here, we will simply state that
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internal functions and variables, as used in sequential logic, are formal entities related as
follows: an internal function Y; and its associated internal variable y; have the same logical
value in steady-state (unchanging) conditions, and when the value of the function changes,
the value of the variable follows after a short time At:

The value of the variable thus serves as a memory of the preceding value of its associated
function. In this way, instead of relating a function to a previous value of the function Y;,
one can relate it to the present value of the associated variable y;. Thus, for appropriately
chosen internal functions and variables, any function X can be expressed in terms of the pre-
sent values of the input variables and internal variables. This, in short, is how sequential
systems are formally converted into combinatorial systems. As will be seen below, this type
of circuit, as such, is still inadequate for describing biological systems realistically.

III. INTRODUCTION OF TIME: SYNCHRONOUS VS.
ASYNCHRONOUS DESCRIPTION

To deal with dynamic systems, and in particular biological systems, time must be intro-
duced into the logical formalism. The problem was to introduce it in a conceptually accept-
able way and yet keep the formalism simple enough to remain attractive and workable for
nonmathematicians.

The classical approach relates the system at time t + 1 to its state at time t. More is said
about this type of description in Appendix 4. Here, we are concerned with its usefulness for
describing biological systems and will therefore only mention the following relevant points:

1.  In this description, each logical state has one and only one possible successor. Thus,
from any initial state, the system will follow a well-defined pathway, without any
branching or possibility of choice (see Appendix 4, Figure 1).

2. When (abcd), , ; differs from (abcd), by the values of more than one variable, the logi-
cal values of all these variables change simultaneously, exactly when the clock reaches
t + 1. For this reason, the description is called synchronous.

Biological systems, on the other hand, typically include choices among several pathways,
as illustrated, for example, by the numerous different pathways followed by various cell lines
from a zygote during embryonic development. Furthermore, it is unrealistic to assume that
all time delays are equal. For example, if two genes are turned on at time t, there is no rea-
son to expect their products to reach their threshold concentrations simultaneously. For these
reasons, the synchronous description is poorly suited to biological systems.
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IV. KINETIC LOGIC: AN ASYNCHRONOUS SEQUENTIAL
DESCRIPTION

The formalism we have developed, called kinetic logic, introduces time in a radically dif-
ferent way. We borrow from Florine’s sequential logic the essential notions of internal func-
tions and variables, related by a time shift. However, our purpose was to formalize
“interesting” biological systems exhibiting multiple stable states, branched pathways, and
the like, so from the outset modifications were introduced to accommodate these features.

When describing gene expression, the relevant elements are, first of all, the concentrations
of all regulatory substances. We thus consider these concentrations the variables and the
expression (on or off) of the genes in question, the functions. Many biological regulators are
the protein products of regulatory genes. The presence or absence of such a regulator is thus
directly related to the state, on or off, of the corresponding gene. (Other types of regulatory
molecules are synthesized by enzymes which, in turn, are proteins coded for by genes, so
again the presence or absence of the regulator is simply related to gene expression.) This
relationship can be illustrated as follows. Let the function X represent the state, on or off, of
a gene, and the variable x represent the presence or absence of the gene product. If the state
of the system is such that the gene is switched on (X commutes from 0 to 1), its product
will be synthesized and, after a time delay t, (the “on” delay), it will reach its threshold con-
centration (and the variable x will commute from 0 to 1). Similarly, when the gene is
switched off (X commutes from 1 to 0), the product will decay or be diluted out and, after
another time delay t; (the “off” delay), it will drop below its threshold concentration (and x
will commute from 1 to 0):

To complete the picture, we are often led to include input variables and output functions
in our description of a system. The former may reflect, for example, the temperature, which
can be important in the case of a temperature-sensitive (mutant) protein, or the external con-
centration of certain molecules, which can act as effectors of one or another regulatory pro-
tein. Output functions exert no retroaction (feedback) on the system and therefore do not
require an associated variable.

Our description of a system thus consists of a set of logical formulae which relate the
logical value of internal (and output) functions to the present value of internal (and input)
variables.

The above illustrates the main features of our formalism and clearly shows the influence
of Florine's sequential logic. It also reveals certain important differences:

1. The internal variables and functions, which are simply formal devices in Florine's
logic, have become the backbone of the kinetic logic description, in which the internal
variables represent the most relevant concrete elements of the system.
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2. More specifically, for each element of a system, the value of the associated internal
variable represents the level of the element and the value of the corresponding internal
function represents its evolution. When the logical value of a variable dif-
fers from that of the corresponding function, the variable is commit-
ted to change in the near future. Thus, in addition to considering an internal
variable as a memory of the preceding value of its associated function, we also think of
an internal function as a “preview” of the forthcoming value of the variable.

3 The time delays in sequential networks are short time shifts of arbitrary duration. In
kinetic logic, in view of the concrete relation between an internal function (gene on or
off) and its associated internal variable (gene product present or absent), the time delays
have become concrete entities whose values, far from being arbitrary, reflect specific
physical processes (sx,nthesis, degradation, dilution, etc.). In fact, the actual values of
the different time delays play an important role in determining the pathway along
which the system evolves (cf. Chapter 4). In the above example, the on delay t, repre-
sents the time elapsed between turning the gene on (X = 1) and reaching the threshold
level of the protein (x = 1); we can think of it as the time between the issuing of an
“order” (X = 1) and its execution (x = 1). During this time, the gene must be tran-
scribed into mRNA, and the mRNA may have to be processed. It is then translated
into a polypeptide, which may have to be processed, assembled, oligomerized, etc. to
form the final product, and sufficient product must accumulate before it can act as an
effective regulator. Typically, these processes take several minutes. However, the effi-
ciency of transcription and translation varies widely from one gene to another, as do
the threshold concentrations of different regulators. The time delay t, is thus specific to
one particular gene and is unlikely to be equal to the on delay of another gene.

Similar considerations hold for the off delay t;. Here, the time between the issuing of the
order “X = 0” (gene off) and its execution “x = 0” (product absent) will depend on the stabil-
ity of the product and rate of dilution due to growth. In general, the off delays of different
genes vary more than the on delays, and again any given delay t; is unlikely to be equal to
the off delay of another gene. For example, the positive regulatory protein N of bacterio-
phage A has a half-life of about 2 min, whereas the negative regulatory protein cI (the repres-
sor) under some conditions is so stable that it must be diluted out by growth, requiring more
than a generation before falling below its threshold concentration.

In kinetic logic, the on and off delays for a given gene will generally be unequal, and the
delays of different genes will also be different. Obviously, this asynchronous description is
much more realistic than the synchronous description discussed above in Section ITI. Never-
theless, one must not lose sight of the fact that it is still a rather crude idealization of bio-
logical systems. This point will be discussed in Chapter 4 (Section IV).

V. KEY TO PART I

Part T (Chapters 2 to 8) is devoted to methods. It includes the elements of combinatorial
logic required for understanding what follows (Chapter 2), various aspects of kinetic logic
(Chapters 3, 4, 7, and 8), an inductive method for finding the logical structures compatible
with a given pattern of biological behavior (Chapter 5), and the elements of the differential
description (Chapter 6). The reader will notice that the latter is inserted between two chapters
on kinetic logic; this is because the last aspect of kinetic logic (generalized description) re-
quires a minimal understanding of the differential description.

Chapters 3 and 4 might well be called “a natve description”. In a more elaborate treatment
(Chapters 7 and 8), we discuss the use of variables and functions having more than two
values!! and we introduce logical parameters (recently developed by Snoussi!2) that assign a
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“weight” to each term of the logical expressions. It will be seen that some of these develop-
ments are directly inspired by a comparison of the logical and differential descriptions. We
comment on the similarities and differences between these two descriptions in Chapter 8.

In Chapter 5, which is perhaps the most original, we apply kinetic logic in reverse, as it
were, to derive formal logical relationships capable of accounting for observed behavior.
Classically, the construction of models or hypotheses to explain experimental observations
has been essentially intuitive. Although our method (fortunately) does not eliminate the need
for biological intuition, it provides a rational procedure for one important part of the process,
viz., the elaboration of all simple logical circuits permitting or imposing a given pattern of
behavior.

—_

10.
11.
12.
13.

14.
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I. BINARY VARIABLES AND FUNCTIONS

Binary variables and functions can be compared to switches (inputs) and lamps (outputs),
respectively, in an electric circuit. Consider a combinatorial circuit, that is, a circuit in
which each lamp is on or off depending simply on the present state of the switches. With
each switch, one can associate a binary variable that takes the value O if the switch is off,
and 1 if it is on; the state, on (1) or off (0), of each lamp is a function of the state of the
switches (variables). Authoritative descriptions of combinatorial as well as sequential logic
can be found in Miller,! McCluskey,? or Florine.> A more popular introduction, yet more
detailed than ours, can be found in Leussler and Van Ham.4

What has just been said of electric switches can be applied to statements, which can be
true (1) or false (0), or to gene products, which can be present (1) or absent (0). For example,
the following three systems are identical from the logical point of view and one should be
able to formalize them in the same way: (1) a lamp which is on iff (that is, if and only if)
switch a is on and switch b off; (2) a statement which is true iff statement a is true and state-
ment b false; and (3) a gene which is on iff product a is “present” and product b “absent”
(“present” means that the concentration exceeds a threshold value).

A logical function can be described by appropriate operations on the variables. The simple
situation just evoked, for example, can be described by a logical function F that takes the
value 1 in the situation a and not b — that is, whenever a = 1 and b = 0; otherwise, F takes
the value 0. This can be represented by a “truth table”, which gives the logical value of F for
each combination of values of the variables (Table 1).

TABLE 1
Truth Table of a Two-Variable Function

II. LOGICAL OPERATORS

In this work, we will systematically use three operations: NOT, AND, and OR. As we
shall see below, it is possible to describe any binary function with a single appropriate
operator. This is extremely useful in electronics, but for our purposes, a combination of
NOT, AND, and OR describes situations in a much more familiar way.

A. NOT: THE LOGICAL COMPLEMENT
The function “NOT a” has the value 1 when a = 0 and 0 when a = 1. In verbal sentences,

we write “NOT a”, but in formalized logical expressions, we write “a”; in either case, we say

“NOT a”. It is obvious from Table 2 (and from the definition) that a = a, i.e., NOT (NOT a)
=a.



TABLE 2 .
Truth Table of the NOT Operator (F = a)

B. AND: THE LOGICAL PRODUCT

The function “a AND b AND ¢ AND ...” has the value 1 iff a, b, c, ... all have the value
1. In particular, “a AND b” has the value 1 iff a and b both have the value 1, as shown in
Table 3.

TABLE 3
Truth Table of the AND Operator (E = ab)
aAND b
0 o0 0
0 1 0
1 1 1
1 0 0

This operation is called the logical product by analogy with the arithmetic product: in
both cases the result is nonzero only if all factors are nonzero. Accordingly, in formalized
logical expressions, “a AND b AND ¢ AND ...” is simply noted “abc...”. This is VEry con-
venient because in calculations the logical AND behaves much like the familiar arithmetic
product. Nevertheless, it is advisable to read “abe” as “a AND b AND c¢”. The logical product
is equivalent to the intersection in set theory, which is usually symbolized M or A.

C. OR: THE LOGICAL SUM

The word “or” in English (as well as “ou” in French, “oder” in German) is used in two
very different logical senses. In verbal expressions, “a or b” can mean “either a (but not b) or
b (but not a)”; this is the exclusive “or”. Alternatively, “a or b” can mean “a or b or both”
or, equivalently, “one or more of a,b”; this is the inclusive “or”. This regrettable ambiguity
is responsible for innumerable misunderstandings, voluntary or not: false dilemmas, etc.

In commercial language, the inelegant expression “and/or” is often used to make it clear
that the inclusive “or” is intended. The ambiguity has, of course, been eliminated in formal-
ized descriptions; we use “OR” (formalized: +) for the inclusive “or”, and say explicitly
“exclusive OR” (formalized: @) for the other meaning.

The function “a OR b OR ¢ OR ...” has the value 1 provided at least one of its terms has
the value 1, 0 otherwise. In particular, “a OR b” has the value I if a or b or both have the
value 1, as shown in Table 4.
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TABLE 4
Truth Table of the OR Operator (F = a + b)

This operation is called the logical sum for its (incomplete!) analogy with the arithmetic
sum. In both cases, the result is zero only if all terms are 0. Accordingly, in formalized logi-
cal expressions, “a OR b OR ¢ OR ...” is noted “a + b + ¢ + ...”. Again, this is Very conve-
nient because in calculations the logical OR behaves much like the familiar arithmetic sum.
Nevertheless, it is advisable to read “a + b + ¢” as “a OR b°*OR ¢”. The logical sum is
equivalent to the union in set theory, which is usually symbolized U or v.

These operations can be combined in various ways, and they yield all possible binary
functions. The truth table of a compound function expressed in these terms can be obtained
by sequentially applying in the proper order the operations NOT, AND, and OR already
defined and summarized in the left part of Table 5.

TABLE 5
Truth Table of Some Two-Variable Functions

ab a b ab a+b ab a+b a+b ab
00 1 1 0 0 1 1 1 1
01 1 0 0 1 1 1 0 0
11 0 0 1 1 0 0 0 0
10 0 1 0 1 1 1 0 0

For instance, the truth table of ab is obtained by applying the operation NOT to column ab,

and the truth table of a + b, by applying the operation OR (+) to columns a and b.
Let us examine some simple combinations of logical operations (right part of Table 5). It
can be seen that:

ab=a+b

This is (for two variables) a demonstration of the very important law of de Morgan.

Note that a+b, i.e. NOT (a OR b), is usually contracted to NOR (a,b). The familiar
expression for this operation is “neither a nor b”, whose relation with the form ab (Table 5)
is perhaps more obvious. Similarly, ab, i.e., NOT (a AND b), is usually contracted to

NAND (a,b). A familiar expression is “not a and b together”.
Either NOR or NAND can be used alone to describe any binary function. For example,

“NOT a” is equivalent to “neither a nor a”; thus, a = NOR (a,a). Since ab = a + b, ab =
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a+b = NOR(NOR (a,a), NOR (b,b)). Since a+b = NOR (a,b), a + b= NOR (a,b) = NOR
(NOR (a,b), NOR (a,b)). This is extremely useful and extensively used in electronics because
it is advantageous to use a single type of operation (a single “gate”, in electronic jargon), but
it is certainly less confusing for our purpose to write (a OR b) than NOR (NOR (a,b), NOR
(ab)!

How many different logical functions can one build with two binary variables? Clearly, a
function may have two possible values (0 or 1) for each of the four states (00, 01, 11, 10) of
the variables. There are thus 24 = 16 distinct logical functions of two binary variables. More
generally, for n binary variables there are 27 states (combinations of values) and 22" different
functions; and with a logic using k-valued variables and functions, there are kX" different
functions of n variables. We have already seen eight functions of the two binary variables “a”
and “b™:

F=a,F=b,F=a(not A), F=ab (notb), F=ab (a ANDb),

F=a+b(@ORb), F=a+b (NOR (a,b)), F=ab (NAND (a,b)).

Some other functions of two variables are given in Table 6. As noted at the lower part of

the table, all these functions have a familiar meaning. Function ab + ab is, of course, the
exclusive OR, often symbolized a @ b. This function has the value 1 iff a and b have differ-

ent values; it is thus equivalent to a # b. Function ab + ab is the complement of the
exclusive OR (see the truth table). This function has the value 1 iff a and b have the same

value; it is thus equivalent to a = b (identity). Function a + b (or, equivalently, ab) is not
satisfied (F = 0) when a = 1 and b = 0; it is thus equivalent to the implication a — b (if a,

then b; in other words, if a = 1, one cannot have b = 0). Similarly, a +b (or ab) is
equivalent to the implication b — a.

TABLE 6
Truth Table of Some Additional Two-Variable Functions

a,b ab+ab ab+ab a+b a+b

00 0 1 1

01 1 0 0

11 0 1 1

10 1 0 1
Name of . . Implication Implication

function Exclusive OR Identity (a— b) (b — 2)
Various a®b a®b ab

expressions
for the

function azb a+b a+b
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III. DIFFERENT EXPRESSIONS OF A LOGICAL FUNCTION

It is apparent from the preceding paragraphs that a logical function can be given several
formal expressions, not only by using different logical operators, but even with a given
choice of operators. For instance, a implies b can be written:

a—b

ab

a+b Three different expressions within the “system”
NOT, AND, OR

ab+ab+ ab

The last version is a direct expression of the truth table. It says that the function is satis-

fied by three states of the variables: 00 (ab), 0l(ab), and 11 (ab). Any function can be
expressed in this way, that is, as the sum of the individual states which give the function the
value 1 (these are called “minterms” in logical jargon). However, it is clear that in most
cases this representation will be rather long and not illustrative.

This raises the important question: how can one simplify a logical expression to render it
as compact as possible? For this, we will use Veitch® (or Karnaugh’) maps, which are
another presentation of truth tables. For two, three, and four variables, the inputs of these
maps are disposed as follows (Table 7).

TABLE 7
Two-, Three-, and Four Variable Truth Tables’

00 01 11 10 a,b

00 ° ° ° °
01 ° ° . °
11 ] . . °
10 ° ° ° °
c,d

To each combination of values of the variables (“state™) there corresponds a square in the
table. There are thus 22, 23, and 24 squares for two, three, and four variables, respectively. In
each square, one writes the corresponding value(s) of the function(s). Initially, we will use
only one function (F) per table.

Note that the way the input values are presented (00, 01, 11, 10), two adjacent columns
or lines differ by the value of one variable only, and the first and last columns or lines
behave as adjacent in this respect; in other words, the map is a torus. This order (called “Gray
code” order) is extremely convenient, as will be seen below.

Consider now the function F1 = ab + ab + ab. In this form, each term corresponds to an
elementary square of the map (Table 8A). One could, however, combine two elements: F1 =

a(b + b) + ab = a + ab. Now the first term corresponds to the fusion of two adjacent squares
in the map (Table 8B).
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TABLE 8
Maps Suggesting Various Expressions of a Function

E

There is another way to fuse two elements of the initial expression: F1 =ab + b (a+ a) =
ab + b. This is illustrated by Table 8C. Finally, using a trick which consists of writing the
term ab twice, one can write F1 = ab + ab +5b+ab=5(l_)+b) +b(a+a)=a + b. This is
illustrated by Table 8D.

At first, one would be tempted to say that notation D is redundant because, as one sees on

the map, element ab is “covered” twice; it is present in term a and in term b. In fact, this is
the most compact of all four notations just presented.

In some cases, F can be expressed as (or almost as) simply as F itself. For instance, here,
F1, obtained by replacing the 0’s with 1’s and vice versa in the map of F1, is shown in
Table 8E. The expression of F1 is ab, from which one can derive another simple expression
of F1: F1 = ab, which, according to the de Morgan rule, is equivalentto F1 = a + b.

Let us now try to generalize the method of simplification.

1. Adjacent terms can be joined two by two, four by four, eight by eight, etc., using the
general principle: ab + ab = a (b + b) = a. This can be done by calculus; however, with a
little practice it is incomparably easier to use Karnaugh maps. Let us consider four simple
examples.

F2 = abcd + abed + abed + abod
F3 = abed + abcd + abecd + abed
F4 = abed + abcd + abed + abed
F5 = abed + abcd + abcd + abed
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A look at the Karnaugh maps (Table 9) shows that in each case the four terms can be
fused into a unique term (the grouping is at first less obvious for F4 and F5, but one must
remember that the extreme lines and columns of the map are adjacent).

TABLE 9
Simplification of Functions
F2 00 01 11 00 01 11
00 0 0 00
01 0 0 01 0 0 0
11 0 0 11
10 0 0 10 0 0 0 0
od o
F4 00 01 11 10 ab F5 00 01 11
00 0 0 0 o0 00 0 0 |1
01 1 0 0 1 01 0 0 0
11 1 0 0 1 11 0 0 0
10 0 0 0 O 10 0 0 [1
od od
Thus,

F2=ac

F3=cd

F4 =bd

F5=bd

Note that (1) this grouping is greatly facilitated by the use of the Gray code order and (2)
the more elementary terms one can group, the simpler the expression; abcd covers one
minterm; abc, two; ab, four; and a, eight.

A term that cannot be condensed with any other term is called a prime implicant. To be as
compact as possible, the final expression should contain prime implicants only. A function
can always be expressed as the sum of all its prime implicants. In the above examples, this
gives the most compact expression; however, as we shall see, not all prime implicants are
necessarily needed to describe the function, that is, to cover each “1” square and none of the
“0” squares. Consider, for instance: F6 = ac + abd + abd + acd + bed + bed, in which each
term is a prime implicant.
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TABLE 10
Prime Implicants
Fe 00 01 10 ab F6 00 01
00 00 0
01 01 1
11 11
10 10 0
o od
All

In Table 10 (left) are shown all prime implicants of function F6, In Table 10 (right), it can
be seen that three of these prime implicants are sufficient to coyer the function. We write:

F6 = ac + abd + bcd

One way to find this “minimal covering” of the function consists of first identifying the
so-called essential prime implicants. An essential prime implicant comprises at least one “1”
not present in any other prime implicant. Consider function F7 (Table 11).

TABLE 11
Prime Implicants of F7

F7 00 01 11 10

00 00
01 1* 1 1 1 01
10 1 1 1% 1m0 1
10 1* 1 0 0 10
o od
Essential
00

01 1 1 1 1
1 0 1 1 1
10 1 I 0 0

Minimal covering

The three 1’s labeled * (Table 11, top left) are each present in only one prime implicant.
There are thus three essential prime implicants, which are represented in Table 11, middle.

As nothing is perfect, there is a “1” (abcd) that is covered by none of the essential prime
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implicants. To take this into account, we will add the largest (and, consequently, simplest)
prime implicant which comprises this state; it is obviously bd. Thus, we write:

F7=ad+bd+cd +acd

IV. INCOMPLETELY SPECIFIED MAPS

. It often happens that, for certain input states, it does not matter whether the output is 0 or
1. There may also be input states which correspond to physically impossible situations. As
these input states will not occur in reality, one can assign the function a value of O or 1 at
will. These unspecified states are represented by a dash on Karnaugh maps. Since each dash
can be replaced by a 1 or a 0, 2 map with n dashes represents a set of 2" functions, of which
one can choose the most convenient (usually the simplest).

TABLE 12 )
An Incompletely Specified Map
00 01 10 ab
00 1
01
11 -
10 0 -
ol

Consider, for example, the map of Table 12 (left). There are five dashes, thus 25 = 32
functions consistent with this map. With a little practice, one immediately finds the
simplest one, suggested in Table 12 (left) and given explicitly in Table 12 (right):

F = ad + abc

This technique can be conveniently used for functions of up to five or six variables. A
specialized logic machine conceived and realized by Florine3 can be used for incompletely
specified maps of up to eight variables. More recently, computer programs that can handle
up to 100 variables have been described.?

V. A COMMENT ON IMPLICATION AND ON NECESSARY
VS. SUFFICIENT CONDITIONS

Since a — b is equivalent to ab, or a + b, it follows that the implications in the left
column of Table 13 are equivalent, respectively, to the logical expressions in the right
column,
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TABLE 13
Implication and Necessary vs. Sufficient Conditions
The implication is equivalent to
a—b ab,ora+b
b—a ab,ora+b
b—a ab,ora + b
a—b ab, ora=b
and (a—>Db)e(b—a) ab+abora = b

The notation using the NOT, AND, and OR operators thus gives an immediate demon-
stration that the expression a — b is equivalent to its contrapositive b — a and thatb — a is

equivalenttoa — b.

If one has both (a — b) and (b — a), then a is equivalent to b, which means that a and b
must have the same logical value in all cases.

If one now writes:

-1 1

each of the Fs is a sufficient condition for P since F — P means “if F then P”, and each of

the Gs is a necessary condition for P since P — G is equivalent to G — P, which means
that if G is not satisfied, then neither is P. This presentation of the relation between
sufficient and necessary conditions is probably not original. One of its merits is to show
clearly that any necessary condition is implied by any sufficient condition (a truism, alas?).

IfP=a+b+c,

a, b, and c are each sufficient conditions for P.

If P = def,

d, e, and f are each necessary conditions for P.
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Let P=bc )
= ahc + abc @

From Equation 2 one can write:
and from Equation 1:

Thus,

abc\
_/

abc

These remarks may seem simplistic. Nevertheless, we feel they may be useful in Chapter
5 when we consider the conditions that permit and the conditions that impose a given pattern
of behavior.
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I. LOGICAL VARIABLES AND FUNCTIONS

Classically, the evolution of a logical system with time has been described by relating the
value of the variables at time t + 1 to their value at time t. As already mentioned, this de-
scription gives each state only one potential follower, and its synchronous character makes it
unsuitable for biological systems.

We avoid this problem! by associating with each relevant element of our systems not
only a logical variable (x, y, z, ...) that represents the level (e.g., concentration) of the ele-
ment, but also a logical function (X, Y, Z, ...) whose value reflects the evolution (e.g., rate
of synthesis) of the element. We write X = ®; (x, y, z, ...), in which @, is a logical
function describing the influences affecting the evolution of variable x.

Concretely, we will most often deal with gene expression. In simple cases, we reason as
though the gene products were present or absent and the gene on or off. Thus,

x = 0 means “gene product absent”

x = 1 means “gene product present”

and
X =0 means “gene off”

X =1 means “gene on”

To avoid confusion between an object and the variables or functions associated with it, we
symbolize the object by an underlined letter: we call X the gene and X its product. For
ical functions and we use boldface italics: X and x.

Suppose that gene X is on iff product z is absent and that gene Y is on iff z is absent and
u is present. We write simply:

M

Such relations express the state, on or off, of a gene at any time according to the present
values of the variables. How, then, is time included? Simply because the presence of a gene
product now implies that the corresponding gene was on at some earlier time. There is thus a
circular relation between our variables and functions in the sense that the value of each func-
tion depends on the present value of the variables, whereas the value of each variable depends
on earlier values of the corresponding function. This circular relation between variables and
functions is not a peculiarity of the logical description. When a system is described by a set
of differential equations such as

%= H,(x, v, 2)

the value of the function H, depends on the present values of the variables x, y, z, ..., but, in
turn, this present value of x depends on earlier values of dx/dt.
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The temporal relation between a logical variable x associated with the level of an element
and a logical function X associated with its evolution can be illustrated as follows. Consider
a gene that has been off (X = 0) for a considerable time, then is switched on (X = 1) by a
signal (in the present case, the disappearance of product z), and then, after some time, is
switched off again (X = 0) by another signal (here, the reappearance of product z) (see Figure
1). How will x vary with time? When the gene has been off for a sufficient time, its
product, which is perishable, will be absent (x = 0). When the gene is switched on (X = 1),
the product will appear, but not immediately; X = 1 (gene already on), but x = O (product
still absent) until a proper delay t, has elapsed. From then on, X =1 and x = 1 (gene on,
product present) as long as the gene i, on. But if a signal switches the gene off (X = 0) tem-
porarily, X = 0 and x = 1 (gene off, but product still present) until the product has disap-
peared; this requires a time delay t;, after which once again X = 0 and x = 0.

| i

x=0
S~ N
tx tx
II I 1A% A%
FIGURE 1.

As discussed in Chapter 1, the time delays t, and t; have no reason to be the same; t,
depends principally on the rate of synthesis of x, whereas t; depends to a Jarge extent on the
stability of x. A gene product can reach an effective concentration a few minutes after the
gene has been switched on, but remain active for hours after the gene has been switched off.

In the example chosen (1), the same signal (the disappearance of product z) may switch on
genes X and Y. Let us start from a situation in which products x and y are absent and prod-
ucts z and u are present. If, now, product z suddenly disappears, the two genes will be
switched on simultaneously: X = 1 and ¥ = 1. However, the genes have different rates of
transcription and translation, the specific activities and threshold levels of their products are
different, etc. There is no reason why product x and y should reach their threshold value
simultaneously. Thus, if the two genes remain on (X =1, Y = 1), the products x and y will
eventually appear (x = 1, y = 1), but after different time delays (t, # t,).

In practice, we normally ascribe two distinct time delays (“on” and “off”) to each element
of the system: t,, t, 1y, ty, etc. More generally, a characteristic time delay is ascribed to each
transition of the logical system. Suppose, for instance, that a particular gene product can dis-
e{ppear either because the gene has simply been switched off or because a protease that
specifically destroys this gene product has appeared. The “off” delays will presumably be
very different in these two situations.
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Before proceeding further, let us again consider Figure 1. In periods I and V, the gene is
off (X = 0) and the product absent (x = 0): nothing is likely to change as long as the gene
remains off. In period I1I, the gene is on (X = 1) and the product present (x = 1): again, noth-
ing should happen as long as the gene remains on. In contrast, in period II, the gene has just
been switched on (X = 1); the product is still absent (x = 0), but, if the gene remains on, the
product will eventually appear. Similarly, in period IV, the gene has just been switched off
(X = 0); the product is still present (x = 1) but (if the gene remains off) it will eventually
disappear. These two periods are inherently transient.

In general, as long as a function and the corresponding variable have the same logical
value (gene off and product absent: [X =0, x = 0] or gene on and product present: [X =1, x
= 1]), no change is expected to take place. However, when the values of the function and
variable momentarily “disagree” (gene on, but product still absent, or gene off, but product
still present), there is an order for the variable to align its value with the new value of the
function, and this order will be executed afier a delay unless there is a counterorder (a new
change of the value of the function) before the delay has elapsed.

II. NAIVE LOGICAL DESCRIPTION

Let us first examine a simple two-element system. Suppose that product x activates gene
Y and product y represses gene X. In other words,

X=1iffy=0 X “on” iff y absent)

Y=1iffx=1 (Y “on” iff x present).

+

This can be described by the graph of interactions x y (see Section IV.A) As
~—
we will see in Chapter 9, feedback loops are of two types, positive or negative, according to
whether there is an even or odd number of negative interactions. In technical language, our
circuit is a simple negative loop.
The logical relation in this system can be written:

X=y
Y=x

and tabulated

The left part of the table is simply a repertoire of the 27 possible states of the variables. A
convenient way to complete the right part is to fill it in column by column:

X =1 for each state for which y = 0;
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X = 0 otherwise, etc...

This state table says, for each state of the variables (x, y present or absent), which prod-
ucts are and which are not being synthesized at a significant rate (in genetics, which genes
are on and which are off). It is convenient to treat the state of the variables as a logical vector
xy, which can take the values 00, 01, 11, 10, and the state of the logical functions as a
vector XV.

In the system:

X=0,(xy, ...)
Y=, (x,y, ...)

vector XY ... is obtained by applying operation @ to vector xy ...; for this reason, vector
XY ... is called the image of vector xy ... In fact, this image XY ... corresponds to the
state that would be reached if all the orders applied to state xy ... were executed. As we will
see (for example, at the end if this section), the image XY ... is usually not the next state,
if only because not all orders are executed at once.

The “total” state of the system is thus given by xy/XY (for instance, 00/10); however,
there is a more compact notation. Consider, for instance, the state 00/10, in which both gene
products are absent but gene X is on. As product x is absent but being synthesized, it can be
expected that in the near future it will be present and, consequently, that the logical value of

variable x will change from O to 1. This can be described by the notation 00, in which the
dash above the first digit draws attention to the fact that variable x is committed to change
its value from O to 1. More generally, we put a dash over the figure representing the logical
value of a variable each time this value is different from that of the corresponding function.
The state just considered can thus be represented as 00/10 or, more compactly, 00. The

notation 00/10 is redundant, but convenient in state tables. Thus, we rewrite the state table:

From this table, it is easy to derive the temporal sequence of states of the system. We
write:
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depending on whether we want to insist on the transitions x, y, X, y, or on their duration t,,
etc. We call this representation a graph of sequence of states (see Section IV.B). Note that in
this very simple case there is a single dash for each state; this means that the variables are
called to change their value one at a time. Clearly, the sequence of states would be the same
whatever the values of the time delays; this is not so in most cases (see for example the fol-
lowing section).

Those familiar with the differential description may be surprised to see that a Boolean
two-element negative circuit displays stable periodic behavior, whereas a differential system
of the same structure tends toward a stable steady state (see Chapter 6). There is, in fact, no
contradiction. For parameter values which ensure efficient homeostasis, the steady state (a
“stable focus”) is approached periodically, following a damped oscillation. Damping, how-
ever, is slower and slower as sigmoid interactions become steeper, and, as they approach step
functions, the system will oscillate indefinitely. Furthermore, by introducing appropriate
time delays in the differential equations, one can obtain stable periodic behavior, even for
finite steepness with two-element (and even one-element) negative loops.

It is important to realize the basic similarity between the stable cycle predicted by the log-
ical description and the stable focus predicted (for proper parameter values) by the differential
description. In both cases homeostasis is achieved, i.c., the variables either oscillate around
or stabilize at a value intermediate between their lowest and highest values, which would cor-
respond to the states in which the gene is permanently off or on, respectively. The situation
could be sketched by saying that each variable oscillates around its threshold. In many cases,
they will stabilize at this intermediate level, as if the gene were half on, half off.

/N
As a second example, we will analyze a two-element positive loop: x y,
-

for instance, two genes each of which is repressed by the product of the other.
In the naive logical description, we write:

with the following state table:

Here, there are two states, 01 and 10, for which the vectors xy and XY have the same
value. In the first case, x is absent and not being synthesized, y is present and being synthe-

sized. There is thus no reason why the situation would change and, accordingly, we have a
logical stable state, and we write (and similarly, ). More generally, we define logi-
cal stable states as those for which the vectors xy... and XY ... are equal.
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What about the two other states of this system? In state 00, both products are absent but

both genes are on, whereas in state 11, both products are present but both genes are off, In
either case, both variables are called to change their value. Thus, in striking contrast to the
situation described in Section 1 (in which each logical state had only one possible next

state), here, state 00 will be followed by or according to whether x or y reaches its
threshold value first; and state 11 will be followed by state or according to whether

x or y is the first to fall below its critical concentration. A double transition 00 — 11 (or
vice versa), is conceivable. We do not take it into account explicitly, but if the two
commutations happened to take place simultaneously, this event would automatically be
reflected in the simulations (see Chapter 4). The overall evolution is thus:

In terms of time delays, the choices can be described as follows: from 66, the system will
proceed to state or to state QD), according to whether ty <ty ort, <t, and from 11 the
system will proceed to state or to state 1), according to whether ty <tgorty <ty

\‘. tx

A first remark is that even simple systems can exhibit “multistationarity”, i.e., have a
structure such that they can reach and persist in either of two (or more) steady states. As we
shall see in more detail in Chapter 12, this is, in fact, a general property of positive loops
(even those comprising only one element!). A second, more general remark is that a given
logical state may have more than one potential successor. If one considers only single vari-
able transitions, a state in an n-variable system may have up to n different potential succes-

sors. Here, the image of state 00 is 11, but the state following 00 will be either or
OD); similarly, the image of 11 is 00, but the state following 11 will be either or 0.

ITII. INPUT VARIABLES

In addition to the “internal” variables considered so far, there are so-called “input” vari-
ables whose value can be decided by the experimenter and in some cases changed at will. For
instance, in a thermosensitive process, the temperature is considered “low” (¢=0) or “high”
(¢ = 1), according to whether it is below or above the sensitivity threshold of the process; we
can impose t = 0 or £ = 1 from outside.
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There is also a class of input variables which is typically genetic. These are variables
associated with the genetic state of the organism. When we write X = z, meaning that X is
active if z is absent, we implicitly assume that gene X is normal and normally controlled.
However, gene X might be mutationally inactivated, thus yielding an inefficient product. To
formalize this, we introduce a variable g, (for gene) which takes the value 1 or 0, according
to whether the gene is normal or mutationally inactivated. On the other hand, the operator,
which is the site at which product z represses gene X, may also be mutationally inactivated.
According to the case, we write o, = 1 or o, = 0. Thus, when we envisage using mutants in
which gene X or its operator are inactive, instead of X = z, we write,

X = 8z + 0y),

which means that gene X is active iff it is genetically normal AND (product z is absent OR
the operator is inactive). We choose in advance to use this or that allelic form (except in ex-
periments during which such mutants are generated). Thus, g, and o, are input variables.

It is convenient to use different lines for the combinations of values of the internal vari-
ables and different columns for the combinations of values of the inpur variables. As long as
the input variables do not change, the system evolves within the same column (see below),
but each time the value of an input variable changes, the system migrates to a new column.

Consider, for example, the system X =y, ¥ = x, briefly analyzed in Section II, and sup-
pose that in the experiments we are performing there may be a mutation inactivating the
operator of gene X and that gene X carries a mutation that renders its product thermosensi-
tive. In this case, we reason that the expression of gene X is not dependent on temperature,
but that its product is active or not according to whether the temperature is low (¢ = 0) or
high (¢ =1).

X=y+o

=X+t

The first means that the expression of gene X requires the absence of product y or of the
normal operator (the site of action of y), and the second relation means that the expression of
gene Y requires that the product X be absent or thermally denatured.

As for the input variables, there are four situations, according to whether the operator of
gene X is functional or not and the temperature low or high. This can be tabulated:

Xy 00 0,,t
00 11
01 11 11
1110 00
10
xy $
7

“Normal” situation:
normal operator, low
temperature.
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It is, however, probably more convenient, if less elegant, to write:

4=0 =0 4=1 Q=1
t=0 t=1 t=1 t=0
xy XY xy XY xy XY xy XY

0 11 00 11 00 11 00 11

01 11 01 11 @) o1 @) o1
11 10 @ 11 11 01 11 00

@ 10 10 11 10 1 Jd 10

In practice, what we can change during an experiment is the temperature. Let us consider
the two cases on the right: operator present, low or high temperature. In the first case

(column 4), we have two stable states, @ and , whereas in the second case (column 3),
we have only one, QD). Starting from state @0)/10 in column 4, let us first shift to high
temperature. Formally, this amounts to switching to column 3. We are in state 10/11, from
which we will proceed to 11/01 and /01, where the system stabilizes. If we now return

to low temperature, we go from QD)/01;_ to Q1)/01,. , and remain there. The overall path-
way was:

High temperature Low temperature

@Dy o1 @b/ o1

|

11/01
10/11 Ao/ 10

Thus, a transient change from low to high temperature has resulted in a switch from state
to state @D, and the new situation persists stably even after the return to low tempera-
ture

IV. GRAPHS

A. GRAPHS OF INTERACTIONS
The symbol x —— *z means that z is synthesized efficiently iff x is present: Z = x.
The graph
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means that Z is synthesized iff x and y are both present, i.e., Z = xy. The graph

OR ™z

means that z is synthesized iff x or y or both are present. In other words, either x or y suf-
fices: Z =x + y.

In the same way, x —— ~z means that Z is synthesized iff X is absent: Z = x; and
similarly, for multiple interactions connected by AND or OR.

Using this symbolism, we can represent the interactions of a system by a graph of inter-
actions in which each relevant element in the system forms a vertex and each interaction
between elements forms an edge.

In classical graph theory, an edge is or is not drawn between two vertices, according to
whether or not the corresponding elements interact. However, in many fields one has to dis-
tinguish between an influence acting from x to y and an influence acting from y to x .
Accordingly, oriented edges (arrows) are used: X — y or y -> x. For a reciprocal interaction,

we write x y . This is an oriented graph.
~_
In addition, as seen in the preceding graphs, we have to indicate whether an interaction is
positive or negative. For example, if x exerts a positive action on y and y exerts a negative

+
action on x, we write x y . This is an oriented, signed graph. Finally, as also

mentioned, we state whether the connection between two interactions is AND or OR.

Any closed pathway in an oriented graph is called a circuis. The word loop is often re-
served for a one-element circuit, that is, for the case of an element that acts directly on its
own synthesis. However, as already mentioned, the expression feedback loop is so widely
used in biology that we will generally use the word loop instead of circuit.

X

%—
Ze— y

The system shown above comprises two circuits, although we will call them loops



37

B. GRAPH OF SEQUENCES OF STATES

Logical analysis provides us with the sequences of logical states which can occur, starting
from any chosen initial state. This is also an oriented graph, although quite distinct from the
graph of interactions. Whereas in the graph of interactions the vertices represent the elements
of the system and the edges (arrows) represent the interactions between elements, in the
graph of sequences of states the vertices represent the logical states of system and the edges
(arrows) represent the transitions between states.

Thus, graphs of interactions are static: they indicate which interactions can take place, in-
dependently of time. Graphs of sequences, on the other hand, are dynamic: they indicate the
temporal order of appearance of the logical states. As mentioned above, in graphs of inter-
actions we call circuits “loops”; in graphs of sequences of states, we call them “cycles”,
which evokes an appropriate dynamic image.

For example, if we analyze the system whose graph of interactions is the two-element
loop

we find that the graph of sequences of states comprises a cyclic sequence of four states.

Graph of sequences of states

Classically, both graphs would be called “circuits”.

C. ADJACENCY MATRICES (OR MATRICES OF INTERACTIONS)
Graphs can also be represented by so-called “adjacency matrices”, or matrices of inter-
actions. Consider, for example, the graph:

We can build the following matrix in which 1 or 0 at a given position indicates that those
two elements do or do not interact. It is called an adjacency matrix because two interacting
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vertices of the graph are considered adjacent. The matrix shows that in this system all pairs
of elements interact directly except x and z.

X y z u
x|[0 1 0 1
yl1 0 1 1
z]0 1 0 1
v|1 1 1 0

Let us now add the orientation of each interaction to the graph:

The adjacency matrix becomes:

x| 0 1 0 0
y 1 0 0 0 1
z | 0 1 0 o0

But these interactions can be positive or negative. Specifying these signs gives us the
graph;

7z —

This can be described in the adjacency matrix by replacing the 1s by +s or —s:



Finally, element u is acted on by two elements; one must thus mention whether the con-
nection is AND or OR. This cannot be shown as such in the adjacency matrix. According to
whether we are optimistic or pessimistic, we can say that the matrix is so general that it
covers both possibilities or that it is unable to distinguish between them. This point is dis-
cussed in Chapter 7. )

The differences between adjacency matrices and graphs of interactions can be reconciled.
As pointed out by Van Ham,* the two ways in which our graphs differ from classically ori-
ented graphs vanish if, instead of AND, OR, and NOT, one uses a single connective, NAND
or NOR (cf. Chapter 2, Section II.C). If one introduces the auxiliary element v = z, the
graph can be converted into

in which all interactions are NAND. Note that in this representation there are neither signs
for the arrows nor additional information about the connections; the graph has become a
conventional (unsigned) oriented graph. There are, as above, two feedback circuits, one with
three elements and one with four elements. Here the adjacency matrix has only 1s and Os and
it is not ambiguous since all interactions are NAND:
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The advantages of this representation proposed by Van Ham are obvious: the graphs of
interactions become bona fide oriented graphs and all the background of graph theory can be
called when required. This representation should therefore be used for most theoretical devel-
opments. However, in routine work we prefer to keep the original type of graph since, with
them, each vertex corresponds to a physical element of the system (there are no vertices
introduced for formal reasons, like v above) and the adjacency matrix is essentially homolo-
gous to the Jacobian matrix of the differential description (cf. Chapter 6).

As described in Chapter 7, when a variable acts at more than one point (as does variable y
in our example) we take into account that the threshold concentrations for these actions may
be different. For example, in the matrix

the “2” means that the action of variable y on function X requires a higher concentration
than its action on function Z.
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I. INTRODUCTION

In the preceding chapter, we proceeded from the logical structure of a system (described by
the graph of interactions) to its possible patterns of behavior (described by the graph of
sequences of states). Typically, the successive steps are

Verbal description

Logical structure (graph of interactions)

Logical relations

State table

Pathways and final states (graph of sequences of states)

W AW =

So far, the only simplifying assumption has consisted of treating each interaction as a
step function. The state table and the graph of sequences of states follow automatically with-
out further assumptions, except perhaps that when two or more variables are committed to
change their value, we do not explicitly consider the possibility that more than one commu-
tation could take place simultaneously. In fact, we do not exclude such a possibility; we
simply consider it so unlikely that we only show the single commutations explicitly.

Let us now turn to the next problem: how can we evaluate the conditions that lead a sys-
tem to follow one pathway rather than another?

If nothing is said about the length of the time delays, the whole graph of sequences of
states remains open,; if on the contrary, a well-designed value is ascribed to each time delay,
the system will follow a well-defined pathway. We have already touched on this problem in
the second example of Chapter 3, and in the present chapter we will consider the question
more deeply. However, before this, it is essential to point out that in so doing we would rea-
son as if all the cells of a population followed the same fate. This is, of course, not the case.
Even in a homogeneous population of cells, a given delay will have slightly different values
from cell to cell; this accounts for the fact that the population can give several responses. As
briefly mentioned in Chapter 20 (application to bacteriophage A), this stochastic aspect of
processes can be taken into account. What one can do is ascribe to each time delay an average
value and a distribution, and use a computer simulation of many cells, each with one set of
delay values picked at random within the distribution.* In this chapter, we will not use the
stochastic approach, but rather, will study how the values of the delays — provisionally
treated as well defined — influence the decisions. We will first take a slightly more elaborate
example than before and show how we currently treat such cases in the “naive” logical
description. In the following section, we treat the stability of logical cycles in the same
terms. Only afterwards (in Section IV of this chapter) will we analyze the simplifying
assumptions implicitly involved in the “rules of the game” chosen. However, we would like
to point out here that a rigorous analysis of the conditions determining the choices of path-
ways would be a formidable problem and that in practice one must use simplifying assump-
tions at this level. The principal reason for separating these aspects of kinetic logic — be-
havior patterns and choice of pathway — into separate chapters is that our analysis of the
second part (conditions determining the choices) involves an additional degree of idealization.

II. A THREE-VARIABLE EXAMPLE

Let us consider a three-element system! consisting of products x, y, and z, coded by genes
X, Y, and Z, respectively, which are regulated as follows: gene X is expressed constitutively
(i.e., not regulated), gene Y is expressed only in the absence of product x, and gene Z is
expressed provided product y or product z is present. The graph of interactions is given by:
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and the logical relations are

X=1
Y.=x
Z=y+z

From these the state table is readily constructed:

It is immediately apparent that this system has two stable states: (products x and z

present, y absent) and (only product x present).

Let us now work out the possible sequences of states, starting from a “virgin” initial state
000. (This situation occurs, for example, after viral infection of a cell which initially con-
tains no viral products). Gene X is turned on immediately after infection and, sooner or later,
product x will be and remain present. Gene Y will be expressed until product x appears,
switching off gene Y and resulting ultimately in the disappearance of product y. Gene Z will
be turned on only if product y (1) reaches its critical threshold (i-e., “appears”) before product
X has switched gene Y off and (2) remains present long enough.

Diagrammatically, from state 000 the system can goto or 010:

000
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Which path is followed will depend on the relative values of the time delays t, and t,. If ty <
t,, the pathway will be 000 —— ({00), whereas if t, > t,, it ill be 000 ——> 010. In the
first case, the system has reached a stable state and will remain there. In the second case,
there are again two choices, states 110 and 011:

000

At first, one might expect that the second decision will simply depend on the relative val-
ues of t, and t,. However, the order to produce z was only given when the system reached

state 010, whereas the order to produce x had already been given one step earlier (the order is

present at state 000). This can be diagrammed as follows:

000 110

011

From this representation, it is clear that the decision as to which pathway to follow from
state 010 will depend on the relative values of t, and t, + t,: if t, <t, + t,, the decision will
be 010 — 110, whereas if t, > t, +t,, it will be 010 — 011.

From state 011, there is only one possibility: 011 5 111 SN . Note,
however, that the order to produce x was already present two states earlier.

From state 110 there is a third decision to be made, again between two possible path-
ways. Let us use the same representation as above:
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010 111

It is clear from the diagram that from 110 the system will go to or to 111 according to
whether t, + t; <ty +t, or t, + ty > t, + t,, Tespectively.
To summarize, there are three decisions:

ift, <t

ift, > ty

ift, <t +t,

ifty>t,+t,

if ty+ ty <ty +t,
state 110

if te+ ty >ty +t,

This list provides us with an expression of the qualitative constraints that determine the
choices between the pathways. In fact, these constraints on the time delays can be expressed
in a more concise and elegant way. For this, it is convenient to associate a logical variable
with each of these inequalities:!

Let m=1ift, <t,

m=0ift, >t

(Again, we do not explicitly treat the marginal case t, =t,.)
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Similarly, we associate variable n with the inequality t, < ty +t, and p with the inequality
tx + 1y <ty +t,. One can now draw a graph in which the choices are described in terms of
these variables:

(pathway 1) (pathway 2)

000 110

010

1] — (pathway 3)

1 —s (pathway 4)
The conditions for following the different pathways can be read directly from this graph:

For pathway 1, the condition is m.
For pathway 2, the condition is mnp.
For pathway 3, the condition is mnp.

=N S T NG R

For pathway 4, the condition is mn.

This can be tabulated as follows. Let F1I be a 4-valued function that takes the value 1
the conditions lead to pathway 1, etc.

Instead of considering each individual pathway, we can also reason that pathways 1 and 2
lead to the final state and pathways 3 and 4 to the final state . Let F2 be a func-
tion that takes the value 1 when the conditions lead to state and the value O when they

lead to state . Then F2 = r_nnﬁ + mn (the sum of the conditions for pathways 3 and 4)
and F2 = m + r;mp (the sum of the conditions for pathways 1 and 2). From the table:
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one can see that this simplifies to:
F2 =m +np and F2 = m(n +p)

These expressions can be further simplified using the following reasoning. If t, < t,
(condition m), one necessarily has ty <ty + t, (condition n) because time delays are positive;
thus, m —— n, which means that the situation mn cannot occur. Similarly, if t, + ty <ty

+ t, (condition p), one necessarily has ty <ty +t,and so p —> n, which means that the
situation pl_z cannot occur. Consequently, in the state table of a function of m, n, and D, we

place dashes in the squares corresponding to mn and to np to indicate that the function can
be assigned arbitrary values there:

Applying the method described in Chapter 2, Section IV, it can be seen that the condition
for:

pathway 1 is m
pathway 2 is mp
pathway 3 is mnp

pathway 4 is n

The table of F2, defining the conditions leading to state or to state , can be
similarly simplified:

F’2

Thus, the condition for reaching state (F2 =0) is m + p and the condition for reach-
ing state (F2 = 1) is mp. In terms of the time delays of our system, we can say that,
from a virgin initial state 000, the system will end up in the stable state if either or both
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of the conditions t, <ty or t, + t; <t + t, are fulfilled, and it will go to if both condi-
tions t,>t, and t, + t; > t, +t, are fulfilled. Note that the expressions of the conditions lead-

ing to and are complementary in the present case. This need not always be so,
however; there can be an overlap in the states that never occur.
When an order to change a particular variable was given 1, 2, ..., n steps earlier, we note

a subscript 1, 2, ..., n. For example, in state010, the order to switch on variable x was given

one state earlier, so we write 010; in state011, the order to switch on variable x was given
1

two states earlier, so we write 011.
2

In this notation, the graph of sequences of states becomes:

000

011

We would like to draw attention to the two occurrences of the logical state 111. In one
case, the order to switch y from 1 to 0 was already present in the preceding state (110) and
we write 1}1. In the other case, the same order has just been given and we write 111. Thus,

these two logical states are different and must be treated so.

III. STABILITY ANALYSIS OF LOGICAL CYCLES

Consider a small network comprising four genes X, Y, Z, and U such that genes X and Z
are repressed by product y, gene Y is repressed by product u, and gene U is repressed by
product X unless product z is present. This system?, already used in Chapter 3, Section IV.C,
has two conjugated feedback loops, one positive and one negative:



OR u

The naive logical deséription is

X=y

Y=u

Z=y

U=x+z

and the state table is

x y z u XY Z U
00 0 0 1 1 1 1
000 1 1 0 1 1
0011 1 0 1 1
00 10 1 1 1 1
01100 1 0 1
01 110 0 0 1
01 010 0 0 1
0100 0 1 0 1
1100 0 1 0 0
1101 0 0 0 0
11110 0 0 1
11100 1 0 1
1010 1 1 1 1

1 0 1 1
1001 1 0 1 0
1000 1 1 1 0

Note that variable y affects the expression of genes X and Z. There is no reason to sup-
pose that the thresholds for these interactions will be the same; thus, in a more elaborate
treatment, we should consider two thresholds and consequently three logical values for vari-
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able y (see the last section of Chapter 3). This type of treatment is developed in detail in
Chapter 7.

From the state table, one can derive a complex graph of sequences of states, a representa-
tive part of which can be found in Leclercq and Thomas? and in Appendix 4, Section II. We
will not describe the whole graph here. Suffice it to say that the system can follow a number
of cyclic pathways which have four states in common and which are, in fact, different modes

of the same cyclic attractor. The other attractor is the stable state .
As an illustration, we will consider in more detail two sequences originating from the
“virgin” state 0000, arbitrarily chosen as initial state:

0000 —*— 1000 —Y— 1100 —*—5 0100 — 2 0701 —F 0001 —%—
1001 —%— 1000 —Y— 1100 —*—» ...

At first, one might think that the sequence between the two occurrences of state 1000
forms a cycle. However, at the first occurrence, functions ¥ and Z have both been on since

the preceding state (0000), so the detailed description of the state is 1(1)(1)0. At the second

occurrence, function ¥ was switched on precisely when state 1000 was reached, whereas
function Z was already on two steps earlier; the detailed description of the state is thus 1000.

As these two states are different, the sequence between them is nor a cycle:

<

0000 —=—» 1E1)El)o —— 1100 ——5 0100 — 2 0101 — > 001 =
10(1)1% 1690 —Y 57100 —*— ...

Consider now state 1100, which follows state 1000, In this case, the two occurrences are
identical since, in both situations, function X was switched off exactly when the state itself

was reached. Thus, the sequence between the two occurrences of 1100 is a cycle:

0001 1001 4 1000
1 2

; I YJ
0101 0100

States 1100, 010(_), and 0101 have only one possible follower each. State 0001 has two
possible followers:



Letm =1ift, <t, and m =0 if t, > t,. The conditions for the choice are thus:

001
1

0001

0011
1

For state 10(1)1, the situation is slightly more complicated:

Letn=1ift, +t; <t, and n =0 if t, + t7 >t,. The conditions for the choice are

For state 1000, the situation is

~
-~

10002 —— = 1100

51

Letp = 1if t,+ tg + t, <t, and p = O if t,+ t5+ ¢, > t,. The conditions for the choice are

1100

1010

The conditions for following the cycle are
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0001 1001 1000
1 2
0101 ¢— 0100 1100

Once reached, the cycle will be followed if mnp. These conditions can be simplified,
however: if t, < ty, then t,< t, + t, which, in turn, implies t, < t; + tg + t;,. Thus, m ——

n —> p or p ——> n —> m. The condition for remaining in the cycle thus reduces to
p, that is, t, + t7 + t, <t,.
We consider, now, another sequence originating from 0000:

0000 —*—> 1000 —2— 1010 —X—T1110 —*— 11
i1 2 1 1

106'} t >16(1)0 z ’1?10 Y

Since the two occurrences of 1110 carry the same indices, we treat the intervening sequence
as a cycle:

1110 1111 1101
1 11 21
u
1010 1000 1001
1 1 1

Here, every state has two or three potential followers. So there is a choice at each step and
we can expect six sets of conditions for remaining in the cycle. However, the time delays
form two overlapping circuits, which creates a dilemma.

4

y u

Ignoring the additional constraints involving t,, the condition for remaining in the cycle at
states 1001, 1010, and 1111 is

ty+t, +t, <t +tz+ 1,
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whereas the condition for remaining in the cycle at states 1000, 1110, and 1101 is
ty+tz—+tg<t}7+tz+tu

These two inequalities are obviously incompatible. If the first obtains, the system will
ultimately leave the cycle at 1000, 1110, or 1101, whereas if the second obtains, the system
will escape at 1001, 1010, or T111.

One possible way out would be to set ty + 1,
1ot sufficient) condition to stay in the cycle. S
situation in which two time delays (or sums of
time delays are not mathematical constants, but
attitude, which previously led us not to consic
variables, seems particularly justified here: even though there exist values of the time delays
such that the system, once in the cycle, would remain there, the slightest change in value or
fluctuation of a single time delay would eject the system from the cycle. In other words, the
cycle in question is intrinsically unstable. Unlike the first cycle considered, it is not an
attractor of the system.

The situation is nicely illustrated by a simulation of this system on “Delphine”, the logic
machine developed by Van Ham.3 Using the method described in this chapter, one can find
values of the time delays such that the system will enter the cycle and remain in it indefi-
nitely. If at this point any single delay is slightly modified, in every case the system ulti-
mately leaves the unstable cycle.

This system will be reexamined in Appendix 4. The point we wish to make here is
simply that there are two types of cycle. In the first, the conditions for the system to remain
in it are a set of inequalities between time delays (or sums of time delays), whereas in the
second, one (or more) of the conditions is an equality. We call the first type stable cycles
because one can find values of the time delays such that, once in the cycle, the system
remains there even if the values of the delays fluctuate slightly (there are special cases of

Finitely, whatever the values of the time delays;

second type we call unstable cycles because,

for which the system will enter and remain in

-ain delays will irreversibly remove the system
from the cycle.

In practice, we recognize unstable cycles by the occurrence of overlapping circuits of time
delays that result in the presence of subscripts for each state of the cycle.

In fact, the situation can be described with three different degrees of precision. A very
rough description mentions only the Boolean states, a more refined description in addition
assigns subscripts to variables, and a fully precise description keeps track of the remainder of
each time delay at the moment a logical state is reached. The remainders are easily obtained
with a computer program by subtracting from each time delay the time during which an
unexecuted order has been on. Thus, strictly speaking, two states described by the same
Boolean vector with the same subscripts are really identical only if they begin with identical
remainders; the same subscripts are a necessary but not sufficient condition for identity. The
term “cycle” is therefore really appropriate only for circuits in which the remainders are the
same from turn to turn. For unstable cycles, this is the case in the marginal situation which
would keep the system indefinitely in the circuit; otherwise, the values of the remainders
will shift at each turn.

A fortiori, when a Boolean state occurs repeatedly with different indices, we do not have a
cycle. Suppose gene X is repressed by either product X or y; in other words, the gene works
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only if the products are both absent. The graph of interactions, logical relations, and state
table are

1 1
X=xy
0 1
Y=1 0 1
0 1
and the sequence of states is
00 —5 10 =% *, 10X

—
—

=< |
g(—mgl
—_
[

One must beware not to take sequences like 00 — 10 — 00 — 10 — for cycles since no
1 2 3

Boolean state occurs twice with the same indices. In this case, the gene Y is on permanently,
so its product must eventually appear.

A final warning may be in order here. We have seen above how to determine the condi-
tions under which the system will remain in a cycle. In real situations, however, the initial
state is usually not in the cycle. It is therefore important to analyze which initial states can
lead the system to the cycle, to determine the constraints on the time delays which will effec-
tively allow the system to enter the cycle, and then to verify that these constraints are com-
patible with the conditions for remaining in the cycle. It may happen, for example, that cer-
tain initial states will lead to a state in the cycle only under conditions which will force the
system to leave the cycle at another state. The conditions for entering the cycle from a given
initial state are determined as in Section II.

IV. TIME DELAYS: THE SIMPLIFYING ASSUMPTIONS
UNDERLYING THE ANALYSIS

The introduction of specific on and off delays for each element of a system is certainly
one of the strong points of our method, making it a useful approximation of biological real-
ity. These time delays are still idealizations, howevér. In our “naive” logical description, the
principal assumptions concerning the delays, discussed below, are that (A1) different delays
(or sums of delays) are never exactly equal, (B1) two constant delays, “on” and “off” are suf-
ficient to describe each element of the system, and (C1) the delays are independent of the past
states (or history) of the system.
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A. ARE DIFFERENT TIME DELAYS ALWAYS DIFFERENT?

The sequence of states a system will follow depends on the relative values of certain time
delays, as explained in Section II above. We usually assume that two delays (or sums of
delays) are never exactly equal and therefore that two variables will not change their values at
precisely the same instant, although, in fact, we do not exclude the possibility. If this rule
were applied rigidly, it could occasionally lead to the loss of interesting pathways. Consider,
for example, the system described by the following graph of interactions, equations, and state
table:

It has three stable states, one of which can be reached from outside only by a double
commutation:

W o)

@)

In such cases, one might wish to admit this possibility; it would in no way change the
formalism. In our generalized logical treatment (described in Chapter 7), the term concerning
each interaction is ascribed a specific weight. Depending on the values of these parameters,
all three stable states of the present example can be reached from state 00.

It is perhaps worth pointing out that a synchronous description, which postulates
simultaneous commutations, would be much worse than our naive description: it would

admit only the state @ as successor to 00, eliminating all possibility of choice and thus

all possibility of reaching states or from outside.

Since biological delays are never absolutely invariable mathematical constants, but have a
distribution around an average value, it is completely unrealistic to imagine that a system
could be maintained permanently in an unstable cycle which, as seen above (Section 11I),
would require exact equality of certain sums of delays. This same intrinsic fluctuation of
time delays can also lead to situations in which a system seems to make random decisions at
branch points where the delays determining which pathway to follow are not too different,
with overlapping distributions. To account for this, one can give each time delay an average
value and a distribution (see Chapter 20, Section II).
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B. ARE TWO TIME DELAYS PER ELEMENT SUFFICIENT?

In synchronous descriptions, as used by virtually everyone else, not only are the “on” and
“off”” delays equal for each function, but all delays for all functions are equal. This type of
model is clearly inadequate to describe many, if not most, biological systems.

So far, we have assigned two time delays, “on” and “off”, to each pair of internal vari-
ables/functions in a system. The delays represent the time required between the order to turn
on and the effective appearance of a substance (commutation from O to 1) or between the
order to turn off and the effective disappearance (commutation from 1 to 0). However, it
must be realized that a given variable change can result from various orders. For example, in

the system described in Section III, we have U = x + z. Function U can be switched on as a

result of the disappearance of x, as in 1100 —=—» 0100, or as a result of the appearance of

z, as in 1000 —=—> 1010. It is perfectly conceivable that the “on” delay of variable u be
different, according to whether the function has been switched on by the loss of x or by the
appearance of z. This would be the case for example, if gene U could be expressed from two
promoters of unequal efficiencies, one repressed by the negative regulator x and one requiring
the positive regulator z.

Similarly, if X =y z, the disappearance of x can be due to the disappearance of y or to
the appearance of z. This would be the case if y were a positive regulator required for
expression of gene X and z a protease which destroys the x product. Thus, if y disappears, x
will disappear because it is no longer synthesized, and if z appears, x will disappear because
it is destroyed. In many cases, the second process will be much faster than the first, and one
must thus postulate two very different “off” delays for the same variable.

In addition, when we use multilevel variables, we have to consider transitions from O to
1, from 1 to 2, etc. and vice versa. Of course, it will usually take different times to go from
level O to 1 or from level 1 to 2. In this case, we need two “on” (and two “off”) delays for
the same variable.

The above considerations should alert the reader to the fact that our description, although
closer to reality than many others, has implicit assumptions which, in certain cases, can
affect the analysis. They should be borne in mind when formalizing a system.

C. ARE TIME DELAYS INDEPENDENT OF THE HISTORY OF THE
SYSTEM?

When an internal function and its associated variable have the same value, the situation is
stable. If the function changes its value, we consider this an order to change the value of its
variable, which will be executed after a specific time delay. If the function returns to its ini-
tial value before the time delay has elapsed, we reason as though the original order had been
canceled, leaving no trace.

This assumption has the merit of its enormous simplicity. However, it should be used
with some caution. For example, when a gene A is switched on, the concentration of its
product a will soon start to increase, although it will not reach its effective concentration
until a time t, later. If the gene is turned off at an earlier time, there will be a subthreshold
concentration of a. If gene A is switched on again before this a has decayed, it is clear that
the “on” delay will be shortened. Even though product a is “absent” in terms of its biological
activity, the subthreshold concentration will give the system a head start toward the thresh-
old. This kind of situation, which in practice is rather infrequent, can be handled by using
variables with more than two values, according to the general logical treatment described in
Chapter 7.
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A large variety of interesting systems can be analyzed with the “naive” logical method
without violating any of the above assumptions, and the general logical treatment covers
many of the exceptions.
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I. INTRODUCTION

So far, our concern has been to describe the possible patterns of behavior of systems
endowed with a given logical structure: the number and quality of the final states, the path-
ways to reach them from a given initial state, and the conditions for following one or
another pathway. This is an analytic or deductive approach.

It is tempting to try to use kinetic logic in reverse and ask: given a behavioral pattern,
what are the simplest interactions among clements of the system that would permit or
impose it? This is a syathetic or inductive approach.!2 It is generally accepted that, whereas
the deductive process, from models or hypotheses to their predictions, is rational, the induc-
tive process, from facts to models which account for them, is essentially intuitive. We
describe here a method for making part of the inductive process, from facts to models more
rational. We obviously cannot give a formula for proceeding straight from the facts to the
right explanation; indeed, a set of experimental observations is usually consistent with many
distinct models. We want to find (1) the simplest models that permit the observed behavior
as well as (2) those which impose it, (3) the interactions or logical constraints common to
all models, i.e., the absolute requirements permitting or imposing the behavior in question,
and (4) the simplest modifications of a preexisting model to make it compatible with the
facts.

The experimental scientist who has had some experience formulating models from facts
will notice that we by no means replace the need for biological intuition. A major part of
model building is identifying the relevant elements of the system under study, and often con-
siderable insight is required to recognize the role of some apparently insignificant substance
or to surmise the existence of a hidden regulatory product. A model in which an essential
element is missing will obviously never be right, even if it can formally account for the
behavior under study. The addition of irrelevant elements to the description, although
formally less dangerous, can in practice obscure the analysis and, in the worst cases, create
numerous incorrect models. The methods described here offer no help in these first steps of
model construction, which remain the biologist’s prerogative.

II. A TWO-ELEMENT EXAMPLE

Our general procedure will be as follows: starting from a set of experimental observations
for which we are seeking models, we construct a partial state table incorporating the given
behavior. We then use Karnaugh maps to find the simplest logical relations compatible with
the table, and from these we draw the corresponding graphs of interactions. This is just the
reverse of our normal procedure (cf. Chapter 4, Section I).

A concrete example will make the process clear. Suppose we have two genes, X and Y,
whose products interact in such a way that either or both can be present stably, but there is
no stable state with both products absent. We reason that states 01, 11, and 10 must be
stable states, i.e., the vectors XY and xy are equal, whereas the state 00 is not stable. This
gives the incomplete state table:
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xy XY
00

01
D 11
10

in which 00 in the first line indicates that when xy is 00, the vector XY cannot be 00; it
can be anything else: 01, 11, or 10. In this very simple case, there are thus three acceptable

models. Their state tables are

Xy XY Xy
00 01 00 10 00 11
01 01 01
@ u @ u @ u
10 10 10
The corresponding logical relations are
X=x X:x+} X:x"'}
Y=x+y Y=y Y=x+y
and the respective graphs of interactions are
ow + - OR +
_ _ ™
(D GO & )
* +0R taws_
R =

Once these formal logical circuits have been found, they can in turn be subjected to
further analysis. If, for example, the third graph is taken as a model for a differential system,
using the methods described in Chapter 6, one finds three stable states corresponding to the
Boolean situations 01, 11, and 10 and four additional unstable steady states. In all three
models, at least one variable appears in both logical equations. In such situations, there is no
a priori reason to assume that the threshold values will be the same for the separate inter-
actions. Consequently, it is advisable to refine the analysis by using logical variables with
more than two values, as described in Chapter 7.

ITI. OSCILLATING BEHAVIOR

Our second example is from work on neuron networks by Kling and Székely3 and by
Friesen and Stent.* We will see in Part III (Chapter 21) exactly how interactions between
neurons can be described in terms of logical variables and functions. For the moment, suffice
it to say that the dynamic state of a neuron network can be described by a phase diagram that
uses bars of appropriate length to indicate which neurons are on and which are off at any
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a . 72
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FIGURE 1. Phase diagram of a group of neurons. The abscissa represents
time. The neurons a, b, ¢, and d emit impulses during the hatched periods.

time (Figure 1). This phase diagram is readily translated into a sequence of logical states
which the neurons fire sequentially:

1000 —> % 1100 ——* % 0100 ———> 0110

al
Sl

a d
1001 ¢é——— 0001 ¢———— 0011 ¢«—————— 0010

Let us first look for those interactions that impose this behavior. In other words, we wish
to find models in which the system is forced to follow the cycle indefinitely once one of the
above states is reached. This amounts to saying that for each of the eight states in the cycle,
the only possible follower is the next state in the cycle; there are no constraints on the other
eight states. This gives us the following incomplete state table:

abcd ABCD
0000
0001 1001
0011 0001
0010 0011
0110 0010
0111
0101
0100 0110
1100 0100
1101
1111
1110
1010
1011
1001 1000

1000 1100
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The table contains 32 unspecified values, indicated by dashes; there are thus 232 (=4 x 10%)
different ways to construct connections that would impose this behavior! To find the
simplest circuits, we first rewrite the state table in the form of Karnaugh maps, with a differ-
ent subtable for each function:

00 01 00 01
00 - 00 L 1 1
01 1 01
1 0 - 11 0 -
10 0 0 10 0 0
cd cd
¢ 00 01 D 00 bl
00 0 00 0
01 0 01
11 - 11 -
10 10
cd cd

Reasoning as in Chapter 2, Section III, we choose the most compact logical expression for
each function. In the present case, the simplest combination, as shown in the diagram, is

A =bc
B=cd
C=da
D =ab

This corresponds to the logical structure:

AND

It is easy to check that this network (which is the one Friesen and Stent started from) indeed
imposes the sequence in question.
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In the logical circuit just derived, each element regulates two others. In general, whenever
an element acts at more than one point, the thresholds for the different interactions may be
different. To handle such-situations, we use logical variables with more than two values.
This will be discussed in detail in Chapter 7. At this point, we merely wish to warn the
reader that the behavior of a system can change when variables are given more than two
values. It is thus important to check that the desired properties, in this case the stable cycle,
remain unaffected.

We have just seen how to determine the logical conditions that impose a particular patéern
of behavior. Suppose we now relax this requirement and look for logical circuits which
simply permit the behavior. We reason as follows. Consider the state 1000. Instead of
saying, as above, that the next state must be 1100 (and writing 1000/1100), we now say that
the next state may be 1100, but there may be other transitions as well. To indicate this in
the state table, we write 1000/-1- -. This guarantees that 1100 is a possible follower of

1000, but does not specify whether there are others. An extreme case would be 1000/0111,

in which the system has a choice among four possible transitions, one of which is 1100.
The incomplete state table now becomes:

abcd ABCD
0000
0001
0011
0010

0110
0111
0101
0100

1100
1101
1111
1110

1010
1011
1001
1000

Here, there are 56 dashes. There are thus 256 (=7 x 10'6) different ways of connecting
neurons A, B, C, and D that permit the desired cycle. Rewriting the table in the form of
Karnaugh maps gives:
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The simplest functions fitting these constraints are
A=a,orA=b,0rA =d,
B=b,orB=c,orB=a,
C=c,orC=d,orC=b,
D=d,orD=a,orD =c.

Any combination of these functions will be formally compatible with the desired cycle.
In some cases, however, the cycle turns out to be unstable. This is the case, for example, for
A=d,B=a,C=>b,and D = ¢, as the reader can readily verify. Each state in the cycle has
a subscript index, and the time delays form two overlapping circuits, as in the example
treated in Chapter 4, Section IV.

If we wish to find logical solutions in which our cycle is a stable attractor, the easiest
way is to impose stability, rather than testing the stability of the cycle in randomly chosen
combinations of functions. To do this, we choose one state of the cycle and impose the
following state as the only possible next state. (This is what we did above for all eight states
of the cycle when we wanted to ensure that the system, once in the cycle, could never leave
it.) The simplest logical functions compatible with the new state table are derived from
Kamnaugh maps, as usual, The cycle will now have a state with only one possible follower.
This follower will therefore carry no indices, and there will be values of the time delays for
which the cycle will be a stable attractor. In the present case, one such combination, derived
by imposing state 1100 as the only possible follower of 1000,isA =b,B =a,C = b, and
D =c.

IV. A CHOICE BETWEEN TWO LIMIT CYCLES

Suppose we wish to find a logical circuit which, according to the initial state, will permit
a choice between two stable cycles running in opposite directions. Using our logical formal-
ism, we will represent the cycles as follows:
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0001 —» 0011 —%5 0010

;T E

0101 «~— 0100 =— 0110

[+

1001 «<— 1011 <% 1010

g 5

1101 — 1100 —— 1110
c

The order of commutations in the two cycles is bedbed and dEb(_icB, respectively; this is
what is meant by “running in opposite directions”.

We wish to impose these cycles in the sense that once in either cycle, the system cannot
leave it. We proceed as in the preceding example, constructing an incomplete state table in
which each state in a cycle can be followed only by its successor in the cycle. As before, the
states that occur in neither cycle are not specified. The state table is

abed
0000
0001
0011
0010
0110
0111
0101
0100

1100
1101
1111
1110
1010
1011
1001
1000

The corresponding Karnaugh maps are

01 o

11 0 —
10 0

cd

ABCD
0011
0010
0110
0100
0001
0101

1110
1100
1010
1011
1001
1101

00
01

10 0 0
cd



00
00
01
11
10
cd

The simplest logical expressions, shown on the above maps, are

A=a

B=ac+ad
C=ad+ab
D =ab+ac

This logical system behaves as expected: depending on the initial state, the system will
go to one or the other cycle and stay there. Starting from these logical equations, we have
constructed and analyzed an equivalent differential system’ using differential equations as
explained in Chapter 6. Again, the system behaved exactly as expected: for appropriate
parameter values (which were easy to find), the system would go to one or the other of two
limit cycles (Chapter 10), depending on the initial state.
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I. INTRODUCTION

A classical description of dynamic systems uses ordinary differential equations. The equa-
tions give the time derivative dx/dt of each relevant element x of a system as a function of
the level of the elements and, when required, of external conditions. For example, for a
chemical system comprising three compounds X, y, and z whose concentrations are repre-
sented by x, y, and z, we write:

dx

E= X(X! Ys Z’ "')5
%% =H,(x,y,2 ...,
& _

G- H,(x, v,z ...).

If the functions H,, Hy, and H, are known, then for a given initial state (X0 Y0- Zgy -++),
the equations in principle permit one to compute the state of the system at any time t.

II. THE NOTION OF STEADY STATE

This section provides a simple example of the differential description of a synthetic pro-
cess. It also introduces the fundamental notion of steady state. A steady state is defined as a
state for which none of the variables change with time (the time derivatives are nil). For
instance, a substance produced at a constant rate, but decaying at a rate proportional to its
concentration, will not accumulate indefinitely, but rather, its concentration will tend toward
a limit steady-state value. In particular, when a gene is not subjected to any specific control,
the concentration of its product nevertheless does not increase uncontrollably, but approaches
a limit steady-state value because the product decays, or diffuses, or is diluted out by the
growth of the system. This is reminiscent of the limit speed of a falling object. The object
is submitted to a constant force (its weight) that would generate a constant acceleration if
things were simple. However, as speed increases, a frictional force directed opposite to the
motion develops, and this force increases in proportion to its speed. When the speed is such
that the vertical component of the frictional force almost equals gravity, the resultant force is
negligible and the body goes on falling, but at a constant speed, called the “limit speed”.

Let us first consider the case of a substance x which is synthesized from a precursor a at a
rate proportional to the concentration of a, which we consider essentially constant. We imag-
ine our system immersed in a reservoir of a sufficiently large that the overall concentration
of a is not significantly lowered by the reaction under consideration. The rate of synthesis of
X is thus ka. On the other hand, as for all substances considered here, x is subject to sponta-
neous decay, which is usually assumed to be proportional to the concentration of x itself.
The time derivative dx/dt, which represents the net rate of synthesis of x, will thus have a
positive term (synthesis) and a negative term (decay):

dx
dt—ka—k_x )]

in which k and k_ are (positive) kinetic constants; a and X, which are concentrations, are also
nonnegative.
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FIGURE 1. The system %x =ka ~k_x. Above: plot of x as a function of
time. Initially, x = 0. At time 0, one switches on x synthesis by adding
the precursor a. The arrow indicates that one removes a. Below: plot of %

in the same conditions.

Let us start from an initial state in which x = 0 and the process of synthesis is switched
on by adding the precursor at concentration a. As the initial value of x is 0, the term of decay
is initially nil and dx/dt = ka; but as x is produced, the term k_x will steadily increase and
dx/dt will decrease by that much, tending toward 0, Accordingly, the concentration x will
increase linearly at first (at rate ka), then more slowly, eventually approaching a steady-state
value x° (Figure 1).

Since the steady-state value x° is defined by dx/dt = 0, when x = x0 we have ka—k x% =0,
and the steady-state value is simply

ka
x0==

k

Thus, when the synthetic process is switched on (here, by providing the system with a
required precursor), the new rare of accumulation first Jjumps from O to ka, then decreases as
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x is formed, and approaches 0. The concentration of x will first increase almost linearly

(with slope ka), then progressively level off, approaching the steady-state value 1;—_3. The exact

kinetics can be obtained by integrating Equation 1, which gives:

X = 11% (1—e™Y,
If, starting from x°, one now removes a, the first term of Equation 1 disappears and
dx/dt = —k_x. Initially, x = x0 = %; thus cilt_x = —ka.

The concentration of x thus declines with a rate —k_x which initially equals —ka, but as x
decreases, the rate of decay itself declines and approaches 0: the system tends toward another
steady-state value, x° = 0. The variation of x and dx/dt with time is shown in Figure 1.

Let us now consider an “unregulated” gene. “Unregulated” will be used here to qualify a
gene not subject to a control specifically addressed to it or to the operon (transcriptional unit)
to which it may belong. For constant temperature and flow of precursors, the product of such
a gene would be synthesized at a constant rate. However, it will not accumulate and reach
intolerable concentrations because gene products are dissipated by degradation, diffusion,
growth dilution, or otherwise at rates assumed to be proportional to their own concentration.
As in the chemical reaction considered above, if the gene product y is synthesized at a con-
stant rate k and degraded at a rate k_y, it will not accumulate indefinitely, but, rather, will
tend toward a steady-state concentration y = k/k .

III. NONLINEAR INTERACTIONS

In the simple case described above, the rate of synthesis of x was a linear function of the
precursor concentration a; we speak of a linear interaction between a and x. In regulatory pro-
cesses, most interactions are nonlinear. On the one hand, many regulators have little or no
effect below a critical “threshold” concentration. On the other hand, the effect of a regulator
usually levels off at sufficient concentrations (boundary concentrations).

This S-shaped type of nonlinearity is called sigmoid (from the Greek letter “sigma”, X).
Sigmoid curves are monotonic, with a lower and upper bound, near-zero derivatives for small
and large values of the arguments, and a single inflection point. Most authors describe sig-
moid curves by the so-called Hill functions. Here, we will symbolize increasing and decreas-
ing Hill functions by kF* and kF-, respectively (k > 0), and consider only nonnegative
values of x.

We write F*(x) or, more explicitly, F*(x, 8):

n n n
Fr00) =g = 1J(rx(;/<?)9)n P = eni Xt 1+(x1 /)"
F*(x,0) =0forx =0 ) F~(x,0) =1forx =0

= 0.5forx =0 = 0.5forx = 0
—1forx — oo —1forx —ece
Note that
Ft(x)=1-F(x)
and

F(x) =1-F*x)
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FIGURE 2. Sigmoid functions (more specifically, y = %xT’ with

increasing values of the Hill number (n = 1, 2, 5, 10, 20, and 50).

For n = 1, the interaction is of the classical Michaelis-Menten type, and the shape is a
branch of a hyperbola; it is bounded, but there is no inflection point. For n > 1, Hill curves
do have sigmoid shape, and for increasing values of n, the sigmoids become steeper and
steeper (and the inflection point closer and closer to x = 0) (Figure 2).

The situation “n — *” can be approximated by using very high values of n, but it is
simpler to use step functions: for n — oo, F*(x) = 0 or 1, according to whether x < 8 or x >
6, and F~(x) = 1 or 0 in the same conditions. It is thus convenient to introduce here the
Boolean variable x, and simply write that for n — oo:

Ftx)=x
and
F(x) =x.

When step functions rather than classical sigmoids are used in differential equations, we
speak of “piecewise linear” differential equations.l

As beautifully shown by Glass & Kauffman,? many systems have the same qualitative
behavior for a wide range of steepness of the sigmoids. Within this range, the exact value of
n is thus often of secondary importance. This is why, in situations involving more than one
sigmoid function, we often use the same value of n in each.

Strictly speaking, 0 is nothing more than the value of x for which F has half of its maxi-
mal value. In Michaelis-Menten kinetics (n = 1), this concentration of x is called the Ky
However, for sufficient n, one can assume in practice that

Ft(x) =0 forx <6 Ftx) = 1forx >0
and
Fx)=1forx<© Fx)=0forx>0
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It is then quite natural to call 8 the “threshold” value of x. We are afraid we will sometimes
call O the threshold even for low values of n, although this is criticizable.

These sigmoid functions can be taken to describe the rate of production of a gene product
as a function of x, the concentration of a regulator. If, for example, x stimulates its own
synthesis (a positive feedback loop), we write dx/dt = kF*(x) —k_x, in which the “synthesis”
term kF+(x) is now nonlinear. For low values of x (x « ), the synthesis term remains near
0, and for high values (x » 8), there is no further stimulation due to the bounded character of
F* (x). An important consequence of this is that our system is bounded: since F*(x) < 1 for
all (nonnegative) x and since k and k_ are positive kinetic constants, it is clear that for x >
k/k_ we have dx/dt < 0. Thus, whenever x exceeds a certain boundary level (here, k/k ), the
negative derivative ensures that it will move back toward the boundary.

IV. MULTIPLE INTERACTIONS

When the rate of synthesis of an element is influenced by more than one regulator, we
usually associate a sigmoid function with each interaction. For example, if efficient synthe-
sis of z requires both the “presence” of x and the “absence” of y (that is, requires that the
concentration of x be above a threshold 0x and that that of y be below a threshold 0,), we

write:

&

& kF*(x, 6,) - F(y, 8,) -k z
in which k_z represents, as usual, the decay of z. In this expression, the synthesis term of
dz/dt is negligible unless F+(x) and F~(y) are both significant, that is, unless x is sufficiently

high and y sufficiently low.
If either condition is sufficient, we write instead:

‘a‘f =k F*(x, 0,) + koF(y, 8,) —k 2

This expression ensures that the rate of synthesis of z will be significant, provided the term
in F* or F- (or both) are significant.

Note the parallel between algebraic multiplication and the logical AND operation, and
between algebraic addition and the logical inclusive OR operation. This provides intuitive
Justification of the fact that the AND operation is called “logical product” and inclusive OR,
“logical sum” (see Chapter 2, Section II).

A given regulatory substance may act in a complex way. Suppose, for instance, that x
favors the synthesis of z at medium concentrations, but inhibits it at a high concentration. In
such a case, we write:

gf = kF*(x, 8)) - F(x, 0,) -k z

with 02 > 61.
On the other hand, if x favors the synthesis of z according to two distinct mechanisms of
different efficiencies that require significantly different concentrations, we write:

& KiFx, 0) + KGF*(x, 0) — kyz,

in which the sum k;F*(x, ;) + k,F*(x, 6,) is a curve with two thresholds (0, and 6,) and
two plateaus (k; and k; + k). An example of this type is treated in Chapter 15 (Figure 3).
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At this point, we would like to remark that the sum or the product of two Hill functions
in x typically has more than one inflection point and more than one plateau. In contrast, the
composition of Hill functions, as k;F*[k,F~(x)], produces a sigmoid shape, with only one
inflection point and one plateau.

In the situations just mentioned, we reason as if there were more than one interaction,
even if we are treating a single element that acts at different levels.

Consider a system in which a substance x acts in a complex way on its own rate of
synthesis:

dx
i GEx) -k x
. dx . Gix) .. .
The steady state equation - Oisx = K which, according to the degree (n) of G(x), can

have up to n solutions. This means that the system in question, even though it has a single
element, can have a number of different steady states. But, whereas the fact that an equation
(or system of equations) can have a number of solutions is trivial from a mathematical view-
point, the fact that a real system may have multiple steady states is by no means trivial.
This is because the type of interactions operative in the description of real biological
systems has a strictly limited variety of shapes; in fact, they are usually monotonic, as sig-
moids are. Instead of using sums or products, or sums of products of sigmoids, one could
just as well use a sigmoid whose argument is itself a function of two or more variables
(“multivariant sigmoids”).

V. A TWO-VARIABLE NEGATIVE LOOP

Let us now consider as an example the two-variable negative loop discussed in Chapter 3

+

and described by the graph of interactions x y The differential equations will
~___
be
dx -
o - P -k x=H(x,y)
@
dx .
i ko3 (x) —k_ox = Hy(%, y)

in which F7 and Fj are, respectively, decreasing and increasing Hill functions and the k and
k_ are positive kinetic constants; x and y, which are concentrations, are nonnegative.

These equations simply mean that dx/dt comprises a positive term (synthesis) k{F1(y),
which equals k; for y = 0 and approaches 0 for high values of y, and a negative term (decay),
which is nil for x = 0 and increases proportionally to x. Similarly, dy/dt comprises a posi-
tive term (synthesis) k,F4(x), which is nil for x = 0 and approaches k, for high values of x,

and a negative term (decay) proportional to y.
In other words, the equations say (in a more precise way) that x is synthesized at a rate
that is inversely related to the concentration of y and that y is synthesized at a rate which is
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directly related to the concentration of x. This is exactly what the graph x y
«

represents. It is true that the equations say that both x and y are subject to decay at a rate
proportional to their concentration, and one might object that this should be represented in
the graph of interactions by negative loops of x and y on themselves. However, insofar as
this decay is not regulated, we do not take account of it in either the graph of interactions or
the logical equations. In the systems we analyze, we assume that al/ elements are subject to
spontaneous decay which is proportional to their concentration. This linear decay may reflect
degradation, diffusion, or growth dilution. These nonregulatory types of decay are taken into
account in the “off” delays (the time required after a gene is turned off for the corresponding
product to drop below its threshold concentration). Like most nonlinear systems, this one
cannot be solved analytically, i.e., one cannot find an explicit algebraic expression giving
the values of x and y as a function of time (or of each other). Nevertheless, much can be said
about the system, as we shall see.

VI. STEADY-STATE EQUATIONS, NULLCLINES, AND
STEADY-STATE VALUES

At steady states, all time derivatives are nil:

dx dy
E: X=0’ dt:Hy=0,...

In such a situation, the system, in the absence of external change, will remain as it is.
For the system introduced in Section V, the steady state is thus defined by the equations:

dx
i kiFi(y) -k x=0
(3)

¥ = gF3(0 Koy =0

Curves of Equations (3) drawn in the x-y plane (Figure 3) are called “nullclines”. Along
each of these lines, one time derivative, dx/dt or dy/dt, is nil. Their intersect(s) thus provide
us with the point(s) for which both conditions dx/dt = 0 AND dy/dt = 0 are fulfilled, i.e., the
steady-state value(s).

Except for special cases, on one side of a nullcline, the corresponding time derivative is
positive; on the other, it is negative. Thus, the nullclines partition the variable space into
domains, each characterized by a combination of signs of the time derivatives of each vari-
able (+ +, + —, ——, — +; see Figure 3). For example, in the region labeled + —, dx/dt is posi-
tive and dy/dt is negative. Since x is increasing and y is decreasing, the tendency can be
symbolized by an arrow directed rightward and downward (\,) and similarly, mutatis mutan-
dis, for the other regions of the x-y plane.

The steady-state equations can be rewritten:

x = ﬁ Fi(y) = G1(y)
@

k
y= g Fi(x) = G§(x)
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FIGURE 3. The nullclines of System 2. In our particular case:

&k__ 2

a 1+y°

dy %

da 1+x Y

The steady-state equations are thus

dx 2
a- 0 (=X
&y %
R A T

The steady state is at the intersect of the two nullclines.
Note that since y = G$(x) and x = G7(y), one can eliminate one variable and write

x = G7 [G§(0)] = G4(x),
or
y = G§ [GD(1)] = Gy(y).

(see Richelle®). Clearly, G3(x) and G4(y) are nonnegative.

This allows one to find the steady-state values(s) as the intersect(s) between the functions
x (the bissectrix) and G3(x) or between y and Gy(y). It is easy to “show”, if not to prove, that
the composition of Hill functions, like G [G3(x)], produces a sigmoid shape. Although they
are no longer Hill functions and may have a nonzero lower bound, they will be increasing or
decreasing sigmoids according to whether there is an even or odd number of negative
sigmoids in the chain.

Thus, in our case G7 (G4(x)) and G§ (G1(y)) are decreasing sigmoids and there is a single
steady state (Figure 4) because each has exactly one intersect with the bissectrix.

Equations 3 and 4 are the steady-state equations whose solution(s) provide the steady-state
value(s) of the system. Note that instead of a system of differential equations (2), we now
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Gi(G3Ix))
2

%)
% 2

FIGURE 4. The steady-state value x° of the system described in Figure 3
can also be found as the intersect of G7 (G3(x)) with the bissectrix.

have a simple algebraic system. The differential equations we started from “contained all the
information” (as biologists would say) on the dynamics of the system, whereas the algebraic
equations arrived at have retained only the static information concerning the steady-state
situation(s).

Yet even the algebraic system usually cannot be solved analytically. As a first step, we
have solved it graphically (see Figures 3 and 4). Fortunately, for any given values of the
parameters (k;/k_, ko/k_s, 0y, 6,, and n), steady states can be calculated using an appropriate
iterative (numerical) method (see Appendix 1).

This is probably the place to say something about the dimensions of these parameters. In
the equation

% =kFx,y,2,...) -k x

(in which F is a combination of sigmoids), dt’ and consequently each term of the right

member of the equation, has the dimensions of x per unit time (xt"!), whatever the nature of
X (usually a concentration). As k_x has the dimensions xt-!, k_must have the dimension t-..
The term F(x, y, z, ...) is dimensionless because the variables appear with the same degree
in the numerator and in the denominator, so k; must have dimensions xt!.
ki
k;
does 0;, which is taken as the threshold level.

When we represent a (say three-dimensional) system in the variable space, we have the
points:

Thus, the boundary value —- (which we will often write K;) has the dimensions of x, as

K= k—l —Land 6, on the x axis,
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Ky= L} and By on the y axis,

ko

and

K;= 1%_33- and 0, on the z axis.

The parallelepiped built from the origin and points Ky, K5, and Kj is a box toward which
the representative point of the system will always move whenever it lies outside it (see end
of Section III).

VII. NATURE OF THE STEADY STATE(S): LINEAR
STABILITY ANALYSIS

When a system is at steady state, it will remain there since time derivatives of all vari-
ables are nil. Suppose, however, that the concentration of one or more components under-
goes a small perturbation. Depending on the case, the perturbation may regress and the sys-
tem tend back toward the steady state it started from or it may amplify and the system even-
tually proceed to another region of the variable space. These are called stable and unstable
steady states, respectively. As we shall see below, things are not always so simple. For
example, an unstable steady state may be attractive along one surface or line, but not else-
where. In addition, a steady state may be approached (or departed from) monotonically or
periodically (see below).

The nature and stability of steady states can be studied by so-called linear stability analy-
sis. In this section, we will just mention the principle of the method and give some results
of its application to the simple two-variable system already described. More about it can be
found in Appendix 3.

The idea is to perturb the system by removing it slightly from its steady state and to
check whether the perturbation grows or regresses. Provided the system is close enough to
the steady state 1, linear approximations of the differential equations can be used. It is
convenient here to consider the (small) difference & between x and x%, & = x — x0, and
similarly for the other variables in multiple variable systems. Close to a steady state, this
difference is small enough that the expression of H(x0 + &) can be approximated by the linear

0
term of its Taylor expansion, c%%_) - € (see Appendix 3), also written

Thus, for a one-variable system, the nonlinear differential equation dx = H(x) is linearized

dt
d€ . . L .. dH
to i ®&, in which ® is simply the value of the derivative — - at the steady state con-
sidered:

dx

This value is the slope of H(x) at x? (see Figure 1 of Chapter 12).
a8

& ®& has solutions of the form & = & e®, as can be readily verified by differentiating
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the latter expression. Thus, according to whether  is negative or positive, the perturbation
will regress or increase and, accordingly, the steady state will be stable or unstable.
We mention the following points here without justification (cf. Appendix 3). For a

system with two or more variables, the role of the derivative % is played by the Jacobian

matrix, whose elements are the partial derivatives of each function with respect to each
variable:

M, H,
ox dy

o, o,
ox dy

The stability of a steady state depends on the roots ® of the so-called characteristic equa-
tion, whose coefficients depend on the terms of the Jacobian matrix, evaluated at the steady
state. For an n-variable system, the characteristic equation is of degree n and thus has up to n
distinct roots.

. .. (dH
Whereas in a one-variable system, a steady state can only be stable (if (d—j < 0) or
X Jxo

H . .
unstable ((z—j > (), in a two-variable system, the nature of a steady state depends on two
X Jxo

roots: only if both are negative will the steady state be stable.

However, this is not the whole story; as is well known, for the quadratic equation
®? — S® + P = 0, the roots are real only if S2 — 4P = 0. Otherwise the roots are complex
conjugates: ®; = & + if; @, = o — if3, in which « is the real part and B is the imaginary
part. Expressions in e® with complex ® are periodic with time (Euler formula: e® = cos 0 +
i sin 0). It follows that when the roots of the characteristic equation are complex (i.e., when
S? — 4P < 0), the steady state is approached (if the real part of the roots is negative) or
departed from (if the real part of the roots is positive) periodically,; and we have a stable or
unstable focus, respectively.

It is shown in Chapter 10 that in the case of a two-element negative loop, the (unique)
steady state is necessarily stable. For the parameter values used in Figures 3, 4, and 5A, the
roots of the characteristic equation are complex conjugates (with a negative real part, which
is why the steady state is stable) (see Appendix 3, Example 1). The steady state is thus ap-
proached periodically and is a stable focus. For other parameter values the characteristic equa-
tion has two real negative roots, and the steady state is therefore approached directly and is a
stable node (see Appendix 3, Example 2, and this chapter, Figure 5B).

In other two-variable systems, we will find other types of steady states: unstable foci, or
nodes, and saddle points (which have two real roots, one positive and one negative; see
Chapter 12). In systems with more than two variables, we will find steady states with more
complex stability properties.

VIII. TRAJECTORIES AND EVOLUTION

The trajectory of a system is a curve that depicts its successive states in the variable
space. For a one-variable system, the variable space reduces to the x axis (and, when dealing
with variables such as concentrations, only the nonnegative part of this axis). For a two-
variable system, the variable space is the x-y plane (only its nonnegative or NE quadrant,
when dealing with concentrations).



81

B

FIGURE 5. Nullclines and trajectories in System 2. (A) Parameter values
as in Figure 3 and 4; (B) parameter values as above, except thatk =3
instead of 1. The trajectories show and-the linear stability analysis
(Appendix 3, examples 1 and 2) confirms that in (A) the steady state is a
stable focus and in (B) it is a stable node.

In the case of nonlinear systems, there is usually no analytic expression for the trajecto-
ries. However, for any set of values of the parameters, trajectories can be computed numeri-
cally (see Appendix 2).

For thie moment, we will simply show trajectories of the two-variable system (2), with
two different sets of parameters. A simple look at Figure 5A and 5B shows that the steady
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state is approached periodically in A, but not in B. In A, the steady state is a focus; in B, it
is a node, in agreement with the linear stability analysis.

The evolution of a system is a description of its state as a function of time (see, for
example, Figure 7 in Chapter 10).

IX. SUMMARY

In this chapter, we have seen how dynamic biological control systems can be described
with ordinary differential equations, using Hill functions for sigmoid regulatory interactions.
The steady states of the system — states in which all time derivatives are zero — can be
found from these equations. Steady states can be stable or unstable, i.e., for a system at
steady state, slight perturbations can regress or amplify. The stability of a given steady state
is readily determined by linear stability analysis. The differential description of a continuous
system can provide the trajectory the system will follow through the variable space and its
evolution in time. '
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I. INTRODUCTION

One drawback of what we now call the naive logical description is its all-or-none charac-
ter, with no nuances. The introduction of intermediate levels requires variables and functions
with more than two values, but the question of when and how to use them was far from evi-
dent. The systematic use of 3-, 4-, ..., n-level variables would simply create better and better
imitations of the differential description without resolving the basic problem. A major step
forward (obvious in retrospect, like the “oeuf de Colomb’*) came with the realization that
there is a natural way of deciding how many levels a given variable should have: whenever
an element interacts at more than one place in the graph of interactions, each interaction
should have a specific threshold. An element involved in n interactions will therefore have n
distinct thresholds, and the corresponding variable and function will require n + 1 logical
values. (It follows that the different variables of a system need not have the same number of
values.) The application of this insight required the development of new methods. We
already knew how to handle logical variables with more than two values in our analysis (Van
Ham', Richelle*?), but until recently we had no fully satisfactory way to assign values to
the corresponding logical functions.

A primary difficulty with multivalued logical functions is already apparent in the handling
of sums (and products) of logical terms. In the naive description, the same “weight” is
attributed to each term and, indeed, to the sum itself. A more refined description should take
account of the fact that different terms are usually of different strength and that two or more
terms that are individually too weak to carry out a regulatory step effectively may be suffi-
cient when acting together.

To resolve these problems with multivalued logical functions, one of us (E. H. S.) devel-
oped generalized logical relations in which the weight of each term is specified by an associ-
ated logical parameter, and functions as well as variables can take more than two values
when required.* This logical formalization includes our naive logical description as a special
case. As we shall see in this chapter and in Chapter 8, it provides a systematic method for
extracting all qualitatively different patterns of behavior, not only from discrete logical sys-
tems, but also from continuous systems of analogous structure.

This generalized kinetic logic is presented below. We first explain how a discrete scale is
ascribed to each variable (Section II) and a characteristic weight to each term (Section III).
We then show how to incorporate these new elements in the formalization of a system
whose naive description is an obvious oversimplification (Section IV). Finally, we present
the generalized logical description of the same system (Section V).

II. A DISCRETE SCALE FOR EACH VARIABLE
A. GENERALIZED (MULTILEVEL) LOGICAL VARIABLES
Let us consider an element x that acts at various points of a system, with characteristic
thresholds 19, 29,39, ..., (19 <20 <33 ...). We quite naturally associate with this element
a multilevel logical variable x, which takes the values:
x=0forx <19,

x =1 for 1% < x <29,

x =2 for 28 < x <39,

* Reference to Columbus’s alleged solution to the problem of how to stand an egg stably on end: crush the end
slightly.
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x =3 for 3% < x < 409,

(We provisionally neglect the inarginal case x = '0.) This amounts to applying an operation
of discretization to the real variable x according to the scale of thresholds of element x, We

symbolize this operation d, and write:
x = dy(x)
19 29 39

x=0 x=1 x=2 xr=3

Similarly, the operation d, is the discretization according to the scale of thresholds of ele-
ment y. These thresholds will, in general, be different from those of x both in number and in

value.

B. A COMPLEMENTARY REPRESENTATION: ONE BOOLEAN
(BINARY) VARIABLE FOR EACH THRESHOLD
For a given interaction, what interests us is not whether'x =0, 1, 2, 3, ..., but simply
whether the level is above or below the threshold for that interaction. For example, if the
threshold in question is 28, what we really want to know is whether x > 2. Therefore, for
each multilevel logical variable, we use in parallel a set of Boolean (binary) variables 'x, 2x,
3x, ..., defined as follows:

Ix=1if x > 1, otherwise lx =0,
2x =1 if x = 2, otherwise 2x = 0, etc.

19 29 35

It is important to bear in mind that the multivalued and binary variables are conceptually
different and should be clearly distinguished, even when they have the same value. The mul-
tivalued variables are used to represent the state of the system, as in the state tables, whereas
the binary variables are used in connection with a specific threshold, as in the logical rela-
tions. For a system involving a two-level element x and a three-level element y, for exam-
ple, we use the three-level variable y together with binary variables ly and 2y to describe the
three-level element y; for the two-level element x, although x and !x have the same value,
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three-level element y; for the two-level element X, although x and x have the same value,
we use the former in the entries of the state tables and the latter in the logical relations. Of
course, when the description of a system requires only two-level variables, we simply use
the symbols x, y, etc., since no confusion is possible.

It will be noticed that the binary variables introduced above are not independent; if, for
example, in a given state 2x = 1, we cannot have lx = 0, and so forth. In fact, this notation
is not very compact: n binary variables, which could potentially describe 2" states, are used
for only n + 1 different situations. However, this in no way complicates the analysis,
whereas considerable difficulty can arise from the use of symbols whose meaning is not
immediately clear.!

III. A WEIGHT FOR EACH TERM: LOGICAL PARAMETERS

The Boolean logical expression X =y + z means that process X takes place iff product y,
product z, or both are present. This classical description does not discriminate among the sit-
uations: y alone present, z alone present, and y and z both present. If we wish to do so, we
must express the weight of each term and provide a way of evaluating the (multivalued) sum.
Let us associate characteristic weights with the terms involving y and z and consider the
“pseudo-Boolean” expression K,ly + K,!z, in which K; and K, are (positive) real numbers
and ly and 1z are Boolean variables. K'y has the value K, or 0, according to the value of the
Boolean variable ly, and “+” is the algebraic sum. The values of this expression will be

0if y and z are both absent,

K, if y alone is present,

K, if z alone is present,

K, + K, if y and z are both present.

In fact, what we are really interested in is not so much the numerical value of Kly +
K,'z, but its location in the scale of thresholds of variable x, i.e., d (K 'y + Ky1z). If vari-
able x has, say, two thresholds, !9 and 20 (19 < 29), the expression d (K 'y + K,!z) will
take the values 0, 1, or 2, according to whether:

Klly + K2IZ < 119,
1’[3‘ < Klly + Kzlz < 2'0, or

20 <K'y +Kylz.

These considerations lead us to write as a multivalued generalization of the logical sum X
=y + z, the expression:

X =d (K ly + K,12),

in which X is a multivalued logical function.

The usefulness of this definition will appear on examining the results with different val-
ues of K; and K, (Table 1). Let element x have two thresholds, 19 = 1 and 28 = 3; x is thus
a three-level logical variable, and the discretization dy of any real number (other than !9 or
29) will take the value 0, 1, or 2.
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TABLE 1

@K;=12,K,=1.9

1.2
3.1
(b) Kl = 12, K2 =13
0 12
1.3 25

© K, =08,K,=0.7

1

Clearly, the relation x = d,(K;'y + K,'z) includes several qualitatively different situations
according to the values of K, and K,. Among these situations, that described in (a), with
three different values for X, has no counterpart in classical Boolean logical expressions; if y
or z is present alone, x = 1, but if they are both present, x = 2. The situation described in (b)
is identical to the classical Boolean sum since X = 1 whenever y or z or both are present.
And that described in (c) is identical to the classical Boolean product since X = 1 only if y
and z are both present. .

The last point is of special interest. It shows that the generalized logical sum, X =
d,(K;'y + K,1z), includes not only the classical sum, but also the classical product as special
cases. The product corresponds to situations in which neither term alone is strong enough to
turn X on, but both together are sufficient.

In Chapter 3, Section IV, we mentioned that our “graphs” of interactions not only have to
be oriented and signed (+ or —), but also require an indication as to whether multiple interac-
tions are connected with “AND” or “OR”. Incidence matrices were considered ambiguous for
lack of these indications. The fact that our generalized sum includes the classical sum and
product suggests that the apparent ambiguity of incidence matrices (or graphs) without
“AND” or “OR” results, in fact, from a greater generality, covering “AND”, “OR”, and other
connections.* (See also King?.)

To summarize: the generalized logical sum X = d,(K;!y + K;!z) provides a rational
expression for assigning values to a multilevel logical function. It involves assigning a
weight to each term. Depending on the value of these weights, the generalized sum can be
identical to the classical sum or the classical product, or it can generate nonclassical situa-
tions, including those in which the function value is neither O nor 1.
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IV. TOWARD A GENERALIZED DESCRIPTION

Consider a two-element system

/’N"-OR-F
X y
~__ -

This circuit comprises a negative loop and a positive loop. Since the two are connected,
neither is a simple feedback loop. The naive logical description is

X=y
Y=x+y
and the state table is
TABLE 2
Xy
y
00 10
1 11/01
@ o1 ® B
11 01 0 10/11
10 11

The second representation recalls the variable space (the x-y plane) of the differential system,
Thus, according to the naive logical description, the only pattern of behavior of the system

would be 00 — 10 —— 11 — ©D. This naive description can be illustrated in the
X-y plane as follows:

X =0 in the region hatched rightward (), 1 elsewhere, and ¥ = 0 in the region hatched
leftward (&), 1 elsewhere. This is an alternate form of Table 2(b).
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However, y acts both on the synthesis of x (as a repressor) and on its own synthesis (as
an activator). One should thus consider two thresholds, which will be denoted 17 and By,
respectively; §;, concerns the effect on the first variable (x) of the second variable (y), and so
forth.

More generally, we will label the threshold Uy;, according to the matrix

in which the subscripts recall the location of the terms in the system of logical (or differen-
tial) relations; the dash indicates that in the present case there is no effect of x on its own
synthesis (i.e., 9;; = 0).

There are now two qualitatively different situations, according to whether Vg < Uy or
Y12 > Oy

y:2 y=2
By Oy
y=1 y=1
By By
L B
x=0 2 x=1 x=0 A x=1

In the region hatched rightward (§Z), X = 0, and in the region hatched leftward (), ¥ = 0.
For the first case (on the left, where B13 < By3), We can say that X = 0 unless y=0,and Y
= O unless x = 1 or y = 2. The question now is: what values should be given to the func-
tions X and ¥ in other situations? One possibility, developed by Richelle,>* consists of
keeping binary (two-valued) functions despite the multilevel character of the variables.
Instead, we will use the generalized logical expressions described in Section ITI and set:

X =d(Kyly),

)
Y =d,(Ky 'x + Kpo?y),

in which the Kys are real numbers; lx, ly, and 2y are Boolean variables associated with the
multilevel logical variables x and y; “+” is the algebraic sum; and d, and d, represent dis-
cretization according to the scales of x and ¥, respectively. Similarly, for the second case (on
the right, where 9, > 0,,), the relations are

X = dX(K12 Zy),
@
Y =dy(Ky'x + Kyyly)
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V. GENERALIZED LOGICAL DESCRIPTION

We have now seen the principles underlying the generalized logical description and
are ready to carry out the analysis. As an example, we again choose the system
oo+
™
X y . In view of the above considerations, we ascribe two thresholds to

S

element y: 0, concerning its interaction with x (y ——=> x), and ¥,,, concerning its

+
interaction with itself ( yD). The variable y and function Y will thus have three possible

values: 0, 1, and 2. Element x will have a single threshold, 9, corresponding to the inter-
action x ——> *y, so the variable x and function X will be two-valued. According to
whether 0, < U5 or $y5 > 09y, we write the graphs of interactions

respectively. The numbers on the arrows indicate the relative thresholds for the two inter-
actions carried out by y. The logical relations are given in Equations 1 and 2, respectively,
or, in a more compact way, by the matrices of interactions:

-2

We shall treat the first case, in which §,, < 9,,. The relations in Equation(s) 1 give the
values of X (0 or 1) and ¥ (0, 1, or 2) in terms of the Boolean variables lx, ly, and 2y that,
in turn, are directly determined by the values of x (0 or 1) and y (0, 1, or 2), as described in
Section II. The state table is readily constructed from these relations:

0 0 d(Kyp) 0
0 1 0 0
0 2 0 4, Kx)
I 0 dKyp d, (K1)
1 1 0 _dy(Kgp)

2 0 dy(Ky +Kp)
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To simplify the notation, we set d,(K,,) = K3, dy(Ks1) = K3y, dy(Kp;) = K, and dy(Ky
+ Ky) = K3j 4 22- The integers K;, K3, K3, and K , 5, are called “logical parameters”.
The state table thus becomes:

TABLE 3

@) ®) 02/0K,,

107K, K,

K21 +22

Table 3(a) is a classical state table; the representation in (b) again recalls the variable space
(x-y plane) of the differential description.

From the definition of the logical parameters, it is clear that K, can take the value 0 or 1
since the scale of x has one threshold (making X a two-valued function), and K;;, K,,, and
K31 4+ 22 can each take the values 0, 1, or 2 since the scale of y has two thresholds (making
Y a three-valued function), with the constraint that K,; , ,, cannot be less than K 21 OT
K3,. It is easy to show that there are 28 possible sets of values for the logical parameters
K2, K3y, K3y, and K3y | 5;. Each set of values corresponds to a choice of weights for the
different terms and will produce a state table specifying a particular pattern of behavior. A
number of qualitatively different behavioral patterns will emerge. It can already be seen in
Table 3 that certain transitions will be called for independently of the values of the logical
parameters; others will appear only for certain sets of values. Now that variables may have
more than one value, we use + and — overscripts instead of dashes to indicate when and in
which direction a variable is expected to change its value. The state tables for three sets of
values are presented in Table 4, using the maximal values for K;, (1), K;, (2), Kzp 4 22
(2), and letting K,; take the values 0, 1, or 2.

We will discuss the three situations in Table 4 case by case.

In Case 1, we have K,; =0, or d,(K5;) = 0, meaning that the term K, x is not effective
by itself. This can be represented graphically as follows:

In this circuit, even when synthesis of x is fully derepressed (i.c., when y is absent), the
level of x is insufficient by itself to activate the synthesis of y. In this situation, it can be
seen that there are two separate domains according to whether y > 1 or y < 1, with no transi-

tions passing from one to the other. The corresponding attractors are two stable states,

and (0.
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TABLE 4

1.Kj;=1,K3;=0,Ky;=2,K37,5,=2

2.K1;=1,K;;=1,Kp;=2,K;37 4 5,=2

11/01

10711

3.Ki=1,K3;=2,K;;=2,K;; 4, 22=2

In Case 2 of Table 4, K;; = 1, so the-interaction x ——+> y is effective and the level
of x attained in state 10 will be sufficient to stimulate the synthesis of y, which will then
repress the synthesis of x. On the other hand, the concentration of y required to repress x,
B4, is less than that needed to activate its own synthesis, ©¥,,, so when x synthesis is
repressed and x disappears, the synthesis of y will be switched off and y will also disappear.
Here again, there are two separate domains according to whether y = 2 or y < 2. The corre-

sponding attractors are a logical stable state and a logical cycle
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do 10 11 o1.
0 ]

In Case 3 of Table 4, K,; = 2, which means that the term concerning the interaction
x ——=*> y is given even more weight than in Case 2. The presence of x will activate a
sufficient build-up of y for it to continue to activate its own synthesis, even in the absence
of x, forcing the system to the stable state . Here we find the same steady state and logi-
cal cycle as in Case 2. However, there is no longer a separation into two domains. From
state _lJi/OZ, which is in the cycle, the system can either remain in the cycle (proceeding to
state 01/00) or go to the stable state (via state 12/02). The decision will depend on the
relative values of the appropriate time delays.

As pointed out in Section III, the generalized sum encompasses several situations, includ-
ing the classical logical sum and the classical logical product. The classical sum corresponds

to the parameter values Kj; = K3; =Ky ,0=10rKy;; =Ky =Kp1+22= 2, i.e., o
those cases in which x alone, y alone, or both together produte the same qualitative effect.

The classical product corresponds to the parameter values Ky =K, =0,K;1 2= 15 01
Kz] =K22 = 0, KZI +22 = 2, or KZI = Kzz = ]., KZI +22 = 2, cases in which X and \'A
together produce an effect that neither can produce alone. Taking K;; = 1, the state tables are

Classical sum:

4.K;3=1,K;;=1,Kp2=1,K33132=1

12 /01
11/01

15711

5.Kp;;=1 Ky =2,K5=2,K31 42272

(same as Case 3)
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Classical product:

6. Kyjp=1,K3;=0,K5, =0,K3; .5, =1

y

2

T. K =1,K3;=0,K3,=0,K31 420 =2

8. Ky =1,K;;=1,K33=1,K3; ., 3,=2

y
2

1 11/01
0 10/ 11

Finally, we will look at the situation when the two thresholds of variable y are not sig-
nificantly different and show that, even here, the generalized logical description is useful. The
analysis is as above, except that variable y now has a single threshold and thus only two
levels, 0 and 1. The equations become:

X= dx(KIZy)

X = dy(Kz]x + K22y)
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in which the Boolean variables x and y are written without indices since the system no
longer includes any multivalued variables. The single state table is

y
0 K, 0 1 01/0K,, 11/0K, ,
11 0 K2I+22
10 KIZ KZI

Let us consider three sets of parameter values:

9. Kj2=1,K3;=1,K3,=1,K3; ,35'= 1

Jy
1 11/01
0 16711
10. Kj2=1,K;;=0,K33 =1, K31 4 25 = 1
y
1 11/01
0
1. Kjp=1,K;;=1,K32,=0,K3; 4 25=1
y
1 11/01
0 10/11

The dotted lines in the graphs of interactions indicate that the logical value of the correspond-
ing term is weak. When, as here, the terms involve positive interactions, this is equivalent
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to considering that the interactions activate synthesis (here, of y) too weakly to bring the
concentration up to its threshold value. (In the case of a negative interaction, setting the log-
ical parameter equal to zero would not mean that the negative interaction is weak, in which
case synthesis would be constitutive, but rather that the term itself is negligible, making
synthesis always low.)

It can be seen that, whereas the naive logical description has only a single pattern of be-
havior, the generalized description has several, even when only Boolean variables are used.

Case 9, with a single stable state , corresponds to the naive logical description for the
system, with the two positive interactions on y connected by “OR”. Case 10, on the other
hand, has two stable states, and Case 11 exhibits oscillating behavior. The latter situation is
of particular interest, as discussed in Chapter 8.

Depending on the values of the logical parameters, the system can display a single stable
state with no cyclic pathway, as in the naive description (Cases 7 and 9), pure multistation-
arity with two stable states (Cases 1 and 10), pure oscillation with a cyclic pathway but no
stable state (Cases 4, 8, and 11), or multistationarity with both a stable state and a cyclic
pathway (Cases 2 and 3). In Case 3, the cycle will be followed only for appropriate values of
certain time delays.

VI. SUMMARY

In this chapter, we have shown how the naive logical description can be generalized to ac-
commodate situations in which some variables assume more than two values, without seri-
ously complicating the analysis. Any variable has a “natural’”’ number of biologically rele-
vant levels, determined by the number of elements the product x regulates. Each regulatory
interaction has a specific threshold, so if x regulates n elements, it will have up to n different
thresholds and therefore n + 1 meaningful levels: 0, 1, ..., n.

We also defined a set of n Boolean (binary) variables ‘x, 2x, ..., "x to indicate whether
the n-valued variable x is above a specific threshold (*x = 1 means x > k). These variables
are used in writing the logical relations.

Multivalued functions were trickier to define. For the logical sum, our procedure involves
assigning a specific weight to each term in the logical relation. The weighted algebraic sum
is then “discretized” according to the scale of thresholds of the corresponding variable, so an
n-valued variable will be associated with an n-valued function. The integers resulting from
the discretization of certain weights or sums of weights are called logical parameters. For
appropriate values of these parameters, the generalized sum gives the results of the classical
logical product, so this unique generalized operation includes both classical operations.

Generalized kinetic logic — although retaining the analytic simplicity of the naive de-
scription — has certain features in common with the differential description. These analogies
are discussed in detail in Chapter 8. It is important to realize, however, that generalized logi-
cal relations are completely independent of the differential description and can be derived
directly from the graph of interactions or from a sufficiently explicit verbal description. The
state tables are then readily constructed in terms of the logical parameters, and for any set of
values of these parameters, it is a straightforward matter to determine the behavior of the
system.
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I. INTRODUCTION

In Chapter 7, Section V, we presented a generalized logical description of the system

+
. /=
described by the graph x yi}, and chose several sets of logical parameter
K—’/

values for further analysis. In the present chapter, we will (1) present a differential descrip-
tion of the same system, (2) show how the logical analysis can be used to choose real
parameter values giving similar behavior in the continuous system, and (3) compare the
results of the logical and differential descriptions, using sigmoids for the latter with with n
— oo, 1 = 20, and n = 3. Our presentation is not mathematically rigorous; for demonstra-
tions, the reader is referred to Snoussi.!

II. DIFFERENTIAL AND LOGICAL DESCRIPTIONS

For the differential description, we will use the same graph of interactions as for the gen-
eralized logical description, without specifying the nature of the connection between the two

+
interactions regulating element y (x ——*> y and yi)). This was justified in Chapter 7,

where we saw that the generalized logical sum includes the classical sum and the classical
product, according to the values of the logical parameters, i.e., according to the weights
assigned to the various terms. In the differential description, the situation is much the same:
each term is assigned a characteristic weight k;; (of the j® element on the i element). We
therefore describe our system by the differential equations:

d ki Oy
& L
dt bty

M
d k n n
dy _ _koix® o kgpy® Ky
dt 5,+xr O, +y"

in which, as in Chapter 7, the blank space in the first equation denotes that in this system x
does not affect its own regulation (k;; = 0). As usual, the k;; and k_; are positive kinetic con-
stants reflecting synthesis and decay, respectively.

If the sigmoids used become infinitely steep (n — <), we get piecewise linear equations.?
For 1312 < '1922:

k121_y—1L1X

@

&l ele

=kylx + kpp?y —koy

in which the sigmoids of Equation (1) have become step functions and are replaced by
dimensionless Boolean variables.

The type of piecewise differential equation we use represents a generalization of those used
by Glass in three respects:
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1. Instead of using one Boolean expression B; with one coefficient k; as in dx;/dt =
k;B;(x1, X3, ..., Xy) — kjX;, we frequently use equations whose regulatory part is a sum
of Boolean expressions, each with its own coefficient, as in the second equation of (2).
This, of course, is how we assign a characteristic weight to each interaction.

2 We include self input in our description. In the example chosen, element y exerts a
positive effect on its own synthesis.

3 When an element acts at more than one level, we associate a distinct threshold with
each interaction. As a result, we have to use more than one Boolean variable to
describe such elements in the piecewise linear differential equations. For example, here
we use the Boolean variables y (which has the value 1 for y > ;) and 2y (which has
the value 1 for y > Uy).

Before directly comparing the differential and logical descriptions, a few words are in order
on the correspondence we might expect between the differential function H(x, y, z, ...) =
dx/dt and our logical function X. Consider a logical system that includes the relation:

X =0¢(x,y,2z, ...).

As explained in Chapter 3, each logical state, described by the varjables x, y, z, ..., has an
image, described by the functions X, ¥, Z, ..., which is nothing more than the state which
would be reached next if the operation ¢ were applied to the present state of the system, in
other words, if all the orders applied to this state were executed. For example, in the system
of Chapter 4, Section III, the image of state 0000 is 1111. This image would be the state
following 0000 only if all four orders were executed synchronously, which is normally not
the case.

The logical equivalent of the derivative is not X itself but the algebraic difference X — x;
in the situation 0/1 (in which the product is appearing and the derivative is positive) this
difference is +1; in the situation 1/0 (in which the product is disappearing and the derivative
is negative) this difference is —1.

Consider now the differential equation:

dx
E = lel(X, Y. Z, .. ) - k_lx = H(X) (3)

We know that, in general, it cannot be integrated analytically. To identify the trajectories, we
have to resort to numerical iterations, which are all variants of the Euler formula (see
Appendix 2):

Xn+1 =Xt h H(xn) (4)
Rewriting equation (3):
1 &x_k
X + K d ok, Fix,y, z, ...) )

it can be seen that (1) the left member of Equation (5) is formally identical to the right mem-
ber of Equation (4), with h = 1/k_;; x + (1/k_;) dx/dt is thus the next value of x in a Euler
iteration with a step h = 1/k_;. (2) The right member of Equation (5), (ki/k_,) F(%, y, z, ...),
is an algebraic description of the influences acting on x, in exactly the same way as ¢(x, y,
zZ, ...) is the logical description of these influences.
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iteration with a step h = 1/k_;. (2) The right member of Equation (5), (k,/k_,) F(x, y, z, ...),
is an algebraic description of the influences acting on X, in exactly the same way as ¢(x, y,
z, ...) is the logical description of these influences.

It should now be clear, from the parallel between

X=0x,y5,2, ...)

and
1 dx k
X_X+lgldt_k_1F(x’y’Z"") )
that the logical function X is the discrete counterpart of the differential
expression x + (1/k_;) dx/dt.3*
Accordingly, Snoussi’s discretization of the piecewise linear differential equations (2) (in
which 84, < ¥,,) generates the following logical relations:

X=dxki?1_y

k k
Y:dy(élx + kzjzy)

Comparing these relations with those of Chapter 7, it can be seen that the weights (Ks)
assigned to the terms in the generalized logical description correspond to the (k/k_)s. These
values, it will be recalled, represented the boundaries of the differential system, i.e., they
delimit the region of the variable space toward which the system will always move from out-
side.

In the logical description (Chapter 7, Section V), we chose several sets of values of the
logical parameters and analyzed the resulting patterns of behavior. The analysis was straight-
forward and could be extended with little effort to all 28 possible combinations of parameter
values, thus establishing the complete catalog of behavioral patterns of the system.

Similarly, in the differential description, we would like to know all possible patterns of
behavior of the system and, for each one, the range of parameter values for which it will
occur. For any given set of parameter values, it is relatively easy to calculate the steady-state
values and to determine the stability and mode of approach of each steady state (see Chapter
6), but there is no general algorithm for extracting all possible behavioral patterns directly
from the differential equation.

Our logical analysis is basically a formalization of intuitive reasoning, with the advantage
that one can be certain of not missing any behavioral patterns, no matter how unexpected or
counter-intuitive they may be. Although strictly speaking, the steady-state values of the dif-
ferential equations are not in the domain of the prediction of the logical analysis, one can
take advantage of the logical state table to predict without calculation the approximate loca-
tion of the steady states in the corresponding continuous system. This is best illustrated by
an example. The state table of the above system is

12/0, dy(Ky; + Kog)
11/0, d,(K5)

00/d,(K15), 0 10/d,(K12), dy(Kyy)
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The logical state 02/0, d,(Ky;) will be a stable state if d(K5,) = 2. In this case, we can expect
a stable steady state in the differential description. Where will it be? The value of x will be
near 0. As for y9, it will be near Ky, i.e., kyo/k_, because for values of y greater than this
boundary, the derivative dy/dt is negative, whereas for ¥, <y < Ky, it is positive. The
stable state is thus expected near (0, kyy/k ;). Similarly, if d,(K,5) = d,(K5)) = 1, the logical

description predicts the cycle 01\0 10 11 1'0, which reflects homeostatic

oscillation around the threshold values 13, and ;). In the differential description, we expect
to find a focus in the vicinity of (§,, 0,)), whenever K5 > 0, and 9, < Ky; < 9.

If all three of the above equalities hold, both steady states are found (as in Case 2 of
Chapter 7). In addition, there is a third, unstable steady state: a saddle point located near
(0, 0,,), on the separatrix. Identification of this type of unstable steady state on logical
grounds requires a slightly more elaborate analysis (see Section V).

The correspondence between logical and differential steady states and between logical
cycles and differential foci has been established by Snoussi! for piecewise linear differential
equations (in which the Hill functions become step functions) and their discretized counter-
parts. As we shall see, the correspondence remains qualitatively satisfactory down to rather
low values of n in the Hill functions.

III. COMPARISON OF LOGICAL AND DIFFERENTIAL
DESCRIPTIONS

o+

We will now return to our concrete two-element example, x yi), and

compare the generalized logical description, using four of the sets of logical parameter values
treated in Chapter 7, with the differential description, using differential parameter values pre-
dicted to give the same pattern of behavior. We will first recall the four logical tables and use
them to choose parameter values for the differential description (A); we will then analyze the
four resulting differential descriptions (B), and finally, look at the trajectories followed by the
differential system (C).

A. USE OF THE LOGICAL TABLES TO PREDICT DIFFERENTIAL

PARAMETERS

Although in the generalized logical treatment multivalued functions and variables are
used, they are still discrete, taking only the values 0, 1, 2, etc. Each variable has its own
scale, corresponding to the intervals between threshold values for the various interactions of
the corresponding element. For example, x = 1 represents a value greater than the first
threshold on the x scale and less than the second. Similarly, the values assigned to the logi-
cal parameters represent inequalities, placing each parameter in a specific interval on the ap-
propriate scale.

The differential description, on the other hand, uses real variables and continuous func-
tions, and for numerical work each parameter must be assigned a precise value. The inequali-
ties dictated by the logical image serve as a guide, but can, of course, be satisfied in an infi-
nite number of ways, so there remains a degree of arbitrariness in the choice of differential
parameters.

In what follows, we will set k_; =2,k 5, =1 and %, = 1 in all cases. For the remaining
parameters, we will choose values compatible with the inequalities dictated by the logical
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Case 1 Case 3
K 2 2

— 6 6 6 4
Kij = kijk_;
0.5 8 8 8 0.9

parameters of the system whose behavior we are trying to mimic. In Cases 1, 2, and 3, the
logical parameters K;; and K3, have their maximal value (1 and 2, respectively). This

+
means that the terms concerning the interactions y ———> x and yi) are both strong

(cf. Chapter 7). Translated into the differential system, for these three cases we must choose
parameter values that respect the inequalities K, > 3, (i.e., kjo/k_; > 9y) and Kyy > B,
(i.e., koo/k 5 > ¥4y). We will set Kyp = 12, 0y, = 3, and Ky, =8, 0, = 1, 0y, = 4 for these
cases. The difference lies in the value of the logical parameter K,;, which is 0, 1, and 2 for
Cases 1, 2, and 3, respectively. This corresponds to increasing the weight of the term
concerning the interaction x ——=> y, and, consequently, to increasing the strength of the

+
™
negative loop x y.

Case 1 — With K,; = 0 in the logical description, we should have K,; < 85 (i.e.,
koi/k_p < ¥42); we will set Ky; = 0.5. The logical table presents two stable states,
and . Their expected location in the differential description is (0, kyo/k ;) and (k/k_
1, ko1/k_p), ie., (0, 8) and (6, 0.5), respectively, with a separatrix between the domains

located close to y = ¥5,, i.e., y = 4. Fhe actual locations of the steady states are given in
Table 2.

Case 2 — With Ky; = 1, we want 01, < K, < ¥,y; we will set the real parameter

K,;, = 2. The logical table presents a stable state, , and a cycle,
00 10 11 01. From this, we can expect the differential image to have a
T |

stable state near (0, kyy/k »), i.e., (0, 8), and a focus near (¥,;, ¥y,), i.e., (3, 1), with a sep-
aratrix between the domains, located close to y = 0, i.€., y = 4 (see Table 2).



TABLE 2

Roots (@) of

Nature of the

Predicted Calculated characteristic equation steady state
1. (0, K22) . Nl —> oo (01 8)
n=20 (5 x 10-18,7.99) -0.999, -2
n=3 (0.022, 6.47) —0.4272, ~1.999
(0, Bpp)2 n—>co 0,4
n=20 (54x10-12, 4) 9,2 Saddle point
n=3 (0.092, 3.99) 0.499, -1.99 Saddle point
(K2, Ky n— oo (6, 0.5)
n=20 (5.99, 0.499) -1,-1.99
n=3 (5.52,0.441) -1.15,-1.77
2. (0,Kyp) s oo ©,8) )
n=20 (5 x 10-18,7.99) -0.999, -2 Stable node
n=3 (0.022, 6.47) —0.427,-1.999 Stable node
(0, )2 n—> oo (0, 4)
n=20 (5.4x10°12,4) 9,2 Saddle point
n=3 (0.092, 3.99) 0.499, -1.99 Saddle point
(091, 019) n—eo G, D
n=20 (3.00, 1.00) -1.49 + 14i Stable focus
n=3 (2.81, 1.04) -1.30£2i Stable focus
3. (0,Ky) n—eo 0, 8)
n=20 (5x 10-18,7.99) -0.999, -2 Stable node
n=3 (0.022, 6.47) —0.427,-1.999 Stable node
0, Opp)2 n—eo ©, 4
n=20 54x10°12, 4) 9,2 Saddle point
n=3 (0.092, 3.99) 0.499, -1.99 Saddle point
(B21:012)  noeo 3.1
n=20 (2.74, 1.008) —1.49 £19.2i
n=3 (1.68, 1.36) ~1.17+2.79i
11. (001 n—oe @, 1
n=20 (1.901, 1.005) 0.733 £ 1241
n=3 (1.528,1.173) ~1.288 £1.851

2 Predicted by the method described in Section V.,

Case 3 — Here, K;; = 2, so Ky; > 0; we will set Ky, = 7. The logical table is
similar to that of Case 2, except that the variable space is not separated into two distinct

parts, and from state 11 the system can proceed either to 01 (and follow the cycle) or to
(via 12) (see Table 2). The locations predicted for the-steady states are as in Case 2.

Case 11 — Here, the two thresholds of element y coincide (9, = 9,,). The values of
the logical parameters are Ky, = 1, K;; = 1, and K;; = 0 (cf. Chapter 7). In other words, the

+
~ ™

terms involving the negative loop x y are strong, but the weight given to the

J
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+
term concerning the autocatalytic interaction y

by itself. This is what we represent in Chapter

differential description, we must have Kj, < 945, We will set O, =09y =1, Oy = 2, and
K,, = 0.9. The logical image is a cycle, which suggests that the differential description will
have a focus located near (%,, 95) (see Table 2).

B. DIFFERENTIAL DESCRIPTION

We will now examine the behavior of continuous systems designed to mimic the four dis-
crete systems by using the above parameter values (see Table 1). In Figure 1 are shown the
nullclines of the four sets of differential equations, using n = 20. The steady states are seen at
the intersections of the nullclines dx/dt = O and dy/dt = 0. The nature of the steady states can
also be determined by linear stability analysis, as described in Chapter 6 and Appendix 3. For
n — oo, steady states are found precisely at the locations predicted by the logical analysis
(Table 2). They are quite close for n = 20 and even for n = 3.

As for the nature of these steady states, those corresponding to the cycles in the logical
description are, as expected, foci with a strong periodic component (the roots of the character-
istic equation have a high imaginary part). This is particularly clear in Case 11, whose
unique steady state is a focus. The steady states corresponding to logical stable states are
stable nodes, with negative real roots.

It can be seen in Figure 1 that for Cases 1, 2, and 3, there is also a third steady state that
we have not mentioned. Linear stability analysis shows it to be a saddle point. In fact, its
location can also be predicted on logical grounds, but, as mentioned above, this requires a
slightly more elaborate analysis (see Section V).

C. TRAJECTORIES

In Figure 2 are shown the trajectories for the continuous systems described above. In
Cases 1, 2, and 3, two initial states have been chosen such that, although they are extremely
close, their trajectories ultimately diverge, one leading to the upper steady state and the other
to the lower one. In Case 1, the pathway leads without periodicity to the upper or lower
steady state, essentially according to whether the initial value of y is “high” or “low”. In
Case 2, again the initial value of y determines which steady state is approached, but here the
lower one is approached periodically. In Case 3, the choice is between a stable node and a
stable focus, but the upper steady state can be approached even from initial points with y
low or zero, provided x is high enough. All this fits remarkably well with the logical de-
scription; even for n as low as 3, the esscntial qualitative aspects of the logical description
are preserved.

Case 11 is of special interest for the following reason. As pointed out in Chapter 6, our
logical analysis detects foci (as in this case), but does not say whether they are stable or
unstable. As a matter of fact, Figure 2 and Table 1 show that for the parameter values
chosen, the unique steady state in Case 11 is indeed a focus, which is stable for n = 3, but
unstable for n = 20, resulting in a limit cycle. This is the first time we have encountered a
limit cycle in a two-variable system. It will be remembered that for a simple two-element
feedback loop, we have demonstrated that the focus is necessarily stable (in the absence of
time delays). How does it happen, then, that in Case 11, we find an unstable focus with a
limit cycle in a two-variable system? This point will be examined in Chapter 16, where we
discuss the respective roles of negative loops in periodicity and of positive loops in multista-
tionarity and stabilization of the periodicity.
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FIGURE 1. The nullclines of Cases 1, 2, and 3 for n = 20. As usual, long dashes are
used for the nullclines dx/dt = 0 and short dashes for dy/dt = 0.

IV. BASAL LEVELS AND REGULATED DESTRUCTION

A. BASAL LEVELS OF GENE EXPRESSION
So far, we have reasoned as if a gene under positive control were not expressed at all in
the absence of its positive regulator, and as if a gene under negative control were not
expressed at all in the presence of a sufficient amount of repressor. However, this is usually
not the case; the residual expression is then called the basal level of expression of the gene.
The differential description can readily include the basal level. For a gene X positively
controlled by product y, for example, to the rate equation

dx
&= FO-kx,

in which the synthesis term is zero when y = 0, we add a constant term kg (independent of y)
to represent the basal level:

&
i ko +k; Fr(y) -k ix.
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FIGURE 2. Trajectories for Cases 1, 2, 3, and 11 for n = 20 and n = 3. For Cases 1,2, and

3, two of the trajectories shown have extremely close initial states, but nevertheless
eventually diverge.
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The generalized logical description will thus be
X =d,; Ko+Kyy)

with Kq = ko/k_; and K;= k;/k_;. Taking into account the fact that gene X might be muta-
tionally inactivated, we have

X =g,d, (Ko +Kyy)

where g, can take the value 1 (gene normal) or 0 (gene mutationally inactivated). The state
table (in which we take g, as an input variable) is

If d, (ko) = O, then the basal level of x has no physiological significance and is formally
equivalent to a complete absence of product x. Similarly, if d,(Ko) = dy (Ko + Ky), the basal
level is formally equivalent to the fully stimulated level (at high y concentration).
Obviously, if element x interacts with only one other element and thus has only a single
threshold (making x a binary variable), one of these conditions will hold. If, on the other
hand, x has two thresholds, ¥, and ¥,, and

B <dy Kp) <Py <dy Kp+Ky)

the state table becomes:

dx(Ko) dy(Ko+Ky
Ko =1 Ko7 =2)

In this case the basal level of expression (x = 1) is different from both the fully stimulated
level (x = 2) and the complete absence of product (x = 0). An example of this pattern of
expression is the RecA protein of Escherichia coli, whose basal level is required for induc-
tion of the SOS response and whose stimulated level is required to induce a A prophage (cf.
Chapter 19). .

B. REGULATED DESTRUCTION OF A PRODUCT

So far we have reasoned as though the decay of an element were strictly proportional to
the concentration of the element, making it a linear term in the differential description. This
term accounts for the unregulated, aspecific decay of the element into unspecific byproducts.
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It may also include a linear conversion of the element into another element of the system.
For example, in the system:

kl k2 k3
= X = y > Z
N |

product X is converted into y and y into z, which is a negative regulator of the synthesis of
X. (The double arrows indicate chemical conversion and the single arrow indicates a regula-
tory interaction.) The graph of interactions is

and the differential equation for the synthesis of x is

% = kl F—(Z) — kzX - k_lx

®)
=k F(2) — (ky + k_y)x

The conversion of x into y is represented by the linear term —k,x, which can be combined
with the spontaneous decay term, —k_;x.
The generalized logical description is thus:

X = dX (Klz)7
with Kl = kl/(k2 + k—l)'

Let us now consider a similar system in which the negative effect exerted by product z on
X is not via inhibition of the synthesis of x, but by destruction of x, converting it to y:

K, k, K,
= X = y:> Z.
T—= 1

This system has the same graph of interactions as the preceding one:

although the molecular mechanism of the negative interaction is entirely different. If the
“anti-x” activity of z has a sigmoid dependence on z concentration (i.e., essentially no activ-
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ity up to a critical threshold and an upper limit at high z concentration), the differential equa-
tion for x synthesis is

=k, —k F*(z) - k_jx )

& &

This raises two questions. First, when the graphs of interactions (and our intuition) tell
us that the two systems are formally equivalent, how can we justify the replacement of the
term + k;F~(z) in Equation (6) by the terms k| — k,F*(z) in Equation (7)? And second, how
do we translate Equation (7) into our generalized logical formalism? The answers to both
questions become obvious if we recall the identity from Chapter 6:

F(z) = 1 - F¥z),

LA xn

Xn 4B L T xn g g
Equation (7) can thus be written:

dx
ac (ky — ko) + koF(z) — k_ix,

which has the same form as Equation (6), apart from a constant term (which reflects the fact
that the second system has a basal level of synthesis of x even in the presence of high con-
centrations of z). The corresponding logical relation is now seen to be

X=dX(K1—K2+K2 Z).

The two systems are thus seen to have the same logical structure, in agreement with the
intuitive feeling that they are merely different mechanisms to achieve the same goal.

A concrete example of a system in which the active degradation of one of the elements is
part of the regulatory circuit is encountered in the SOS response in E. coli, in which the
RecA protein specifically degrades certain repressors when DNA replication is perturbed.
This system is discussed in Chapter 19.

V. LOGICAL IDENTIFICATION OF THE LOCATION OF ALL
STEADY STATES

When we find a logical state for which the variable vector and the function vector have the
same values, we call it a (logical) stable state. We conjectured that each logical stable state is
represented by a stable steady state in homologous differential systems with sufficiently
steep sigmoids. Snoussi!' has demonstrated that this is indeed the case for n — eo and that in
this situation one finds stable nodes whose coordinates correspond to boundary values (0 or
Ks).

So far, the other steady states of the differential description had not been identified on log-
ical grounds; in the best cases, they could just be inferred. More specifically, when we have a
stable cycle in the logical description, we find a focus in the differential description.
However, in this case, periodicity is seen at the logical level as a cyclic sequence of logical
states; no logical state corresponds to the focus itself. In fact, the logical equivalent of the
focus is located at the junction of logical states, i.e., at threshold values (Os). For other dif-
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ferential steady states (c.g., saddle points or unstable nodes), the logical identification was
even less clear, and in any case the logical equivalent, if any, was located between logical
states.

This suggests that the logical description should not ignore the threshold values, but,
rather, consider them explicitly as logical values. Consider a three-level variable:

x=0 x=1 x=2
So far we had considered only the situations:
x < 19, described by x = 0,
19 < x < 20, described by x = 1,
2% < x, described by x = 2,

and we ignored the situations x = 1% and x = 29, To cover these situations, we now introduce
additional logical values symbolized by /1 and 24, respectively. The scale is thus 0, 1%, 1,
299, 2. It should be clear that a logical threshold level, say 16, corresponds to different real
values according to the variable considered.

From now on, we will call “integer” logical states the classical logical states whose
representative vector includes only integers, and “noninteger” logical states, the states located
on one or more thresholds.

A state located on one threshold is at the junction between two adjacent integer states.
More generally, a state located on » thresholds is at the junction between 2" adjacent integer
states; for example, state 10 20 is between the integer states 01, 02, 11, and 12.

Consider now the relation: ¥ =d, (K 2x); for any x < 1 (including ! 6 for reasons of con-
tinuity), ¥ = 0, for x =2, ¥ = K, but for x = 26 one cannot ascribe a defined value to ¥; all
one can say here is that its value is included in [0, K], and we write:

Y e [0, K]

The extended state table (which includes the noninteger states) is thus:

This illustrates the following point of general interest. If we consider a variable (say x) of
a noninteger state, the X component of the image of this state can be well defined (as is the
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case when the image of this variable is the same for all the surrounding integer states).
Alternatively, the image of the variable can be an interval (or a set of intervals).

The logical steady-state equations are: x =X,y =Y, ..., and the logical states can thus
be identified as the values of the vector xy ..., which are consistent with all of these
equations. (Clearly, when the image of a variable is an interval, one cannot ask whether x
and X are equal, but whether their values are consistent with x = X, that is, whether the
value of x is included in the interval).

1. Let us first consider the simple, one-element positive loop: X = d, (Kg + K; x). The
extended state table is

K,
10 [Kg, Ko, 4]

Ky

According to the values of the logical parameters, we have

with two logical stable states where Ky = 0 and K, , ; = 1. If we momentarily leave the
logical description, these three situations can be visualized as follows in real space:

We see that there is multistationarity (and there is a steady state at x = ) if, and only if,
K <8 <K+ K| (which corresponds to the logical parameter values Ky =0 and Ky, ; =
1). In other words, there is multistationarity (and there is a steady state at x = 0) iff the jump
from K to Ky + K, encompasses the threshold valu€ 6.

-If we now return to the logical description, we have:

for x =0, X =K,
forx=1, X=Ky .,

forx =10, Xec [Ky,Kp. 1]
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The steady-state equation is x = X. Thus,
x = 0 is a steady state iff K, =0,
x = 11is a steady state iff K,, ; = 1, and
x =16 is a steady state iff 10 € [Kj, Ky, ;].
that is, iff the jump from K, to K, , ; encompasses the threshold value 16.

Clearly, if Ky =0 and Ky, ; =1, x = 0 and x = 1 are both (stable) steady states, and x =
19 is also a steady state because !0 € [0, 1]. Otherwise, we have only one steady state, either

@ or @ The fit with differential description is perfect; the steady state at x = 16 is the
logical equivalent of the unstable steady date found at x = 6 in the differential description.

2. Consider now a slightly more elaborate system — a two-variable system with a single,
one-element loop:

X =d,(Ko+K;; %x)
or,

Y=dy(Ky ! x)

which can be symbolized more simply by the matrix:

& o

+1 0

A look at the matrix shows that there is a positive feedback loop of x, acting on itself at
threshold 26 (in short, a loop “%x”, circled in the matrix) and that y exerts no feedback what-
soever; moreover, it is seen that x exerts its effect on ¥ if x > 1 and on X only if x = 2.
The state table is

0 K, 0
o K, [0, K3;]
1 K, K,y

20 (K9, K¢ 4 11] K,

2 Ky 11 . Ky

Foranyx<1, X =K,
Forx =2, X=Ky,11

For x = 26, Xe [Ky, Ky, 1]
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If ko <1and Ky, 1; =2, X € [0, 2] and hence, 26 € [0, Ky, ;;] in agreement with the
steady state equation x = X. According to whether K,; = 0 or 1, the corresponding steady

state will be or (and the third steady state @0) or @D).

For steady states located on two or more thresholds, a rigorous treatment requires addi-
tional considerations, which will not be developed here (but see Thomas’). We will neverthe-
less briefly consider some simple cases:

3. A simple, two-element positive loop.
X =d,(Kpp 1y)

— or,
Y= dy(K21 1X)

which can be symbolized more simply by the matrix:

The positive loop between x and y, acting at their threshold ' (in short, the loop “ly 1y
is circled. The state table is

0 0 Kz Ky
0 1 0 Ka
1 0 K2 0
1 1 0 0

(with two stable states Q1) and {0 if K;, and K;; both equal 1, and only one stable state
if either or both of the Ks equal 0).

We see that:
forx=0 Y =Ky,
forx=1 Y=0
forx=16 Y e [0, Kyl

Similarly,
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fory=0 X=K;,
fory=1 X=0
fory=16 Y e [0, K;,]

Thus, when K;; and K,; both equal 1, state 1016 is steady because x =16, X € [0, 1] is
consistent with the steady equation x = X, and y=16,Y ¢ [0, 1] is consistent with the
steady state equation y =Y.

Note that the image of a state located on a threshold is generally not defined; however, if
the state is a steady state, it has a well-defined image, identical to itself.

It is seen that for the parameter values that give multiple steady states, in addition to the

steady states \O(01,( ) and \O(10, () already detected in the naive description, we have a

steady state , which, in fact, corresponds to the saddle point of the differential
description:

Could there be other steady states located on thresholds in this system? For example,
could 0'60 be a steady state? This state is located between the integer states 00 and 01. The
“local” state table (which gives the integer states adjacent to the noninteger state considered)
is

[0, Ky,]

One sees that (for reasons of continuity) for y =16, ¥ = K;;. Thus, whatever the (integer)
value of K,;, one cannot have y = ¥, and state 016 cannot be steady.

A screening of all the noninteger states of the system would show that 19! is indeed the
only possible noninteger steady state of this system, and that it is steady if and only if K,
and Kj; =1 (and not K;, and K,; = 1, because in this system 1 is the maximal logical
value of x, X, y, Y, and hence K;; and K,;).

Such a screening can be made “by hand” or, for more complex systems, by an existing
computer program. As a matter of fact, this screening is fortunately not really necessary. As
will be briefly discussed below, each feedback loop can generate (within the subspace of the
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variables involved in the loop) a characteristic steady state, located at the thresholds of the
loop and whose presence indicates that the loop is effective. In the present case, our positive

loop “Ixly” can generate a steady state at 1616, and the conditions for its occurrence (K,
=K,; =1) are also the conditions for the loop to be efficient, i.e., the conditions for
multistationarity.

4, A simple, two-element negative loop

X =d, (K, ly)
or,
Y =d,(Ky x)

which can also be symbolized by the matrix

in which the negative loop “!xy” is circled. The state table is

xy

00 Ky 0
01 0 0
10 Kj; K,
1 0 K,

which has a cycle but no classical logical steady state if Ky = Kj; = 1:

forx=0 Y=0

forx=1 Y =K;,;

forx =10 Y € [0, Ky;]
Similarly,

fory=0 X=K12

fory=1 X=0

fory=16 Y e [0, Ky]

Thus, when K;, and K,; both equal 1, 16'6 is a steady state, because for these parameter
values '8 e [0, K;;] and !0 € [0, K51, in agreement with the steady-state equations.
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It is readily seen that for these values of the logical parameters, the single steady state is
1616, So far, the logical description has not shown the steady state itself. Now, in addition to
the logical cycle

00 10 11 > 01,

O |

we see the logical steady state 1616, which is the equivalent of the focus of the differential
description.

Again, a simple look at the interaction matrix can provide much information. There is no
positive loop and, consequently, there can be only one steady state. For “appropriate” param-
eter values (K;; =K,; = 1), the steady state will be at 1016 and the loop will be efficient
(homeostasis will be ensured); otherwise, we will have a classical (integer) logical stable
state.

5. We will now take the example treated in logical terms in Chapter 7 and in differential
terms in the first sections of this chapter:

X =d,(Ky)
Y =d,(Ky 'x+Kp %)

The interaction matrix and state table are

00 K;; 0
01 0 0
02 0 K2
10 Ky, K;;
11 0 K,

12 0 K3y 122
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Again, we circled in the matrix the interactions that create feedback loops. There is a nega-
tive loop between variables x and y, acting both at their threshold '@ (in short, a negative
loop “Ix1y”) and a positive loop of y on itself, acting at threshold 28 (in short, a positive
loop “?y”). We may expect their characteristic steady states at !6'@ and -2 (that is, y = 20
and the value of x remains to be determined), respectively. We can predict which parameter
values will ensure homeostasis, which will ensure multistationarity, and which both, just by
looking at which parameter values ensure the occurrence of either or both characteristic
steady states.

State 16'6 is at the junction between the integer states 00, 01, 10, and 11. The local state
table is .

Reasoning as above, we find that the conditions for the occurrence of a steady state at 1616
are K;, = 1 and K,; = 1. Can there be steady states of the type -6 (which would ensure
multistationarity)? Let us try the three possibilities 026, 162 6, and 126.

026 026 126

0K31 422

OKZI +22

Since X = 0 for both states 11 and 12, it is also O (for reasons of continuity) for state
120; thus, for this state x = 1 but X = 0, and it cannot be steady. The same kind of reasoning
applies for state 1620. In contrast, state 020 can be steady; the only condition is that 26 € [0,
K;,], that is, K5, = 2. -

Thus, we see that in this system the condition for homeostasis is simply K;; = Ky =1
and the condition for multistationarity, K,; = 2. The conditions to have both homeostasis
and multistationarity are K;, = K»; = 1 and K,, = 2. With these parameters, the classical
state table is



120 Biological Feedback

We see only one steady state, ©2), in this table but we know there are two others:
and . The complete state table becomes:

This description, of course, fits with that of Chapter 7, but in addition we see the logical
equivalent of the focus (1616) and of the saddle point (026) of the continuous description
given in Chapter 8.

The above provides a more general view of processes that have been discussed throughout
this book.

First, one can check that a system without any feedback loop has a single, stable steady
state, already detected in our naive description under the name “logical stable state”, identified
now as an “integer” steady state, and corresponding to a stable node in the differential
description.

Consider now a system comprising, among other interactions, a feedback loop that
involves variables x, y, and z, acting above thresholds, say, 20, 16, 20, respectively. For
proper values of parameters, the loop will be efficient and endow the variables in question
with multistationarity or homeostasis dccording to whether it is positive or negative. In
either case, the criterion of the efficiency of the loop will be the presence of a steady state at
the location x =26, y = 16, z = 20 in the subspace of the variables involved in the loop.

‘When a system comprises two or more feedback loops that have no variables in common,
one must also consider a steady state located at the relevant thresholds of all the variables
involved. For example, in the system
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there is a negative feedback loop on variable Zx and one on variable 2y, According to the
parameter values, there will be a steady state 19 (imposed by the first loop), —26 (imposed
by the second loop), or 1626, “between” the two loops (00 if neither loop is efficient).

One can now ask in a more general way how one can tell whether a state is steady. Con-
sider a state in which n of the variables are located on thresholds. One can convince oneself
that this state is not steady unless the variables in question form an n-element loop (with
each variable acting at the threshold considered), or else they form two or more loops that do
not share any variables. If, however, one of these conditions is fulfilled, the state can be
steady, provided the parameter values meet well-defined constraints, as follows. A state
located on n thresholds is at the junction of 2" integer states. Among the transitions between
these states, special attention must be paid to those transitions-generated by the loop consid-
ered. For each of these transitions, the jump of the relevant function must encompass the
corresponding threshold of the variable.

For example, the in the system

(last cases in Chapter 7), state ! 810 could be steady because variables x and y form a feedback
loop involving these thresholds. Are there parameter values for which 1010 1s indeed steady?
The state table is

We see that the value of function Y can change as a result of a transition of either x or y.
However, as regards the loop that may generate a steady state at 1919, the relevant change is
the crossing of its threshold value by variable x: transitions 00 — 10 (in which ¥ jumps
from O to K,;), and 01 — 11 (in which Y jumps from K3, to Kz; , 25). The conditions for
19! 0 being steady are

1.  That the jump of function X from K;, to 0 encompasses the threshold value of
variable x; thus, '8 € [0, K;,]. (In practice, K;; = 1.)

2. That the jumps of function Y from O to K;; and from Kj; to K37 422 both
encompass the threshold of variable y; i.e., 10 e [0, K] and 10 € [K;3, K31 4 22].
(In practice, one needs Kp; =1; K3, =0; K31, 22 = 1.)
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I. THE NOTION OF FEEDBACK

Stable entities such as cells, organs, organisms, societies, and sufficiently complex
machines must constantly receive information not only about the external environment (via
input variables), but also about the state of some of their own elements. The information is
then used to make suitable adjustments (via internal functions). This is called feedback, or
retroaction, operating on internal functions. The basic principle is that any deviation Ax in
the value of a variable x triggers a readjustment of x itself. An element can affect its own
rate of synthesis (or evolution) either directly or via a chain of interactions with other ele-
ments; e.g., substance x may affect the evolution of y, which affects that of z, which in turn
affects that of x. Elements connected by a closed chain of interactions of this type form a
feedback loop. 1t is clear that each element of a loop affects its own rate of synthesis indi-
rectly via the chain of interactions; this is feedback proper. The elements of a simple feed-
back loop are not subject to other interactions; each element is directly affected only by its
immediate predecessor.

II. SIMPLE FEEDBACK LOOPS, POSITIVE OR NEGATIVE

A simple n-element feedback loop involves n interactions, each of which can be positive
or negative. The number of different loops possible thus grows very rapidly with the number
of elements. However, a major simplification results from the important observation that in
any simple feedback loop, either all elements exert a positive effect on their own evolution
or all exert a negative effect on their own evolution. There are thus two basic classes
of simple feedback loops: positive and negative.

This fundamental fact, although intuitively obvious to some people, is so important that
we will look at it a little more closely to see why it is so. Let us first examine a simple
feedback loop in which all interactions are positive. Here, each element stimulates the evolu-
tion of its follower and hence, indirectly, of itself, whatever the number of elements. An
increase (or decrease) in the concentration of any element will stimulate (or depress) the rate
of synthesis of its follower, and this effect will work its way around the loop, ultimately
reaching the original element. Thus, each element exerts a positive effect on its own evolu-
tion: an increase stimulates its evolution and a decrease depresses it.

Let us now imagine a simple n-element loop with a single negative interaction (and
n— 1 positive interactions). Here, an increase in the concentration of any element will stim-
ulate the evolution of its followers until the negative interaction is reached. The increased
concentration of the negatively acting element will depress the rate of synthesis of its
follower, and this effect will then be transmitted, via the remaining positive interactions, to
the original element, depressing its rate of synthesis. Similarly, a decrease in the
concentration of any element will depress the evolution of its followers up to the negative
interaction, at which point the effect becomes stimulating (less of a negative regulator
stimulates the rate of synthesis of the following element). Thus, each element of this loop
exerts a negative effect on its own evolution: an increase depresses its synthesis and a de-
crease stimulates it.

The principle is now clear: each negative interaction in a loop reverses the effect of a per-
turbation; increases become decreases and vice versa. Thus, the effect an element exerts on
itself will be positive if the number of negative interactions in the loop is even and negative
if it is odd. It is also clear why each element of a given loop must have the same effect
(positive or negative) on its own evolution: it is because this effect results from going
around the entire chain of interactions. The starting point is immaterial, what counts is the
number of negative interactions, each of which reverses the effect of a perturbation.

We can summarize the above remarks as follows. A simple feedback loop is posi-
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FIGURE 1. Homeostatic (a) and epigenetic (b) regulation. The arrows indicate the
evolution of the regulated variable.

tive or negative according to whether it contains an even or odd number of
negative interactions. In a simple positive loop, each element exerts a
positive effect on its own rate of synmthesis, whereas in a simple negative
loop, each element exerts a negative effect on its own rate of synthesis.

It is interesting to note that in a formal sense, all positive loops are equivalent to each
other and all negative loops are equivalent to each other, at least in terms of the effect an
element exerts on its own synthesis. Intuitively, it is clear that a chain of positive inter-
actions is formally equivalent to a simple direct positive interaction between the two extreme
elements, and that any two negative interactions cancel out. In this way, any simple feedback
loop can be reduced, on paper at least, to a one-element loop, positive or negative according
to the number of negative interactions (even or odd) in the original loop. In actual fact, how-
ever, a simple multielement loop contains more information than just its parity, positive or
negative. Although the sign determines the essential character of the regulation involved, as
discussed below, loops of different length can express this behavior in different ways.

III. THE BEHAVIOR OF POSITIVE AND NEGATIVE
FEEDBACK LOOPS

As briefly mentioned in the Prologue, there are two basic types of regulation that give
rise to diametrically opposite patterns of behavior: homeostatic regulation tends to maintain
a variable near a specific (supposedly optimal) value and epigenetic (or differentiative) regula-
tion forces the system to choose between the extreme values of a variable and to keep the
variable permanently at one or the other level (Figure 1). These two types of regulation are
mediated by simple feedback loops: homeostasis by negative loops and differentiation by
positive loops. This is probably already clear to the reader, who will have noticed that we
deliberately chose simple feedback loops as examples in Part I. We will illustrate these two
behavioral patterns here with concrete examples.

A. THE NEGATIVE LOOP

An example of a biological system that behaves as a simple negative feedback loop is a
product x which inhibits its own synthesis. This type of regulation is observed for many
metabolites such as amino acids. At low concentrations of x, synthesis will be uninhibited
and the pool of x will build up. At high concentrations, on the other hand, synthesis will be
blocked. Under these conditions, the concentration will drop for any of several reasons: the
cell may be using x (e.g., incorporating it into proteins or other macromolecules) or excret-
ing it, x may be metabolically unstable (e.g., a precursor of another metabolite), and in any
case x will be diluted out by growth. When the concentration of x has dropped sufficiently,
synthesis will no longer be efficiently inhibited. Thus, the concentration of x can be
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expected to oscillate around or approach a certain fixed value, intermediate between the
extreme (unregulated) values that would be obtained if synthesis were permanently inhibited
or never inhibited; this is homeostasis. Since, as discussed above, all simple negative feed-
back loops are formally equivalent in the sense that any element in such a loop exerts a neg-
ative effect on its own rate of synthesis, we conclude that simple negative feedback
loops result in homeostasis. This point is treated in detail in Chapters 10 and 11.

In real experimental conditions, oscillation is not usually observed in one-element sys-
tems. As discussed in Chapter 6, synthesis tends to stabilize at a rate equal to the rate of
decay or dissipation. With more elements or with appropriate time delays, oscillations can,
in fact, occur, either damped or permanent.

Metabolite pools, to come back to our example, are normally maintained at a fixed level
in a given environment. A number of different mechanisms have been discovered for bring-
ing this about, but all are based on a negative feedback loop. One, called end-product inhibi-
tion, involves direct inhibition, by the final metabolite X, of an enzyme involved in the
biosynthesis of x. This is usually the enzyme that catalyzes the first reaction specific to syn-
thesis of x, thus avoiding accumulation of intermediates. ! End-product inhibition is a highly
efficient, rapidly acting homeostatic mechanism. A second mechanism is end-product repres-
sion of enzyme synthesis. In many biosynthetic pathways, the relevant genes are regulated
by a repressor which is only active when the concentration of the final metabolite is high.?
This mechanism is a useful energy saving device for the cell since it turns off the synthesis
of unneeded enzymes. A third mechanism, discovered by Yanofsky and co-workers,3 is called
attenuation. A typical example, in fact the first discovered, is that of the genes involved in
typtophan biosynthesis. These genes form an operon, transcribed in a single mRNA
molecule. When the tryptophan pool is normal, transcription starts at the usual site, but is
efficiently terminated 140 nucleotides away, before any of the relevant genes have been tran-
scribed. This termination requires a particular configuration of the short mRNA molecule,
which can only occur if the mRNA is rapidly translated, i.e., if the ribosomes are close be-
hind the RNA polymerase. If translation is slow, the mRNA takes on a second configuration
which prevents the transcriptional stop signal from forming, and the entire operon is then
transcribed. The short mRNA codes for a “leader peptide” of 14 amino acids, containing two
adjacent tryptophan residues. Its translation speed is therefore very sensitive to the trypto-
phan concentration: if tryptophan is limiting, the leader peptide will be translated slowly and
the mRNA will assume the nontermination configuration, resulting in efficient transcription
of the entire operon. Thus a low tryptophan pool rapidly stimulates synthesis of the trypto-
phan biosynthetic enzymes.

Attenuation, like end-product repression, prevents the synthesis of unneeded enzymes.
These two mechanisms are formally equivalent to end-product inhibition and will, in fact,
stabilize metabolite pools at a fixed level, but the stabilization can be extremely slow. If, for
example, a metabolite (such as tryptophan) suddenly appears in the medium, repression or
attenuation will immediately repress the synthesis of the relevant enzyme, but will not
inhibit the enzyme molecules already present in the cell that will tend to overproduce the
metabolite in question. The enzyme molecules must simply be diluted out by growth, so
several generations may be required before the pool size returns to its normal level. End-
product inhibition, in contrast, would immediately block the synthesis of the metabolite.
Thus, the same logical circuit — a simple negative feedback loop — is carried out by the
cell via very different molecular mechanisms to respond to different physiological needs.
End-product inhibition maintains a constant metabolite pool, whereas end-product repression
and attenuation maintain enzyme levels appropriate to the cell’s needs.

B. THE POSITIVE LOOP
An example of a biological system that behaves as a simple positive feedback loop is a
gene X whose expression requires the presence of its own product x. This is the case, for
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example, for the cI repressor in A lysogens* (cf. Chapter 20). If we provisionally neglect the
role of two other regulators of cI expression, the analysis is straightforward: either x is
present, in which case it promotes its further synthesis (via gene X expression) and thus
remains present, or x is absent, gene X cannot be expressed, and x remains absent, The Sys-
tem is seen to have a choice between two stable steady states in which the variable is main-
tained at one or the other extreme value. This is epigenetic or differential regulation.

Again, the formal equivalence of all simple positive feedback loops permits us to con-
clude that simple positive feedback loops result in epigenetic regulation,
with multiple steady states. This point is treated in detail in Chapters 12, 13, 14, and
15.

The positive autoregulation of the A repressor is thought to play in important role in
prophage induction. Lysogenic bacteria harbor a prophage whose repressor prevents the
expression of other phage genes. If the cell’s DNA should become damaged (for example, by
ultraviolet radiation), the SOS response will be induced and A repressor will begin to be
degraded by the RecA protein (cf. Chapter 19). As long as the rate of this degradation is
minor, repressor synthesis can maintain a sufficient pool of active repressor. If, however, the
repressor concentration drops too low to stimulate further synthesis, the cI gene is suddenly
turned off and the prophage is quickly derepressed. This makes induction an all-or-none phe-
nomenon. The point at which prophage induction is irreversibly triggered depends on the
threshold of repressor autoregulation. In the case of phage A, it corresponds to a level of
DNA damage that normally leaves the bacterium little chance to survive. The induced phage
leaving a damaged cell is therefore somewhat like a rat leaving a sinking ship, and positive
autoregulation of the repressor lets the phage take a position somewhere between the captain
who goes down with the ship (near-zero threshold*), and the nervous passenger who aban-
dons ship as soon as the going gets rough (positive autoregulation with a very high thresh-
old** ). In all cases, however, there are two stable steady states, in which the cI gene is per-
manently on or permanently off.

IV. INDIVIDUAL CONTROLS VS. FEEDBACK LOOPS

It is a common error in discussing biological regulation to confuse individual regulatory
controls (which may be positive or negative) and feedback loops (which may also be positive
or negative). Feedback loops consist of circular series of interactions, which may be all posi-
tive, all negative, or mixed. In particular, a positive loop may include (an even number of)
negative interactions and a negative loop can contain any number of positive interactions.
On the other hand, biological regulation, brought about by positive or negative interactions
between elements, does not necessarily form a feedback loop. For example, the RecA protein
is a negative regulator of the A repressor — it degrades the repressor after ultraviolet irradia-
tion (cf. Chapter 19). Although it is a fundamental regulation and the basis of lysogenic
induction, it clearly does not constitute a feedback loop since the A repressor does not regu-
late expression of the RecA protein.

When one of us (R. T.) discovered positive control of gene expression, the difference be-
tween positive and negative regulation seemed fundamental.5 Today, we feel that the real
essence of a regulatory circuit is not whether any individual control step is positive or nega-
tive, but rather whether the feedback loops involved are positive or negative. In fact,
although positive regulators are common in nature, one could, in principle, construct all
control networks using only negative interactions. With only positive regulatory inter-
actions, however, circuits would be limited to positive loops and would be quite incapable of
accounting for most biological behavior.

*  Oressentially no autoregulation: repressor can be made even in the face of massive repressor degradation.
**  Repressor synthesis is turned off after even a slight drop in concentration.
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To clarify these notions, let us consider the lactose operon, which was the first system of
biological regulation to be understood through the impressive work of Jacob and Monod.6 It
was known from the pioneering work of Monod, Cohn, and co-workers that the bacterium
Escherichia coli does not synthesize the proteins required for lactose utilization unless there
is lactose in the medium. Jacob and Monod showed that this is brought about by a negative
regulator, the lac repressor, which prevents the expression of the relevant genes in the
absence of lactose. In the presence of lactose, the repressor is inactivated (in fact, by allo-
lactose, a simple derivative of lactose), the lac genes are expressed, and lactose can be catabo-
lized. This regulatory scheme, which had a tremendous impact on modern biological think-
ing, involves a negative interaction — that of the repressor with the lac genes — but is not
a feedback loop, positive or negative. The system can, in fact, be included in a feedback loop
simply by considering another interaction. Lactose must enter the cell to lead to induction,
and at low exogenous lactose concentrations, diffusion is insufficient. Entry therefore
requires the lactose permease, which is only synthesized in the presence of lactose. This typ-
ical vicious circle results from a positive feedback loop: permease is synthesized only if lac-
tose can get into the cell, but entry requires permease. This example is discussed in Chapter
17.

V. KEY TO PART 1II

In Part II, we are concerned with feedback loops: what they are, how they work, and what
patterns of behavior they can produce. We first consider simple feedback loops, whose con-
stituent elements are independent of the other internal variables in the system. We show how
simple negative loops generate homeostasis, with or without oscillation (Chapters 10 and
11) and how simple positive loops generate multistationarity, i.e., differentiation (Chapters
12 and 13). In these chapters, we present the logical (Boolean) analysis and the differential
description of feedback loops. For both positive and negative loops, we begin with the dif-
ferential descriptions (Chapters 10 and 12), despite the fact that (1) our approach has involved
the development of a logical method and (2) most biologists find the differential description
more difficult. We chose this order because biologists tend a priori to have more confidence
in the differential description, despite its heaviness. Basically, they consider the differential
description reality and the logical description its caricature. Indeed, we ourselves originally
thought this! In actual fact, this attitude is inaccurate for several reasons. First of all, experi-
ence has shown that there is usually a broad domain of parameter values for which the two
descriptions agree qualitatively, so the essential behavioral patterns of a continuous system
can be deduced from the much easier analysis of its discrete Boolean counterpart. Second,
although in the differential description the value of each variable can be calculated for each
point in time to as many decimal places as we wish, this is only an illusion of accuracy: in
fact, for each interaction in the system, the description includes a precise mathematical curve
(usually a sigmoid) whose exact shape and parameters are often quite arbitrary. However, the
elegant differential equations, with all the power and prestige of quantitative analysis, tend to
make one forget their arbitrary aspects, whereas it would be difficult to forget that step func-
tions are idealizations. Finally, the differential system almost invariably neglects the exis-
tence of absolute, incompressible time delays (such as those required for the transcription and
translation of a gene after it has been turned on). Actually, certain differences between the
discrete and differential descriptions vanish if time delays are introduced into the latter; e. g.,
one- and two-element negative loops can exhibit sustained oscillations (cf. Richelle?).

In the remainder of Part II, we examine systems which include more than a single feed-
back loop to see how more complex patterns of behavior can be generated. In Chapter 14, we
show how a transient signal can result in a lasting change of behavior; in Chapter 15, we see
how one can easily obtain many steady states; and in Chapter 16, we illustrate some elemen-
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tary effects produced by combining positive and negative feedback loops in more complex
circuits. We hope that some readers at least will be amazed at the rich variety of behavior
that can result from relatively simple logical circuits.
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I. INTRODUCTION

Simple negative feedback loops generate homeostasis, as discussed in the preceding chap-
ter. A simple loop is negative if it comprises an odd number of negative interactions. In this
chapter, we will consider sigmoid interactions or their limit case, the step function. In actual
fact, much of what is said about sigmoid functions can be extended to other monotonic func-
tions. For instance, some of the interactions of a loop can be linear without changing the
qualitative picture.

Homeostasis can be illustrated by the Watt regulator, by natural or man-made ther-
mostats, or by biological regulatory mechanisms that block further synthesis of a metabolite
when its concentration is already high. In such systems, an element exerts a negative retro-
action on its own further evolution, i.e., all are based on a negative feedback loop. In
Chapter 9, we showed that simple negative loops generate homeostasis. In the present chap-
ter, using the differential description, we analyze kow they do this: under what conditions and
to what extent homeostasis is actually obtained and when it leads to stable periodic behavior.
(See References 1 to0 5.)

II. DIFFERENTIAL DESCRIPTION OF SIMPLE NEGATIVE
LOOPS

A. THE ONE-ELEMENT NEGATIVE LOOP
1. General
The simplest negative loop consists of a single element x, which exerts a negative effect

on its its own synthesis (xi)). The higher the concentration of x, the lower its rate of

synthesis.

There are many genes whose expression is repressed by their own product. Strictly speak-
ing, this is usually not a true one-element negative loop since most gene products are pro-
teins manufactured by an mRNA intermediate and it is often the latter whose synthesis is
regulated. In this book, we shall usually treat gene expression as a whole, but one can, of
course, explicitly formalize transcription and translation if necessary. In any case, treating
the one-element negative loop is useful, if only because it is the simplest possible case.

Our system can be described as follows:

% =H(x) = kF-(x) - k. x 1)

in which, as usual, F- is a decreasing Hill function and k and k_ are positive kinetic con-
stants related to the rates of synthesis and decay of substance x, respectively. We consider
only nonnegative values of x because it is a concentration. It can be seen from Equation (1)
dx
dt
tonically approaches 0 for high values of x, and a negative term (decay), which is nil for x =
dx

dt

that comprises a positive term (synthesis), kF~(x), which equals k for x = 0 and mono-

0 and increases proportionally to x. Thus (see Figure 14, in which = is plotted as a func-

. . ... dx. V. .
tion of x), for low values of x, the time derivative E 1s positive and x increases, whereas for

high values of x, it is negative and x decreases.
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FIGURE 1. One-element negative loop: %x = H(x) = kF(x) — k_x. (A) The time derivative

H(x) as a function of x. The intersect of the curve with the x axis is the steady-state value x°.

In our particular case, H(x) = —x. (B) The steady-state equation % =0 or kF(x) —

1+x3
k_, =0 can be written x = kEF‘(x), or x = G7(x). If, instead of plotting H(x) as a function of
x, one plots G7(x), the steady state will be given by the intersect between G~(x) and the

bissectrix. In the particular case given here, the steady-state equation is ———5 —x =0, or x

1+x
=G x)= 1—4_2?. The steady-state value (the solution of the steady-state equation), x° = 1, is

readily found by iteration (see Appendix 1).

2. The Unique Steady State of the One-Element Negative Loop
When the system is at steady state, we have %X = H(x) = 0, and the system will remain as

it is, in the absence of external change. In our case, the steady-state equation of the system is
kKF-x)-kx=0 2

The solution(s) can be visualized by plotting H(x) as a function of x and looking at the inter-
section(s) with the x axis (Figure 1A). It is often more convenient, however, to rewrite the
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steady-state Equation (2) in the form:

X = %F—(x)

The solutions are those values of x for which k£ F(x) and x itself are equal, in other words,
the values of x at the intersects between the graphs %F_(X) and x (which is the bissectrix of

the positive quadrant; see Figure 1B). Since % F(x) is a positive, monotonically decreasing

function of x, it will have exactly one intersect with the bissectrix. Our negative loop thus
has only one steady state.

The algebraic Equation (3) cannot be solved analytically for n > 3, where n is the value of
the exponent in the Hill function F~(x). As a first step, we have solved it graphically (see
Figure 1A and B).

Fortunately, for any given values of the parameters %, 0, and n, the steady state can be
calculated using an appropriate iterative (numerical) method (see Appendix 1).

As shown in Appendix 3 and Chapter 6, for a one-variable system in general, a small per-
turbation will regress or amplify (and, accordingly, the steady state will be stable or unsta-

dH®xY) . . o
18 negative or positive, in other words, on whether

ble), depending simply on whether

the slope of H(x) at x* is negative or positive,
In the case of the one-element negative loop, H(x) is monotonically decreasing, with
H(0) > 0. This implies that (1) as noted above, there is a single steady state and (2) since the

slope dx S negative everywhere, and in particular at x9, the unique steady state x0 is stable.

3. The Domain in Which a One-Element Negative Loop Effectively
Promotes Homeostasis
At this point, we would like to consider the steady-state value in the extreme case of a
very steep sigmoid (n — o in the Hill function). We thus have

llz—F‘(x, 0)=0forx>0

lkZF*(x, 0) zk%forx <0

The steady state is located at the intersect of this curve with the bissectrix y = x. Clearly,
there are two qualitatively different situations, according to whether k/k_> 6 or k/k_< 6. The
steady-state value in the first case is x° = 6 and in the second, x0 = k/k,_ (Figure 2a and b).

The interest of this observation can be seen by the following reasoning. A steady-state
value x0 = k/k_ is the same as that of an unregulated system in which product x is perma-
nently synthesized at a constant rate k independently of its concentration (e, dx/dt=k -k_
X, which has the steady-state value x0 = k/k_). Thus, for k/k_ < 0, the system is essentially
unregulated and there is no homeostasis. The homeostatic effect of the negative loop, which
makes the rate of synthesis of x dependent on its own concentration and provides a steady-
state value significantly lower than k/k_, is only effective in the domain of parameters k/k_ >
0. In this case, the steady-state value of x is close to 0 itself (the higher n, the closer it will
be). In the case of a thermostat, this simply means that it is impossible to regulate the
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K -
?_F(X)

FIGURE 2. When does a one-element loop effectively promote homeostasis? Plot of k£ F(x, 0) as a function of

X, for an extremely steep sigmoid (n — o). As usual, the steady state x° is given by the intersect of this curve
with the bissectrix.

@kk =20,6=1.
b)k/k_=05,0=1.

In the first case, k/k_> 0, the steady-state value is = 6 and homeostasis is effective. In the second case, k/k_< 0
and the steady-state values is k/k , as if there were no regulation.

system to a temperature 6 higher than that obtained by leaving the heater permanently in the
“on” position!
To the extent that homeostasis is the “purpose” of negative loops, one might say that (for

high values of n) our negative loop is effective only for k > 0 and that when this is the

k
case, the steady-state value is close to 6. For lower values of n, the statement should be
k
k
As we shall see, this type of fuzzy statement can be very useful.

expressed more cautiously: the loop is effective only if 7 is “sufficiently higher” than 6.*

4. Trajectory and Evolution of a One-Element Negative Loop

In the present case, we are dealing with a one-variable system, so the variable space is
simply the nonnegative half of the x axis. On this axis, there is a single, stable steady state,
x0.

From any initial state to the left of x0, the trajectory will be rightward (increasing x)
toward x0, and from any initial state to the right of x9, the system will proceed leftward
(decreasing x) toward x? (Figure 3a).

The evolution of a system is a description of its state as a function of time (here, the
value of x as a function of time). Whatever the initial state, the present system proceeds
asymptotically toward the unique, stable steady state (Figure 3b). As we will see elsewhere
1

*  More precisely, to have a steady state value less than (1 —€) k%’ we must have ki >0 L(L)"

l-e\1-¢
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(a)

xO

FIGURE 3. One-clement negative loop: trajectories and evolution.
Same parameters as in Figure 1. (a) Trajectories; (b) evolution.
Variable x is plotted as a function of time for two initial values (x
=0,x=2).

(Chapter 20), one result is that a gené subject to efficient negative autoregulation will be
insensitive to the number of gene copies present (gene dosage).

In summary, for a one variable system, a steady state x° is stable or unstable, depending
dH(x9)
dx
least in a differential description without time delays) has a single, stable steady state. The

simply on whether the slope is negative or positive. A one-element negative loop (at

loop will effectively generate homeostasis if % is sufficiently greater than 6. In this case, the

steady-state value will be close to 0 itself,

B. THE TWO-ELEMENT NEGATIVE LOOP: DAMPED PERIODIC
BEHAVIOR
1. Description and Steady State

7
The simple two-element negative loop described by the graph x y and the
S

equations
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= I‘IX = le_(y, Gy) - k_lx
@)

= Hy = k2F+(Xa ex) - k—2y

&2 o=

were analyzed in Chapter 6 (Sections V — VIII). There, we insisted more on the methodol-
ogy than on the properties of the loop. We saw that such a loop always has a single steady
state. We will now show that this steady state is always stable and will analyze the approach
to it. As described in Appendix 3, the role of the derivative is played here by the Jacobian
matrix:

s kI
k, £ s

and the stability properties of a steady state depend on the roots of the characteristic equation:

a;; - ® ap
=0

| a3 — ®

in which the terms a;; are the corresponding terms of the Jacobian matrix evaluated at the
steady state considered. Expanding the determinant gives the characteristic equation:

0% — (2] + 8y)0 + 311899 — 21289 = 0.

A quadratic equation can be written ®? — S + P = 0, in which S is the sum and P the prod-
uct of the roots. We thus have S = (a;; + az) and P = a;;85; — a5 2g;.

The stability of the single steady state depends on the signs of the roots of the characteris-
tic equation, or on the sign of the real part if the two roots are complex conjugates
(Appendix 3). The sum of the roots is given by S=a;; +ap=-k -k, < 0, so in the case
of complex roots the real part, which equals half the sum, is negative and the steady state
will be a stable focus, approached periodically. In the expression for the product of the roots,
P = ay;a9; — 4178y, the first term, which is the product of the positive kinetic constants kg
and k_,, must be positive; the second term, —a;5;;, must also be positive since the deriva-
tives of F*(x) and F~(y) have opposite signs (positive and negative, respectively). Thus, the
product of the roots is positive. Therefore, if the two roots are real, they must both be nega-
tive and the steady state will be a stable node, approached directly. In all cases, the two-ele-
ment simple negative loop has a stable steady state.

What determines whether this steady state is a focus (complex roots) or a node (real
roots)? The roots of a quadratic equation are real or complex conjugates according to whether
S2 _ 4P >0 or < 0. Here,

§2 — 4P = (ay; + ax)? —4a118y + 4appay

= (a)) — ay)? +4apay
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FIGURE 4. When does a two-element negative loop effectively promote homeostasis? The nullclines of
System 4 in the case of extremely steep sigmoid interactions (n—oo) (Ak =2,k =2,k =1, k,=1,
the 6s = 1; (b) same, but k_, = 4. In the first casé, k/k_ >0, and k/k , > 8,, the steady state is located near
(8,, 8,) and homeostasis is effective. In the second case, one of the conditions is not fulfilled (k,/k , < 9,);
the steady state is at (k,/k_, ky/k ,).

The second term is negative since a;, and a,; have opposite signs in a negative loop. The
first term is positive or zero, depending on whether a;; and 8y, — thatis, k_; and k_, — are
different or not.

An inescapable conclusion is that for equal values of k_, and k5, S? - 4P is necessarily
negative and we have a focus. More generally, one might be tempted to answer the above
question by simply saying that S? — 4P can be positive (and the steady state a node) only if
lk_; —k 5l is sufficiently large. However, this is not the whole story, as we will see now.

2. Under What Conditions Will Homeostasis Be Effective?

Let us consider a simple two-element negative loop with extremely steep sigmoid inter-
actions, using two different sets of parameter values (Figure 4a and b).

In the first case, the steady state is located at (8,, 8,). Both variables approach a value well

above the off value (0, 0) and well below the unregulated value (kE_L, Ek_l) Homeostasis is
1 Ko

thus achieved.

In the second case, the steady state is located at (%L, llf_l)’ which corresponds to the un-
1 Ko

regulated value. Homeostasis is not achieved.
It is easy to see that (for extremely steep sigmoids) the conditions for the first situation

are simply k%'; > 0, and % > 8, If either of these conditions is not fulfilled, the steady-state

value will be (k;/k_j, 0) or (k;/k_;, ko/k_,) rather than (64 6,), and homeostasis will not oc-
cur.

Another way to attack this problem is to consider the equation x = G7(Gj(x)), derived
from the steady-state equations of the system (cf. Chapter 6, Section VI). One sees immedi-
ately (Figure 5a and b) that, according to the parameter values, the intersect between graphs
G1(G§(x)) and x, which provides the steady-state value of variable X,ison(x=0)oron (x =
ki/k_p).
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G-(G*Ix)) G (G*ix))

FIGURE 5. Same situation as given in Figure 4, but here we plot G(G;(x)) as a function of x, and the
steady-state value of variable x is given by the intersect of this curve with the bissectrix.

Note that in the first case:
forx <8 Gy=k/k,

forx>6 G,=0
forx=06 G C[O k.
X ,k_]

using the nomenclature of Chapter §, Section V.

Thus, for sufficiently steep interactions, a simple two-element negative loop ensures
effective homeostasis, provided both conditions, k;/k_; > 6, and k,/k_, > 0, are fulfilled. For
less steep interactions, the conditions are that ki/k_; and ko/k_, be “sufficiently” higher than
0, and 0, respectively. Once again, as for the one-element negative loop, these conditions
simply mean that for homeostasis to be effective, the maximal (fully “on”) steady value of
each variable must be greater than its threshold value. This is intuitively obvious since, if
this threshold cannot be reached, for steep sigmoids the substance is essentially absent in
terms of its regulatory ability.

We should now come back to the question already raised above: what determines whether
the steady state will be a focus or a node? For this, let us first go back to Figure 4. The
signs of the derivatives are indicated (++, +—, etc.). The arrows show the general direction in
which the system will evolve (according to the signs of dx/dt and dy/dt). A look at them

suggests that in the first case, in which the conditions kk >0 are fulfilled (Figure 4a), the

steady state is approached periodically and is thus a focus, whereas in the second case, in
which one of the conditions is not fulfilled (Figure 4b), it is approached directly and is a
node. This is confirmed by linear stability analysis.

At this point, one might be tempted to generalize as follows: when the boundary values
k/k_ are sufficiently higher than the corresponding threshold values 0, (1) the steady state is
near (6, 9,), (2) homeostasis is thus ensured, and (3) the steady state is a (stable) focus. If
the conditions are not all fulfilled, the steady state is closer to the boundaries, homeostasis is
not ensured, and the steady state is a (stable) node.
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However, for finite steepness of the interactions, the situation is not so clear-cut: one can
find small domains of the parameter values such that, in spite of the fact that the boundary
threshold inequalities are fulfilled, the second steady state is a node, or such that, in spite of
the unfulfilled conditions, the steady state is a focus. These exceptions are precisely linked to
the aspects discussed at the end of Section ILB.1: if the conditions are fulfilled, the steady
state is a focus unless the value of (k_; — k_,)? is sufficient to compensate for the negative
value of 4a;5ay; and, conversely, if the conditions are not fulfilled, the steady state is a node
unless the k_ are equal or almost equal (in which case (k_; — k_,)? cannot compensate for the
negative value of 4a,a,,). In fact, these “exceptions” deal with very small domains of the
parameter space and represent very unusual situations indeed, such as, for example, an almost
exact identity of values of the k_. Furthermore, when the steady state is a focus only because
k_; =k_,, the imaginary part of the root is so small that the periodic character is barely dis-
tinguishable.

In summary, in continuous systems, a simple two-element negative loop has a single
steady state that is stable. The steady state is located near the threshold values (8, 0,) (and,

consequently, homeostasis is effective), provided the £s are sufficiently higher than the

k_
respective 0s. Except for very peculiar situations, when these conditions are fulfilled, the
(stable) state is a focus; otherwise it is a node.

C. THREE-ELEMENT NEGATIVE FEEDBACK LOOPS: STABLE

PERIODIC BEHAVIOR
1. General

One might question the need for successively describing loops comprising one, two, and
three elements. Why not describe the simplest one and simply say: “and the same, mutatis
mutandis, for loops with more elements”? In fact, we have already seen that proceeding from
a one- to a two-element negative loop leads to an enrichment in that the steady state (which
is necessarily stable in both cases) may be reached directly or periodically for the latter, but
only directly for the former. As we shall see, with a three-element loop, the steady state may
become unstable and generate sustained periodic behavior.

There are two types of three-element negative loops:

X

and

-—
Z T Y

(and its permutations)

For the first type described above, the differential equations are

&y Pl —k %

dat
& = KGR0 - Ky ©
&

a = eFi) —kaz

in which F~ and F* are monotonically decreasing and increasing Hill functions, respectively.
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However (see below), some of the interactions may be linear instead of sigmoid. The steady-
state system, defined by dx/dt =0, dy/dt = 0, and dz/dt =0, is

k
Xﬂéﬁ®=@@

k.
y=éﬁ®=%®

z=§ﬁ@=@@

As in Chapter 6, one can write
x=G7 (Gf (G5(0)) = Gx(x)

and the resultant function G, will be a decreasing sigmoid because there is an odd number of
decreasing sigmoids in the chain: x = G3(x).

As for one- or two-variable systems, the steady-state value of x is given by the intersect
between x and Gx(x). Since G3(x) is a (positive) monotonically decreasing function of x,
there is a single intersect and, thus, a single steady state.

For any set of parameters values, the values of x’, y0, and z° are easily calculated by an
appropriate iteration method (see Appendix 1).

2. Linear Stability Analysis
Here, the Jacobian matrix is

X, 0 kldF;ZZ)
kﬁd{f—xl X, 0
o
.  JEO) .

- dy i -
The diagonal terms —k; correspond to the spontaneous decay rates of the components of
the system. The 0 terms reflect the fact that, for instance, x is not directly influenced by the

concentration of y. The three terms kl%, etc. describe the looped interactions (dx/dt is

directly influenced by z, etc.).
The characteristic equation of the linearized system is

e 0 k()
Z /g
kz(%') —k_z—'O) 0 =0
dX 0
0 k[m] e
dy Jo

in which the O subscripts indicate the values at the steady state.
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This is a cubic equation in ®. There are thus three roots, either all real or one real and
two complex conjugates. One can easily show that in the case of a three-element negative
loop, the product of the roots is negative.* Thus, in the case of one real and two complex
conjugates toots, the real root must be negative (the product of complex conjugates is
always positive), whereas the real part of the complex conjugate roots may be either negative
or positive. If it is negative, all three roots have negative real parts, and the steady state is
stable. Howeyver, it is neither a pure node nor a pure focus. In the vicinity of the steady state,
a perturbation will regress directly along one direction and periodically along a surface nor-
mal to this direction.

3. Limit Cycle

The case of complex roots with a positive real part is especially interesting. The steady
state, called a saddle-focus, is attractive along one direction, but repulsive elsewhere. If one
removes the system slightly from its steady state in a direction different from the attractive
one, it will depart from the steady state, initially following a spiral expansion. On the other
hand, as in all the bounded systems we consider, any point located outside a certain “box”
will tend to reenter the box. This can be seen from Equation(s) (5). The term k;F(z) has a
maximal value k;, so whenever x > k;/k_;, the derivative dx/dt will be negative and x will
decrease. This same reasoning holds for the other variables. The boundary “box” in question
is thus the rectangular parallelipiped whose diagonal goes from (0, 0, 0) to (k;/k_;, ko/k_5,
ka/k 5). If all three equations were linear, the system would be unbounded and there would not
be such a constraint, but it suffices that one equation be sigmoid to impose it.

The remarkable result is that, instead of pursuing its spiral expansion to infinity, the sys-
tem asymptotically approaches a closed curve (Figure 6b) called the limit cycle (Poincarg).
Furthermore, the same closed curve would also be approached from initial states located out-
side the cycle (Figure 6a). Thus, an unstable steady state in a bounded system can give rise
to stable periodic behavior.

In principle, a point located exactly on the privileged attractive line would proceed to the
steady state and remain there, but such mathematical precision is not encountered in real sit-
uations. A point close to the attractive line would first proceed toward the steady state, then
depart from it, and periodically approach the limit cycle (Figure 6¢). The evolution of the
same system is seen in Figure 7a and b.

The analytic demonstration that a system can have a limit cycle has been carried out only
in a small number of cases.’ So far, there is no general demonstration for simple negative
loops with three or more elements. However, numerical methods show that simple bounded
negative loops have a limit cycle whenever their steady state is unstable.

Such final states of a system are called attractors. A stable steady state is a point attractor.
A limit cycle is a cyclic attractor; in this case the attractor is organized around a steady state,
but the steady state, being unstable, is not itself the attractor. Note that in the case just dis-
cussed, there is a single attractor — the limit cycle — organized around the unique unstable
steady state, and the system approaches its limit cycle whatever the initial state, whether
close to the steady state or far “outside” the region of the limit cycle (Figure 6a and 7a).

The important point here is that for proper values of the parameters, a three- (or, for that
matter, more) element negative loop will respond to a constant environment with permanent
oscillatory behavior.

What is meant by “proper values of the parameters”? First of all, there are conditions
(discussed in Section 4) which must be fulfilled for the negative loop to be effective, i.e., to
ensure homeostasis. In addition, there is a condition of minimal nonlinearity. If one uses

® The product P of the roots equals a,1a2:833 — Q1282383 + a1382,832. The first term is the product (—k-1) -
] (—k—2) - (-k—3) and is thus negative. The second term is zero. The third comprises an odd number of negative
factors (only F—(z) has a negative derivative) and is thus also negative. Therefore, P is negative.
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FIGURE 7. Evolution of the system whose trajectories are given in Figure 6a and b. Initial states:
(a) (0, 1, 2), (b) (0.95, 1.0, 1.05).

Hill sigmoids for all three interactions, there is a minimal value of n below which the steady
state is stable and, consequently, without permanent oscillations along a limit cycle. As
shown by Richelle* for a three-element system, the product of the n’s must be greater than 8
to obtain oscillatory behavior. Thus, if equal values are used for the n’s in a three-element
system, one needs n > 2 (a necessary, but not sufficient, condition).

Earlier studies!- considered three-element loops with two positive linear interactions and
one negative nonlinear interaction. This is because they wanted to represent the concrete sit-
uation of a substance x which is transformed into ¥ (thus, dy/dt = kyx — (ks + k_,)y) which,
in turn, is transformed into z (dz/dt = kyy — k 32); z is a negative regulator of the synthesis of
X (dx/dt = k,F~(z) - (ky + k y)x). In this case, the only nonlinear term must be highly non-
linear in order to generate stable oscillations. For a three-variable system, there is no limit
cycle unless n > 8. But, as seen above, the nonlinearity can be spread among the interactions
of the loop such that the fatidic “8” is surpassed by the product of three weak (n = 3) nonlin-
earities rather than by a single strong (n > 8) nonlinearity.

Finally, it must be stressed that in real systems there are often absolute time delays, so
that instead of writing

x() =1(x,y, z, ...),

one should write

x() =X~ 11, Yi_ 125 Zi_(35 «ve)s

For such systems, oscillations can occur in a wider domain of three-element loops and, in
fact, there can be stable oscillations with two- and even one-element loops.#

4. Under What Conditions Will Homeostasis Be Effective?
As with one- and two-element loops, it is useful to consider the limit case of steep (step
function-like) sigmoids to ask under what conditions homeostasis is effective. The condi-
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tions are readily seen to be

ky
ks

k.
ky

ke

K > @y,

>0, > 0,.

As before, this means that the boundary level 11:- of each variable must exceed its threshold 6.

If one or more of these conditions are not fulfilled, the steady state will be a stable node
whose coordinates, depending on the variable, will be near O or near i(k—_ (unregulated values,

no homeostasis). If all three conditions are fulfilled, the steady state will be a focus whose
coordinates will be close to (O, 6,, 6,) (homeostasis effective). This focus may be stable, in
which case the attractor is the steady state itself, or it may be unstable, with the attractor a
limit cycle.

III. SUMMARY

The above illustrates the fact that a system consisting of an effective simple negative
loop has a single steady state and that, depending on the parameters, it will approach either
this steady state itself (if the steady state is stable) or a limit cycle (if the steady state is
unstable). In either case, the system approaches or oscillates around a steady-state value. This
is precisely the behavior of a thermostat, which ideally would stabilize at the desired temper-
ature, but in practice oscillates around it — and a thermostat is, indeed, a simple negative
loop.

We would characterize the operation of a simple negative loop by saying that it tends to
keep the value of one or more variables at or in the vicinity of a supposedly optimal value:
this is homeostasis. The amplitude of the oscillations (if any) depends on the values of the
parameters. In the case of a thermostat, the smaller the oscillation, the better. This is not
necessarily so in biological systems, for which, in may cases, the occurrence of the oscilla-
tions is a fundamental feature of the system, rather than an indication that the homeostatic
control is too loose!
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I. NAIVE LOGICAL DESCRIPTION

We shall first consider the simple three-element negative loop:

and write that the production of element x is on (X = 1) if element z is absent (z = 0), etc.,
according to the naive logical description:

The state table is

100
000
001
101
111
011
010
110

The graph of sequences of states comprises a cycle:

- X - y -
000 — 100 —— 110

N
N

001 011 111
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Once in the cycle, the system can only go on cycling since each state of the cycle has
only a single order to change a variable and, thus, only one possible successor. From states

010 and 101, the system can proceed to any of three states in the cycle:

110 001

010 J —=» 000

100

(States like 010 and 101 are sometimes called “Gardens of Eden” because one can leave them,
but they cannot be reached from any other state.)

In terms of time delays, it is obvious that once a state in tHe cycle is reached, the system
will follow the cycle whatever the values of time delays. From state 010, the system will
proceed to 110, 000, or 011 according to the relative values of t,, ty, and t,, and from state
101 it will proceed to 001, 111, or 100 according to the relative values of tz, t,, and t;.

Recalling that x = 0 or x = 1 means that the concentration of the product x is less than or
greater than a threshold 3, the cycle around means that the concentrations of products x, y,
and z oscillate around their respective threshold values 0y, 9y, O, — typical homeostatic
behavior.

The simple three-element loop with three negative interactions is formally equivalent to
the one with a single negative interaction (as pointed out in Chapter 9, Section II), from

which it can be obtained by simply substituting y = v:

X v

In practice, we prefer to maintain the convention that when a variable takes the value 0,
the corresponding element is absent. However, this type of formal treatment, in which v =0
means that y is present, is useful in that it tells us that this loop, like the preceding one,
will have an inescapable cycle of six states:
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_ 000 111
X=z 001 011 - -
5 001 010
Y=y 011 010
010 110
Z=y 110 100 X X
111 000
101 001 B -
100 101 101 110

™
The behavior of the two-element negative loop, x y , has already been dis-
.

cussed (Chapter 3, Section II):

_ 00
00 10
X=y -
01 00
Y=x 11 01 y
10 11
01
The one-element negative loop, XO also oscillates:
X = _ X _
* 0 —/——— 1
X

In m-element simple negative loops with more than three elements (m > 3), we again
find a simple cyclic attractor with 2m states. For instance, the network:
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y X=u

Y=x

Z=y

u-'-. Z+ U =Z

has the cyclic attractor:
- y - VA -
1000 ——> 1100 1110
u
0001 ¢———— 0011 ¢——— 0111 1111
zZ y

This cycle, like that of the three-element negative loop, cannot be left, once entered. In this
system, we also find another cycle, which can be shown to be unstable. The sequence is

- X —— u - zZ
0010 1010 ——— > 1011 1001
2 1 12 12 12

0110 ¢———— 0100 ¢———— 0101 ¢<———— 1101
12 Z 12 u 12 X 2 1

Note that from each state the system can either follow the unstable cycle or “fall” into one of
two states of the attractor cycle. Each state has variables with subscripts — a characteristic
of unstable cycles — and, in fact, the time delays form two overlapping circuits (cf. Chapter
4, Section III).

II. GENERALIZED LOGICAL DESCRIPTION

The reader will have noticed that the “naive” logical description of simple negative loops
discused above unconditionally predicts cyclic behavior, whereas the continuous description
(Chapter 10) predicts oscillating behavior only if certain conditions are fulfilled. In particu-
lar, a necessary (although not sufficient) condition for oscillating behavior is that the bound-
ary k/k_ of each variable be sufficiently greater than the threshold value 9.
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The difference is due to the fact that in the naive logical description we have tacitly
assumed that each term of the logical expression is strong enough to be taken into considera-
tion (equivalent to assuming that each k/k_ is sufficiéntly greater than the corresponding ).
The situation can be-generalized by introducing logical parameters K (according to Snoussil),
which qualify the strength of each term, as explained in Chapter 7. This is useful even in the
case of a simple negative loop, in which all variables are binary.

We will illustrate the generalized treatment with the simple three-element negative loop
with three negative interactions:

X y

The relations become:
X= dX(KIZ) = K]Z,
Y= dy(KQJC) = sz,

Z=d,(Ksy) = K3y,

in which Ky, K3, and Kj each have the value 1 or 0, according to whether the term in ques-

tion must effectively be taken into consideration. Comparing with the differential treatment,
K; =1 means that k;/k_, is sufficiently greater than 0, etc. The state table becomes:

Since there are three binary parameters, this description covers 23 distinct situations, one
of which (K; = K; = K3 = 1) corresponds to the “naive” description. Let us examine these
situations. Because of the symmetry of the system, what is true of one element will be true
of the others, mutatis muntandis, so there are only four different possibilities, according to
whether 0, 1, 2, or 3 of the logical parameters are equal to 0.



K1 =K2 =K3=1

000
001
011
010
110
111
101
100

y

N~
oy
“ NN

111
011
010
110

100
000
001
101

— - z -
001 —— 011 —— 010

X

101 é—— 100

z

K;=0
K,=K;=1
X=0

Y =
Z=y
000 011
001 011
011 010
@10 010
110 000
111 000
101 001
100 001
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Similarly, if K, = 0 and K, =K; =1, we find
that Q0D), and if K3 =0 and K; = K, = 1,

we find (100).
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K;=K;=0 K;=K,=K;=0
K;=1
X=0 X=0
Y=0 Y=0
Z:y Z=0

Similarly, if K; = K3 =0 and K; = 1, we find
that 100); if K; =K3 = 0 and K, = 1, we

find that :

Thus, the generalized logical description shows that this loop will generate cyclic behav-
ior only if all three logical parameters have the value 1, in other words, provided all three
terms are strong enough. In the other cases, the system has a single stable state whose loca-
tion depends on which interactions are effective. Since the simple three-element loop with
three negative interactions is formally equivalent to the one with one negative and two posi-
tive interactions, our conclusion holds for the latter as well; cyclic behavior will only be
observed if all three terms are sufficient (i.e., K; =K, =K; = 1).

More generally, the three-element negative loop can achieve the homeostasis (with a pos-
sible oscillation of the variables) only if all three terms are strong enough. In this case, we
say the loop is efficient. Otherwise, homeostasis will not take place in the sense that each of
the variables will be blocked in either the “on” or the “off” position.

REFERENCE

L. Snoussi, E. H., Qualitative dynamics of piecewise-linear differential equations: a discrete mapping, Dyn.
Stability Syst., 4, 189, 1989.
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I. INTRODUCTION

Until relatively recently, it was believed that any system would tend sooner or later to-
ward a unique equilibrium state. It is now clear (for references, see Prologue) that open sys-
tems can display much more interesting behavior, such as permanent periodicity in a con-
stant environment or a choice between two or more permanent steady states. The latter prop-
erty (multistationarity) is of special interest to biologists, who were desperately trying to
find out how genetically identical cell lines can display different heritable phenotypes in the
same environment. This is the fundamental problem of differentiation.

We have already indicated on intuitive grounds, and shown by examples, that multi-
stationarity can be generated by a simple positive feedback loop. This will be developed in a
more rigorous way in this chapter (differential description) and in Chapter 13 (discrete
description). In Chapter 14, we will show how one can have many steady states, as required
to account for the many states of differentiation of higher organisms.

II. THE SIMPLE ONE-ELEMENT POSITIVE LOOP

The simple one-element positive loop describes direct autocatalysis. The most straight-
forward example is perhaps provided by proteolytic enzymes that are produced from a pre-
cursor and that catalyze their own formation by proteolytic action on their precursor:

M

(Here, the double arrow symbolizes the conversion of a into x, whereas the single arrow rep-
resents the regulatory interaction proper.) This type of process is called product activation. If
a is maintained constant, the system can be treated as a simple, one-element, positive loop
in which x behaves autocatalytically.

Another, related process is substrate inhibition:

@

If x inhibits its own conversion into b, it behaves autocatalytically in the sense that the
more X present, the slower its conversion into b.

It has also become clear that certain gene products exert a positive effect on their own
production. Strictly speaking, this situation is not a one-element loop because gene expres-
sion usually involves the syntheses of two successive products, the messenger RNA and a
polypeptide chain. As a matter of fact, people interested in details would even argue that each
of these syntheses itself comprises many steps. However, if one wants to analyze the global
behavior of complex gene networks, it is indispensable to simplify some aspects. Insofar as
a given gene is regulated predominantly at a single level (which may differ from gene to
gene), we consider it legitimate in many cases to formalize each gene interaction as a single
process. Thus, the case just discussed can be represented:
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+

Although the mechanisms of Relations 1, 2, and 3 are different, they clearly have a com-
mon graph of interaction:

D

which is characteristic of the one-element positive loop.
In the differential description of the latter process, we write:

% =H(x) =kF*(x) -k x (G

in which, as before, F+is an increasing Hill function, k and k_ are positive kinetic constants,
and x, the concentration of product x, is nonnegative. Relation 4 means means that product x
is synthesized at a rate which is nil in the absence of x and which approaches k for high con-
centrations of x; and x decays at a rate proportional to its own concentration.

The steady-state equation can be written

Hx) =kF*(x) -k x=0
X = %F‘f(x) = G*H(x).

In order to find the steady states, one can plot H(x) as a function of x (Figure 1A) and find
the intersects with the x axis, or plot G¥(x) = 11:—_ F*(x) as a function of x and find the inter-

sects of G(x) with the bissectrix x (Figure 1B). As G*(x) is an increasing sigmoid, it is clear
that it can have up to three intersects with the bissectrix x. There can thus be up to three
steady states. This important property is called multistationarity.

For any given values of the parameters k/k_, O, and n, the steady-state values can be
found numerically (see Appendix 1).

The stability properties of these steady states are illustrated by the case chosen in Figure
1. As shown in Chapter 6, for a one-variable system, a steady state x0 is stable or unstable,
depending simply on whether the slope of H(x) at x° is negative or positive. In the example
of Figure 1, the outer steady states are thus stable and the intermediate one unstable. Note
that:

dH _ knenxn-!
dx ~ o (en+xm2

The first term is the derivative of a sigmoid, a bell-shaped curve with very low values for
extreme values of x and high values only in the vicinity of 8. (More precisely, the maxi-
mum corresponds to the inflection point of H, which, for high n, is close to 0.) It is thus

understandable that & 1s negative for the outer steady states and positive for the intermediate

one,
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2

FIGURE 1. One-element positive loop. (A) Plot of H(x) as a function of x. The steady states are the values of x at
the intersects of H(x) and the x axis. As shown in Chapter 6, the stability of each steady state (x°) depends simply

on the slope of H(x) at x" stable if the slope.is negative, unstable if it is positive. (B) Plot of G*(x) = %F’(x) asa
function of x. Here, the steady states are given by the intersects of G (x) with the bissectrix. In our particular case,
5

X N X
Hx)= 5 —x and, thus, G"(x) = ZW.

2
1+x

What determines how many states there are? As with negative loops (Chapter 10), the
situation is simplest in the case of extremely steep sigmoids, in which case it is clear that
there will be three steady states iff k/k_ > 6 (Figure 2). For finite n, there will be three steady
states iff k/k_ > a0, where a, increases from 1 to 2 as n decreases from s to 2.* Whereas for
negative loops the parameter values affect the nature of the unique steady state, for positive
loops they affect the number of steady states.

III. THE TWO-ELEMENT POSITIVE LOOP

7 ™
As a second example, we consider the positive loop X y. This situation
~__ -

exists in nature. For example, the bacteriophage A has two genes, cf and cro, whose products

* It can be shown that a;, = . (Kaufman, M., personal communication.)

_n
(n—1)t-vm



GHx) G*(x)

FIGURE 2. How many steady states? Plot of }:—_F*(x) as a function of x, for extremely steep sigmoids (n — ).,
2"

@G |

0.5x"
1+x°

B)G'x) =

In the first case, %> 0 and there are three intersects with the bissectrix. In the second case, X < 6 and there is only

one intersect.

each exert a negative control on the other gene, with the type of result described below. The
equations are

dx .
e 1F(y) —kx = Hy(x, y)

‘—3{ = koF-(x) ~ k gy = Hy(x, y)

with the same notation and meaning as above.
The steady-state equations, defined by

dx dy _
g = 0 and =0,

k
X = f: Fi(y) = Gi(y)

y = 12 Fs(6) = Gatx)
)
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Thus,
x = G7 [Gz(x)] = G3(x),

and similarly for y.

As mentioned in Chapter 6, the composition of Hill functions (for instance G7[G3(x)]),
gives functions of a sigmoid shape, and when an even number of decreasing Hill functions is
involved, the resultant function is an increasing sigmoid (G3(x)). The roots of Equation 6 are
the steady-state values of variable x. They can be visualized (see Figure 3) as the intersects of
x (the bissectrix) with G3(x). For the parameter values chosen, there are three intersects;
more generally, from the shape of G*(x), it is intuitively clear that the number of intersects
can vary from one to three according to the parameter values. Thus, in this system, as with
the one-element positive loop, we can have up to three distinct steady states.

In Figure 4, the steady state Equation(s) 5 are drawn in the x-y plane for the same parame-
ter values as in Figure 3. The two curves (nullclines) correspond to the situations dx/dt = 0
and dy/dt = 0, and their intersections thus locate the steady states, where both conditions are
fulfilled. In the present case, as can be seen, the steady states correspond to low x and high y
(State 1), middle values of both x and y (State 2), and high x and low y (State 3). The exact
values can be calculated numerically, as described in Appendix 1.

Taking our example with three steady states, linear stability analysis (see Appendix 3,
Example 3) shows that two steady states (1 and 3) are stable and one (2) unstable. For State

Gz(GT(x))

%)
%] 2

FIGURE 3. Two-element positive loop: plot of Gs(x) = G;(Gy(x)). In our particular case,

& 2
a 1+y ¥
dy 2
da 1+x 7
The steady state equations are thus:
2 -
x=1, 7 =Gi)
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2
FIGURE 4. Two-element positive loop. The nullclines of the system described in Figure 3.
&
.

2, the roots are real and of opposite sign; it is a saddle point. The physical meaning of this
situation will become more apparent if we compare the x-y plane with the map of a moun-
tain landscape comprising two closed valleys (whose lowest points correspond to the stable
nodes) separated by a ridge whose lowest point, or pass, corresponds to the saddle point. Two
lines, called separatrices, have a special importance. They cross each other at the saddle
point. One of them, which we call “main” separatrix, or simply separatrix, coincides with
the ridge; the other joins the two stable states via the saddle point. A ball freely rolling on
this landscape would finally reach one of the stable states according to whether it was on one
or the other side of the ridge. The two stable states are attractors, and the two basins of
attraction are delimited by the ridge.

If our system were exactly at the saddle point, it would remain there. Moreover, if it were
exactly on the ridge, it would approach the unstable state along the main separatrix and
remain there. However, the slightest deviation to one side or the other would commit the
ball to proceed toward the corresponding stable state (valley). The saddle point is thus not an
attractor; the two stable states are the two artractors of the system (Figure 5).

The conditions for having three steady states, i.e., the condition for the loop to effectively
generate multistationarity, is that each boundary value k/k_ be sufficiently greater than the
corresponding threshold 6.

The concrete example mentioned at the beginning of this section was that of the A\ phage
genes cI and cro, each of which is repressed by the product of the other. In agreement with
the above, the system can reach and persist in either of the two stable (hereditary) states, one
with ¢f expressed and cro silent, the other with cI silent and cro expressed. The major inter-
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FIGURE 5. Trajectories of the system described in
Figures 3 and 4.

est of such a structure is that, despite its simplicity, it endows the system with the possibil-
ity to respond to identical external conditions with two widely different steady states.

IV. MULTIPLE-ELEMENT POSITIVE LOOPS

Let us rapidly treat the symmetric three-element positive loop:

The asymmetric loop

can be derived from it by a simple change of variable (cf. Chapter 9). The differential equa-
tions are

=k; Fi(z) -k jx

&l



=k FI(x) -k gy

=k3 Fi(y) —kyz

&g e@

and the steady-state equations are

x=f§ﬁ@ﬁﬂﬁ@

k
y =1 Fi(0) = G§(x)

k.
z=éﬁ®=%®

Again, we can write that x = G{(G§(G3(x))) = Gf(x) and similarly for y and z. As G{(x) is
an increasing sigmoid function of x, there are up to, but not more than, three intersects
between y = x and y = Gj(x). The three-element positive loop thus has up to three steady
states, but not more, like the one- and two-element positive loops.

This result can be generalized to any simple positive loop (using sigmoid interactions),
whatever the number of elements in the loop and whatever the steepness of the sigmoids.
This point is important. One might have thought that the number of steady states could be
increased simply by properly increasing the algebraic degree of the steady-state equations. In
fact, for sigmoid interactions, any value of the Hill exponent n > 1 makes three steady states
possible, but a further increase of n does not increase the number of steady states.

For a one-variable loop, the system will go to one or the other stable state according to
whether it was initially on one or the other side of the unstable state. For a two-variable
loop, the system will go to one or the other stable state according to whether it was initially
on one or the other side of a separatrix line (on which the saddle point is located). For a
three-variable system, it will go to one or the other stable state according to whether it is on
one or the other side of a separatrix surface. More generally, for an n-variable system, it will
go to one or the other stable state according to whether it is on one or the other side of a
separatrix “hypersurface” (n — 1 dimensions for n variables) containing the unstable state.
This view can be illustrated by linear stability analysis of a three-element positive loop. Let
us consider the system:

The steady-state equations are
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__35
Y=+ %5

4y5
7 =
1 +y3

and the steady state values, found by iteration, are

x=0.0 x =0.813 x =1.998
¢)] y=0.0 am y =0.786 (I y = 2.908
z=0.0 z = 0.927 z=13.980

From these steady-state values and the Jacobian matrix* (cf. Appendix 3), we obtain the
characteristic equation for each steady state:

) (0+1)¥3=0 o = —1 (triple root)
@M (o+1)7°=41.94 © = 2.46 and -2.73 + 3.0
(I (o + 1) =0.0000183 ® =-0.97 and —1.01 + 0.022i

This linear stability analysis confirms that States I and III are stable (all roots, or their
real parts, are negative). For State II, we have a positive real root and two complex conjugate
roots whose real part is negative. This steady state is therefore unstable. It is located on the
surface separating the two attractors, I and III, and is at the same time a saddle point and- a
focus. It is attractive (in a periodic way) along the separatrix surface, but repulsive elsewhere.
Thus if one starts from a point very close to the separatrix surface, the system will first
proceed periodically toward the unstable steady state, then directly toward one of the stable
steady states according to whether the initial state was on one or the other side of the
separatrix.

*  Jacobian matrix Characteristic equation
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I. THE ONE-ELEMENT POSITIVE LOOP

+
The simple one-element positive feedback loop has the graph of interactions xi) It
can represent, for example, a product x whose synthesis requires the presence of x. It is for-
malized:
X=d,(Kx)=Kx

in which KX is a logical parameter that takes the value O or 1 according to the weight ascribed
to the term (cf. Chapter 7). The state tables are

General Specific

Thus, provided K = 1, the one-element positive loop gives a choice between two stable

states, @ and @ As discussed in Chapter 8, Section V, the third, unstable state of the dif-
ferential description can also be identified on logical grounds. If K = 0, there is only one

stable state, @ This corresponds to a situation in which the boundary concentration is
insufficient to stimulate continued synthesis of x. In the continuous description, this occurs

whenk% < 6, where k and k_ are kinetic constants for synthesis and decay of x and 6 is the

threshold concentration above which the regulation is effective.

II. TWO-ELEMENT POSITIVE LOOPS

~7 ™
The two-element loop x ¥, already treated in “naive” terms (Chapter 3), can
-~ -

now be formalized:
X =Ky
Y= K21x

The general state table is
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and the specific tables are

Kpp=1 Ki;=0 Kz =1 K;; =0
K; =1 Ky =1 Kz =0 K;; =0

Thus, provided both terms have to be taken into consideration, (i.e., K;; = K37 = 1), we
have two stable states, one with only with x present and continuously synthesized, the other
with only y present and continuously synthesized. This is also the result predicted by the
naive logical analysis (Chapter 3). Again, the third, unstable steady state of the differential
description can also be identified on logical grounds (Chapter 8, Section V). If either of the
terms is insufficient (K;, or K,; = 0), there is only a single stable state. At this point, we
would like to insist on the importance of consulting the general state table, in which no defi-
nite numerical value is given to the logical parameters. It shows, for example, that in the
fourth case (K;; = K,; = 0), the stable state /00 is more precisely 00/K;,K,; (with K,
and K,; = 0). Consequently, in the differential description, the steady state will be near
(k1/k_1, kp1/k_p), with x0 < 8, and y° < 6y, rather than near (0, 0).

+

The two-clement positive loop x y presents the same type of behavior, as
=
+
expected from the formal equivalence of the two types of two-element positive loops (cf.

Chapter 9). There are two stable states, and @, if both logical parameters are 1, a
single stable state otherwise.

III. THREE-ELEMENT POSITIVE LOOPS

The three-element positive loops are
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'K/

Let us treat the second one:

The general state table is

xXyz
000
001
011
010
110
111
101
100

and
X =K13Z
Y =K21 X
Z=Ksy
0 0
0 0
K;3 Ky
0 K
K;3 Ky

A

K3,
K3,

and permutations

Once again, there are two stable states only for K;3 = Kj3; = K3, =

101

100

XYZ
101
001
000
100
110
010
011
111

For other values of the parameters, there is only a single stable state:
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>
-

K3, Stable state

_— = = O O O O
o O == = o O

86EEEEE

In the same way as in the preceding section, we would like to insist on the fact that if, for
example, K,; = 1 and K;3 = K3, = 0, the stable state is more precisely K;300 (with
K;; = 0), which means that in the differential description this steady state will be near
(kia/k_;, 0, 0) (with kya/k_; < 6,) rather than near (0, 0, 0).

For K;; = K,; = K3, = 1, the graph of sequences of states (starting from 000) is

I

000 100 101 011 — 010 — 000 — 100
1 1 1 1 1 1

! l | |

In this graph, 000 —» — — EI)OE) is not a cycle, but 10(1) - - > 10(]) is treated as a cycle

~@

because its subscripts are equal (cf. Chapter 4, Section IV). It is, of course, an unstable
cycle, not an attractor. Clearly, this unstable cycle is the Boolean equivalent of the saddle
focus described in Chapter 12.

Another representation consists of embedding the graph on a cube (see References 1 and
2). The unstable cycle meanders around the “equator” of the cube, with the potential danger,
in every state, of “falling” into one or the other “pole” (stable state). Although this represen-
tation is very vivid and has certain advantages, we usually prefer the type of graph given
above because it permits one to distinguish two states that have the same Boolean value but
different indices.

The other type of three-element positive loop, with three positive interactions, is
formally equivalent to the one with two negative interactions. It has two stable states,
and @, if all three logical parameters are 1, a single stable state otherwise.

The above example should convince the reader that the generalized description of a simple
positive feedback loop will exhibit two stable states only if all terms are large enough that
one has to take them into consideration (i.e., all logical parameters are 1). This is the sit-
uation in the naive description and it corresponds to the condition that all k/k_ are suffi-
ciently greater than the corresponding 0 in the differential description. If one or more of these
conditions are not fulfilled, there is a single stable state.
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I. THE PUSH-BUTTON PROBLEM

One of the most challenging aspects of cell differentiation is the fact that two cell lines,
which, as far as one can tell, are genetically identical, heritably display different phenotypes.
At first, one might be tempted to ascribe this to persistent environmental differences. That
this usually is not the case is shown by the fact that the phenotypic differences may persist
when cell lines are propagated in vitro under identical conditions. It is as though sometime
during development a decision had been made and was subsequently maintained through cell
generations. Embryologists use the word “determination” to describe this decision, which
may take place long before the characteristic aspects of a cell line become visible (“differenti-
ation”).

Although little is known regarding the mechanisms of determination and differentiation, it
is clear in many cases that a specific signal must function at some definite moment during
development to permit a given type of differentiation event and that after this moment its
function is no longer required and it is, in fact, switched off,

Similarly, in the induction of cancer by oncogenic viruses, cases are known in which a
viral gene “transactivates” host genes involved in tumor development, then is itself switched
off, whereas the host genes remain on.

We are thus led to ask: how can a tramnsient signal switch a gene on
permanently and even hereditarily? In other words, what logical mechanisms underlie
a push-button device?

Consider a gene X that directly or indirectly exerts a positive control on its own expres-
sion. In the simplest version, the gene product is required for its own synthesis. This
permits two stable states (on, off) and, as already mentioned, the situation is a typical
vicious circle. Suppose, however, that gene X functions if its product x is present OR if
another product a is present. This solves the vicious circle. Starting from a situation in
which the gene is off and its product x and a are both absent, the gene will remain off
indefinitely. If a is added, the gene will be switched on, its product x will appear, and from
then on, the gene will remain on even if a disappears. Substance a functions as a trigger that
is only necessary for switching the process on, not for its maintenance, which is
subsequently ensured by the autocatalytic character of x synthesis.

This type of process is described by the simple logical relation:

X=x+a,

which says that gene X is on if substance a is present OR if its own product is present. In

diagram form, a —L())Rx . Naturally, the condition that is used to trigger the process

need not be simply “a is present”; it can require the simultaneous presence of several sub-
stances, the temporary absence of products normally present, or special environmental
conditions (temperature, for example, is important in triggering the process of budding). Any
or all of these processes can be the triggering condition. In all cases, the logical structure is
the same (Table 1).

Clearly, starting from a stable state @ (gene off, its product absent, a absent), if one

adds a (shift from left to right column), the state 0 is reached and the gene product x will

appear after a delay t,, displacing us to line 2. From now on, the gene is on and will remain
so even if substance a is removed since a shift back to the left column now leaves the

system in stable state @
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TABLE 1

a=0 a=1 Compact table

©->0
@“@D

Some situations of this type are known in prokaryotes. Temperate bacteriophage, for
example, can elicit two different responses after infection of a sensitive bacterium. They can
enter the lytic cycle, killing the host and producing more phage, or they can establish immu-
nity, whereby a phage repressor gene is expressed, preventing the lytic cycle. Let us consider
a simplified situation inspired from bacteriophage A.

x——>y—az‘3

In other words, gene X is expressed constitutively, gene Y repressed by product x, and the
expression of gene Z requires product y or its own product, z, which is, in fact, the phage
repressor. This system was treated as an example in Chapter 4, Section II. Let us start from
state 000, in which no phage gene product is present yet, resembling the situation just after
infection. The graph of the sequences of states is

The interest of this simple system is the following: as gene x is constitutive, X = 1 from
the beginning, and sooner or later x will appear. Thus, in the final state, one necessarily has
x = 1. Gene Y will also be turned on initially (¥ = 1) since x is absent. As soon as x
appears, gene Y will be turned off (¥ = 0), and sooner or later y, if present, will disappear.
Thus, in the final state, one necessarily has y = 0. The situation is different for gene Z, the
repressor gene. If, before x appears, y is actually produced and persists long enough not only
to switch on gene Z but also to permit the accumulation of product z, gene Z will remain on
indefinitely. If y disappears before z appears, gene Z will remain off indefinitely. Thus,
depending on the precise kinetic history of the system, gene Z, coding for the phage
repressor, will be on or off permanently, corresponding to the lysogenic or lytic response,
respectively.

If we consider the initial state 001, in which product z (repressor) is already present in the
bacterium at the time of infection, it can be seen that gene Z will remain on indefinitely.
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There is no path leading from 001 to the stable state (lytic response); both choices end
up at state (lysogenic response).

011

We will now refine the system (and bring it closer to its concrete model) by adding that
product z is a repressor that can switch off the regulatory genes X and Y:

S Y SN

Gene X is no longer constitutive, but is under the negative control of z, and gene Y is under
negative control of both x and z. More precisely, Y is on iff X and z are absent. The (naive)
logical equations are

X=z

Y=xz

Z=y+z

and the state table is

xyz XYZ
000 110
001
011 001
010 111
110 101
111 001
101 001

100

Again, there are two stable states, but they now resemble the actual choice by the bacte-
riophage: in state , only the repressor gene is expressed and immunity is established,

whereas in state , the repressor is not synthesized, leaving the way open to the lytic
cycle. The graph of the sequences of states is
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011

110 —2% 5771
1 1

.

As above, gene Z is switched on by product y; but now, as soon as product z appears, gene
Y (whose product is no longer required) is switched off,

This system is a fair caricature of the interactions between the genes cro, cll, and cI in
bacteriophage A (represented here by X, Y, and Z, respectively), which will be treated in
more detail in Chapter 20.

The conditions leading to the different final states have been analyzed more formally (cf.
Chapter 4, Section 1I) in the case of the original model. In fact, it can be shown! that the
conditions determining whether immunity is established are exactly the same in this very
simple model and in the more sophisticated one. This suggests that although the observed
situation in bacteriophage A is more complex, the essential principles of the decision
whether to establish immunity are already present in the simple scheme:

-
X — y —H Zi)
II. VICIOUS CIRCULAR DNA?

In this connection, we have designed and, in collaboration with P, Dréze, D. Thieffry, N.
Becker, and P. Campano, are trying to construct a small gene network that can be set on
command in either of two stable positions by transient signals.

The A gene cIl is a positive control gene whose product is absolutely required for the
operation of three promoters, called pre, pl, and paQ. If by in vitro recombination we remove
the normal promoter of gene cl/ and replace it with a promoter (like plI) that requires the cIf
product, we have created a vicious circle: either cI7 product is present, in which case it will
go on being synthesized, or it is absent, and since /7 is necessary for transcription from
promoter pl, it will continue not being synthesized and remain absent.

Consider, now, another copy of gene cl/, again separated from its normal promoter, but
this time connected to the regulatory region of the lac operon. The lac promoter is repressed
by the lac repressor and will be active only in the presence of an inducer. Thus, if we take
the second construction alone, gene c/I will be expressed when, and only when, inducer is
present. If we take the first construction alone, we have the vicious circle already described.
What will be the behavior of a network including both constructions? Starting from an
initial situation in which ¢/ and inducer are both absent, both genes are silent, the first for
lack of cII product and the second for lack of inducer. If we add inducer, the second gene will
be switched on and will form c/I product, which will switch on the first gene, producing
more clI product, and from this point the first gene will remain on, even if inducer is
removed (thus switching off the second gene).

The system could be made more interesting if the first copy of the Il gene (under pl con-
trol) carried a mutation making its product thermosensitive. In this case, the system could be
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switched off by a brief heat shock, which would inactivate the cII product present and
“unprime” the pump.

The details are probably easier to follow in a state table. The system can be described by
the following graph and naive logical expressions:

C1=Clt+62

in which ¢; and c; represent the levels of the products (and C; and C, the levels of

expression) of the first and second copies of the cII gene; Iand ¢ represent inducer and
temperature, respectively. The state table is

Complete ‘State Table

t=0,I=0 t=0,I=1 t=1,I=1 t=1,1=0
cie; €0, c,C, cie; €10,y cic; €0y
00 00 01 00 01 00
01 10 01 11 01 11 01 10
11 10 a unu a 11 11 10
10 10 11 10 01 10 00

Compact State Table

00 01 11 10 t, 1

00 00

01 01 01 01

11 a a@ 11

10 10 10
Starting from the stable state in the left column (low temperature, no inducer), if we
add inducer (shift to the second column), the state 00 is reached and the product of the second
cll gene will appear after a delay t,, displacing the system to state 01 (line 2). The first cl7

gene is now switched on and will form ¢/l product after a delay t, (stable state (1), line 3).
If we now remove the inducer (shift back to the first column), state 11 is reached, the second



179

copy of gene cll is switched off, and the corresponding product eventually disappears, leading

to the stable state (line 4), in which only the first cII gene is on and only its
(thermosensitive) product is present.

©® — 00
d
01
d

11 «
2

This situation is stable. However, if we now expose the system to high temperature (shift

to column 4), state 10 is reached. The thermosensitive product of the first cII gene is dena-
tured and no longer ensures the autocatalytic function of the gene. The system stabilizes in

state , in which neither of the two copies of the cII gene is expressed, and remains in
this state even if it is returned to low temperature,

The system can thus be switched on permanently by a transient signal (adding inducer for
a while), and it can be switched off permanently by another signal (raising the temperature
for a while). Such devices will no doubt be used in genetic engineering in the future. How-
ever, we are convinced that they are being used already in naturally occurring developmental
processes.

REFERENCE
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I. INTRODUCTION

Most theoretical work on multistationarity deals with systems with only a few steady
states, typically only three (however, see Reference 1). Higher organisms, on the other hand,
contain over 100 distinct cell types. If we hope, not to explain them, but merely to account
for their number in terms of steady states, we must know what types of gene networks are
able to generate many distinct states.

To the question, “How can one design a system with n steady states?”, the usual answer
is, “Simply use interactions such that the algebraic degree of the steady-state equations is
high enough; after all, an equation of degree n can have up to n real roots.” However,
although a certain minimum degree is necessary, it is by no means sufficient to guarantee
multiple real roots. In particular, we know that a simple negative feedback loop with a sig-
moid interaction can-have only one steady state and a simple positive loop, no more than
three, however high the coefficient n in the Hill functions. As we shall see, there is a simple
way to obtain many steady states. For this analysis, the combined use of the logical and
differential descriptions turned out to be particularly fruitful.2

II. SYSTEMS WITH SEVERAL INDEPENDENT POSITIVE
LOOPS

The simplest system with many steady states is one with several independent positive

+ + +
loops. Consider the system x@, x@, . x,@, whose generalized kinetic logical

description is
Xy = da(Kyxp) = Koy,

X3 = dpa(Kox;) = Kpx,p,

Xm = xm(Kmxm) = Kmxm'

For K; =K, =...=K,, = 1, we have
X1 =Xy,
X2 = X3,
Xm=xp

in which each of the 2™ logical states is stable. Thus, with m independent positive loops

with proper parameter values, we have 2/ stable states.
+

Consider, now, the one-element loop x; ), whose differential description is

dx
EL =Kk Fi(x;, 9 —k_x;.
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FIGURE 1. Nullclines of the system (1), As usual, the nullcline dx/dt = 0
is in long dashes and dy/dt = O is in short dashes. For clarity, nullclines
that lie on an axis are shifted slightly.

We know that, provided k;/k_;0 > n/(n — 1)@~ (i.e., that the positive loop is “effective”),
there are three steady-state values of x;, two stable and one unstable (cf. Chapter 12). Since
X, is regulated only by itself, these values are independent of the other variables. If the sys-

+ +
tem includes additional isolated, “effective” positive loops XD, s x@, each of these

variables will also have three steady-state values independent of the other variables. Thus, in
a system comprising m independent positive loops, we can have up to 3™ steady states, of
which 2™ can be stable.

In Figure 1 are shown the nullclines of the two-variable differential system:

dt

dy
dt

ey

As could be guessed, each nullcline has three parallel branches, corresponding to the three
steady-state values of the variable in question. It can easily be shown that the four intersec-
tions involving two “outside” (boundary) branches are stable nodes, the four involving a
boundary branch and a “middle” (threshold) branch are saddle points, and the intersection
between the two threshold branches is an unstable node.
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III. NETWORKS COMPRISING INTERACTING POSITIVE
LOOPS

The analysis — logical or differential — of isolated loops is trivial since the loops are
independent and can be treated separately. In real systems, there are usually interactions
among the loops. Differential analysis of such systems is no longer trivial, and the logical
analysis is of tremendous help. First, it provides a finite number of qualitatively different
patterns of behavior that can be expected from the system. For those considered interesting,
it then guides the choice of parameter values for obtaining similar behavioral patterns in the
differential description.

The addition of further interactions usually decreases the number of stable states. In the
naive logical description, adding interactions between loops always results in a decrease of
the number of stable states. For example,

In fact, if we consider a situation in which every logical state is stable (as with m indepen-
dent positive loops), obviously any change in the state table will result in a loss of stable
states.

However, the naive logical description, as we have seen, deals with special cases
(011 = Oy, B1p = U0). If we take into account the fact that a variable acting at more than
one point has more than one threshold value, it is found that additional interactions can
actually increase the number of stable states if additional positive loops are created. Thus, the
prediction from generalized kinetic logic is that in a differential system, appropriate
monotonic sigmoid interactions among m elements can result in more than 27 stable states
(and, as a matter of fact, in more than 3™ steady states) for m positive loops.

Consider the system described by the graph of interactions

3 '
1 1
-

+ + 2

in which the figures indicate the lower and higher thresholds (see Chapter 7). For instance, x
acts on itself with its lower threshold and on y with its higher one. The general logical rela-
tions are

X=d(K;; 'x+Kpp %)

Y =dy(Ky; Zx + Ky ly)
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and the stable state is

02/Ky3, K 12/K ;1 412, K22 22/K 11 + 12, K21 422
01/0, K, 11/Ky;, K3, 21/K;1, K3p 422
00/0, 0 10/K;;, 0 20/K;;, K5,

We can obtain the four stable states of the naive description by setting K;; = K;; = 1:

02/K;2, 1 12/K3p 412, 1 22/K11 v 12: K21 4 22
OD/0, 1 anr, 1 2171, K31 423

OO0, 0 @oyt, o 20/1, K33

Of the remaining states, 22/K;; , 12, K37 .+ 22 can be made stable for K;; .72 = K37 422 =
2. We then have

02/-1 12/21 @222
@D/o1 anni 21/12
©0)/00 A0y/10 20/1-

Thus, for these values of the logical parameters, the generalized logical description predicts
five stable states!

We built a differential system whose parameters respect the above constraints. For n — oq
it is easy to draw the nullclines (cf. Chapter 8) and infer from them the number and location
of the steady states. In Figure 2 are shown the qualitatively similar nullclines calculated for n
= 20 and for the parameter values given in the legend. There are 11 intersections between the
nullclines dx/dt = 0 and dy/dt = 0, thus 11 steady states. We expect the steady states at the
intersection of two boundary lines to be stable (@); the others are unstable, either saddle
points (][) or unstable nodes (0). All these steady states can, in fact, be identified on logical
grounds using the method described in Chapter 8, Section V.

In Table 1, for each steady state we show (1) the values inferred from the discrete analysis,
(2) those calculated from the differential analysis for n = 20, and (3) the roots of the
characteristic equation and the inferred nature of the steady state. There are, indeed, five stable
and six unstable states.

IV. MORE THAN ONE LOOP FOR ONE VARIABLE?

A gene product may influence its own rate of synthesis by acting at more than one site on
the DNA, which could imply more than one threshold concentration. In bacteriophage A, for
example, the repressor product of the cI gene is known to exert a positive effect on its own
synthesis at low concentration and a negative effect at high concentration. A case of this type
will be treated in Chapter 16, in which we discuss systems comprising both positive and
negative loops. h
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FIGURE 2. Nullclines of a two-variable system with 11 steady states. The parameter values are

) ) )

Here, we will consider the possibility that an element may exert two distinct levels of
positive control on its own synthesis:

Xy

This type of situation could occur, for example, if a gene product x acts as a transcriptional
activator of its own gene X weakly as a monomer (at low concentration) and strongly as an
oligomer (at high concentration). This can be described in generalized kinetic logic by the
relation:

X= dx(Kl 1y + K2 ZI).
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TABLE 1
Location of Steady State Nature of Steady State
Roots of
General Particular characteristic Inferred
n— oo n =20 equation nature
0,0 0,0 ©,0 -1,-1
X, 0) 2,0 (1.99,2 x 107) -0.99, -0.99 Stable
0,K,,) ©,3) (1.4 x 10 2.99) -0.99, -1 node
X,.Ky) 2,3) (2.00, 2.99) -0.99, -0.99
K, +K, K, +Ky) (6, 6) (5.89, 5.99) -0.96, -1.03
(%11,0) 1,0 (1,2.7x 103 9,-1
0, 9,,) ©,2) (1.0x 107, 2.08) 5.1,-1 Saddle
X Op) 2,2) (1.99, 2.08) 5.1,-09 point
(%, K, 1,3) (0.99, 2.99) 51, -0.99
(B2, Oar) 4,5) . (4.15, 5.04) 6.05, -8.05
(0, Op) 1,2) (0.99, 2.08) 9,51 Unstable node

Setting d,(K;) = K3, d,(K) = K;, and d,(K; + K;) = K} , 5, the state table is

0 0
1 K,
2 K;i2

For K; =1 and K;,, = 2, the state table becomes:

and there are three stable states.
Let us now examine this as a guide to construct a one-element differential system exhibit-
ing the same behavior, i.e., three stable states. The differential equation is

% =k F(x, 10) + koFH(x, 20) —k_;x

and the steady state equation is
x = (kK DF X, 19) + (kp/k_FH(x, 20) = F(x).

From the discrete analysis, we can predict that if k;/k_; is sufficiently greater than 9; and
smaller than 3, and ky/k_; is sufficiently greater than ,, there should be three stable states.
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FIGURE 3. A one-variable system with five steady states. The steady-state equation is

In Figure 3 is shown a plot of y = x and y = F(x) for parameter values which fit these con-
straints. There are, indeed, five steady states, three of which are stable.

REFERENCES

Kauffman, S. A., Control circuits for determination and transdetermination, Science, 181, 310, 1973.
Thomas, R. and Richelle, J., Positive feedback loops and multistationarity, Discrete Appl. Math.,
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I. INTRODUCTION

We saw in Chapters 12 and 13 how positive feedback loops generate multiple steady
states, and in Chapters 10 and 11 how negative feedback loops generate homeostasis, usually
associated with damped or sustained periodicity. In this chapter, we will consider systems
which comprise at least one negative and one positive feedback loop and see how they gen-
erate both multistationarity and periodicity.

In fact, three- or more-element networks comprising both negative and positive loops can
generate much more complex patterns of behavior, including complex periodicity (cf.
Appendix 4) and “chaos”.!3 Recent developments in the logical analysis by Snoussi should
permit us to present a logical (discrete) description of chaotic systems in the near future.
Here, we will focus on the respective roles of the two types of loops in periodicity and mul-
tistationarity.

Starting from a negative loop, we have a single steady state which, if the loop is
“effective” (cf. Chapter 10}, is a focus, at least in the case of one- and two-element loops,
this focus is always stable. As we will see in Section III, grafting an autocatalytic (positive)
loop onto such a negative loop not only can generate multistationarity, but also can destabi-
lize the focus associated with the negative loop, resulting in permanent (undamped) periodic-
ity, even in the two-variable system. This effect has been used extensively to account for
stable periodicity in models of two-element systems. 468

II. GRAFTING AN AUTOCATALYTIC (POSITIVE) LOOP
ONTO A NEGATIVE LOOP: MULTISTATIONARITY

Let us start with a two-element negative loop and introduce an autocatalytic interaction on
one of the elements. In our analysis, we will use both the differential and discrete descrip-
tions. This is legitimate since we know how to find parameter values giving the same quali-
tative behavior in the two descriptions (cf. Chapter 8), and we can considerably simplify our
task by choosing for each point the description that is easier to handle. In fact, the analysis
nicely illustrates the complementarity of the two descriptions.

+
[
We will analyze the system whose graph of interactions is x yi) The
“—

differential equations are
dX/dt = kleﬁ(y, 1312) — k_lx
dy/dt = ko F¥(x, Oa1 ) + kppF*(y, ¥2) ~ k oy

where F* and F- represent positive and negative Hill functions (sigmoids), respectively. If
k,; =0, we have a simple two-element negative loop. We already know that in this case the
system has a single, stable steady state which, for appropriate parameter values (k;,/k_; suffi-
ciently greater than 05,), is a focus (cf. Chapter 10). Furthermore, this focus should lie near
the point (U5, ©;,) (cf. Chapter 8).

We now increase the value of kj; in order to amplify the contribution of the autocatalytic
term. We will first examine the situation with generalized kinetic logic to get a rapid view of
the different patterns of behavior we can expect. The logical description of this system, given
in another context in Chapter 7, is for (1%, < Uy,):
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X= dx(KIZIy)
Y = dy(Kz  x + Kpo?y)

in which K, = ky,/k_4, etc. and d, and d, are discretizations in the scales of x and y, respec-
tively (cf. Chapter 7). The state table is

12/0K3; + 22
11/0K,,
LO/K 12K 34

with K;; = d,(K ), etc. Since y has two thresholds and x one, X, x, and K, can have the
values O or 1 and Y, y, K5;, K33, and K,; , 5, can have the values 0, 1, or 2. We assume
that the terms describing the negative loop are strong (K;; = 1 and K3; = 2), and we
examine the effect of increasing the autocatalytic term Kj; from O to 2.

K, <2 K;; =2

1t can be seen that for K,, < 2, there is a periodic attractor. For Ky, = 2, there is a choice
between the periodic pattern and a stable state, (02). The decision between the two patterns is

taken at state _lJi/OZ. Which pathway is chosen depends on the relative rates of decay of x and
synthesis of . We can thus expect that in the differential system, for sufficiently high
values of ky, (which ensures sufficiently high rates of synthesis of y), the stable pattern will
overcome the periodic one. This is indeed found in the differential description. In Figure 1 are
plotted the steady-state value(s) of y as a function of kyy. It can be seen that for low values of
kyo, ¥ has a single steady-state value (and, as we shall see, it is a focus). As kj, increases,
there suddenly appears a second steady state that immediately splits into two steady states. In
Thom’s language,’ this situation, in which the qualitative properties of the system suddenly
change, is called a “catastrophe”. There is thus a range of values of k,, for which y has three
steady-state values. As ky, increases further, the middle and upper values move closer, until
at high values of k,, the latter fuse and disappear, leaving only the upper steady state.

III. GRAFTING AN AUTOCATALYTIC (POSITIVE) LOOP
ONTO A NEGATIVE LOOP: DESTABILIZATION OF THE
FOCUS

It is interesting to take the analysis further and ascertain the nature of the steady states for
different values of k,y. This is most easily done by finding the roots of the characteristic
equation for each value of ky,, then plotting the product of the roots (P) vs. the sum (S) for
each point. The location of a point in S-P space, as described in Appendix 3, immediately
reveals the nature of the corresponding steady state. For points located in the “south”, we
have P < 0. The roots are thus real and of opposite sign, meaning the steady state is a saddle
point. Points located in the NW quadrant (P > 0, S < 0) have both roots (or their real part)
negative, meaning the steady states are stable, whereas points located NE (P > 0, S > 0)
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18 T T T 22

FIGURE 1. The steady-state values of variable y for increasing values of the parameter kj,. The parameter values

chosen are
- 2 1 - 1
n=>5 ky= k_ = 1911. =
2 ko, 1 1 1.2

Thus, for the logical parameters we have K;» = 1 (ie., k;»/k | > B21) and Kz =2 (i.e., ko kg > D90); Ko will vary
according to the value of ky,. The curve is drawn solid or dotted, according to whether the steady state is stable or
unstable (see Section IIT). Arrows indicate the critical values of kyy: (1) the unique steady state, a focus, becomes
unstable; (2) additional steady states appear; and (3) the original steady state fuses with one of the new ones and the
two disappear.

have both roots (or their real part) positive, indicating unstable steady states. Finally, points
lying above the parabola S? — 4P = 0 represent foci, whereas points between the parabola and
the S axis represent nodes. These regions are shown in Figure 2.

In our present example, for low values of ky,, the points lie in the NW quadrant, above
the parabola (Figure 2), indicating that in this range the (unique) steady state is a stable focus
(the characteristic equation has complex roots with a negative real part). As k,, increases, the
point representing the steady states moves toward the SE. When it crosses the P axis, the
real part of the roots becomes positive. At this point, the system will bifurcate toward a
limit cycle solution—a “Hopf bifurcation”. For each value of ky, in this range, the (unique)
steady state is an unstable focus. Thus, a sufficiently strong autocatalytic term
can destabilize the focus. As k,, increases further, we reach a second critical value: for
koy = 1.98, a second steady state appears on the negative part of the S axis and immediately
splits into two steady states, one above and one below the S axis, and their distance increases
with increasing ky,. The first, in the NW quadrant, represents a stable node, and the second,
in the south (P < 0), represents a saddle point. Finally, as k,, increases yet further, the
points representing the saddle point and the original steady state meet on the S axis and
disappear. Before this happens, it can be seen that the original steady state passes from an
unstable focus (imaginary roots) to an unstable node (real roots) as the point crosses the
parabola.

Let us now reexamine the destabilization of the focus. As shown in Chapter 6 and
Appendix 3, for a simple two-element negative loop (which is our situation for ko, =0)itis
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FIGURE 2. The stability of the steady states for increasing values of ky,. The
parameter values are the same as in Figure 1.

necessarily stable because the real part of the roots of the characteristic equation is equal to
(aj; + a55)/2, or (k_; — k_5)/2, which is negative. However, if there is an autocatalytic term
kyoF*(y), a1y + a3, becomes —k_; — k5 + kyo[dF*(y, ©5,)/dy],. The third term, which is
positive, will make the sum positive if it exceeds k_; + k_,. In the case of sigmoid
functions, dF*(y, ¥5,)/dy is a bell-shaped function whose value is near zero except in the
vicinity of the inflection point y; of F*, itself close to the threshold 9, (see Figure 3).

In our system, the focus is located near (9,;, 9,,); in other words, y° = U1,. But we have
just seen that ky,[dF*(y, 055)/dy]y is very small unless y0 is close to the inflection point of
F*(y), which lies near O,. Thus, we do not expect the autocatalytic term to destabilize the
focus unless the two thresholds of y, 9, and 9,5, are close to each other, and this constraint
becomes stronger as the sigmoid F*(y) becomes steeper.

This is illustrated in Table 1, in which we compare the nature of the steady state for
increasing values of the exponent n in the Hill functions, holding the other parameters con-
stant. In the system considered, the steady state is a focus that is stable for n = 4, unstable
for n =5 to 13, and stable again for n > 14.

In the special case U5 = ¥9,, this problem disappears; the higher n, the higher
koo[dF*(y)/dyly, and unstable foci are readily found. This was the situation in Case 11 ana-

lyzed in Chapter 8. There, the focus was the only steady state, giving rise to a limit cycle
when unstable.

IV. THE TWO TYPES OF DESTABILIZATION HAVE
DIFFERENT MECHANISMS

As pointed out in Chapter 6, multiplying all the k’s and k_’s of a differential equation by
the same factor will change the timing of the process, but will not affect the steady-state
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dF*ly)

FIGURE 3. The functions dF*(y)/dy and F'(y). The maximum of dF*(y)/dy corre-
sponds to the inflection point y; of F(y). The point y, is less than the threshold value
By (B2 =[(n + 1)/n — )]V ¥:), but the steeper the sigmoid (i.e., the higher the Hill
exponent n), the closer the two points will be. It is also clear that the steeper the sig-
moid is, the higher and narrower the derivative curve will be.

Location of

the focus S
x =0.463 -0.56
y =1.349

x =0.669 0.20
y =1.147

x=0.972 0.176
y=1.00

x=0.978 -0.010
y =100

x =0.994 -0.97
y=1.00

TABLE 1
Stability of
P Sz - 4P o the focus
0.329 -1.00 -0.28 £ 0.51 Stable
1.80 -7.24 0.1+1.31 Unstable
40 -162 0.085 * 6.31 Unstable
47.7 -191 —0.005 £ 6.91 Stable
100 -399 -0.48 £ 9.91 Stable

Note: The system is described in Figures 1 and 2. Parameter values are
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equations since the K’s (i.e., the ratio k/k_) remain unchanged. Thus the nullclines and
steady-state values do not change, but the stability of a focus can be affected. This is illus-
trated in Figure 4, in which the unstable focus (panel a) is stabilized simply by doubling k;,
and k_; (panel b). Note that although the focus is unstable in panel a, instead of generating a
limit cycle, it leads to the stable state of the system. If the multiplicative factor is chosen
such that for the “lower” steady state the roots of the characteristic equation are pure imagi-
nary (S = 0), the steady state is neither attractive nor repulsive, and the trajectories form
closed curves around it (panel ¢). Such a steady state is called a center.

Thus, the steady-state equations and, consequently, the nullclines tell us everything about
the number and location of the steady states, but not about the stability of a focus. In this
respect, the steady-state equations resemble our logical relations, which distinguish clearly
between, say, a node (stable state) and a focus (cycle), but do not differentiate stable and
unstable foci.
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I. ANTIGENIC VARIATION IN PARAMECIUM AURELIA

In the summer of 1948, the French Centre National de 1a Recherche Scientifique organized
an international colloquium in Paris entitled “Biological Units Endowed with Genetic
Continuity”.! It was an exciting period for biologists. DNA had been identified a few years
earlier as the Pneumococcus transforming principle but no one could say to what extent it
carried the genetic information involved in nuclear and cytoplasmic inheritance. One major
concern at the meeting, as the title suggests, was with autonomous cytoplasmic particles
such as chloroplasts, kinetosomes, or the Kappa factor. Called “plasmagenes”, these particles
were known to conserve their properties independently of the nuclear genotype. There were
several clear cases of cytoplasmic (non-Mendelian) inheritance correlated with cytologically
observable entities. However, plasmagenes were also postulated, in a vaguer way, to explain
a number of other cytoplasmically determined phenomena, even though they were not asso-
ciated with any visible particle.

Sonneborn and Beale? presented observations of this type on antigenic variation in
Paramecium aurelia. A given culture stably produced a specific surface antigen, but could
segregate variants expressing another surface antigen. In crosses between different variants,
the progeny all showed the “maternal” antigenic type, which was therefore postulated to be
determined by a plasmagene. Each line of P. aurelia had its own repertoire of potential anti-
genic states. In a given culture, only one type was expressed, but limited treatment with the
corresponding antiserum could cause up to 90% of the cells to express a different antigen of
the repertoire. On the other hand, in crosses between independent lines, they found that the
potential to produce a certain antigen exhibited Mendelian inheritance and thus was deter-
mined by a nuclear gene. This posed a paradox: the antigen actually being expressed in a cul-
ture was determined by cytoplasmic factors, whereas the potential ability to express it was
determined by the nucleus. Sonneborn and Beale suggested that the nuclear genes determined
the formation of the various plasmagenes, which then became essentially autonomous unless
the antigen whose synthesis they directed were inactivated, e.g., by antiserum.

In the discussion following Beale’s talk, Delbriick® pointed out that these observations
could equally well be explained by the existence of multiple steady states, without postulat-
ing the presence of plasmagenes. Forty years later, it seems that antigenic variation is indeed
epigenetic.!! The cytoplasmic factors that determine the antigenic type being expressed (and
exhibit “maternal” inheritance) are presumably regulators of the nuclear genes that code for
the various antigens. The action of these regulators results in the expression of only the
appropriate gene.

M. Delbriick’s remark was so clearly formulated that we reproduce it here (our translation)
in its entirety, both for historical interest and as a concise presentation of epigenetic
regulation.

“In his discussion of the phenomena observed by Sonneborn and himself, Dr. Beale proposed considering that
these phenomena result from the properties of a population of plasmagenes whose reproduction is favored or inhib-
ited by the medium.

I do not intend to contest this conception but would like to draw attention to certain general properties of sys-
tems in so-called “steady state”, properties which must be taken into consideration before postulating the existence
of biological units endowed with genetic continuity in any or all cases in which the genetic continuity of a function
is observed.

The argument I wish to develop is the following: many systems in steady state can exhibit several different
stable states under identical conditions. They can be shifted from one stable state to another by transient perturba-
tions

This general proposition can be illustrated by a simple model. In the following diagram (Figure 1), the letters
Ay, As, By, and B, stand for different enzymes in a cell, which is represented by the circle. The letters a,, b, stand for
substances in the medium. Via the action of A, and B,, respectively, these substances are transformed into
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intermediate metabolites a, and b,. The latter, in turn, are the substrates of enzymes A, and B, which transform

them into waste products a; and bs. If the medium is constant, the cell will quickly reach a steady state characterized
by a certain constant concentration of the intermediate products a, and b,. In this model, there is only one stable
state, determined by the medium and the cell’s enzymatic properties.

Let us now add the hypothesis that there exist mutual interactions between the two series of enzymatic reac-
tions. Explicitly, let us suppose that the metabolite a, affects the reaction catalyzed by enzyme B, such that at high
concentrations of a, this reaction is inhibited.* We further postulate a similar effect of metabolite b, on enzyme A,.
These interactions are shown by dotted arrows in the diagram.

In this new model, it is still true that under constant conditions the cell will reach a steady state. However, there
now exist three possible steady states for the same culture conditions, two stable and one unstable. Let us consider,
for example, conditions in which substances @, and b, are at equal concentration. The steady state ultimately reached
will depend on the order in which these substances were added to the medium. According to the conditions, the
steady state will be characterized by:

a. Much a,, little b,, if a; was added first. This steady state is stable; we will call it state a.

Little a,, much b,, if b, was added first. This steady state is also stable. We will call it state b.

¢. Equal low concentrations of a; and b, if the two substances were added simultaneously in equal quantities. This
is a steady state, but it is an unstable state in which weak perturbations will cause a shift to state a or to state b.

Sa

The shift from state a to state b could be caused by strong transient perturbations. For example, if the initial
state is a, a temporary interruption of the inhibition of B, by a, will cause a shift from state a to state b.

These alterations could occur via diverse mechanisms: transient treatment with anti-a) serum, transient change of
temperature such that the activity of enzyme A, is selectively reduced, or transient transfer to a medium lacking
substance a,.

In summary, our model cell can exist in two functionally different steady states without this implying any
change in the properties of the genes, plasmagenes, enzymes, or any other structural units. Shifts from one state to
another can be caused by transient modifications in the medium.

Models of this type can be modified ad infinitum to account for a large number of different steady states endowed
with any degree of stability. Shifts from one to another could, according to the case, be reversible or irreversible, as
in differentiation, where the existence of plasmagenes has also been invoked, without any concrete proof.

1 do not claim to propose a theory here explaining the phenomena described by Sonneborn and Beale. I simply
wish to insist on the fact that, for systems in steady state (but not for systems at equilibrium), one can envisage
diverse explanations of this type which from a general point of view are by no means outlandish or even improb-
able. The above proposition is not new, and many biologists have a fairly clear idea of what it implies. I thought
this simple mode! would help illustrate and clarify the idea.”

II. EPIGENETIC CHANGE IN THE ESCHERICHIA COLI lac
OPERON

Delbriick’s historic comment was a prelude for an entirely new way of looking at differen-
tiation. Soon afterward, his ideas were borne out by experimental work. It was known from
studies by Monod and co-workers that the bacterium Escherichia coli has the genes required

Such a property could be due to reversible dimerization of ap, with only the dimer being able to inhibit the
reaction catalyzed by B,.
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to utilize the sugar lactose, but that these genes are expressed only in the presence of an
“inducer”. The natural inducer is a close derivative of lactose itself (produced by the cell from
lactose), but there are a number of synthetic analogues that are also good inducers. Some of
these cannot be metabolized by the cell and are called “gratuitous” inducers. The enzymes
involved are B-galactosidase, which splits the disaccharide lactose into glucose and galactose,
and B-galactoside permease, which sits in the membrane and actively pumps lactose and its
analogues into the cell from the outside medium. The level of these enzymes is essentially
nil in the absence of inducer, but becomes significant within minutes after the addition of
inducer. A crucial observation was that in the presence of low external inducer concentra-
tions, a cell that was already induced (“preinduced”) would remain induced indefinitely,
whereas a cell that was not induced would remain uninduced. We will call this range of
inducer concentration a “maintenance” concentration.

This was the starting point for two admirable, complementary series of experiments by
Novick and Weiner* and by Cohn and Horibata.5 In simplified terms, one can describe their
experiments as follows. Take an uninduced culture, add a high concentration of inducer, split
the culture into two parts, and dilute them so that the inducer concentration falls to the
“maintenance” range. This dilution is made immediately for subculture A, but only after 10
min for subculture B. Knowing the phenomenon of preinduction, one can predict the result:
culture A was not exposed to a high inducer concentration (except for a few seconds) and thus
remains uninduced, whereas culture B, exposed to a high inducer concentration for 10 min,
was induced and will remain so since the residual inducer concentration suffices to maintain
the induced state. This is exactly what was observed experimentally. What is absolutely
striking is that the two cultures can be diluted indefinitely (more than 130 generations) in the
same medium (containing a maintenance concentration of inducer) without changing their
state: the subcultures derived from culture A remain uninduced (essentially, no B-galactosi-
dase synthesis), whereas those derived from culture B remain induced (high level of B-galac-
tosidase synthesis). Furthermore, it is readily shown that the populations have not changed
genetically: if inducer is removed, all cells become uninduced, and if a high concentration of
inducer is added, all cells are rapidly induced.

The essential logical mechanisms underlying these experiments were fully understood in
the late 1950s by their authors. Internal inducer is required for the synthesis of permease, but
unless the external inducer concentration is high, permease is required to build up a signifi-
cant internal concentration. Thus, at low external inducer concentrations, we have a vicious
circle: internal inducer is required for the synthesis of permease and permease is required for
the internalization of inducer. A very simple logical formalization is given in Table 1.
Clearly, there is a range of external inducer concentration (the maintenance range) in which
permease behaves autocatalytically — a typical positive feedback loop — and this is the
basis for the two distinct, heritable phenotypes observed.

In the above experiments, we had two cultures of genetically identical bacteria growing in
identical environments, yet presenting a heritable phenotypic difference: one had a high level
of B-galactosidase synthesis, the other, essentially none. An outside observer unaware of the
history of the two cultures could easily conclude that the bacteria were genetically different.
The formal analogy with the antigenic variation in P. aurelia discussed by Delbriick is obvi-
ous: there are two stable states, and the cells can be made to pass durably from one to the
other by transient perturbations (temporary exposure to high or low inducer concentration).
This is a perfectly unambiguous case of an epigenetic difference, the first to be clearly
established and understood. It remains perhaps the simplest and most elegant illustration of
an epigenetic change.
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TABLE 1

The presence and synthesis of permease are represented by the Boolean variable and function y and ¥,
respectively, and the external inducer concentration by I. We consider three levels of external inducer:

I =0, negligible;
I =1, maintenance;
1 =2, inducing.
We use the Boolean variables /f and ?I: 1] = 0 iff < 1, and 2I = 0 iff I < 2. The logical relation is
Y =21+ 1y,

It simply says that permease is synthesized if there is a high external inducer concentration or if there is a
maintenance inducer concentration and permease is already present. In the state table, we treat [ as an input variable.

I=0 =1

¥ =0 ¥=y) ¥=1

2 A differential treatment of this system can be found in Reference 10.

II1. EPIGENETIC MODELS OF MONOD AND JACOB

The very basis of today’s ideas on gene regulation is the recognition that there exist regu-
latory genes whose products, in response to external stimuli, influence the expression of
other genes by interacting with specific DNA sequences near the genes to be regulated.® In
isolation, these elementary pieces of the regulatory puzzle permit reversible modulation of
gene expression by environmental variables. As pointed out in Chapter 9, they form individ-
ual positive or negative controls, not feedback loops. However, as soon as Monod and Jacob
discovered gene regulators, they began to speculate about the possible effects of looped sets
of such elements.” This remarkable paper should be quoted in extenso. Here, we will simply
show two of the models.

These authors envisaged a system in which a gene E, negatively regulated by a repressor,
codes for an enzyme e that catalyzes the synthesis of a product p which, in turn, antagonizes
the repressor; in other words, enzyme e produces its own inducer. The system is readily for-
malized:
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confirming that the system does indeed constitute a positive loop, with two stable states:
both enzyme and inducer present (@) or both absent (@).

A second example involves two genes, E; and E,, coding for enzymes e; and e,, which
catalyze the formation of products p, and p,, respectively. Product p; is a corepressor of gene
E, and p, is corepressor of E,. Again, the system forms a positive loop:

—£; *p
T d
ps* e
The logical relations are
Pl =€ P2 =€
E,=p, Ey=p;
and the state table is
pieipre;  PEPE, piewpre;  P\EPHE,
0000 0101 1100
0001 0111 1101 1110
0011 1111 1010
0010 0001 1110 1000
0110 1001 1010 0000
0111 1011 1011 0010
0101 1111 1001 0110
0100 1101 1000 0100

The two stable states are (only E, and p, are present) and (only E; and p; are
present).

These and other examples were presented in 1961 as simple illustrations of the type of
logical circuit capable of giving rise to the epigenetic changes that characterize differentia-
tion. In all cases, a simple positive feedback loop was involved.

IV. THE CI-CRO SYSTEM OF BACTERIOPHAGE A

This system will be described in more detail in Chapter 20 as part of the A circuitry.
Here, we will briefly describe the essential aspects of repressor regulation, elucidated by the
Jacob group.8

Bacteria lysogenic for A carry the phage DNA inserted in their own chromosome, where it
is called a “prophage”. The prophage cI gene directs the synthesis of a repressor, which
directly or indirectly represses the transcription of other prophage genes. In particular, the
genes coding for phage production and lytic growth are silent. The lysogenic bacterium is
thus not inconvenienced by its prophage and, in fact, thanks to the repressor, is immune to
infection by other A phage. The cI gene is negatively regulated by the product of the cro
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gene, which, in turn, is repressed by cl. If the A repressor is temporarily inactivated, the situ-
ation quickly becomes irreversible. In the absence of active cI repressor, the cro product is
synthesized and, once a threshold concentration is reached, it prevents the synthesis of new
cl. Thus, transient inactivation of cl repressor can result in a permanent loss of immunity.
This normally leads to lytic development of the phage and death of the cell. However, if the
viral functions responsible for cell death are mutationally inactivated, lysogens can survive
despite the loss of immunity. These lysogens can grow indefinitely in either of two stable
states, immune or non-immune. This is, again, a beautiful example of an epigenetic differ-
ence.

The cl-cro system of phage A has been clegantly exploited by Toman et al.?, who replaced
the genes distal to cro by the bacterial gal genes, coding for the enzymes involved in
galactose utilization. In this way, cells in the “cro” (nonimmune) phase express the gal
genes and are able to metabolize galactose, whereas cells in the “cI” (immune) phase do not
express these genes and are unable to use galactose. Using appropriate “indicator” plates, the
strain produces red or white colonies, according to whether the cells are in the “cro” or “cI”
phase. (Indicator plates contain galactose and a pH indicator; colonies in which the galactose
is fermented cause local acidification, producing a red color.)

This sophisticated bacterial strain has interesting properties. If, for example, it is exposed
to UV light, the DNA will be damaged and the SOS response will be induced (cf. Chapter
19). One manifestation of SOS induction is the proteolytic cleavage of the A cl repressor.
This leads to a stable conversion of bacteria from the immune state (Gal~, white colonies) to
the nonimmune state (Gal*, red colonies). The frequency of red colonies in the irradiated cul-
ture is a direct and highly sensitive measure of the degree of DNA damage. UV doses that
have no effect on cell viability can cause a significant increase in the frequency of red
colonies. The same strain can be — and, in fact, is — used to evaluate DNA damage caused
by other agents.

It is well known that UV irradiation and other DNA damaging treatments are mutagenic.
In the experiment just described, the UV light could mutationally inactivate the cI gene and,
of course, this would also result in conversion from the immune state to the nonimmune
state. The mechanism, however, is completely different: SOS induction involves an epige-
netic change, whereas mutational inactivation is a genetic change. In fact, the two types of
events can be distinguished on the indicator plates. The epigenetic Gal* colonies are a paler
red since the frequency of recovery of the immune (Gal") state is about 10—, whereas genetic
Gal* colonies generally contain few, if any, Gal~ revertants and are thus dark red. In the case
of UV irradiation, the epigenetic effect is about 100-fold higher than the genetic effect. Other
mutagens behave differently. For example, for the powerful mutagen nitrosoguanidine, the
genetic effect is more pronounced than the epigenetic effect, and ethylmethanesulfonate pro-
duces only the genetic effect.

V. AND SCRAPIE?

Scrapie is a transmissible, mortal disease in sheep that presents a curious paradox: the
infectious agent of the disease, isolated from infected animals, contains no nucleic acid!. In
fact, the active principle seems to be protein. Of course, a self-propagating protein would
violate the paradigm, based on more than 40 years of intensive molecular biology research,
that all genetic information is carried by the nucleic acids, DNA and RNA.

A simple hypothesis accounting for this paradox (and respecting orthodoxy) is that the
gene coding for the scrapie protein is part of the normal sheep genome. How, then, can we
explain that sheep are healthy unless infected by the scrapie protein? The reader will no doubt
have guessed: it is sufficient to postulate an autocatalytic positive loop such that the scrapie
gene can only be expressed if the scrapie protein is already present (much like lactose per-
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mease in the conditions described in Section III above). This type of circuit will have the
two stable states “gene off, scrapie protein absent”, the normal, healthy state, and “gene on,
scrapie protein present”, the situation after infection by scrapie protein.

Such a hypothesis, although gratuitous at present, is testable and, if borne out by experi-
ments, would provide a framework for disease control and for the development of resistant
lines of sheep. It would also pose an interesting question: what is the normal role of this po-
tentially lethal protein?

The examples of the E. coli lac operon and the cI-cro system of A (Sections IT and IV) are
particularly striking because the underlying molecular mechanisms of the epigenetic changes
are thoroughly understood and, indeed, form positive feedback loops. It seems virtually cer-
tain that other, more complex situations in which multiple stable states occur, such as anti-
genetic variation and possibly scrapie (Sections I and V) will similarly turn out to be based
on positive feedback loops. In fact, we are convinced that this type of logical circuit will
provide the ultimate explanation for the many stable states reached in the course of embry-
onic development.
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I.. INTRODUCTION

So far, space — and hence the transport of matter — have not been considered explicitly.
The aim of this chapter is to illustrate how diffusion processes can be incorporated into the
logical description.

The systems we shall deal with consist of groups of cells communicating via diffusion of
the reactants. The cells are in a well-defined environment, and in cach of them regulatory
processes take place. We shall be interested in the collective behavior arising from the inter-
action of three processes: (1) mutual mass exchanges, (2) nonlinear chemical kinetics, and
(3) exchanges with the surrounding medium.

Simple diffusion is usually described by linear terms that cannot be approximated by step
functions or Boolean variables. We shall show in this chapter that this difficulty can be over-
come, at least for the determination of the stationary solutions, by introducing a trick to
remove the undesired linear terms. Regulatory processes coupled to mass transfer are then
readily handled with the generalized logical method. The identification of the stable states and
their number simply amounts to evaluating a set of logical parameters and ordering them by
magnitude.

Several authors have studied multicellular systems of the kind described here using classi-
cal continuous analysis.!"” The occurrence of multiple steady states, some of which corre-
spond to stable spatial patterns, has been demonstrated theoretically and experimentally.” The
interest of the logical approach is to uncover all the potentialities that such systems may
present without requiring lengthy calculations.

Compartmentalized systems may be considered to model a tissue of initially equipotent
cells, each, for instance, with the same genetic circuit. The emergence of a stable partition-
ing of the tissue into regions with differential genetic expression might be crucial for many
differentiation or developmental processes.

‘We will focus here on the elementary example of two identical interconnected cells con-
taining a simple one-element positive loop. Situations involving more cells or more com-
plex regulation are described elsewhere.?

II. A TWO-CELL SYSTEM: DIFFERENTIAL FORMULATION

For illustrative purposes, we shall consider here a simple two-cell system (Figure 1). In
each cell, the same autocatalytic process takes place, conveniently described by the one-ele-
ment positive loop (see Chapters 12 and 13):

O

The two compartments (I and 1I), containing homogeneous solutions of product x at concen-
trations x; and x, are separated by a thin inactive membrane. There is no reaction within the
membrane, which only allows the diffusion of x between the two compartments, from
regions of high concentration to regions of low concentration. Moreover, each compartment
is in contact with a well-mixed reservoir with a fixed concentration of x, xq; and Xg;.

In the absence of diffusional coupling between the compartments (i.e., if the membrane is
impermeable to x), each cell behaves independently, and the time evolution of the concentra-
tion of x in each compartment is the result of (1) its exchange with the reservoir:
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Reservoir Reservoir 2

FIGURE 1. A two-cell system.

dx; D
'_l = v — a
( dr ) flow = Vc (X01 xl)

where xy; is the constant concentration of x in the reservoir, D is the flow rate (volume per
unit time), and V. is the volume of the cell; and (2) its autocatalytic synthesis (see Chapter

12, Section II):
_n
ax;
( )reacnon n + X"

Thus, the equation governing the evolution of x; in a single cell fed from an external

4 ( l) ( .) on
(H' dr flow dr reacti

—l_
p V (XOI Xl)'l'ke n+Xn

Substituting the dimensionless time variable t =T - V’ which measures time in units of

e \/ . P .
the “characteristic time” ]—D"‘ (the time to “fill” the cell), we obtain:

dx; X"
@ TR O @

\
with 6 =k - ]—)"‘ The parameter 6, whose dimensions are those of x (concentration units),

represents the strength of the autocatalytic term.

This equation is similar to that in Chapter 12. Depending on the parameter values or on
the reservoir concentration Xg;, there may be up to three steady states.

In Figure 2, the number of steady states is shown as a function of xg;, for fixed values of
the parameters o, 8, and n. The corresponding generalized logical function is given by:

X; = dy, (xp; + Ox3)
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FIGURE 2. Steady states corresponding to Equation 1, for three values of the reservoir con-
centration, X, Here, 6 =0.5,0,=0.75,andn= 50. (a) xg, = 0.150; (b) x; = 0.525; ©) X =
0.825. The stable steady states are circled.

with the state table:

where K = d,(xo1) and K = dy,(Xoi + ©)-

The specific situations corresponding to Figure 2 are shown in Table 1.

From Figure 2 and Table 1, we observe that even if the weight of the autocatalytic term
is low (G < 8y), the presence of a source may render the positive loop effective.

In the presence of diffusional coupling between the compartments, the composition in
each cell will influence that in the other.

The equations for the time evolution of the concentrations in each compartment will con-
tain an additional contribution describing the diffusion across the membrane, which is lin-
early proportional to the concentration difference:

dx D,:S
dx, xS
(dI‘)diff “e- V. (e = %)



211

TABLE 1
K0=K1—_—0 KOZO,K1=1 K0:K1=1
X Xi
0 1
ol
x0i+G<9X x0i<9x<X0i+G 9x<X0i

where D, is the diffusion coefficient of product x across the membrane and e and S are the
thickness and surface area of the membrane, respectively. The corresponding expression for

(%,2) i is obtained by permutation of the subscripts 1 and 2. Thus, for each compartment,
11T,

we now have

1= (@) () s ()
dar dI' J flow dI' / reaction dT' J dift.

or, more explicitly, the concentration of x within the two cells is governed by the system of
coupled differential equations:

dx X"
axy _ . S
dt —XOI—X1+7\.(X2—X1)+G GX“+X1“
i 2
ax, Xt
dt =Xp - X2+ MX; —Xp) + O 0,7 + X,
D Ve _Dy-S
where, as above,t=T - ,0=k- D’ and we have set A . D" The parameter A, called
i )

the mass transfer coefficient, is a measure of the diffusional coupling between the two cells.
For simplicity, we have considered that the two compartments are identical, i.e., that each
cell has the same characteristic time T = V_/D and that the reaction proceeds at the same rate
(k) and with the same threshold value (6,) in the two cells.

In this chapter, we shall be interested in the steady-state solutions of System 2, and we
will use the generalized logical description to study the stable states as a function of the
reservoir concentrations (xg;) and the mass transfer cocfficient ().

III. A TWO-CELL SYSTEM: GENERALIZED LOGICAL
DESCRIPTION

We saw in Chapter 8 that as n — oo, the sigmoid functions approach step functions and
can be replaced by Boolean variables. The generalized logical functions corresponding to the
piecewise linear equations are then readily constructed by discretization. In the present case,
this is not possible in a straightforward way. To see this, let us write Equation(s) 2 in the
form:

1 dx 1
AT @ 1 g Ko+ o) + Axg) = Hy(xy, x0) 3.0



212 Biological Feedback

1 dx 1
T =T e (ot OF0) + Axy) = Hylxy, %)) (3.2)

. . . . A A
Each right-hand member, H; (i = 1, 2), contains a linear term, T+ 0 % and L+ X

which can no longer be approximated by a step function. To derive the corresponding logical
relations, one must first transform System 3 in such a way that these linear terms disappear.
In the simple case considered here, this can be done in the following way. Into Equation 3.1,
we insert the expression for xo from Equation 3.2, and into Equation 3.2, we insert the
expression for x; from Equation 3.1. After collecting the terms, this leads to the system of
equations™:

(1 +M))x, + %1 + MI%Z = 6F*(x;) + M;6F*(xp) + X1 + Mgy

(]. + MI)X2 + Ml%l + %2 = MIGF+(X1) + GF+(X2) + M1X01 + Xo2

where M; =

1+ A
The steady-state solutions of System 2 or 3, which are defined by %L = dEXI?‘ = 0, are thus
also given by the solutions of the algebraic equations:
(1 + MI)XI = GF+(X1) + M16F+(X2) + Xg1 + M1X02
@

(1 + Ml)Xg = MIGF+(X1) + G'F+(X2) + M1X01 + Xo2

which now contain only sigmoid functions in their right-hand members. Introducing the
variable change,

Xj:(1+M1)Xi, i=1,2
the sigmoids become:

L Xp _Xm
Ox“ + X" - [(1+M1)9x]“ + Xin Ton 4+ Xin

FH(x;) = =FH(X))

with the new threshold value:
0 =(1+M,)6,
In terms of the new variables, the algebraic System 4 may thus be written:
Xy = 6F* (X)) + M,0F*(Xy) + (x0; + M Xgp)

3)
Xy =M,0F*(X;) + 6F*(X,) + (M;Xq1 + Xgp)

*  In mathematical terms, this amounts to inverting the transport matrix:

( —(1+2A) A
A —(1+A) )
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It is worth pointing out that the coefficients that appear in these equations are related to
one another by the following inequalities. Since A, ¢, and xq; are each nonnegative,

M1=

A
1+ }L<1andthus.

Mo <0, Mixg<xq (i=1,2)
Moreover,
as A — 0: M; = 0 and Mo — 0, Myxg — 0
as A — oot M] — 1 and M6 — 6, Mxy — Xg;

The physical meaning of Equation(s) 5 is clear: when the cells communicate with one
another by diffusion across their common boundary, the reaction and entry flux in compart-
ment IT will affect the steady-state concentration in compartment I, but in general to a lesser
degree than the reaction and entry flux in compartment I itself, and vice versa.

We can now construct the logical relations corresponding to Equation(s) 5 that will
determine the stable states of the two-cell system. These logical relations are*

Xl = dx(le + MIGX2 + X1 + M1X02)

©)

X2 = dx(M10x1 + 0x, + M1X01 + X02)
where we have taken into account that the discretization scales are the same for x; and x,
since the thresholds are identical in the two compartments, i.e., d,, = d, = d;.
Let us first consider the case in which the concentrations in the two reservoirs are equal
(%01 = Xg2 = Xp)- The two cells are thus completely identical. We set:

Xo1 + Mixgp = MiXq1 + Xgp = (1 + M)xp =K

The corresponding general state table is given in Table 2.

TABLE 2
X,
0 0 K, Ky
0 1 K, K,
1 1 K, K,
1 0 K, K|

with the logical parameters Ky = d,(Ko), K; = d,(Kg + M;0), K3 = d (Ko + 6), and K3 =
d,[Kg + (1 + M;)o]. The particularity here is that, for values of A # 0 or o, 0 <M, < 1, and

More precisely, the discrete application is constructed starting from a piecewise linear differential system
whose right-hand member is equivalent to Equation(s) 5. The steady states of the two systems are identical,
but the dynamics will, in general, be different. The information that one can gain from the logical method as
applied here is thus, in general, limited to the steady-state behavior.
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all these logical parameters are related to one another through the inequalities:
Ko <Ko+ M0 <Ky+0<Kp+ (1 +M))o. @)

which must be taken carefully into account when ascribing logical values to the different
parameters.

IV. STABLE STATES AS A FUNCTION OF THE RESERVOIR
CONCENTRATION AND THE STRENGTH OF COUPLING

Let us investigate the steady-state behavior when the reservoir concentration xg or K
varies, A and o being held constant so that 0 < M; < 1 and (1 + M;j)o < 6.
We start with extremely low values of K such that:

Ko+ (1+M)o <90
In terms of the logical parameters, this means that:
K3 =K2 :Kl :KO = 0

As the source strength is increased, the logical parameters will successively switch from the
logical value 0 to 1, following the order determined by the inequalities (7), until K itself
reaches the threshold value 6, making K, = 1.

Figure 3.1 shows the successive state tables for increasing values of K. For each case,
the corresponding steady-state curves (5) and the nullclines of the initial differential System 2
are also plotted.

From the state tables, it can be seen that as the reservoir concentration increases, multiple
stable states appear. There are two ranges of external concentrations for which two stable

symmetric states coexist, corresponding to low and high @ concentrations of x in
both compartments. These two bistability regions are separated by a region with four stable

states, including two new asymmetric states, and (0, with unequal concentrations in
the two cells. These asymmetric concentration patterns are stable despite the fact that the
cells are otherwise identical. For low or high source strengths, there is a unique stable state,

or @, respectively. The fit with the continuous description is illustrated in Figures
3.2 and 3.3, which show, in addition, the distortion of the nullclines by the transformations
described in Section ITI.

Let us now investigate how the multiplicity of stable states varies as a function of the
mass transfer coefficient A, which measures the intensity of diffusional coupling between the
two cells.

In the limit A = 0 or M, = 0 (no coupling), we have

K] :KO andK3 =K2

Inserting this in the general state table (Table 2), it is clear that for increasing values of the
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external concentration, there will be successively one, four, and then again one stable state:

Ko Ko
W—— —_—
@ increasing @ increasing

In each case, the stable situations simply correspond to the combination of states that are
available to each cell since the compartments are totally independent.
In the limit A = = or M; = 1, on the other hand, we have

a

K=K,

and the compartmentalized system behaves as a single cell (see Section IT).

Ko Ko
increasing I: @ :I increasing @
T ICTEASIIN
In Figure 4 is summarized the steady-state behavior of the two-cell system as a function
of both x¢ and A for fixed values of ¢ and 0,. This diagram is obtained from Table 2 by

evaluating the logical parameters for different values of x4 and A. The limits (a), (b), (c), and
(d) of the different domains are determined by:

(@: Kp+(1+M;))c=60

(b): Kp+ o =0 (with Ky + M;6 < 6)

(o): Ko + M1(5 =0

d: Ky=86
with Kg= (1 + M) xgand 6 = (1 + M)) 6,.

For low values of coupling between the two cells, there is a region in which four stable

states coexist. When the coupling strength increases, this region becomes narrower and nar-
rower and finally disappears at the limit of infinite coupling (M; = 1).

As can be seen from Equations (5) or from the logical equations (6), the coupled cells can
be represented by the graph of interactions:
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X 2 3.1a
1
X2 3.1b
| 07700
><2 31c
j
X

FIGURE 3.1 Stable states for increasing values of the reservoir concentration xp0r K, =(1
+M,)x,. (3.1) State tables corresponding to the generalized logical equation(s) 6. (a) K; = K,
=K, =K=0, (D K;=1,K=K =K;=0; () K;=K,= LK, =K, =0; (D) K, = K, =

K =1,K=0; () K,=K,=K, =K,=1.

On the one hand, for each compartment, the existence of a source term of a certajn inten-
sity is necessary in order to observe multistationarity when ¢ < 0. On the other hand, the
diffusional coupling between the cells or positive loops tends to decrease the number of
stable states as a function of the strength of coupling. Although passive diffusion creates an
additional positive loop, as long as the external and internal parameters remain the same for
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3.1d

01/

3.1e

FIGURE 3.1. Continued.

the two compartments, this will not generate additional stable states because of the restric-
tive conditions on the logical parameter values. In particular, the stable asymmetric states

and (10) will always coexist and a situation with three stable states is impossible here.

V. HOW TO REACH A STABLE ASYMMETRIC
CONCENTRATION PATTERN

To reach one of the stable asymmetric states, the system being otherwise perfectly sym-
metric, one can modify the internal or external conditions.

In the first case, both cells are maintained at the same constant external concentration xy.
The choice of the initial concentrations inside each compartment will determine the final
state of the system, according to whether the initial state is on one or the other side of the
separatrices (see Figure 3.2).

In the second case, the initial conditions are such that the concentrations inside the two
compartments and the extérnal concentrations are symmetric, i.e., X; = X, Xg; = Xgz. The
asymmetric stable states can then be reached by acting temporarily on the concentrations in
one of the reservoirs (Xg; Or Xgy), all other parameters being held constant.

Let us consider an example. We start with equal reservoir concentrations, Xg; = Xgg = X,
corresponding to the multistability region with four stable states (Table 4a) and choose ini-

tial concentrations within the cells corresponding to the stable upper symmetric state @
We then apply a constant perturbation to reservoir 1: Xy, is decreased by a quantity [, while
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3.2b 3.3b

FIGURE 3.2. Steady-state curves corresponding to System 5. The intersects of the curves give both the stable and
unstable steady states. The stable steady states are circled. The parameter values are in agreement with the logical
description: 6 = A =0.5, 6, =0.75, and n = 50. (2) K, = 0.25; (b) K, =0.55; (¢) K, = 0.65; (d) K, = 0.80; (e) K, =
1.1.

FIGURE 3.3. Nullclines corresponding to System 2. d%L= 0, long dashes (———); d%;z = 0, short dashes (- - -).

The parameter values are those corresponding to Figure 3.2. Here again, the stable steady states are circled.

X2 and all the other parameters remain unchanged. The source terms in the generalized logi-
cal equations (6) thus become:

Xo1 + Mjxge = (1 + Mpxo — =Ko -p =Ky,
and

Mxo1 + X2 = (1 + My)xg— Mp =Ky —M;p =Ky,

with Kg; < Kgy. The corresponding general state table is now given by:



1
1}.3c
1 1
3.2d 3.3d
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lfa) ()l te) ((d)

0008

FIGURE 4. Domains of existence of the different stable states as a function of the
reservoir concentration x, and the mass transfer coefficient A. Here,0=0.5and 6,
=1.

TABLE 3
General State Table for Unequal Source Terms: Xo; = X2 — 1

0 0 & Kop dKop)

0 1 d,(Ko; +M;0) d,(Kgp +0)
11 4Ku+1+Mpol d&[Ke+1+Mpo]
t 0 d,(Ko; +0) d,(Kg, + M;0)

In each column, the logical parameters are related to one another by inequalities (7), in which
K, is replaced by Kg; or Kg,. It is easy to show that, provided the concentration difference [
satisfies the conditions

u>Ac andK0+(1+M1)0—9<us1\—}1—(K0+0—6)
1

these new logical parameters will take values that lead to Table 4b.
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X01= X027 A

CONCENTRATIONS

017702

TIME

FIGURE 5. Time evolution of the concentrations x, and x, obtained by numerical integration of

Equation(s) 2 with the parameter values: 6 =A = 0.5, 6, =0.75, and n = 50. The initial concentra-

tions within the cells and boundary conditions are x, = x, = 1, x,, = Xg, = 0.4875. At time t = 5

(arrow I), an external perturbation, A = —0.24, is applied in reservoir 1, x,, being held constant. At
time t = 10 (arrow II), the symmetry of the reservoir concentrations is restored (A = 0). Under these
conditions, the system reaches an asymmetric steady state.

TABLE 4
Compact State Tables

X1X2 X1Xsy XXy

) —

©eee
©@eee

— 11
10
@ (b) ©
Xp1 = X02 = Xo Xo1 = Xp2 — Hb Xo1 = X2 = Xp

Now, state 11 is no longer a stable state and the system will evolve toward the stable

asymmetric state . When the perturbation, |, is removed and the symmetry of the exter-
nal conditions is restored (Table 4c), the system will remain in the stable asymmetric state

. Here, tables 4a and 4c are derived from (the general state) Table 2, and Table 4b

corresponds to (the general state) Table 3. The asymmetric stable state can be reached in
a similar way, by transiently decreasing the concentration x, in reservoir 2.

The correspondence with the differential description (2) is illustrated in Figure 5, which
shows the time evolution of the concentration of x in compartments I and II. Prior to the
perturbation, the concentrations x; and x, are always equal. When an external perturbation A
is applied, the concentration pattern becomes asymmetric. This asymmetry persists when the
perturbation is removed (A = 0).
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VI. CONCLUSION

In this chapter, we have applied the generalized logical method to the study of a compart-
mentalized system. The coupling of neighboring cells by passive diffusion of the reactants
creates conditions on the logical parameters, and the determination of the stable states
amounts simply to evaluating a set of inequalities.

Depending on the mass transfer coefficient (A) and the reservoir concentrations (xg;), the
steady-state problem can have multiple solutions, including asymmetric stable states. The
description that is given here is consistent with the continuous formalization and previous
studies on compartmentalized systems.*7

The logical method can easily be extended to the study of more than two compartments in
various spatial configurations or with different reaction characteristics inside the cells.?

This example illustrates how the interplay between reaction kinetics and diffusion pro-
cesses can generate stable differentiated states (in the form of spatially structured
concentration patterns), although the internal and external constraints remain perfectly
symmetric.
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I. INTRODUCTION

Living organisms lavish exquisite care on their genetic material, DNA. The bacterium
Escherichia coli, for example, is able to duplicate its chromosome of 5 million base pairs
with an overall accuracy of 10710 errors per base pair. In addition, it possesses a number of
DNA repair enzymes capable of removing or repairing a wide variety of chemical lesions that
can occur in the DNA. Some of these enzymes are inducible by DNA-damaging treatments

“SOS response”.! The regulation of the SOS

hemical problem. Although the SOS response

operon — specific enzymes are synthesized

» inducer was far from obvious: induction was

d physical treatments having little in common

(e.g., treatment with mitomycin C, nalidixic acid, ultraviolet or X irradiation). The

combined efforts of a number of laboratories ultimately succeeded in unraveling the
regulatory scheme of the SOS response, which we present here.

II. REGULATION OF THE SOS RESPONSE

The SOS functions are repressed by a transcriptional repressor, coded for by the lexA
gene. When DNA is damaged, the replication fork may stall at the site of the lesions. This
results in local degradation of the newly synthesized strand, creating a stretch of single-
stranded DNA. The RecA protein binds to the single-stranded DNA and, in the presence of
ATP (or deoxyATP), forms a ternary complex with a remarkable property: it catalyzes the
proteolytic cleavage of the LexA repressor at a specific site, inactivating it and derepressing
the SOS functions. The degradation that creates the single-stranded DNA need not be at the
replication fork. Certain DNA lesions are recognized by constitutive enzymes, leading to
degradation near the lesions, even if there is no replication fork present.

To complete the picture, we must add that the regulatory proteins, LexA and RecA, are
themselves SOS functions in the sense that their expression is repressed by LexA. In both
cases, however, the repression is only partial, and, indeed, the residual expression is of a
fundamental physiological importance: the basal level of LexA ensures the repression of the
other SOS functions in the absence of DNA damage, and the basal level of RecA ensures the
inducibility of the SOS response when needed. The autorepression of LexA results in a
homeostatic control, tending to maintain a constant concentration of the LexA repressor.

The overall picture can be summarized simply: DNA damage results in localized degrada-
tion, producing single-stranded stretches of DNA. The RecA protein, in the presence of
single-stranded DNA, cleaves the LexA repressor.

It is interesting that under certain conditions, the RecA protein also cleaves the repressors
of certain temperate bacteriophages, the best known of which is A (cf. Chapter 20). The
study of SOS response thus established the molecular bases of the phenomenon of lysogenic
induction.

III. FORMALIZATION OF THE SOS RESPONSE -

A. PRELIMINARY CONSIDERATIONS

Our description will obviously include the level of RecA (variable r, function R), and of
LexA (I and L). To account for induction, we also include a variable s that takes the value 1
if there is single-stranded DNA present in the cell, O otherwise.

We know that there are essentially three steady levels of RecA protein: derepressed in the
absence of LexA protein, repressed (by the lexA product) in normal conditions, and nil in
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recA” mutants. We might be tempted to build the discretized scale of a variable r on the basis
of these three levels. However, our policy has been to discretize the scale of a variable not on
the basis of its steady levels, but according to the number of interactions it has with other
elements, i.e., the number of levels required to obtain different effects. Since we know that
some functions of protein RecA are efficiently expressed at moderate concentrations (e.g., the
cleavage of LexA protein), whereas others (like the cleavage of A repressor) require sig-
nificantly higher concentrations, we will consider two thresholds: 26,, below which the latter
functions are not expressed, and '8, below which none of the RecA functions are expressed.
The diagram

no functions current functions demanding functions
expressed . expressed (e.g., 5 expressed (e.g., cleavage
6, cleavage of LexA) 8, of A repressor)
r=0 r=1 r=2 concentration
of
RecA protein
recA-mutants normal
(expressed)
level

illustrates the fact that the three steady levels considered above happen to correspond to the
logical levels 2, 1, and O, respectively, defined on the basis of the effects of the RecA protein
on its targets. As usual, we associate with the three-valued variable r the two binary vari-
ables Ir and ?r, which are O for r < 1 and r < 2, respectively, and 1 otherwise.

As discussed in the previous section, the LexA protein exerts a negative control on its
own expression. We know from other examples that the differential description of this situa-
tion has a steady level near the autoregulation threshold 6,, whereas in the naive logical
description, I oscillates. As mentioned in Chapter 8, this type of steady state can be
identified in the logical description as well by introducing the threshold value 6 in the state
table. Thus, in a preliminary description of LexA autoregulation (not accounting for

induction), we would set L = [ and write the state table

from which it is clear that the steady state level is indeed 6. However, under normal condi-
tions, the lexA product exerts efficient negative control on various other genes. This implies
that the normal steady level of LexA protein is higher than its threshold concentration(s) for
these controls. Thus, we must associate with the lexA product a threshold 26, for its
autoregulatory function and a threshold !6, for its other functions. A detailed description
involving the expression of several specific SOS functions might require several thresholds
less than the autoregulation threshold. For our purposes, however, we will assume that
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induction occurs at the same threshold for all functions. The variable (I) and function (L)
associated with the JexA product will thus have three logical values. The diagram

1o, 26,
=0 l I=2  oncentration
of
] LexA product
level after action of normal
activated RecA product level

(or in a LexA-defective mutant)

shows the correspondence between the two steady levels (below) and the discretized scale
(above). The binary variables !/ and % equal 0 for 1 < 1 and 1 < 2, respectively, and 1 other-
wise. In view of the importance of the level 20 in the present case, we will include it
explicitly in the state tables, thus considering the values 0, 1,26, and 2 for / and L.

B. FORMALIZATION

As already mentioned, the recA gene is under negative control of LexA, but is expressed
at a significant basal level, even in the presence of the Lex A protein. This can be written:

R= dr(KO + Kl 11)
Since the basal level is sufficient for those RecA functions that define logical level 1,
whereas only the derepressed level permits the expression of the RecA functions that define
logical level 2, we take:
d. Kp)=Kp=1
d Ko+Kp)=Kp,;=2

If, in addition, we wish to take into account the possible use of recA~ mutants in the
experiments, we use the input variable g, and write:

R=g 4K+ K]

in which g, = 1 if the recA gene is normal, g, = 0 if it is mutationally inactivated. The state
table is thus:

0 0 Ko,
1 K,
o

For Ky=1and K, ; =2, we have
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For the moment, we will reason in terms of recA* bacteria (g, = 1), and only after
describing their behavior will we introduce additional input variables describing genetic
abnormalities.

To formalize the LexA function, we must describe the following situation (see Section I):
(1) the lexA gene is under negative control of the LexA protein, with threshold 26,. This will

involve a term 21 in the expression for L. (2) Product LexA is destroyed if the RecA product
is present at a level > 1 (which is the case unless the cell has a recA~ mutation) AND there
are single-stranded regions (s = 1) in the DNA as a result of damage (UV irradiation, etc.).

Thus, a condition to have L = 0 is Irs or Ir + 5. Combining (1) and (2), we have
L=d[Ky-2l- (r + 5)]

As for single-stranded DNA (variable s), we can reason that once induced by an appropri-
ate agent, it will persist unless the LexA protein disappears, thus permitting the expression
of the SOS repair functions. This can be symbolized:

S=(p+s) I

in which ¢ represents the various agents capable of inducing the lesions. (The exact nature of
these agents does not interest us here.) In this schematic description, the DNA repair func-
tions under LexA control are not explicitly formalized. The time required for their synthesis
and effective action once LexA is cleaved can be assimilated to the off delay relating S to 1.
The overall picture is thus:

L= dl[KZ . 21 . (11' + S)]
R = d (Ko + K, 1) 6))
S=(p+s)1

As we have seen, it is advisable to take Ky = d(Ky) = 1 and Ky, ; = d.(Ky + K;) = 2.
This is not actually necessary at this point, but will be below when we include the induction
of A, which requires more than the basal level of RecA protein. As for K,, the retroaction of
L on itself will have a steady state 26, only if K, > 1. We therefore take K, = 2.

As the appearance of single-stranded DNA can be induced at will by appropriate injuries,
it is convenient to use a column for the normal (s = 0) situation and a column (s = 1) for the
presence of single-stranded DNA as though s were an input variable. (Of course, it is not: s
is an internal variable with an associated function S that depends on the other variables of
the system.) As a result of an appropriate injury, s = 1 and the system shifts from the left to
the right column. However, since in the presence of the RecA protein, single-stranded DNA
results in cleavage of the LexA protein, the SOS genes are derepressed and DNA is soon
repaired. Then we again have s = 0 (shift back to the left column).

The state tables are shown in Table 1.
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TABLE 1
Complete (a) and Compact (b) State Tables of System

@

(®)
0607220 0017220
10220 011/020
0207220 021/020
160/210 101/211
110/210 111/011
120/210 121/011
2610 2611/011
200/010 201/011
210/010 211/011

220/010 221/011
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We see that in the absence of single-stranded DNA (left column), there is a steady state

F 6010. If we introduce single-stranded DNA (shift to the right column):

Corer0 — 7!

Note that throughout this process, the Ievel of RecA has remained > 1, that is, sufficient
for the activities we are explicitly considering in this formalization. Strictly speaking, one
could thus drop variable r and reason solely in terms of LexA and single-stranded DNA.
However, if we are interested in A induction (and we are, indeed), we must distinguish
between r = 2 (which induces A) and 7 = 1 (which does not). If we let I represent the induc-
tion of A, we have I = 2rs. In actnal fact, the amplification of RecA protein that
accompanies the induction of the SOS response is directly beneficial to the bacterium (if it is
not lysogenic for ). The RecA protein is also capable of catalyzing certain types of genetic
recombination that make it possible to replicate DNA, even in the presence of lesions that
are not a substrate for the DNA polymerase. This activity of RecA is a typical SOS
function, inducible and involved in DNA repair. The protease activity, on the other hand, is
regulatory and must be functional with the basal level of RecA protein.
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Now, we will include the possible use of mutated strains in the analysis. To include
RecA-defective mutations, we already introduced variable g, (for gene recA); g, = 1 in the
wild type, O in a recA mutant.

Similarly, we introduced variable g;, which takes the value 0 in a lexA-defective mutant.

There also exist mutations that render the lexA product noncleavable. In such a mutant,
the SOS response cannot be induced, and the strain is therefore highly sensitive to treatments
(like UV irradiation) that damage DNA and require repair functions for survival. To account
for this allele, we introduce the variable *g; (for LexA noninducible), which takes the value 1
if such a mutation is present, O otherwise. Since this type of mutation does not inactivate
LexA (indeed, LexA continues to repress the SOS functions, even in the presence of RecA
plus single-stranded DNA), one can have g; = 1 and "g; = 1 simultaneously. The relationship
for L becomes

L=g; 4Ky 2l (r + 5 +ngp]

There also exists a recA mutation rendering its proteolytic activity constitutive (i.e., inde-
pendent of the presence of single-stranded DNA created by DNA lesions). Such a mutant will
have no LexA protein and, therefore, a high level of RecA and the other SOS functions
unless its LexA protein happens to be noncleavable (g, = 1). To account for this recA
allele, we introduce the variable ¢g,, which takes the value 1 if there is such a mutation, 0
otherwise. To see how this variable should be included in the logical relations, we reason as
follows: LexA expression (L) has a genetic component (g;), an autoregulatory component

(1), and an induction component. The last can be expressed as protease + g, (absence of
protease OR presence of noncleavable LexA protein), and protease = Ir - s + {r - ¢g,, in
which the first term represents “normal” induction (via DNA damage) and the second,
“genetic” induction (via a protease-constitutive mutation).

The induction component of LexA expression is thus:

Ir(s +cg,) +7gr="r+s+c°g, +"g;=1r+s g +"g
The logical equations become:
L=g - 4K, ?I(’r + 5 - °g, + "g)]
R = g,d,(Ko+ K, 1)
S =(¢p+s)l1

In practice, it is convenient to treat separately each combination of values of the genetic
input variables. For example, if g; =g, = 1 and »g; = °g, = 0, we have the normal (wild-
type) genetic situation, described by the relations in Equation 1. If g;= g, =g, = 1 and "g;

=0, the LexA protein is normal, but the RecA protein has constitutive protease activity, we
have

L= dl[K2 Zl Ir]

R =d(K,+K,1I)

S=(@+s1
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Asssuming, as we have, that d(K;) = 1, i.e., that the basal level of RecA is sufficient to
cleave LexA efficiently, it is clear that R > 1 and, therefore, ultimately I = 0. Therefore, in
this system (g, = 1), ultimately we will have L = 0. There will thus be a high constitutive
level of RecA and all other SOS functions. It is amusing to note, however, that if the
induced level of RecA were required for LexA cleavage, i.e., d(Kg) =0, but d (Ko + K;) = 1,
we would have a positive loop with two stable states: either the basal level of RecA and
threshold level of LexA (r =0, I =20)) or a high level of RecA and no LexA (r=K,, ;, 1=
0).
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I. INTRODUCTION TO LYSOGENY

The study of bacteriophage A was one of the most sophisticated fields in the young
science of molecular biology. As Francis Crick once said, “The most fashionable disease
among molecular biologists is a A headache” (or words to that effect). Why this interest for a
small bacteriophage among many others? One reason, no doubt, was the general admiration
for the early work of Jacob. The discovery of the principles of biological regulation by Jacob
and Monod was based on parallel work on the Escherichia coli lactose genes and on
bacteriophage A. The complementarity of these two lines of research played an essential role;
in fact, realizing that the two systems have deep functional similarities was a stroke of
genius.!

Another reason for the success of bacteriophage A is the fact that it is the prototype of
temperate bacteriophages. As shown by Lwoff,2 these viruses have a double life. On the one
hand, they can multiply at the expense of their host celis and kill them, like other viruses.
On the other hand, they can establish a symbiotic relation with their host cell, resulting in
lysogenic bacteria in which phage and host have become a single unit.

This double life is of interest for at least two reasons. First, it is a well-defined biological
system in which the same genetic material can behave in different ways under apparently
identical environmental conditions, and of all such systems, it is one of the smallest (we al-
most wrote “simplest”, but as we shall see, the system is anything but simple318.19). In
other words, the A-host interaction is an excellent model system for the study of
differentiation, in which the behavior is governed by epigenetic changes of the type described
in Chapter 17. Second, as suggested long ago by Jacob* and amply confirmed since, there are
deep behavioral similarities between temperate bacteriophages and certain cancer viruses (a
number of these properties had to be rediscovered in cancer virus-animal cell systems 20
years after the work on the A-bacterium system).

When a typical DNA phage infects a cell, it injects its genetic material (a DNA molecule)
into the cell, and the cellular protein-synthesizing and energy-producing machinery is used by
the virus to replicate its own DNA, synthesize its own proteins, and, finally, lyse the bacte-
rial cell, typically liberating hundreds of viral particles. Temperate phage like A can behave
this way, but, as already mentioned, they can also lysogenize the bacterial cell. In this case,
the viral DNA molecule is integrated at a specific site in the bacterial chromosome, charac-
teristic for each phage type; it is then called a prophage. As first hypothesized by Campbell,
the phage DNA molecule, which is linear in the phage particle, circularizes as it enters the
bacterial cell. Phage functions can then catalyze a crossing over between specific sites in the
bacterial and viral chromosomes, thus converting a big and small circle into a bigger circle
(Figure 1). On the other hand, the viral ¢ gene synthesizes a repressor that blocks the ex-
pression of other viral genes, thus rendering them harmless for the bacterium. How can the
phage perpetuate itself while its genes, including those involved in replication, are blocked
by the repressor? Simply because its DNA has become part of the bacterial chromosome. As
such, it is replicated passively and faithfully transmitted to all the progeny. The viral DNA
has become part of the genetic patrimony of the bacterium. The fact that a A lysogen con-
tains A-specific repressor in its cytoplasm prevents the expression not only of the prophage
genome it carries, but also of other A phage that might infect it from outside. This property
is called immunity and is specific to the phage type carried.

Another interesting feature of the A system is that, in addition to negative regulation by
the repressor, it involves positively acting regulatory elements. Although essentially all A
genes are blocked by immunity, most of them are only blocked indirectly. It is possible to
switch on (or “transactivate™) all the late-acting prophage genes without destroying immu-
nity.5-® The genes that can be transactivated are blocked by immunity because the repressor
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bacterial
chromosome

Integration requires the
9 Int product

gal B, P’ P,B’
[
norm requires the Int egiumate
and Xis products xcision

FIGURE 1. Integration and excision of A. Illegitimate excision can produce a Agal particle
carrying the bacterial gal gene. These particles have a BP” sequence instead of the PP’
sequence found in normal phage. Only a short fragment of the bacterial chromosome is
shown; in its entirety, it would be a circle some 100 times bigger than A.

transactivation was rediscovered 20 years later in oncogenic viruses (and again baptized
“transactivation.”)

The A-host system, simple in appearance, raises several interesting questions. What is the
mechanism governing the decision between the lytic response and lysogenization? How can
one reconcile the establishment of immunity, which switches off essentially all viral genes,
and the integration of phage DNA, which requires the intervention of viral genes? And how
is it that once immunity is established, gene ¢/ continues to express itself, thus maintaining
immunity? Sections II and III partly answer these questions.

II. INTEGRATION-EXCISION

A. NORMAL SITUATION

Integration of normal A DNA into the genome of a nonlysogenic bacterium takes place,
under the control of an “integrase” coded by gene int via site-specific recombination between
a small region of the bacterial DNA, symbolized BB’, and a region of the circularized phage
DNA, symbolized PP’ (Figure 1). As a result, the phage DNA, now called a prophage, is
inserted between two hybrid sequences labeled BP” (“left”) and PB” (“right™).

It was found that the reaction BP” x PB’ (which leads to excision) requires the products of
genes int and xis. Both genes can be expressed from a common promoter (P; ) under negative
control of the repressor cI (in fact, a rather complex control, both direct and indirect). In
addition, int can be expressed from a “private” promoter (pI), which requires the presence of
the product of gene clI, itself under negative control of cI (again both direct and indirect).
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We associate a logical variable r (for “repressor”) with the product of gene ¢/, and vari-
ables ¢, i, and x with the products of genes cl/, int and xis, respectively. The corresponding
functions, as usual, are symbolized by capital letters (R, C, I, X). To describe the process
of integration, we introduce a variable / that has the value 1 or 0 according to whether the
phage DNA is integrated or not; the corresponding function L takes the value 1 if the phage
DNA can be expected to be integrated in the immediate future, in other words, if the DNA is
not integrated now, but conditions permit integration, or if it is integrated now and the
conditions do not permit excision. In the present (normal) case, unintegrated phage DNA

will become integrated if the product of gene int is present (f), and integrated phage DNA

will remain so if at least one of the products of genes int and xis is missing [I( + x)].
The simplified description given above can be formalized by the following logical rela-
tions:

R=1

C=r
I=c+r

X=r

L=0li+1(i+x)

In this description, the major simplification is that we consider the gene ¢/ counstitutive (R =
1). This simplification is acceptable if we provisionally consider only that fraction of the
cells in which immunity will be established (the other cells will lyse). In these cells, we
reason that the repressor will eventually be present (in fact, after a few minutes), and we can
conveniently treat it as an input variable. In other words, we consider separately (in separate
columns of the state table) the situation before (r = 0) and after (r = 1) the establishment of
immunity; the 24 values of the variables c, i, x, and [ are tabulated in lines, as usual.

For a normal (wild-type) phage infecting a nonlysogen, the situation is shown in Table 1.
It can be seen in the compact state table that in the presence of immunity (right column),

there are two stable states, and , which correspond to unintegrated and inte-
grated phage DNA, respectively. The other functions are off and their products are absent, as
expected once immunity has been established for some time. In contrast, in the absence of
immunity (left column), there are no stable states; instead, the system eventually reaches a
two-state cycle, 1110 & 1111. Since there is no immunity, the genes C, I, and X are on (C
=I=X =1) and their products have appeared (¢ =i = x = 1). When the phage DNA is unin-
tegrated, it will tend to integrate because the inz product is present, and when it is integrated,
it will tend to be excised because the xis product is also present,

In practice, immunity can appear at any stage between the initial state 0000 and the oscil-
lating situation 1110 & 1111. According to the case, the system will end up in state

or . In the first situation, the phage DNA is integrated as a prophage, then immunity
is established and we have a stable lysogen. In the second situation, the phage DNA is not
integrated. Since immunity is established, the phage replication functions are repressed and
the phage genome will be diluted out with bacterial growth. Such a cell will give rise to a
population of nonlysogenic bacteria containing a single cell with an unintegrated phage
DNA molecule. This cell will be immune, although it is not a stable lysogen. Since the
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TABLE 1
Normal Integration

Complete state table Compact state table
r=1 r=0 r=1
(immunity (immunity (immunity (immunity
absent) present) absent) present)
cixl CIXL CIXL
0000 1110 0000 0000
0001 1111 0001 0001
0011 1111 0001 0011 0011
0010 1110 0000 0010 0010
0110 1111 0001 0110 0110
0111 1110 0000 0111 0111
0101 1111 0001 0101 0101
0100 1111 0001 0100 0100
1100 1111 0101 1100 1100
1101 1111 0101 1101 1101
1111 1110 0100 1111 1111
1110 1111 0101 1110 1110
1010 1110 0100 1010 1010
1011 1111 0101 1011 1011
1001 1111 0101 1001 1001
1000 1110 0100 1000 1000

phage DNA is not integrated, it will not be replicated and is thus transmitted to only one of
the daughter cells at division. The other daughter cell will still be immune for a time since
the repressor is stable, but further growth will dilute the repressor below its threshold con-
centration, and immunity will ultimately be lost. This situation is called “abortive
lysogeny”.

It is interesting to note that the establishment of immunity is not necessarily
accompanied by integration of the phage DNA into the bacterial chromosome. In fact, the A
circuitry is “wired” to avoid abortive lysogeny. The final result — integration or not —
depends on the relative values of certain time delays. Without going into details, the general
principle is that as long as both int and xis products are present; the process of integration-
excision can operate in either direction; the disappearance of int would prevent both
integration-and excision, thus freezing the situation, whereas the disappearance of xis would
block excision without preventing further integration. In actual fact, as pointed out by
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Weisberg and Gottesman,!? the half-life of the xis product is shorter than that of the in
product. In addition, the establishment of immunity blocks gene xis (and clI) directly,
whereas gene int is still expressed as long as there is clI product left. This explains the
prevalence of integration over excision (and the avoidance of abortive lysogeny) in the case
of normal A infecting a nonlysogen.

There are, however, situations in which the conditions of integration and excision are dif-
ferent.

B. INTEGRATION OF Agal TO THE LEFT OF AN INTEGRATED PHAGE

Prophage excision is normally the reverse of integration: the left and right hybrid sites
BP’ and PB’ flanking the prophage recombine to reconstitute a circular A, molecule with a
normal PP’ site (Figure 1). Rarely, however, excision takes place elsewhere. Such an event
can generate a Agal phage, in which the bacterial gal genes, situated just to the left of the
attachment site (and coding for enzymes involved in galactose utilization), are incorporated
into the phage. The Agal phage has a left hybrid attachment site BP’ instead of the normal
phage site PP’ (Figure 1). It was observed that BP’ and the normal bacterial site BB’ do not
interact efficiently. However, BP’ readily interacts with the hybrid sites BP” and PB’, which
flank a normal integrated prophage. In fact, the frequency of integration of a Agal phage in a
nonlysogen (site BB’) is low, and it is increased considerably by the presence of a normal
“helper” phage. The resulting lysogens carry both phage, with the Agal inserted to the left of
the normal A (in the left hybrid site BP’). The Agal phage can also integrate efficiently in a
lysogen, provided the prophage has a different immunity from A (A immunity would block
cIl and int expression from the infecting Agal phage). In this case, too, the Agal integrates in
the left hybrid site BP’.

Examining the interaction between BP’ of the Agal and the BP’ at the left of an integrated
phage, it can be seen that the reactions leading to integration or excision are

BP’ x BP' &5 BP' x BP’

One would expect the enzymatic requirements of the two reactions to be the same. It is
indeed observed that in this case excision, like integration, requires in¢ but not xis. The

logical relation for L thus becomes L =1i + li (or L = [ & i, where @ is the exclusive
“or”). This system is simpler than the normal one since xis is not involved:

I=c+r
L=1li +1i

Table 2 gives the complete and compact state tables and Figure 2 gives the various possi-
ble pathways the system can follow. As in the preceding case, after the establishment of

immunity (r = 1) there are two stable states, and (with the phage DNA uninte-
grated and integrated, respectively) whereas in the absence of immunity (r = 0) the system
evolves toward the two-state cycle 110 & 111. The difference from the normal case is that
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TABLE 2
Integration of Agal to the Left of a Prophage

Complete state table Compact state table
r=0 r=1 r=0 r=1
(immunity (immunity (immunity  (immunity
absent) present) absent present)
CIL CIL
110 000 000
111 001 001
110 000 11 011
111 001 010 010
111 011 110 110
110 010 111 111
111 011 101 101
110 010 100 100
r=0 r=1

FIGURE 2. Integration pathways of a Agal to the left of a
prophage. The variables are listed in the order ¢, i, J, as in
the text.
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here there is not a race for the disappearance of the inz and xis products. The probability of
stable integration depends primarily on the relative rates of the integration and excision pro-
cesses.

C. INTEGRATION OF Agal TO THE RIGHT OF AN INTEGRATED
PHAGE
The right hybrid site of an integrated A phage, PB’ can also interact with the Agal BP’
site. In this case, the interactions are

BP’ X PB’ & BB’ x PP’

This situation is exactly the reverse of the normal one: integration involves the interaction
BP’ x PB’ whereas excision requires the interaction BB’ x PP’. One can thus surmise that
integration of the Agal in the right hybrid site will require both int and xis products, whereas
excision will require only inz. This is indeed the case. The relation is

L=Ilix +1i

In the state table (not shown), one finds the same two stable states in the presence of
immunity and the two-state cycle in its absence. Here, however, the short life span of the xis
product acts in favor of excision, which explains why one does not find Agal integrated to
the right of a prophage.

D. TO INTEGRATE OR NOT TO INTEGRATE?

The above formalizations are satisfying in the sense that, for appropriate values of the
time delays, they predict the behavior that is actually found, for each situation, in the major-
ity of cells. One may ask, however, why there are always some cells that behave differently.
After all, if the delays are fixed, each infection should lead to the same result. The most
likely answer, as discussed in Chapter 4, is that, in fact, the delays are not rigidly constant,
but vary somewhat from cell to cell. When a distribution of the values of the time delays is
introduced in a computer simulation of A integration, it is easy to find parameter values
yielding the percentage of integration actually found in the various cases.!!

L. THE CONTROL OF IMMUNITY

As shown by Jacob and Wollman!? and Bertani,!? immunity in lysogens is ensured by a
negative regulator, the repressor, encoded by a prophage gene, called ¢/ in phage A. The
repressor recognizes specific DNA sequences (operators) located on either side of the ¢/ gene
and interacts with them to block — directly or indirectly — the expression of essentially all
other viral genes. It was subsequently discovered that cI, which controls all other phage
genes, is itself regulated. It can be expressed from two distinct promoters: P (promoter for
repressor maintenance), used for low, permanent synthesis, and p,, (promoter for repressor
establishment), used for strong transient synthesis. The p,, promoter is under positive
control by cl. The p,. promoter is only functional in the presence of the positive regulator
cII, which is itself under negative control by both cI and cro. 1t is also under positive control
by the N protein, which is negatively regulated by cI and cro (see Ptashne3). The situation is
clearly complex, involving a number of interacting feedback loops. Basically, however, cll
acts as a starter, and the cI product, once present, continues to catalyze its own synthesis.

Despite the complexity, the essential features of the establishment of immunity can be
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satisfactorily described as follows. Once gene clI is expressed, cI repressor is massively syn-
thesized via p. As soon as enough cI product is present, it switches off cII expression and
catalyzes its own continued synthesis via p,,. However, immunity is not established in all
cells (which is one of the features that make temperate phage interesting!). In a significant
fraction of them, the process is prevented by the cro protein, which exerts a negative regula-
tion on clI (and on other genes, including cro itself). This simplified scheme of the decision
to establish immunity or not is used several times as an example in this book (Chapters 4,
14, and 23).

The Jacob group carried out a penetrating analysis of the control of immunity,!* using a
highly simplified system. Their starting material was a A mutant whose repressor is thermo-
sensitive. When lysogens for this Acl,; mutant are exposed to high temperature, the repressor
is reversibly inactivated, all viral functions are derepressed, and the lytic cycle is triggered,
resulting in phage multiplication and cell lysis. However, if appropriate viral genes are
mutationally inactivated, the lysogens can tolerate the loss of immunity and continue
growing at high temperature. It was this type of strain that was used to study the control of
immunity.

If life were simple, one might expect such strains to be immune at low temperature and
nonimmune at high temperature, voild tout. But things are not so simple! If these strains are
exposed briefly to high temperature and then returned to low temperature, they do indeed lose
immunity, then recover it immediately. If however, the exposure to high temperature is long
(several hours), the recovery of immunity on return to low temperature is no longer
immediate, and, in fact, for some of the mutants studied, immunity was not recovered at all
under these conditions.

The fact that immunity was not recovered immediately indicated that after a long exposure
to high temperature, the cells were no longer synthesizing repressor (remember that the
thermal inactivation of this mutant repressor is reversible). Thus, exposure of these lysogens
to high temperature resulted not only in the inactivation of the repressor already present (and
its ultimate dilution through growth), but also in a block of further repressor synthesis. The
simplest hypothesis, proposed by Eisen et al., is that in this system the presence of active
repressor is necessary for its own synthesis, i.e., repressor synthesis is autocatalytic. This
positive loop was later demonstrated experimentally by Spiegelman et al.!3

Let us first focus on the strains that fail to recover immunity, even a long time after the
return to low temperature. The interest of this system is obvious: genetically identical bacte-
ria growing in identical conditions (at low temperature) can persist in either of two stable
states, nonimmune or immune, according to their past history (exposed or not to high tem-
perature). Formally, these strains can be accounted for simply in terms of the autocatalytic
character of cl synthesis. Letting r represent cl concentration and ¢ the temperature, the logi-
cal relation is

R =rt

which means that the cl gene is expressed iff there is active repressor present, i.e., iff there is
repressor and the temperature is low. This gives the following state table:

Complete state table Compact state table
r
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Starting with a culture in the immune state @ at low temperature and shifting it to high
temperature, the repressor is inactivated and its synthesis therefore stops (R = 0). If the cul-
ture is returned to low temperature before the preexisting repressor disappears, it will renature
and again catalyze repressor synthesis; in other words, a brief stay at high temperature means
“shorter than . The pathway is

If, however, the stay at high temperatures is long, i.e., there will no longer be any repressor
left to renature on return to low temperature, and synthesis will not be able to resume; the
system is trapped in the state 0. The pathway is

O

— —t

© <« ©

Let us now examine the situation in those mutants that do recover immunity, albeit
slowly, if the time at high temperature was long. In these strains (unlike the previous ones),
either repressor can be synthesized in the total absence of preexisting repressor or some
residual repressor synthesis takes place at high temperature. In the latter case, we should fur-
ther postulate that the residual repressor present at high temperature is not enough to restore
immunity on return to low temperature, but merely to reinitiate repressor synthesis. These
considerations let Eisen et al. to postulate (and later to establish genetically) the existence of
a gene, cro, whose product exerts a negative control on the synthesis of cI and that is itself
under negative control by cI, like the other A genes. The strains that fail to recover immu-
nity are cro*, whereas those that do recover immunity are cro-.

The positive loop between cI and cro, which provides indirect autocatalysis of cI, was dis-
cussed in Chapter 17. Knowing that it exists, we must now go back one step and ask
whether it is still logically necessary to postulate a direct positive control of cI on itself. The
fact that this loop has been demonstrated experimentally does not imply that it is necessary
to account for the observed behavior: it could be a case of “belt and suspenders”. However, it
is, in fact, essential. In the absence of the cI* loop, we cannot account for the block of cl
expression at high temperature in the cro~ strains (in the cro* strains, of course, the cro
product is sufficient to block cI). For this reason, we assume both positive loops have to be
taken into consideration:

™

Cro

Y~

We must now make a more precise analysis of the interactions among the elements of our
system. Let us assume that no repressor whatsoever is synthesized at high temperature, but
that repressor can be formed in the absence of preexisting repressor, provided no cro product
is present. This can be described by the relation:

R=(r+dt
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where d represents the concentration of cro product, r that of repressor, and ¢ represents the
temperature. Letting gp indicate the state of the cro gene (normal or inactive), the relation

for cro expression is

D =gd(r + t)

which simply says that the cro gene is under negative control of the thermosensitive repres-
sor cl. The state table is

Complete table Compact table
r.d
cro*
=0 t=1

It accounts for the results of Fisen et al.!* and, in particular, for the nonrecovery of
immunity in cro® strains and its recovery in cro strains.

IV. FEEDBACK BETWEEN MODELS AND EXPERIMENTS

The above results were deduced from studies of defective lysogens. In addition to a ther-
mosensitive mutation in the cI gene, the prophages carried mutations inactivating the essen-
tial positive control gene N and the replication functions. From the state table, can we pre-
dict anything about the behavior of AN-cro* and AN-cro~ phage after infection of nonlyso-
gens? Indeed we can, simply by taking 00 as initial state (cI and cro both absent).

In fact, the AN-cro* phage had already been studied before the discovery of cro. Gene N
codes for a positive regulator involved directly or indirectly in the expression of all A genes®
except cro and N itself. Thus a AN~ mutant cannot carry out a lytic cycle, integrate, or estab-
lish immunity. However, it can replicate slowly and maintain itself as an autonomous plas-
mid.'% An easy way to detect this plasmid is to use a AN—gal variant in a gal~ strain, where
its presence confers a Gal* phenotype.

Starting from 00, a AN—cro* phage can in principle go to either 10 or 01:

However, since it takes only a few minutes before the effect of gene cro is detected, whereas
it takes over 30 min before a AN~cro~ lysogen recovers immunity, we conclude that the delay
ty is much shorter than the delay t;. This accounts for the fact that indeed very few bacteria
becorme immune following infection with AN-cro*; in almost all of the cells, AN—crot* is
established as a plasmid.
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If we look at the situation following infection with AN-cro~, we see the only predicted
pathway is

00 - O

In the preceding case, this pathway was not normally followed because there was an alterna-
tive, faster pathway. If the model is correct, we expect efficient establishment of immunity
after infection with AN-cro™. In the absence of phage integration, of course, this would result
in loss of the phage by dilution. Experimentally, it is indeed found that AN-cro~ never estab-
lishes itself as a plasmid. Instead, the infected cells become stable lysogens, which implies
systematic establishment of immunity, as expected, and efficient integration as well.

It is known that gene clI is poorly expressed in AN~ mutants. In fact, the simple model
presented here does not take gene clIl into account for this reason. We had to check whether
this assumption is justified or whether clI, although only slightly expressed, plays a role in
the establishment of immunity by AN-cro-. A simple test consisted in comparing the
behavior of a AN-cro—cIl~ phage with its cII* homologue. It was found that in spite of its N-
and clII” character, AN-crocII- does lysogenize at a significant rate, although several times
less efficiently than its cII* counterpart. Direct measurements of the establishment of
immunity, as well as the almost complete absence of the establishment of the phage DNA
as a plasmid, indicate that, in fact, immunity is established in most cells and that the
difference between the cll* and cII~ phage is at the level of integration. Moreover, a lysogen
carrying a AN~cro~ prophage deleted for gene clI does recover immunity, again showing that
cll is not involved.

These results are in essential agreement with the model as regards the establishment of
immunity. If we dlso wish to account for the frequency of integration, gene int must be
included in the model. In fact, this aspect was studied separately from immunity in Section
2, where we saw that gene cIl indeed plays a major role in the expression of the int gene.
Remember, too, that Agal requires a resident prophage to integrate. For this reason, we used
strains that were lysogenic for a closely related heteroimmune phage. Integration to the left
of this prophage requires only the int product.

The above results are described in more detail in Thomas et al.17 In this work, there was
constant feedback between the models and the experimentation.

+

new model experiments

v

+

For the record, it may be interesting to mention that several people congratulated us for
the remarkable fit between the predictions of the model and the experimental résults. This
was taken as proof of the excellence of the method. We feel that the method would have been
just as good and useful if it had shown us that the model was wrong.

V. GENE DOSAGE, NEGATIVE LOOPS, AND cro

The steady concentration of the product of an unregulated gene is the ratio of its synthesis
and decay rate constants, k/k_, and if a cell possesses m copies of the gene, the steady con-
centration of the product will be mk/k_. This proportionality is called gene dosage. The con-
centration of such products would be expected to increase suddenly when the gene is
replicated. For certain gene products, this sort of-fluctuation is undesirable. In particular, for
viruses, the replication involves not a simple doubling in gene copy number, but a 100-fold
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or more increase, often within less than 30 min. In these cases, gene dosage can be
abolished by a negative loop on the gene. Although it is clear that any negative
regulation can reduce the expression of each copy of the gene, it is perhaps less obvious that
the proportionality can be eliminated by negative autoregulation. The reasomn, or course, is
that any increase in the concentration of the product causes a reduction in its rate of synthesis
via the negative feedback loop.

Let us analyze this quantitatively for a gene X present at m copies per cell. We will com-
pare the effect of (1) a repressor z, which reduces its rate of expression, with that of (2) a
negative feedback loop on the gene, whereby x reduces its own expression. In the first case,
the differential equation for x expression is

dx/dt = mk(9")/(0" + z") — k_x )
At steady state, we have the relation:
x = m(k/A ) (ON/(E" + z7)
Letting x, represent the steady-state concentration of x for 1 copy of the gene, we have:
Xp/X; =m

In other words, although the rate of expression of x is reduced by a factor (9")/(0" + z),
which depends on the concentration of z, gene dosage persists.
In the second case, we have

dx/dt = mk(0,")/(0," + ) - k_x (ii)
and at steady state, we have the equation:
x = mk/K (M0 + x7)

in which x has a well-defined value. Assuming homeostasis is effective — i.e., that k/k_ is
sufficiently greater than 9, — the steady state value of x will be arbitrarily close to Uy for

sufficiently high n. Thus, for high values of n, we have
Xp/Xy =1

and gene dosage is abolished.

These considerations are probably relevant for the negative control exerted by the A cro
protein on its own operon. In this operon are found the clI regulatory gene and the O and P
genes, whose products are required for A DNA replication. It must be assumed that the level
of expression of O and P from a single 2 DNA molecule is sufficient since, otherwise, infec-
tion by a single phage particle could not lead to replication and lytic growth, contrary to
observation. If there were no autoregulation of the operon, these genes would be expressed at
a 100-fold higher rate when the cell contains 100 copies of the phage genome. This would
probably be useless for the O and P proteins and might well be lethal in the case of the cII
protein. Thus, the negative control exerted by cro on its own operon has the effect of provid-
ing an essentially constant rate of expression of genes cII, O, and P (and cro itself), irrespec-
tive of the number of copies of A DNA present.
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I. INTRODUCTION

Neurobiology is par excellence the domain of complex networks. The nervous system
collects data from outside via the sense organs (inputs of the system) and, in response, sends
orders to muscles, glands, etc. (outputs of the system). Much of the system is an
exceedingly complex network involving refined feedback interactions that can be treated in
terms of internal variables and functions.

As is well known, the elementary unit in the nervous system is a cell (the neuron),
which, in addition to many receptor extensions (the dendrites), has an emitter extension (the
axon), a fiber that may be 1 m long or more and whose distal end is branched. Neurons
generate waves of impulses that propagate along the axon and are transmitted from a
ramification of the axon to a dendrite of another neuron (or to a muscle, etc.) via a synaptic
Junction. Whereas the transmission along the axon is electrical (a wave of membrane
depolarization), the transmission at a synaptic junction is chemical, via a neurotransmitter.

We know there are some genes that function unless a repressor prevents them from doing
so (negative control), and others that function only in the presence of an activator (positive
control). Similarly, there are neurons “provided with tonic excitation”® that emit impulses
unless they are prevented from doing so by the action of one or more presynaptic inhibitory
neurons, whereas other neurons are active only if they have received an order from an activat-
ing presynaptic neuron. In the first case, the neuron will not emit impulses as long as the
presynaptic inhibitory neuron is active: when the inhibitory neuron becomes silent, the neu-
ron in question starts emitting impulses after a lag, necessary for the “recovery from inhibi-
tion”.

In what follows, we will try to avoid technical terms as much as possible and, instead,
speak in terms of logical networks, as in the other chapters.

It must be remembered that the nervous system of higher organisms is a huge network
that may comprise more than 1010 elements. With this in mind, it may seem futile to study
the behavior of networks comprising only a small number of neurons. However, there are
enormous sets of neurons that behave more or less collectively and can at least provisionally
be treated as a unit. In addition, as long as we do not understand the behavior of small neuron
networks, there is not the slightest hope of understanding the operation of more complex
circuits.

Logical modelization of neuron networks was proposed and already used long ago by
Rashevsky,! Mc Culloch and Pitts,2 Adam,? and others. Rashevsky relates the situation of a
neuron at time t to that of antecedent neurons at time t — At, themselves related to the situa-
tion of their own antecedents at time t — 2At, etc. Adam, in association with Kling and
Székely,* uses the terminology of graph theory: “we use the terminology graph’, ‘vertex’
and ‘edge’ for ‘net’, ‘neuron’ and ‘axon’, respectively”. In their logical description, inhibition
acts instantaneously (i.e., the “off” delays are nil) and recovery from inhibition has the same
delay 7 for each neuron.

We are not neurobiologists, and this chapter should not be considered more than “an
exercise with neurons” (cf. Thomas?). The exercise will be centered around a remarkable piece
of work by Friesen and StentS on the locomotion of the leech. With fascinating feedback
between cytological observation, experimentation, and theory, they reached the conclusion
that much of the periodic locomotion of this worm depends on a small number of neurons,
four in each ganglion, of which there are two in each segment. The theoretical aspects are
influenced by earlier work by Kling and Székely, who put special emphasis on the idea that
periodic activity of neurons does not necessarily require that certain neurons have intrinsic
periodic activity, but, rather, that it can be accounted for by recurrent cyclic inhibition
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FIGURE 1. (a) Traces representing the membrane potential and impulse activity

of individual neurons; (b) phase diagram; (c) representation of the values of the
boolean function and variable associated with each neuron.

involving an odd number of elements (see Section II). Note that this structure is a typical
negative loop.

II. A THREE-NEURON OSCILLATING NETWORK
Let us first quote Friesen and Stent’s description® of the three-element loop:

This network consists of an inhibitory ring formed by three tonically excited neurons (A-C), each of which
makes inhibitory synaptic contact with and receives inhibitory synaptic input from one other cell. If, as indicated in
Figure la, Cell C happens to be in a depolarized, impulse-generating state, its postsynaptic cell, B, must be in a
hyperpolarized, inactive state, while its presynaptic cell, A, is recovering from-past inhibition. As soon as Cell A
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has recovered from inhibition and reached its impulse generation threshold, Cell C becomes inhibited, thus disin-
hibiting Cell B and allowing the latter to enter its recovery phase. Once Cell B has recovered, it inhibits Cell A,
thus allowing Cell C to begin recovery; and once Cell C has recovered, so that Cell B enters its inactive phase and
Cell A its recovery phase, one cycle of the oscillation has been completed.

Situations can be described by phase diagrams (Figure 1b) in which rectangles indicate at
each time which neurons are “on” (i.e., emitting impulses). A more sophisticated description
(“trace”) commonly used (Figure 1a) indicates whether a neuron is emitting impulses (sym-
bol Wl and, if not, whether it is inactive or “recovering from inhibition” (symbol —/ )
and about to start emitting impulses.

Quite naturally, we associate with each neuron a logical variable (a, b, ¢, ...) whose
value is 1 if the neuron is emitting impulses, 0 if not, and a logical function (4, B, C, ...)
that takes the value 1 if there is an order to emit impulses, 0 if there is no such order (Figure
1c and d). Thus, the successive logical states of a neuron are

0/0: no impulses, no order to emit them .

0/1: no impulses, but an order to emit them

1/1: order executed (impulses being emitted) and still valid

1/0: impulses still being emitted, but there is an order to stop
0/0: again, no impulses (order to stop emitting has been executed)

R N R S R

Note that Friesen and Stent, as well as Kling and Székely, assume that the order to
inhibit the emission of impulses is executed immediately, unless it comes from a neuron
located in a different ganglion. Thus, the “off” delays are nil and, in practice, the system
proceeds directly from 1/1 to 0/0 without delay.

If we write the (naive) logical relation corresponding to this loop:

A=b
B=c¢
=a

we immediately obtain the state table:
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from which we derive the cyclic behavior:

- a — C -
001 101 ———————> 100

ol
o

011 «—S 010 «—> 710

Another example is treated inductively (from behavior to logical structure) in Chapter 5,
Section II1.

ITI. LEECH LOCOMOTION

Friesen and Stent were able to derive models involving up to four ganglia, each with four
crucial neurons. The dynamics of these models was checked by the authors using “neuro-
mimes”, which are sophisticated analogic devices. In view of the relative complexity of these
devices, the number of neuromimes available was limited (eight) and when simulating
systems involving more than two ganglia, the authors had to replace some indirect connec-
tions by direct ones (in order to lower the number of neurons considered).

As our logical analysis is not subject to this type of limitation, it was tempting to apply
it to these models. As a first step, we formalized three variants of the Friesen-Stent model
involving eight neurons from two ganglia and checked whether our simulations fit those of
Friesen and Stent with their neuromimes. Next, we turned to a more complex system com-
prising 12 neurons belonging to three ganglia. For this system, we had the experimental
phase diagram, kindly sent by Friesen and Stent, and their model given in Reference 6, Fig-
ure 10. The simulation with neuromimes (using a reduced model with eight neurons) shows
that the model meets most, but not all, features of the experimental phase diagram. We can
now ask: (1) What are the simplest connections among the 12 neurons that would exactly
reproduce the phase diagram?, (2) What constraints must be fulfilled to permit this exact
sequence?, and (3) Are any of these constraints contradictory with the model proposed by
Friesen and Stent? If so, it would indicate where the model should be modified.

We thus first formalized the three variants of a model provided by Friesen and Stent,
involving eight neurons from two ganglia. The diagram (Figure 2) is, in fact, a graph of
interactions in which certain details remain ambiguous. The “inhibitory connection” (symbol
——a) corresponds to our negative interaction (—————>). The principal ambiguity is the
precise interpretation of the “rectifying electrical junction” (symbol —p4—). The threc vari-
ants reflect different interpretations of this connection. These variants, discussed in Friesen
and Stent’s paper® (p. 36), differ according to the “major” or “minor” character of certain
inhibitory connections, i.e., according to whether one inhibitor connection suffices to
impose its effect or whether two or more presynaptic cells must cooperate. The three variants
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Ganglion Y Ganglion Z

Ganglion Y
Celt 123

Cell 28
Cell 33

Cell 27

Ganglion Z
Cell 123

Cell 28
Cell 33

Cell 27

FIGURE 2. Oscillations of the full interneuronal network in two
interconnected ganglia, Y and Z, of which Z is the rearmost of the
chain. Impulse bursts were generated by eight neuromimes connected
according to the circuit shown in the insert. The intraganglionic
inhibitory connection from Cell 33 to Cell 28 is major in ganglion Z
and minor in ganglion Y. All other connections are major. The rectify-
ing electrical junction between Cells 33 and 28 is adjusted to be of
such a strength that all major inhibitory inputs to Cell 28, except that
provided by Cell 33 itself and its homologs, polarize Cell 33 beyond

the impulse threshold potential. H = 80 ms. The free-running impulse

frequency is about 80 Hz. (From Friesen, W. O. and Stent, G. S., Fig.
9 in Biol. Cybern,. 28, 27, 1977. With permission.)

can be formalized:
(1) A=bp 2 A=bb (3) A =bb’
B =c¢c'dd’ B=cc' d+d) B=cc’ d+d)
D=cc’'d D=¢c’ D=cc’
C=ab C=ab C=ab
A" =b A =b A =b
B’ =ac'd B =ac’ B’ =ac'd
D’ =ac’ D’ =ac’ D’ =ac’
C’'=a'b’ C’'=ab’ C’ =a'b’

in which a, b, d, and ¢ symbolize neurons 123, 28, 33, and 27, respectively; a and a’ refer
to homologous neurons in two different leech segments. Submodel 3 is the variant used by
Friesen and Stent in their Figure 9. Friesen wrote: “I have carefully checked your logical
statements and found that they describe precisely (and concisely) the neuronal interconnec-
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FIGURE 3. Experimental phase diagram (provided by W. O. Friesen) showing, as a function of time, the
activities of 12 neurons from three ganglia.

tions illustrated in Figure 9 of our 1977 Biological Cybernetics paper.” Moreover, we
checked that, with the time delays (including the intersegmental impulse conduction delays),
simulations on the logical machine “Delphin”? or with computer programs? reproduce the
essential features of the neuromime simulation.

More specifically, submodel 1 stabilizes at the stable state 10101000, in which neurons
a, d, and a’ are on and the others off. Submodel 2 stabilizes at the stable state 00010110, in
which neurons ¢, b’, and &’ are on and the others off. Submodel 3 leads to a situation in
which neurons d and a’ are on; ¢, b’, and ¢’ are off; and the others oscillate (as in Figure 2).
In all three cases, our simulations agree with those using neuromimes.

We wanted to know what the behavior of these models would be if, instead of imposing
fixed values to the time delays, we gave each delay an average value and a distribution. The
results were extremely interesting and can be briefly described as follows.

1 For each submodel, the most frequent pathway was that already found with the time
delays proposed by Friesen and Stent.

2. Whereas in the simulation with fixed delays, submodels 1 and 2 fail to oscillate and
the additional modification leading to submodel 3 is required to obtain oscillations,
with the distributed delay values, even submodels 1 and 2 give oscillations. Further-
more, the oscillation found most frequently in submodel 2 is that of Figure 2, origi-
nally given by submodel 3.

In Figure 3, we find an experimental phase diagram, kindly provided by Friesen. In Figure
4, there is a model including 12 neurons from three ganglia. For lack of enough neu-
romimes, the authors have considerably simplified the circuit for their simulations (although
“without loss of verisimilitude”). The results of the simulations (Figure 4) partly fit the
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FIGURE 4. Oscillation of the full interneuronal network in three
ganglia. X, Y, and Z impulse bursts were generated by eight neu-
romimes connected according to the circuit shown in the insert. Neu-
Tomimes representing the nonoscillatory Cells 28, 123, and 27 of the
rearmost ganglion Y have been omitted from the circuit since they
make no major contribution to the rhythm generation. The indirect
major connection of Cell 123 of ganglion Y to Cell 33 of ganglion Z
via Cell 28 has been replaced without loss of verisimilitude by a direct,
major inhibitory link. H = 80 ms. Free-running impulse frequency
about 80 Hz. (From Friesen, W. O. and Stent, G. S., Fig. 10 in Biol.
Cybern,. 28, 27, 1977. With permission.)

experimental phase diagram in the sense that all neurons oscillate. However, the order of the

commutations is not entirely correct.

Taking into account Friesen and Stent’s remarks about the “major” or “minor” character
of connections, and the properties of “rectifying electrical junctions” (Reference 6), a precise
graph of interactions can be derived from the scheme of Figure 4, and the full model can be

described by the logical relations:

A = bb' A’ =b'b" A”=b"

B=cc'd+d) B’ =ac’c"(d +d") B” =a'c”
D =cc’ D’ =ac’c” D" =a'¢c”
C=ab C'=a’b’ C” =a"”b”

in which a, b, d, and ¢ symbolize neurons 123, 28, 33, and 27, respectively.

Using the time delays proposed by Friesen and Stent (including intersegmental impulse
conduction delays), simulations on the logical machine “Delphin”” or with computer pro-
grams,® as expected, give results essentially identical to those obtained in Figure 4 with neu-

TOmimes,
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As already mentioned, this resembles the experimental phase diagram, but does not fit
perfectly. One can, in fact, derive simple connections that permit or impose a sequence
exactly coincident with the experimental phase diagram. However, this represents a choice
among many possible solutions that may be very different from the real one.

It is probably more interesting to identify those constraints that must be satisfied to
permit the experimentally observed sequence and check whether any features of the model
violate these constraints. One way (simplified from the methods described in Chapter 5) con-
sists in comparing the states of the system just before a variable (say, a), is switched on and
just before it is switched off. At least one of the differences is required in order to have A = 1
in the first case and A = 0 in the second case. For example, the states immediately preceding
the lighting and extinction of variable a are, respectively:

a a a b b b d d d ¢ ¢ "
State just before 0O 0 0 0 0 0O 0 0 1 1 1 1
variable a is
switched on
State just before 60 0 0 0 0 00 0 O
variable a is
switched off

We conclude that one or more of the orders a, a’, a”, d”, ¢, ¢/, and ¢” must appear in the
expression of function A. This analysis has been done for each of the 12 functions of the
system, starting from the experimental phase diagram. When we compare these requirements
with the logical description of the author’s model, we find that there is no problem for 9 of
the 12 functions. However, for three functions (4, A’, A”), none of the required connections
are present in the model. We infer that the discordances between the predictions of the model
and the phase diagram could be avoided by changing the model at the level of these
functions. More specifically, a comparison of the constraints on functions A, A’, and A”
indicates that a link, c — *a, in each ganglion would permit the proper sequence.
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I. INTRODUCTION

This chapter summarizes work published by Kaufman, Urbain, and Thomas,! Kaufman
and Thomas,? and Kaufman.? In short, it gives an interpretation of immune memory and
paralysis in terms of transitions among multiple steady states. There is not room here for a
course on immunology. This introduction simply tries to make our approach understandable
to nonbiologists.

The immune system of vertebrates responds to the introduction of foreign macro-
molecules (notably, proteins and polysaccharides), called antigens in this respect, by the pro-
duction of specific proteins called antibodies or immunoglobulins. Antibodies combine with
the antigen against which they have been raised, neutralizing it, and thus contribute signifi-
cantly to the defense of the organism.

The immune system is one of our principal defenses against invading microbes. Even in
cases in which the response was too slow to prevent the disease, it helps combat it. Further-
more, after the first encountering of an antigen, the system becomes endowed with memory.
This is the well-known phenomenon of “immunity” to disecases one has already had; it
explains why a given individual seldom catches measles, mumps, etc. a second time.

The immune response has been widely exploited by the medical profession. Vaccination
is basically a way of tricking the immune system to produce antibodies against a specific
microbe before the microbe infects the individual. The principle is to inject an antigen, the
vaccine, which is so similar to the microbe that some of the antivaccine antibodies will
crossreact with the microbe.

The immune response is also used in disease detection. It is easy to test whether an indi-
vidual is producing antibodies of a certain specificity. If not, one can assume he has never
been exposed to that particular antigen (generally a microbe). A positive response means he
has been exposed, although, in view of the self-propagating nature of antibody production, it
does not tell us whether the antigen (microbe) is still present. This is the basis of standard
tests for detecting such diseases as syphilis and AIDS.

A. ANTIBODY DIVERSITY

One astonishing aspect of the immune response is the fact that we (vertebrates) are able to
produce specific antibodies against practically any antigen, even exotic ones that have surely
never been encountered before by our ancestors. For example, as pointed out by Urbain,* we
could very well produce antibodies specifically directed against crocodile tear lysozyme.
Moreover, a given antigen can be recognized by different specific antibodies. This is due to
the complex structure of most antigen molecules; each specific antibody recognizes only a
small portion of the antigen. Antigenic specificity can be achieved in a number of different
ways. Without going into detail, let us mention that all antibodies are structurally similar,
with differences according to (1) the physiological class to which they belong, (2) the animal
species, (3) individual Mendelian traits (“allotypes™), and (4) the exact sequence of the
regions directly involved in antigen recognition. For the main part, the latter regions consist
of three so-called “hypervariable” regions whose three-dimensional fit ensures a kind of
structural complementarity to part of the antigen, responsible for its specific recognition. In
addition, a strange and fascinating polymorphism has been discovered: idiotypes. Each indi-
vidual reacts to a given antigen by producing a characteristic set of idiotypes. Different anti-
bodies can have very different affinities for their antigen. The extreme diversity of antibodies
(a mouse can make 10° different antibodies), which endows the individual with an enormous
repertoire, is now largely understood in terms of structural rearrangements at the DNA and
RNA level among the many genes coding for antibodies.>

A given antibody (Abl), and, more specifically, a given idiotype, can be used itself as an
antigen and elicits the synthesis of anti-antibody (Ab2), also called anti-idiotype, which, in
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turn, can elicit the production of anti-anti-antibody (Ab3) or anti-anti-idiotype, etc. Since
Abl and Ab3 are both to some degree complementary to Ab2, Abl can be expected to
resemble Ab3. The major importance of these interactions is beginning to be understood in
terms of the “idiotypic network”.*® The basic idea of the idiotypic network hypothesis is
that the immune system, being complete (able to recognize the entire world of antigens),
cannot avoid the recognition of itself. There is, then, a coexistence of idiotypes and anti-
idiotypes within the repertoire of one individual (which can indeed be demonstrated
experimentally). Therefore, the immune system has an “inner life” and displays regulatory
pathways governed by idiotypic interactions. Using these ideas, it has been possible to
manipulate the immune response in a way predetermined by the research worker. For
example, anti-idiotypic antibodies can induce the production of antiviral or antibacterial
antibodies in mice, rabbits, chimpanzees, etc., that have never encountered the microbe
(idiotypic vaccines).

B. THE IMMUNE RESPONSE

When the immune system is brought into contact with a given antigen for the first time,
the typical response is the production of a low level of antibody after a lag of several days
(the “primary response”). If we now inject the same antigen again, the system can react more
efficiently, producing more antibody after a shorter time lag and for a longer period (the
“secondary response”). On the other hand, the immune system does not produce antibodies
against antigens encountered early in the life of the organism. This important property,
called tolerance, prevents the synthesis of antibodies against self-constituents. Presumably
related to tolerance is the phenomenon of immune paralysis. Often, a first contact with a
dose of antigen too low to elicit an efficient primary response will prevent any further
response if more antigen is introduced (low-dose paralysis). If, on the other hand, the first
antigen dose is too high, or if the organism is exposed repeatedly, the system may also
become refractory to further contact with the antigen in question (high-dose paralysis).

Thus, in the absence of an antigen, the immune system can exist in several stable states,
according to its past experience: a “virgin” state if it has never “seen” anything resembling
the antigen in question, a state of immune memory if an earlier contact with the antigen pre-
pared it to respond more efficiently, or a “suppressed” state if the previous contact with the
antigen induced paralysis.

The immune response involves complex and only partially understood interactions among
several large classes of lymphocytes, notably B lymphocytes, which ultimately secrete the
antibodies, regulatory lymphocytes called T lymphocytes because they mature in the thy-
mus, and their precursors. T lymphocytes are classically classified into T}, (helper) and T,
(suppressor) lymphocytes. Each of these classes comprises a large spectrum of cells as
regards the specificity of the antibodies that will ultimately be produced.

In this chapter, for convenience we will focus on the small fraction of immune cells
involved in the response to a given antigen and consider among this population “compart-
ments” corresponding to the B, Ty, and T, lymphocytes and their precursors. When we speak
of cells “specific” to an antigen, we mean cells involved in subsequent production of anti-
bodies directed against this particular antigen.

Antigens are usually not active as such; they are “presented” at the surface of appropriate
cells (antigen-presenting cells), and it has become apparent recently’ that what is presented
is, in fact, a choice of small peptides originating from the initial antigen molecules.
Lymphocytes have surface receptors, some of which are antibodies (in B cells) or related
molecules (in T cells). Contact between cells can be via antigen molecules or via idiotypic
interactions between idiotypic and anti-idiotypic cell-surface receptors. In addition, certain
lymphocytes emit extremely active molecules, such as lymphokines, which can take part in
regulation without cell contact.
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C. LYMPHOCYTE INTERACTIONS

These interactions are exceedingly complex and, in fact, far from completely understood.
We will try to give a brief description of the principal interactions. It will necessarily be not
only simplified, but also somewhat arbitrary: we have chosen those interactions that seemed
to us the most relevant.

In the presence of an antigen, a population of helper T Iymphocytes (Ty) specific to this
antigen develops from the population of precursors. Once present, this population may per-
sist in the absence of antigen. On the other hand, the Ty, cells induce the development (from a
pool of precursors) of a population of suppressor T lymphocytes (T;), so called because they
tend to suppress the development of the Ty population that induced it. Here, too, there is an
autocatalytic component: the T, population is induced by the Ty, cells, but once present, it
can persist independently of the Ty, cells that induced it.

B lymphocytes, which will secrete the antibodies, are recruited from a pool of precursors
by T, lymphocytes of appropriate specificity, but the antigen, which has already served to
induce the specific T}, population, is required again during B-cell activation and maturation.

Thus, the antigen exerts a double positive action (directly, and indirectly via T, cells) on
the stages of B-cell maturation. However, it also acts at a third level. As proposed by Leder-
berg? and later confirmed,” immature B cells are inactivated by the antigen corresponding to
their specificity. This accounts for tolerance; immature B cells specific to a protein of the
organism itself will meet this protein before reaching the next stage of development, and be
inactivated.

II. FORMAL DESCRIPTION OF ASPECTS OF THE IMMUNE
RESPONSE

A. GRAPH OF INTERACTIONS

It must be borne in mind that the description just given represents a selection of those
interactions that seemed to us most significant, from among a tremendous mass of experi-
mental facts. This description can be represented by the graph of interactions shown in
Figures 1 and 2.

The “core” can be considered as an entity that sends information toward the other elements
of the system, but is itself influenced only by the antigen. Thus, provisionally treating the
antigen as an input variable, we will first analyze this part of the model separately. In fact,
in addition to the feedback loops presented in the core of the model, there is an additional
negative loop involving the antigen: the antibody, once produced, will neutralize the antigen,
thus impairing its further inducing effect. This is why we can only provisionally treat the
antigen as an input variable, switched on whenever we add antigen and off soon after anti-
body appears.

The schemes presented in Figures 1 and 2, like the verbal description (Section 1.C), lack
information about the connections between interactions. For example, the further develop-
ment of compartment T}, depends on its own present state, on the state of compartment T,
and on antigen. But how are these influences connected?

Whatever the formalism used — naive logical, generalized logical, or differential — we
will have to specify these points, i.e., make additional assumptions. As we will see, our
work combines all three approaches. The naive logical description was quite useful in the
elaboration of the model. At the other extreme, the differential description permitted us to
treat the role of antigen in a more refined way.
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FIGURE 1. Schematic diagram of the interactions. E,
antigenic determinant or epitope; Ab, antibody; B, vir-
gin B cells; B,, more mature B cells; Ty, T helper cells;
Ts, T suppressor cells. Unless otherwise specified, the
interactions are positive. Clearly, the core of the graph
is the multiple-loop interaction between the T, and Ts,
both of which display an autocatalytic component
(Figure 2).

ANTIGEN
FIGURE 2. The core of the model.

B. NAIVE LOGICAL DESCRIPTION

Let us first define the variables and functions used: (1) &, H: the variable and function
associated with the T}, cells, (2) s, S: the variable and function associated with the T, cells,
and (3) e: antigen. Although we previously! used a three-level variable (even before the
development of our generalized logic), we will first treat e as a binary variable. The inter-

actions between h, s, and e, shown in Figure 2, can be connected in several ways, two of
which were selected by Kaufman:?2

H=e¢ s +h
1)
S=h+s
H=(e+h)'s
2
S=h+s

Concretely, Equations (1) say that Ty, cells are recruited from a (nonformalized) precursor
pool if the antigen is present and there are no T cells. Once “primed” in this way, the T},



262 Biological Feedback

compartment will persist autocatalytically. Equations 2 differ from Equations (1) in that not
only the establishment mechanism, but also the maintenance require the absence of suppres-
sor cells. The compact state tables are

TABLE 1

M @)
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®
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I
—

©ee
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In the absence of antigen (e = 0), Model 1 has three stable states, , , and @,
respectively characterized by the absence of both T}, and Ty, the presence of T alone, and the
presence of both. These stable states nicely account for the observed “virgin”, “suppressed”,
and “memory” states. The first is found in naive animals that have not been exposed to the
antigen in question, the second in animals that are blocked in a state of immune paralysis,
and the third in animals that have already been exposed to antigen and have kept the memory
of this contact in spite of the disappearance of the antigen. According to this model, one can

proceed from the “virgin” state to the memory state (1) as follows:

e=0 e=1

add antigen 3 00
A
10
s

%—
@ decay or neutralization @
of antigen

This is due to the fact that state 00, which was stable ( ) in the absence of antigen, is no

longer stable (00) in its presence. Indeed the whole point of the immune system is to
respond to the presence of antigen. Thus, once antigen has been added (shift from left to right

column), the system follows the pathway 00 — 10 — ([L). Since state 11 is stable ( ao
irrespective of the presence or absence of antigen, the system will remain in state 11 even
after antigen has decayed or been neutralized by antibody. In the analysis of the complete
system, studied in parallel by logical and differential methods,!-2 it can be seen that a system
in the “memory” state reacts faster and more efficiently than a system in the “virgin” state.
This accounts for the well-known difference between the primary and secondary responses.
Furthermore, if the system is in the “suppressed” state, the model accounts for the paralysis;

adding antigen does not remove the system from state , in which B cells cannot mature
for lack of Ty, cells. There is, however, an unpleasant point in this analysis: the suppressed

state cannot be reached from the virgin state 00). We will see in the next section that
this difficulty disappears in the generalized logical description of the same model.
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Let us now briefly look at Model 2, just to notice that the naive version of this model

has only two stable states in the absence of antigen, and QD), and cannot account for
the state of immune memory. At this point, we would be tempted to reject the model.
However, we will see that the generalized logical version is more satisfactory.

C. GENERALIZED DESCRIPTION
Since in Systems 1 and 2, the variables & and s both act at two places, we should
consider two thresholds, and thus three logical values, for each of them. We associate a

weight K with each term of our logical expressions. For the term e - s, it was found
convenient? to include the antigen concentration e in the constant K;,. Thus, at very low
concentration of antigen, the discretized value K, will be 0, and at higher concentrations, it

will be 1 or 2. The generalized system corresponding to the naive relation 1 is
H = dp(K1h + Kpps)
S =d,(Xo 1k + Kyo8)
with the level of antigen included in K,,.
Since both £ and s have two thresholds, we have four possible subsystems, according to

the relative values of the thresholds. We consider here the situation in which 8,5 > 0,; and
0., > 0, and the relations become:

H = dh(Kllzh + Klzzs)

3)
S = dS(KZIIh + K221S)
TABLE 2
State Tables of Generalized Model 1
h s
00 Ky 0
01 K Kz 02/0K;;  12/0Kz 42 22/K 1 1K21 + 22
02 0 Ky,
10 Ki K21 01/K;3Kz2  11/K13Kz5 422 21/K31 4 12K31 422
11 K, Kjj 422
b2 0 K21 422 00/K;,0 10/K 13K 54 20/K ;1 4+ 12K 25
20 Kyjir2 K3,
21 Kiypvrz Kipazm
22 Ky Kji 422

Note: Model 1 based on Relation 3.

In Table 2, the general state table is presented in two versions. In Figure 3, we have
adopted the logical parameters K;; = 2, K33 = 1, and K3, = 2. The value of Ky, is 0 for no
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FIGURE 3. State table of system (3) (eft) and nullclines of the corresponding differential system (right) for three
values (0, 1, 2) of the logical parameter K;;, corresponding to low, middle, and high antigen concentration, respec-
tively. The other logical parameters are K;; = 2, Kz; = 1, and K; = 2. The parameters used in the differential
description have been chosen within the domain of agreement with the logical parameters. As in other chapters, the
nullcline dx/dt = 0 is symbolized by long dashes (— — —) and dy/dt by short dashes (- - - - - - ). The Hill number
used is n = 20, In this figure, variables k and s are labeled x and Y, respectively.
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TABLE 3
A Combination of the Three State Tables of Figure 3

“No” antigen “Low” antigen “High” antigen
(K2 =0) Kp=1) (K2 =2)
12/02 1202 212
h h

/02'\ @ /02 /02

@22 < @2 < @122

Note: Each of the three columns corresponds to a value of X yz (“no”, “low”, and “high” antigen).

(or very low) antigen, 1 for low antigen, and 2 for high antigen. For each case, we see the
state tables (left) and nullclines of the differential description (right).

Let us start from the virgin state 90)/00 in the absence of antigen (Table 3, a) and add a
little antigen (shift from grid a to grid b). State 00 is no longer stable (60/ 10) and the system
will proceed via three intermediate states to the suppressed state 02)/02. After exhaustion of
the antigen (slow because in this suppressed state no antibody is produced), the system
returns to grid a, in which state 02 is stable, and thus remains in the suppressed stable state
/02. We can now add either low (shift to grid b) or high antigen (shift to grid a) without
any result; the system will remain in the suppressed state. This accounts very well for low-
dose paralysis; after being injected with a too low dose of antigen, the animal becomes
refractory to immunization, even with a high antigen dose.

Starting again from the virgin state /00 in the absence of antigen (left part of Table
3a), let us give a higher dose of antigen (shift to the right part of Table 3). Again, state 00 is
no longer stable (60/02), followed by 16/21, and, according to the time delays, the system
will move to stable state (02)/02 or @2)/22. In the second case, antibody will be synthesized

(as one can see in the treatment of the complete system). The antigen will thus be rapidly
neutralized and the system shifts back to grid a of Table 3a. Since state 22 is stable in the
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absence as well as in the presence of antigen, the system remains in the “memory” state
@/22. From now on, a second addition of antigen will result in an accelerated antibody

production (because we are already in state @/22, with Ty, cells of the proper specificity
present and ready to induce B cells to synthesize antibody).

In the naive description of this system, there was a problem because there was no path-
way from the virgin state to the suppressed state. We have seen above that in the generalized
description there is no such problem. This is not a discrepancy between the naive and gen-
eralized descriptions. We must remember that our naive description is a particular case of the
generalized one, in which 8, = 0,,, 8,5 = 8,5, and all logical parameters are 1. We see now
that there are logical parameter values for which the description fits well with experimental
solutions.

As briefly mentioned above, Model 2, which seemed unsatisfactory in its naive version,
becomes acceptable in the generalized description. More specifically, in the naive description

there are only two stable states in the absence of antigen (no “memory” state aD). As
shown in Figure 4, according to the parameter values, there may be three stable states (,

@D, @D) or two stable states ((0), @D)) and a cycle that suggests an oscillation of & and

s, indeed observed in some conditions.

D. DIFFERENTIAL DESCRIPTION

The discrete approach has been of great help, if only because its simplicity permitted us
to check a number of possible variants of the connections between variables and select the
most appropriate ones. At a later stage, we selected the most interesting sets of values of the
logical parameters and injected their real counterparts into the homologous differential
equations. The fit of the generalized logical description with the differential description is
illustrated in Figures 3 and 4, which show in parallel the logical state tables and the null-
clines of the differential description. In these figures, we have used nullclines corresponding
to differential equations with rather steep interactions (n = 20). It may be argued that the fit
of the logical description with a differential description using highly nonlinear interactions is
not surprising. In fact, the qualitative fit persisted when we used differential systems with
part of the interactions linear and part sigmoid with n = 2 (Reference 2) — in full agreement
with the earlier observations of Glass and Kauffman.!0 In the logical description, we found it
convenient although by no means indispensable to provisionally treat antigen as if it were an
input variable. There is no reason to adopt this attitude for the differential description. A
description of the complete system is given in detail in Reference 2.

Like the nervous system, the immune system is an exceedingly complex network, and
any attempt to formalize it in detail would be perfectly hopeless. Here, we have reasoned in
terms of the small fraction of the network that recognizes a given antigen and considered a
small number of cell types, treating collectively all the cells belonging to one of these cate-
gories. In addition, we have considered only a small number of interactions that seemed to us
especially relevant.

It is gratifying to find that in spite of such drastic simplifications, one can get a reason-
ably correct view of several important aspects of the immune response. The next step should
consist of describing and analyzing specific aspects of the immune response more accurately.
As in other fields, we expect an efficient feedback involving the predictions of the models,
experiments inspired by these predictions, and appropriate modifications of the models.
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FIGURE 4. Generalized logical (left) and differential (right) description of the system:

H=d,[% Ky 'h+Kp)]
S =dyKz ’h+ Ky 's)

whose naive logical description is (2), in the absence of antigen. Here, Kj; =0, K; and Kz, = 1, and Ky74 72 = 2.
The difference between (a) and (b) is that in (a), Kz; +2; = 1, and in (b), Kz7,2; = 2. As a tesult, the logical stable
state 21/21 (a stable node in the differential description) is replaced by a cycle (a stable focus in the differential
description). Also see the legend to Figure 3.
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I. DIFFERENTIATION SEEN BY A POSITIVE FEEDBACK
LOOP FANATIC

It has become clear that some transmissible differences among cell lines of a population
are due to differences in the structure of the genetic material. To choose examples at very
different levels in the hierarchy of living organisms: yeast cells of opposite mating type dif-
fer by a well-defined DNA transposition event, and various cell lines in the immune system
of vertebrates differ by DNA rearrangements that bring together pieces of DNA that were
initially separated (typically, the variable and constant parts of genes coding for immuno-
globulins).

However, it seems more and more likely that the vast majority of the differences among
cell lines of a given organism are not due to genetic alterations; most of our cells are proba-
bly genetically identical. All of our genes are present in all cells, but in each cell type only
certain genes are expressed at a significant rate.

The idea that slight environmental differences can explain why a gene is on in one cell
type and off in another is in many cases untenable because the differences persist when the
two cell types are grown in identical environments in cell culture. Thus, in many cases two
genetically identical cells in identical conditions behave in heritably different ways, presum-
ably reflecting different events that took place in their past history. These are typical epige-
netic differences, alluded to in Chapter 17.

To account for the fact that, say, a hepatocyte produces serum albumin whereas a fibrob-
last does not, it is often said that this is either because the latter contains a repressor that is
absent in the former or because the former contains an activator absent in the latter. Al-
though either (or both!) of these hypotheses may be true, two objections can be raised to this
type of “explanation”. First, assuming that one of these hypotheses is correct, it merely dis-
places the problem. The question now becomes, for example, “why does the fibroblast pro-
duce a repressor, whereas the hepatocyte does not?” Of course, we do not mean to imply any
criticism of this type of approach. Indeed, progress is often via small steps that gradually
deepen the experimenter’s understanding of the situation. Our point is simply that such a
finding would shed no light on the origin of different cell types.

The second objection is perhaps more serious. In fact, what is remarkable is not that a
given cell type produces this or that protein at a particular moment, but, rather, that the sys-
tem behaves as though at some point during its development a decision was made and (after a
lag) the cell began to produce certain proteins and from that point on continued producing
them heritably, irrespective of the environmental conditions.

As we shall see, both objections vanish if we assume that each binary choice
(between producing a given protein or not, between producing either protein a or protein b,
etc.) is directed by a positive feedback loop, i.e., by an autocatalytic process (direct
or indirect). The first objection disappears because the cause of a specific phenotype no
longer forms a long regression (of the sort “a is present because b is present, and b is present
because c is absent, and ¢ is absent because. . .”), but comes back to itself (““a is present
because . . . a is already present”) in a positive feedback loop. The second objection
disappears because, as we have seen, positive loops permit a choice that, once made, is
stable in the absence of a major external change.

Note that “epigenetic” should by no means be opposed to “genetic”. In order to be able to
exist in two or more stable states, a system must have a logical structure with the
appropriate positive loops, and this is partly ensured by proper interactions between genes
and regulators.

On the other hand, assuming that the possibility to have such choices is due to the pres-
ence of positive loops in the genetic network, how are decisions made? We have seen that



271

although a simple one-element positive loop provides two stable states, it operates as a
vicious circle and cannot by itself make the decision. However, in simple devices like those
illustrated by the graphs

+
OR
y —5 ZD y

y can serve as a trigger (or push button). In the first system, if gene Z is initially off, a tran-
sient pulse of y will switch it on permanently, and in the second system, if gene Z is
initially on, a transient pulse of y will switch it off permanently.

We can now ask, What decides whether (and when) the push button will act? One simple
device, inspired from phage A, was presented in Chapter 14:

B +OR+
X — y — zi)

Here, starting from a ‘“virgin” state (all products absent), the decision whether or not to turn
z on basically depends on the relative accumulation rates of x and y, as discussed in Chapter

14.
Another elementary decision-making device is the simple two-element positive loop:

From the initial state 00, the system will go to (and stabilize at) or QD), according to

whether t, <ty or t, < t,; and from 11, it will go to (and stabilize at) or , according
to whether t; <ty or ty <ty.

Of course, for both devices;if all time delays were absolutely constant, the pathway
would be irrevocably fixed. With the second device, for example, if t, <t, and tg < tg, the

system would invariably proceed from 00 to and from 11 to . However, even in a
homogeneous cell population, time delays are unlikely to be identical in all cells: rather,
they would be expected to have a distribution around a mean value. Thus, if the mean value
of t,, say, is smaller than that of t,, most of the cells will follow the corresponding pathway

00 — ,’but, depending on the overlap of the distributions, a certain fraction of the cells

will follow the minority pathway (00 — ). Using this principle, we have simulated the
choices governing the decision by bacteriophage A to integrate or not into the host genome
after infection.!

In the above discussion, we treated the decision of cells to choose one or another pathway
as if it were a stochastic process. Although this may be correct in some cases, it is certainly
not generally true. It seems more likely that variations in the value of certain time delays
are, in fact, determined by differences in the local environment. It has long been known, for
example, that many egg cells are anisotropic and can be described in terms of “morpho-
genetic gradients”, i.e., concentration gradients of substances involved in morphogenesis. We
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would be tempted to postulate that certain delays are affected by these substances, making the
choice of developmental pathway depend on the precise position in the gradient.

Embryologists distinguish between determination and differentiation. Determination is the
decision itself, the commitment to follow one or another pathway. However, two cells
already committed to different fates often remain indistinguishable for some time, both mor-
phologically and with respect to the proteins they synthesize. Only later, when their specific
potentialities are expressed, can the cells be considered differentiated.

We are thus interested in the possible mechanisms of ( 1) the decision itself (determina-
tion), (2) its maintenance, and (3) its final expression (differentiation). We will briefly dis-
cuss these three points in the context of devices like:

( u)
in which x, y, z, u, and v are regulators and s and t are proteins characteristic of specific dif-

ferentiation pathways (“s™ or “t” differentiation).

(1) Product y clearly acts as a push button and is thus involved in the decision. However,
even in the simple model proposed here, it is not the only decision-making element; x is
also involved, as discussed in Chapters 4 and 14.

In the second scheme, rather than being either “on” or “off”, the positive loop is in either
the “u” or the “v” position, according to the relative values of the time delays (t, vs. t, if the
initial state is 00, t; vs. t; if it is 11).

(2) The maintenance of the determination from the committing decision to the actual dif-
ferentiation consists of the maintenance of the positive loop in whichever state the decision
set it. For the first scheme, if z exerts a positive effect on the synthesis of g (direct or indi-
rect), the loop must be maintained in the “on” position, with continued synthesis of z. If on
the contrary, z exerts a negative effect on s, the “s” differentiation requires that the loop
remain “off”, with continued lack of synthesis of z. In the second scheme, the choice is
between the presence of u or the presence of v; either of these regulators could exert a posi-
tive or negative effect on the synthesis of t. Again, the maintenance of the decision simply
requires maintaining the loop in the appropriate position.

(3) As mentioned above, there is often a long lag between the decision (determination) and
its execution (differentiation proper). There are presumably different causes, according to the
case. While a cascade of positive controls would hardly justify long delays, a simple
possibility would be that setting the positive loop results in switching off a negative control
gene whose product has a long life span. In this case, the effect would be delayed until the
negative regulator has decayed.®

II. C1S VS. TRANS PROCESSES

Virtually all naturally occurring DNA contains a small number of methylated bases,
formed by specific DNA methylases. In certain cases, this methylation plays an interesting
role in gene expression. Each methylating enzyme recognizes a specific DNA sequence that
is often symmetric (i.e., the two strands of the double helix have the same sequence running
in opposite directions), and the methylation takes place at a specific base on each strand.
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Semiconservative DNA replication first produces hemimethylated DNA, and some methy-
lases can use only this as a substrate, with essentially no activity on completely unmethy-
lated DNA. For these enzymes, the methylation process is thus autocatalytic: only DNA
produced by replication of methylated DNA can be methylated.

methylated DNA
methylase C D replication
hemimethylated DNA

unmethylated DNA i) replication

This process is operative in bacteria as a protection against the restriction endonucleases they
produce, which recognize the same sequence as the corresponding methylases and cut the
DNA unless the sequence is methylated. This permits the cell to distinguish between its own
DNA, which is always methylated (or hemimethylated) at the appropriate sites and therefore
substrate for the methylase but not for the endonuclease, and foreign DNA, normally un-
methylated at these sites and so substrate for the endonuclease but not the methylase. Thus,
foreign DNA injected, for example, by a phage will usually be destroyed.

Certain genes are silent or expressed according to whether or not specific DNA sequences
are methylated?. This situation seems to be particularly exploited by higher organisms. For
example, in some species in which females have two X chromosomes but males only one,
female cells generally express only one of the X chromosomes, the other being kept silent
concomitantly with self-propagating methylation. In theory, at least, this type of process
could be used to turn on a whole block of genes in response to a signal such as temporary
inhibition of the methylase, resulting in permanent demethylation of the genes in question.

Should this process be considered genetic or epigenetic? What are the criteria? Normally,
we think of epigenetic processes as being mediated by products — activators or repressors,
for example — that affect DNA expression, whereas genetic processes alter the DNA itself.
DNA methylation straddles this distinction: the DNA is chemically altered, but the base
sequence is preserved. The fact that the transmissibility of methylation can be accounted for
by a positive feedback loop is not an argument to classify it as epigenetic. After all, genetic
changes also behave autocatalytically and can thus be described by a positive loop. A better
reason to consider it epigenetic is that it is not transmitted through sexual reproduction. On
the other hand, there is one essential feature of methylation that distinguishes it from other

epigenetic differences.
+

Suppose that we fuse two cells, one in which the loop XD is on (x present, gene X

+
active), the other with the loop xi) off (x absent, gene X silent). In the hybrids, X is pre-

sent, so not only will the active copies of gene X remain active, but the silent copies will be
switched on. The product x produced by the first genome acts “in trans” to switch on the X
gene of the second genome. Consider now what would happen in we fuse two cells, one in
which gene Y is unmethylated and active, the other with gene Y methylated and inactive.
Here, the difference in activity of the two copies of gene Y does not result from the presence
or absence of a cytoplasmic factor; the DNA methylase is present in both cells. The dif-
ference resides in the DNA itself, whose state, methylated or unmethylated, is self-propagat-
ing. We thus expect each copy of gene Y in the hybrid to remain in the same state it was 1,
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active or inactive, before the cells were fused. In this case, there is no trans-acting factor; the
determinant of the state (i.e., the methylation state of the DNA) acts only in cis.

III. CELL HYBRIDS3

Consider a line of fibroblasts that do not synthesize serum albumin and a line of hepatic
cells that do synthesis it. As discussed above, we would suggest that the permanent mainte-
nance of the albumin gene in the on or off state is determined by the state of a positive loop.

+
Suppose it depends on a one-element loop x@ . We can account for the two states of the

+
albumin gene either by a circuit of the type Cx —— ~a (negative regulation), with

+
the loop on in the fibroblasts and off in the hepatocytes, or by Cx —> *a (positive

regulation), with the loop off in the fibroblasts and on in the hepatocytes. What would hap-
pen if we fused a fibroblast with a hepatocyte? According to the first hypothesis, the repres-
sor x would be present in the hybrid cell, thus ensuring its continued synthesis and the
extinction of the hepatocyte albumin gene. In the second hypothesis, the activator x would
be present in the hybrid cells, thus ensuring its continued synthesis and the expression of the
albumin genes. (We assume that the twofold dilution of x due to cell fusion does not lead to
a subthreshold concentration.) The experimental observation is that the vast majority of
hybrid cells do not produce serum albumin®S, If the control is indeed via a one-element posi-
tive loop, we would conclude that this element is a negative regulator of the albumin gene.
The opposite situation is encountered for the third factor of complement, which continues to
be synthesized in hybrid cells.* If a one-element loop is involved, this would suggest that
expression is positively controlled by the regulator.

This situation would be similar if the circuit involved a two-clement positive loop of the

+
type x y , in which the two elements x and y are either both present or both
w
+

ST T™
absent. However, for a loop of the type x ¥y, the two steady states are “only x

present” and “only y present”, and one could assume either that X inhibits albumin synthesis
or that y activates it. Assuming the latter, we have the following graph of interactions, logi-
cal relations, and state table:
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In this model, the loop is in state x () in fibroblasts (no production of albumin) and in

state y () in hepatocytes (production of albumin). Now what do we expect a hybrid cell
to do? Initially, it will contain both x and y (again, we assume the twofold dilution can be
neglected), so the synthesis of x and y will be turned off and the two products will decay:

Since the albumin gene is generally turned off in the hybrids, our model should stipulate

that x decays more slowly than y, resulting in the transition 1% . For a gene that
continues to be expressed in the hybrid cells, it would be sufficient to postulate that ty < tg,
without requiring a different regulatory mechanism. In fact, when fibroblasts are fused with
hepatocytes containing a double chromosome complement, albumin synthesis is no longer
extinguished®, as if the increased concentration of regulator y increased its decay time
sufficiently to make ty greater than tx.

In summary, the idea that the on or off state of genes in different cell lines is commanded
by the state of a positive loop can account for a number of observations. If the loop has only
a single element, one must assume different control mechanisms for cases of extinction and
activation in hybrid lines, negative and positive, respectively (assuming the twofold dilution
is negligible). In contrast, if the positive loop includes negative interactions, like the loop

7™

xT y , both extinction and activation can be accounted for by a single model (in
~__

which the regulator can act positively or negatively) simply by postulating the appropriate
off delays.

Our reasoning has been in terms of #rans-acting regulators (cf. Section II above). In cases
of extinction, like our example of serum albumin, this is clearly justified. For the third com-
ponent of complement, which continues to be synthesized in hybrid lines, trans action has
been shown by fusing two cell lines of different origin (mouse-rat, mouse-man, etc.). The
resulting hybrids produce the third component specific to both species, showing that the
fibroblast genes (normally silent) are indeed turned on.

However, it has become clear that not all experimental observations can be accounted for
in terms of diffusible gene products only. Cases are known, for example, in which a gene
that is turned off in the hybrid line can be reactivated by loss of specific chromosomes.
Tyrosin aminotransferase (TAT) synthesis can be turned off in rat hepatoma cells by the
introduction of a mouse chromosome 11 from a fibroblast, and elimination of this chromo-
some produces lines in which TAT is recxpressed. In these experiments, it is as though a
negative regulatory gene on mouse (fibroblast) chromosome 11 could be expressed without
turning on the homologous rat (hepatoma) gene. This is a cis effect: each copy of the nega-
tive regulatory gene follows its own pattern of expression. As discussed in Section II, self-
propagating DNA methylation can account for this type of behavior.

The situation just described can be accounted for by models of the type:
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0

y —

in which the positive loop on z represents the autocatalytic character of DNA methylation;
only unmethylated copies of gene Z will be expressed. A fibroblast has gene Z unmethylated
(on) and is in the x state, whereas a hepatocyte has gene Z methylated (off) and is in the y

ST .
state. If these cells are fused, the loop Xv y will be adjusted since it depends on
.~
diffusible factors, but the Z genes will continue to behave as if nothing had happened. Thus,
z will be present in the hybrid cell and TAT will not be made. If we now select for loss of
the fibroblast Z gene (presumably on mouse chromosome 11), the repressor z will no longer
be synthesized and, if the loop is in the y state, the hybrid will turn on TAT synthesis.

One may ask whether both types of mechanisms, cis and trans, have to be invoked. Let
us simply say that the occurrence of trans mechanisms is clear in some cases and of cis
mechanisms in others, but it is not established whether both are involved in the control of a
given protein.
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I. INTRODUCTION

Some of the ideas developed in this book are new; many are not. Our hope is to have
reached a view of regulatory processes in which new and older ideas are organized in a
coherent way. On the one hand, this view is perhaps too simple in the sense that we have
emphasized what seemed to us really basic principles. On the other hand, the development of
an appropriate formal description opens the way for an integrated approach to more complex
regulatory networks. These concluding remarks concern (1) the regulatory process, (2) its
description and analysis, and (3) some perspectives.

Il. THE REGULATORY PROCESS

Regulation allows systems to take account of the internal as well as the external
situation. The internal sitnation is taken into account via feedback interactions, that is, via
closed chains of interactions (here called loops), which inform the organ that produces an ele-
ment about the state of this element.

We have developed the idea that there are two fundamental types of regulations, homeo-
static and epigenetic. Homeostatic regulation drives the elements of a system to or near a
level intermediate between, and significantly different from, the basal (“off”) and the maximal
(“on”) levels. Once there, the level is maintained at, or oscillates around, this supposedly
optimal value. According to the case, we have a stable or an unstable focus. In contrast,
epigenetic (or differentiative) regulation forces the elements of the system to choose between
two extreme levels. Once reached, either level is maintained stably in the absence of major
perturbations. Multistationarity is the property of systems whose structure allows for several
steady states. Some of these steady states are attractors, each of which has its domain. Once
the system has penetrated into the domain of an attractor, it will remain there in the absence
of an external perturbation.

lomeostasis, giving the system a choice among

attractors, some of which may be oscillating. For example, in product activation (cf. Chapter
+
12), the molecular mechanism is described by == x — Y i X is converted into y,
which catalyzes the conversion. In this reaction scheme, one sees only the positive loop of y
on itself. However, since x exerts a positive effect on y and Y a negative effect on x, the
T+
logical graph of interactions is x y » Which includes the negative loop
-~

required for sustained oscillations.

As pointed out already, “epigenetic” should not be opposed to “genetic”; a genetic system
will have multiple steady states only if the gene interactions comprise the appropriate posi-
tive loops.

The appearance of new positive loops in the genome is a process that should be consid-
ered on the time scale of evolution, not of the individual. The situation, however, might be
much more flexible in other Systems, such as the nervous system. In higher organisms,
many neurons interconnect at random, thus producing loops — each of which is necessarily
negative or positive — and linear chains that can be connected to loops and operate under
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their control. If one of these loops happens to be used, the connections will be reinforced and
the loop may be stabilized. When such a loop is positive, it typically has two positions, say
“on” and “off”. Once structurally stabilized, it may persist for long periods in the “off”
position. However, a proper signal can switch it on, thus revealing the potential behavior
linked to the loop and its associated chains of neurons. To the extent that such a state of the
system may correspond to a “mental image”,! these processes could be involved in memory,
and to the extent that the structural fixation of a loop depends on exercise, these processes
could be involved in learning.

III. DESCRIPTION AND ANALYSIS OF THE REGULATORY
PROCESS

-

Throughout this book, we have used in parallel the classical description based on ordinary
differential equations and the discrete method called “kinetic logic”. The idea behind the
discrete approach is that in may cases any attempt to treat a biological system in really quan-
titative terms is illusory, and it is often more useful to have a general view of the essential
dynamic possibities of a system rather than to know the quantitative details of its behavior
in particular conditions. We agree with Thom? that one can be at the same time qualitative
and rigorous. What we are really interested in is the qualitative essence of a system.

In kinetic logic, instead of relating the state of a system “at time t + 1” to its state “at
time t” (the synchronous description), we relate logical functions describing the evolution of
the system to variables describing its state. Thus, for each state of the system described by a
variable vector abc..., we associate a function vector ABC... (the image) of the variable
vector) that describes its evolution. More specifically, the differences between vector abc and
vector ABC indicate to which orders the system is subject when it is in state abe. For
example, in the loop:

—\_/

for abc = 001, we have ABC = 010; there is an order to switch ¢ from 1 to 0 and an order
to switch b from O to 1. Thus, the image ABC of state abe would be the state following if
all orders to which the system is subject when it is in state abc were executed
simultaneously. However, this is not normally the case. Among the orders to which the
system is subjected in state abc..., one is executed first, thus leading the system to a new
state in which part of the orders present in state abe may be canceled, and new orders may
arise. In the present case, from 001, instead of going to its image 010 by synchronously
switching ¢ off and b on, the system will usually go either to 000 or 011. Note that in the
first case the order to switch on b persists, and there is a new order (to switch on a); in the
second case, the order to switch off ¢ is canceled.

Formally, the evolution of the system is described as a logical iteration, but this iteration
is neither a classical “parallel” iteration (@ la Jacobi), in which all variables with an order to
change do so simultaneously, nor a classical “series” iteration (@ la Gauss-Seidel), in which
variables change their value one at a time in a predetermined order. Tn our description, only
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one order is executed at a time; which one depends on the relative values of time delays or
linear combinations of them.

Thus, a distinctive feature of our discrete description is its fully asynchronous character,
without which systems would be condemned to follow a single linear pathway, without any
possibility of choice. More specifically, in our description, a given logical structure (graph
of interactions) can often generate a number of distinct pathways; which one is followed
depends on the time delays. Of course, if we assign a fixed value to each time delay, the sys-
tem will follow a determined pathway. However, in a cell population, it is reasonable to
assign to each delay an average value and a distribution rather than a well-defined value,
-permitting cells as similar as possible to follow different pathways. This is how stochastic
elements can enter our description.

Note that, in our description, systems are treated as special cases of asynchronous
automata. In fact, our formalism permits the description of asynchronous automata in gen-
eral, and not only in cases representing biological applications.

With the help of Van Ham and of Richelle, we introduced variable with more than two
values whenever necessary. The simple (and a posteriori obvious) criterion for the number of
values a variable should have was the number of targets of the corresponding element. If it
acts at n points, up to n distinct threshold values might be required, and thus upton+1
logical levels.

More recently, Snoussi introduced “logical parameters”, which take into account the rela-
tive weight of each term of a logical expression. In addition, Snoussi’s description solves the
problems encountered in assigning values to multivalued logical functions. At this stage,
our discrete formalization permits a flexible qualitative description of complex systems. It is
rewarding to observe that this description is qualitatively extremely similar to that given by
systems of nonlinear differential equations using sigmoid interactions. Some of the stable
steady states of the differential description are seen in the logical description as logical
“stable states”. As briefly mentioned in the last section of Chapter 8, we recently discovered
that the other steady states of the differential description can also be identified on logical
grounds if one includes the thresholds as additional logical values in the description.

From a more general viewpoint, our logical description is effective for any system that
can be described by an oriented, signed graph. In fact, the method was developed for the study
of gene networks, but it soon turned out to be usable not only in other fields of biology
(e.g., immunology, neurobiology, and virology3), but also outside biology. Nicolis* and
subsequently, Dee and Ghil® have applied kinetic logic to climatology,* de Palma and Boon®
to urbanism, and de Palma, Stengers, and Pahaut” to decision making.

IV. SOME PERSPECTIVES

In some fields of biology, we are beginning to understand molecular mechanisms in great
detail. Unfortunately, in many cases we feel that we know the cogwheels, but not the clock.
This is why it is so necessary to be in a position to study complex networks with inter-
twined feedback loops. Kinetic logic, which provides such a tool, has progressed enormously
during (and, as a matter of fact, partly because of) the writing of this book.

We are now able, from a graph of interactions, to provide a limited number of qualita-
tively different submodels, each characterized by a specific set of values for the logical

The variant proposed by Ghil uses as many delays as there are interactions. However, it uses the same value
for the “on” and “off”” delays. Another difference is that once an order has been given, it will be executed after
the characteristic time delay, even if there is a counter order. This results in complex behavior, very different
from that given by the differential description.



281

parameters. For each submodel, we know the essential aspects of the dynamics, and we can
write a system of nonlinear differential equations that, using real parameters inspired from
the logical ones, will behave essentially the same as its discrete homologue. Moreover, we
can now, on logical grounds alone, identify the steady states of our systems and predict their
location and essential properties in the differential system.

In fact, Snoussi’s generalization became operative only two years ago (in 1987) and the
logical identification of all steady states is even more recent. It is thus not surprising that the
new methods have been applied so far in only a few concrete cases — as the reader will have
realized. It will be especially interesting to apply these new methods to systems involving
“strange” (chaotic) attractors. .

The most unusual, and perhaps the most fecond, feature of the logical description is that
instead of trying to give a linear approximation of nonlinear systems, we take the diametri-
cally opposite attitude and use an infinitely nonlinear caricature. Whereas linear approxima-
tions are appropriate only in the close vicinity of steady states, the infinitely nonlinear car-
icature provides a qualitatively correct account of the behavior of systems comprising
sufficiently nonlinear feedback loops. )
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Appendix 1

HOW TO FIND A STEADY STATE VALUE BY ITERATION

When an equation is written:
H(x)=0 @

its solution can be visualized as the intersects of the curve y = H(x) with the “curve” y = 0,
i.e., the x axis (Figure 1a). Equation 1 can also be written in the form:

x = F(x) @

where F(x) = H(x) + x. The solutions are the values of x such that x itself and F(x) are equal.
They can thus be visualized as the intersects of y = F(x) and of y = x, i.e., the bissectrix of
the positive quadrant (see Figure 1b). It is obvious that Equations 1 and 2 have the same
solutions. The form of Equation 2, however, is often more convenient for numerical approx-
imations.

Let us start from an arbitrary value x;, calculate F(x,) and use this as a new estimate of x,
X, = F(x,), then calculate F(x,) and use it as a third estimate of x. More generally:

Xn+1 = F(xp) €)

Such a relation, called a recursion formula, generates an iterative process (discovered long
ago by Euler). This iteration is illustrated in Figure 2 by the successive arrows starting from
xy. From x;, a vertical line is drawn to the curve y = F(x); the intersect has coordinates
(xy, F(xy)) or, equivalently, (x;, x,). If one now draws a horizontal line to the bissectrix, the
intersect has the coordinates (x,, X5). A vertical line drawn through this point will cross y =
F(x) at the point [x,, F(x,)] or, equivalently, (X5, X3), and so on. It can be seen that in this
case the iteration rapidly approaches one of the intersects between y = F(x) and y = x; that is,
one of the solutions of the equation x = F(x).

The process shown in Figure 2 is readily done with a pocket calculator, in which one
“feeds” function F(x) the arbitrary initial value x|, then feeds it the result F(x;) used as x,,
and so on. In the case considered, and using x; = 1.1, the successive values are

x, = 1.1 Xo = 1.927 514 385
x, = 1.233 866 179 *¥10= 1.927 553 356
x; = 1.481 842 538 x1;= 1.927 560 415
x4 = 1.754 454 578 X1p= 1.927 561 693
xs = 1.886 512 250 x13= 1.927 561 924
xs = 1.919 661 005 x14= 1.927 561 966
x; = 1.926 114 472 x15= 1.927 561 974
xg = 1.927 299 284 X1= 1.927 561 975

The value of x to nine decimals does not change any more after 15 iterations. One can easily
check that any initial value above 1 would lead to the same point.

The intersects of the two curves, which are, as already mentioned, the solutions of the
equation x = F(x), are also called fixed points of the recursion x, , | = F(x,) because if one
starts from such a point x°, there is no further change; x% = F(x%). In our example, there are
three fixed points, the one just calculated (x = 1.927...),x =0, and x = 1.



284 Biological Feedback

2%
1+ x°

FIGURE 1. A plot of H(x) = x as a function of x. The solutions of equation H(x)

2%°
1+x0 08
function of x. The solutions of equation x = F(x) (equivalent to H(x) = 0) are the values of x
at the intersects of F(x) with the bissectrix.

=0 are given by the intersects of the curve with the x axis. (b) A plot of F(x) =

If, instead of starting from 1.1, we had started from 0.9, the iteration would have led us to
another fixed point. The successive values given by the pocket calculator are

X = 0.9

X, = 0.742 525 888
X3 = 0.368 297 644
%4 = 0.013 461 446
x5 = 0.000 000 001
Xg=1x 10

X7 = 0.0

In fact, one can show that any positive x; less than 1 would lead to the same fixed point x =
0. Thus the recursion chosen can be used to calculate two of the steady-state vatues, but not
the third. We will soon see how to calculate this third steady state as well.

We will first consider two other examples (Figure 3a and b), both decreasing functions. In
the first (Figure 3a), the iteration converges toward the unique fixed point. Note that the
convergence is spiral here, whereas it wds monotonic in Figure 2. This is because the curve
is increasing in Figure 2, decreasing in Figure 3. Expressing F(x) on a pocket calculator and
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FIGURE 2. Tteration

2%,

1=y xS
n

using x, = 1.1 and X, = 0.9. It can be seen that the fixed points a and b, but not c, can be reached by this iteration
process.

choosing x; = 0.1 (far from the steady state), x, = F(x,), etc., the successive values converge
toward 1, reached to nine decimals after 32 iterations.

In contrast, the iteration in Figure 3b does not converge; it approaches a two-element
cycle. The pocket calculator, starting from 1.1 (which is close to the steady state), gives:

X1 = 1.1

X, =0.766 133 821
X3 = 1.582 339 928
x4 = 0.183 155 063
X5 = 1.999 587 869
xg = 0.060 666 648
X7 = 1.999 998 356
x5 = 0.060 606 302
Xo = 1.999 998 364
X0 = 0.060 606 301
x,; = 1.999 998 364

and so on.

Thus, of the five fixed points examined in our examples, three (a and b of Figure 2, d of
Figure 3a) are attractive, and two (c of Figure 2 and e of Figure 3b) are repulsive. On what
does this depend? Simply on the slope of the curve F(x) at the fixed point considered. If the
absolute value of the slope is less then 1, the process will converge, but our iteration will
not converge if the slope is greater than 1 (as for point c) or less than —1 (as for point ).
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{a)

(b)
FIGURE 3.
a) Iteration X, 4, = 2
n+ 1= 1 + X,
Iteration converges spirally toward the unique fixed point.
. 2
b) Iteration X,41 = W

The iteration fails to converge and tends toward a cycle.

How can one reach by iteration a point that is repulsive? A very simple method! is as fol-
lows. Instead of x = F(x), one can write x — Ax = F(x) — Ax or

x =T R =AX _Goy Az @
1-A
The solutions of Equation 4 are obviously the same as those of Equation 2, which is a spe-
cial case of Equation 4 with A = 0. However, the shape of G(x) and, in particular, its slope
at its intersects with the bissectrix depend on the value of A. For appropriate values of A,
the iteration

F(Xn) - Axn

Xp+17= 1 - A = G(Xn) (5)
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{x)

(a)

{x)

(b)

FIGURE 4. To reach the intermediate fixed point of Figure 2, we use the recursive formula

F(xy) = Ao
1-A

Xn+1 =

With A = 0 (Figure 4a), one again finds the situation of Figure 2. With A = +2 (Figure 4b), the process converges
toward the fixed point x° = 1 (but the other fixed points become repulsive).

will reach a fixed point that was repulsive for A = 0. For instance, for point ¢ (Figure 4a),
using A = +2 and starting from x = 0.1, the iteration converges toward 1. For point e
(Figure 5b) with A = -2 and starting from x = 0.1, the iteration converges toward the fixed
point 1.

How did we choose the values A = +2 for point ¢, and A = 2 for point e? It can be
shown that the optimal value of A (that giving the most rapid convergence) is the slope of
F(x) at the fixed point — in other words, the derivative F'(x9). Of course, we cannot know
F/(x0) unless we already know x°, but what we know is that in the first case the classical
iteration failed because the slope was greater than 1 and in the second case it failed because
the slope was less than —1. Thus, in the first case (c), one has to use a “sufficient™ positive
value for A and in the second case (), a “sufficient” negative value. It can be shown a poste-
riori that for a point ¢ the optimal value of A is +2.5, but that any value greater than 1.75
would ensure convergence, and for point e the optimal value is 2.5, but any value less than
—0.75 would ensure convergence.
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Glx) A=0

FIGURE 5. To reach the fixed point (e) of Figure 3b, we again use the formula:

F(Xn)—Axn
Xn+1 = 1-A

this time with A negative (A = —2). See Figure 5b.

In practice, when a fixed point is repulsive for A = 0 using the classical recursion relation
3, we use recursion 5 with a positive or negative value of A, depending on whether the
slope of F(x) at this point is itself positive or negative. If the iteration still does not con-
verge, one can increase the absolute value of A. One can also use recursion 5 to increase the
rate of convergence of a slowly convergent process. For example, for the equation of Figure
” 3a, the fixed point x0 = 1 (to nine decimals) is only reached after 32 iterations with the clas-
sical procedure (A = 0) starting from x; = 0.1, but already after four iterations if A = —0.5,
The method just described for one-variable systems can be extended to n-variable systems,
but such considerations are beyond the scope of this book. Some indications can be found in
Thomas et al.! Suffice it to say that for n variables, A is replaced by an n X n matrix that is a
caricature of the Jacobian matrix at the steady state one is trying to reach. The method is
currently used to determine the steady-state values of n-variable nonlinear differential sys-
tems by solving their steady-state equation systems.
Since the solutions of the steady-state equation system are also fixed points of the corres-
ponding recursive equations, one might at first think that the physical stability of a steady
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state can be inferred from the attractive vs. repulsive character of the corresponding fixed
point. The reality is not so simple. For instance, the unique steady state (x = 1) of

&k 2
d 1 +x

5 X

is stable (see the linear stability analysis, Appendix 3). However, if from the steady-state

equation x = 5, one derives the recursive formula x, . ; =

1+x
point x = 1 is found to be repulsive (see Figure 3b).

2 . . .
T 5, its unique fixed
1+ x,

REFERENCE

1. Thomas, R., Richelle, J., and D’Ari, R., Itération dirigée vers on point fixe au un type de
point fixe donné, Bull. Classe. Sci. Acad. Royale Belgique, 73, 62, 1987.






Appendix 2

TRAJECTORIES AND EVOLUTION

As we have repeatedly pointed out, systems of nonlinear differential equations usually
cannot be integrated analytically. However, for any given set of parameter values, trajectories
and evolution can be computed numerically. The basic formula is Euler’s iteration:

X+ 1= X + hH(x,)

in which, as above, we write H(x) for % This formula is a linear approximation. Admit-
tedly, it can be made to come arbitrarily close to the real situation by using an arbitrarily
small step h. However, in practice, the step cannot be made too small without running into
far too much computer time for the enormous number of steps required.

This is why various improvements of the Euler formula are used. The simplest is the so-
called “improved Euler” method. A more elaborate version is the Runge-Kutta method. Both
are described by Kreyszig. !

In this appendix, we have chosen a simple system that can be integrated analytically and
have used the simple and improved Euler methods. In Figure 1 is shown a comparison of the

A comparison of Euler, improved Euler, and analytic trajectories for the system

dy 2x" B
d 1+x Y
(with n es). (a) Euler iteration, step 0.1; (b) Euler iteration, step 0.02, (c) improved Euler iteration, step 0.1; (d) im-
proved Euler iteration, step 0.02; (e) analytic.
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Euler method with two different steps, 0.1 and 0.02 (a and b), the improved Euler method
with the same two steps (c and d), and the analytic result ().

Whatever method is used, the successive positions of the system are computed for 1, 2, 3,
...,  time intervals of length h. Trajectories are obtained by plotting the successive values
of the vector x. For a two-variable system, these values are plotted in the plane of the
variables, XXy (or xy). For systems with three or more variables, one usually plots
projections on the plane of two chosen variables. The evolution in time is shown by the
successive values of each variable plotted as a function of time.

REFERENCE

1. Kreyszig, E., Advanced Engineering Mathematics, 5th ed., John Wiley & Sons, New York, 1983.

.
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Appendix 3

A LITTLE MORE ABOUT LINEAR STABILITY ANALYSIS

The idea in stability analysis is to perturb the system by removing it slightly from its
steady state, then to determine whether the perturbation grows or regresses. In the close
vicinity of the steady state, it is convenient, instead of dealing with the concentrations them-
selves, to consider the size of the perturbation, i.e., the difference between the concentration
of a product x and its steady state value x°. Let us first consider a one-variable system. Close
to steady state, the difference § = x — x0 is small enough that one can limit the expression 6f
H(x), or H(x + £), to the linear term of its Taylor expansion around xO.

The classical development can be recalled as follows. Assume that H(x), or H(x? + ), can
be written as a polynomial in &: H(x? + ) = ap + a,& + a,E2 + a3E3 + ... The values of ay,
aj, a,, ... are easily derived by noticing that: .

Hx) =2

0

0
and thus de(;( ) =

dH(x) d*Hx+§&)
axz dx?

=2a2+6a3§+

0
and thus cu— =2a,, 0r ay = 1 %2, etc

This generates the Taylor series:

dHKY) , 1 PHEO)
w oF

N Ll 1x0
2 dx? 5 T g

H(x? + &) = H?) +

Close to the steady state, the perturbation & is small enough that the terms of higher order
can be neglected. In addition, because x? is a steady state, we have H(x) = 0. Therefore:

H) = HeO +5) = T g

But

and consequently:

M)
&) @
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Hix)

-4

FIGURE 1. Plot of %‘, or H(x), and of d&H as functions of x for the one-variable system H(x) = kF(x) —
kx. Specifically, we take:

H(x)= —-X

2
1+x°

- -10xt

& q+x0r !
. e . dHD) Y 0
As the unique steady-state value is x0 = 1 (see Appendix 1), & o= —3.5, the slope of H(x) at x°, In the

present case, the unique steady state is stable because (dH/dx) is negative; any small perturbation will thus regress
with time,

Thus, near a steady state, the nonlinear differential equation % = H(x) can be linearized to

0
%IE-' = (with o = dH%l), a linear differential equation that has solutions of the simple

form & = Eye®. This implies that if the system drifts away from the steady state by a small
amount, it will return toward it or depart further from it, according to whether o = dHfoo) is
negative or positive. In other words, in a one-variable System, a steady state x0 will be stable
or unstable, depending simply on the sign of %}ﬂ, the slope of function H(x) at the steady

state (see Figure 1).



295

We now consider a two-variable system,

dx
=H,(x,y)

dt
&=y, y)

As just shown for a one-variable system, one can reason in terms of the small perturbations
dv
¢ 2

and %%, respectively, can be approximated by linear functions of & and v

€ =x—xg and v =y — y;. In the immediate vicinity of a steady state (x°, y9), %té and

dx

which equal it

themselves:

a - an€ +apn
3)
U
@ 21§ + axnv
in which the coefficients are partial derivatives evaluated at the steady state:
_ (¥
A= ay J w0
JdH.
agpn = Ty‘) X0, y0
0
In the one-variable system, the unique coefficient of Equation 2 was the derivative d%l

In a two- (or more) variable system, the role of the derivative is played by the Jacobian
matrix:

It can be shown (see, for instance, Reference 1) that systems of homogeneous linear dif-
ferential equations like Equation(s) 3 have particular solutions of the form:

& = Eoe®; v = vge™

hence,

&

dv
dat = (Dﬁoe‘m = (D'l)oemt,
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in which &, and vy are related constants and ® another constant to be determined. Substitut-
ing these values in Equation 3, canceling out the factor e®, and rearranging, we obtain:

(a1 — W& +a;p05 =0
@

ay1&0 + (ag — @)V =0

Such a system of equations can be satisfied by nonzero values of &; and v only if the
determinant of the coefficients is O*:

a;—w ap

Il
o

ag] apn—0

We therefore choose those values of @ that satisfy this condition. Development of the
determinant yields the relation:

@2 — (ay) + a)® + ay18y) — ajpay; =0 )]

which is called the “characteristic equation” of the system. In the present case (two-variable
system), it is a second-degree equation in ®. Thus, ® usually has two distinct values, ®,
and ®,. Substituting first ®; and then w, in Equations 4, one finds the corresponding
permissible pairs &g, Vo;, and &g, Vgy.

The general solution of the system of linear differential Equations 3 is a linear combina-
tion of the particular solutions with @, and ®,:

E(t) = C 1 &gre® + CrE et
(6)
U(t) = Cll)me“’” + C2'l)02€m2t

where C; and C, are arbitrary constants that depend on the initial perturbation.

From Equation 6, it is apparent that a perturbation will regress in time — and conse-
quently the steady state will be stable — only if both ®; and , (or their real parts) are nega-
tive. In this case, all terms will vanish with time.

When the roots are complex conjugates, we can write ® = o * i, with o and B real.
From the Euler formula for complex exponents, we have

e = e+t = e%(cos Bt + sin Bt)
Itshould be stressed that even when @ is complex, &(t) and 0(t), which represent the actual

perturbation at time t, are real. Since &y}, Vg1, &gz, Vgy become complex whenever ® is com-
plex, one must allow C, and C, to be complex. Equation 6 then takes the form:

E(t) = A,e(cos Bt +F,)

V(t) = Are®(cos Bt + Vo)

in which the As and ¥s depend both on the coefficients a; and on the initial perturbation.
From these equations, it can be seen that when ® is complex, the perturbation will oscillate.

*  Under these conditions, the two equations are not independent; one is a multiple of the other.
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If o, the real part of the roots, is negative, the perturbation will follow a damped periodic
regression back toward the steady state, which is a stable focus, and if o is positive, the per-
turbation will follow an increasing periodic departure from-.an unstable focus. For the
marginal case when o = 0 and the roots are pure imaginary numbers, the system would, in
principal, oscillate indefinitely at a distance from the steady state (here called center) which
depends on the initial state.

We recapitulate the above remarks as follows. For a one-variable system, the equivalent
of the characteristic equation has a simple root, and a steady state is stable or unstable
depending simply on whether the root is negative or positive, respectively. For two-variable
systems, on the other hand, the characteristic equation has two roots that, if real, can be both
positive, both negative, or one positive and one negative; if complex conjugates, their real
part can be positive or negative. A steady state is stable only if both roots (or their real
parts) are negative. Furthermore, the approach to or departure from the steady state is direct
or periodic depending on whether the roots are real or complex. If the roots have opposite
signs, the steady state (which is unstable) is called a saddle point (see Chapter 6, Example
2).

A second-degree equation can always be written in the form:

0?-Sw+P=0 N

in which S is the sum and P the product of the roots.* Comparing Equation 7 with Equation
5, it can be seen that:

S =4dag + a9y
and
P=ajjay — a2y

Furthermore, the roots are real iff S — 4P > 0.

The various cases that can occur for a two-variable system are readily visualized by draw-
ing the curve S% — 4P = 0 in the S-P plane (Figure 2). P positive (north part of the plane)
implies that the roots have the same sign (or are complex conjugates). In the NE quadrant (S
positive), the roots are both positive (or the real part is positive), whereas in the NW quad-
rant (S negative), they are both negative (or the real part is negative). S?> — 4P is negative
(and thus the roots are complex) above the parabola, and positive (real roots) below the
parabola. A steady state that falls in the north half can be stable (in the NW quadrant) or
unstable (in the NE quadrant); it can be a focus (above the parabola) or a node (below the
parabola).

P negative implies that the roots have opposite signs. In this case, the steady state is
attractive along one direction (corresponding to the negative root) and repulsive elsewhere.
This type of steady state, called a saddle point, will be described in more detail apropos of
positive feedback loops (see also Example 3 below).

More generally, for an n-variable system, the characteristic equation is of degree n, and ®
thus usually has n distinct values. A steady state is stable only if all values of ® (or their
real parts) are negative. In addition, complex roots will give rise to periodic approaches to or
departures from the steady state. As we shall see, in systems with more than two variables,
there is an increasing variety of steady states.

* This can be seen by considering a second-degree equation with roots ®, and ,. The equation can be written: (0 —
OO —n) =0 or @ — (, + ;) + 0, =0.
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FIGURE 2. The nature of steady states in two-variable systems.
The location of a steady state in S-P space with respect to the axes
and the parabola S? — 4P = 0 indicates the nature of the steady state.
S is the sum and P is the product of the 1oots of the characteristic
equation.

+
Example 1. Let us treat the two-element negative loop x y described in
AN

Chapter 6, Sections V—VTII.

dx 2
Hx—dI_1+y5_X

_dy_ 2%
=41+

The elements of the Jacobian matrix are

In this system, the unique steady state (x9, y9) has the coordinates (1, 1) (see Appendix 1).

Thus:
oH OH
= (gix) x0,y0 =-1 = (S_YK) x4, y0 =25
oH OH
1= (ﬁ) 050 25 2= 8_Y)L) 0y

The linearized system is then:

%:—&—2.50
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do_ +2.5€ ~v

and the characteristic equation is

-1-w -2.5

+2.5 -1-m

®2+20+725=0

The roots are @ =—1 + 2.5i. The real part is negative, and the steady state is therefore stable.
Since there is a complex part, the steady state is approached periodically and is a stable focus
(see Chapter 6, Figure Sa).

Example 2. We take the same system as in Example 1, except for different parameter
values:

x__ 2
BTy
pod__ 20
YA T 1+x5 Y

The elements of the Jacobian matrix are the same as in Example 1, except that:

oH
Uiy
ox 3
The steady-state values (see Appendix 1) are
x0=0.666
y0=0.232
and
ot JH,
—f &k — = Ex —
ay = aX )xo,yo =-3 an ay )xo' §0 -0.029
oH oH.
ay) = &x)xo, §0 =1.539 Ay = a—yx)xo, §0 =-1

The characteristic equation is thus ®? + 4w + 3.045 = 0. There are two real roots, both
negative: —1.022 and —2.977. The steady state is thus a stable node, approached directly (see
Chapter 6, Figure 5b).
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Example 3. This is the two-element positive loop we considered in Chapter 12,

7 ™
X y:
S -
dx 2
B g =14y %
_dy 2
Hy—dt—1+x5_y

The elements of the Jacobian matrix are

oH, _

ox =-1

d

oH,  -10x}
ox (1 +x5)?2

In this case, there are three steady states (see Appendix 1):
(%0, y9) = (0.061, 2.00)
&,y =(1,1)

%, y) = (2.00, 0.061)

The first and third steady states are readily shown to be stable nodes. Let us look at the sec-
ond steady state. The values of the coefficients at (1, 1) are

aj =-1 a;,=-2.5
ay;=-2.5 Ay =—1
and the characteristic equation is
@0 +20~-525=0

The roots are +1.5 and —3.5. This steady state is therefore a saddle point and thus,
unstable.

REFERENCE

1. Kreyszig, E., Advanced Engineering Mathematics, 5th ed., John Wiley & Sons, New York, 1983.



301

Appendix 4

ASYNCHRONOUS VS. SYNCHRONOUS DESCRIPTION

INTRODUCTION

Kauffman! studied the behavior of large, randomly constructed networks of “binary
genes”. Assuming that the networks are synchronous (see below), he showed that if each
“gene” is directly affected by two or three other “genes”, then such random networks behave
with great order and stability; in particular, they follow surprisingly short cycles. i

The synchronous treatment can be described as follows:! “If the system is placed in some
state at time T, then at time T + 1 each gene scans the present values of each of its K
inputs, consults its Boolean function, and assumes the value specified for that input
configuration.” As pointed out by Kauffman, this attitude implies that “the net passes from a
state to one subsequent state; therefore, although two states may converge onto a single
subsequent state, no state may diverge onto two subsequent states”. This is an
oversimplification in general, and in particular for biological systems that have to
differentiate. On the other hand, it has the virtue of simplicity, and it was justified to adopt
this attitude for a first analysis. Very interesting work has been done using this synchronous
description.?

Until recently, it was believed that an asynchronous description (as used throughout this
book) would be too complicated to be of practical use and that if it were nevertheless used,
one could find “anything”. We have pointed out? that (1) it can be used practically, (2) the
pattern of behavior is more complex than in the synchronous description, but nevertheless
well defined (one does not find “anything™), and (3) as described at length in this book, what
one finds bears a striking resemblance to the differential description.

In fact, one of the major differences between the synchronous and asynchronous descrip-
tions is that in the former a positive loop can be trapped not only in one of its two stable
states, but also in an oscillation made stable by the supposedly exact equality of the time
delays.

In this appendix, we will use two systems. The first was presented in Chapter 4: it will
be analyzed again to compare its behavior in synchronous and asynchronous descriptions.
For the second system, we asked Kauffman to improvise a small “random” network for us
and we analyze it using both the synchronous and the asynchronous treatment.

SIMPLE SYNCHRONOUS AND COMPLEX ASYNCHRONOUS
BEHAVIOR OF A FOUR-ELEMENT SYSTEM

The system
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FIGURE 1. Synchronous graph of sequences of states for the System 1. Double, triple, and
quadruple arrows refer to double, triple, and quadruple commutations, respectively.

with logical relations:

X=y
Y=u
_ (D
Z=y
U=x+z

analysis of cycles. The state table can be found
resent chapter is shown the graph of sequences
graph illustrates the above comments.

Iverge onto one subsequent state, but no state
resent case, all trajectories lead to the unique

stable state .

In contrast to this simple behavior, we have already seen (Chapter 4) that the asyn-

chronous system has a choice between two attractors, the stable state and a cyclic
attractor that has several possible pathways (precise cyclic sequences of states) according to
the values of the time delays. This situation was later found in the differential description of
the system. For appropriate values of the parameters, the differential system has a choice
between a stable steady state (stable node) and a limit cycle whose precise morphology
depends on the parameter values, These domains are separated by a separatrix “hypersurface”
(three-dimensional because the system itself has four variables) on which lies a third steady
state, a saddle-focus, which is approached along the separatrix in a periodic way, then
departed from in the direction of either attractor. Note that the logical analysis describes an
unstable cycle, obviously the logical equivalent of this saddle focus,

In Figure 2 are shown the seven elementary forms (C° to C7°) of the cyclic attractor.
They have six, eight, or ten states, four of which (from 0101 to 1(_)(—30) are common to all
cycles. As one can guess from the fact that not all states have subscripts, and confirm by
actual analysis, they are stable cycles. In other words, for each of them, there is a volume in
the space of the time delays such that once the system has begun to follow this cycle, it will
follow it indefinitely.
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TABLE 1
The Network Used in This Paper,
as Described by A Set of Logical Equations

Yi=y6 y12
Yo=y1-ys
Ys=yo+yas
Ya=ya+y7
Ys=yu-yis
Ys=yi3+ys
Y7=y3"ys
Ys=ys-ys
Yo=yio+ yu
Yio=yu+y
Yiu=y1-ys
Yio=y1+yo
Yi3=y3 yuo
Yu=yr1+y
Yi5=ys +y3
Yis=y2- yi5

The cycle labeled C1! is interesting because two states, 1001 and 1000, are present twice
in its sequence, with different subscripts. A closer examination shows that cycle C1! can be
built by incorporating the sequence of the unstable cycle into the cycle C1°, It is nevertheless
a stable cycle, as shown by the fact that there are states without an index (and confirmed by
analysis). In fact, from each of the “elementary” cycles C19 to C7°, one can derive an
unlimited number of complex cycles C1!...C1n...C2!.. .C2", etc. by incorporating 1, 2, ...,
n, ... times the states of the unstable cycle. These are all stable cycles, but their domain of
stability in the space of time delays becomes thinner and thinner as n increases. When n —
e, we tend to the unstable cycle whose domain of stability is infinitely thin (a
“hypersurface” in the space of the time delays). This situation is discussed in Chapter 4,
Section III.

A 16-ELEMENT NETWORK PROPOSED BY KAUFFMAN

INTRODUCTION

The system analyzed here uses 16 variables (¥1 to y6). Each Boolean function is a func-
tion of two of these variables, as indicated in Table 1. Which variables serve as input of a
function, and how they interact, has been “chosen at random” by Kauffman. The system was
wired up on the logical machine “Delphine” and successively treated in synchronous terms
(equal time delays) and in asynchronous terms (unequal time delays).

SYNCHRONOUS TREATMENT

For the first simulations we used equal delays (synchronous treatment). After some time
(see below) the system stabilized in a situation in which 10 of the 16 variable are locked in
either the “on” (variables ys, y,, yo, Y10, Y125 Y14> and y;5) or the “off” (variables y5, y)3, Yie)
position. The other six variables (y,, Y2, Y5, Y6, ¥3, and yy;) oscillate permanently. The
sequence of states from 000..., arbitrarily taken as the initial states, is given in Table 2.
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TABLE 2

Synchronous Treatment: The Temporal Sequence of States of the Variables,
Taking 000... as the Initial State

State Yio Y2 Y3 Yya Ys Y6 Y1 Y8 Yo Yio Yu Y2 Y3 Yiu Yis Yie

1 0000 0000 000 0 00 0 0
2 00 1 1 00 1 0 1 0 0 1 01 0 0
3 01 1 0 00 0 1 110 1 1110
4 0 0 0 1 1100 110 1 01 1 0
5 1 1 1 1 11 0 1 110 1 01 0 0
6 1 0 1 1 010 0 111 1 01 1 1
7 1.0 1 1 00 0 1 11 1 1 01 10
§ 00 1 1 00 00 110 1 01 1 0
9 0 1 1 1 1 0 0 1 110 1 01 1 0
0 0 1 1 1 110 0 110 1 0110
11111 110 1 110 1 01 1 0
2 10 1 1 1100 11 1 1 0t 1 0
B3 10 1 1 01 0 1 111 1 o1 1 0.
4 1.0 1 1 00 0 0 11 1 1 01 10
5 0 0 1 1 0 0 0 1 110 1 011 0
6 0 1 1 1 1000 110 1 01 1 0
7 0 1 1 1 11 0 1 110 1 01 1 0
8 1 1 1 1 110 0 1101 01 10
9 10 1 1 110 1 111 1 01 1 0
20 10 1 1 010 0 111 1 01 1 0
Summary - - 1 1 -~ 0 - 11 - 1 01 1 0

After 7 steps, the system reaches a 14-step cycle, It has been checked that the cycle is still
found after having let the machine run for a long time. Also, the same cycle is reached from
111... and various other states taken as initial states.

Note that these synchronous simulations can be performed easily on a pocked calculator,
with the same result.

ASYNCHRONOUS TREATMENT

The same process has been repeated using different arbitrary values for the time delays
(asynchronous treatment).

For a first set of time delays (see Table 3), the result was at first view surprisingly
similar to that of the synchronous simulation. In fact, after some time, the same elements of
the system were stabilized at the same logical values. The sequence of states was, or course,
different, if only because the asynchronous character of the run renders simultaneous
commutations of the variables infrequent.

But the interesting point is that instead of a well-defined cycle, one finds irregular period-
icity, with a “period” close to the 14 found in the synchronous case. These first results
would thus suggest that the behavior of the system is somehow buffered against variations
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TABLE 3
The Time Delays Used in our First Asynchronous Simulation

v Y2 y3 Ya Ys Ys ¥2 Ys Yo Yio Yn Yz Y3 Y Yi5  Yis
90 130 70 140 200 10 210 500 200 103 230 52 102 150 91 4
110 80 110 50 190 40 95 105 110 300 100 15 70 30 7 400

Note: g refers to the “on” delays, § to the “off” delays.
Js

R

ae

FIGURE 3. A subsystem comprising the loop y; — v, — y; and the vari-
ables directly connected to it.

of the time delays, in thesense that in spite of quite different values of the time delays, the
general pattern remains very similar to the synchronous one. However, the aperiodic
behavior is qualitatively interesting.
The structure of the network was then analyzed to identify the loops. It soon appeared that
_the positive loop

?13<+——y4‘5y7

plays a central role in the network. If isolated, this loop would have a choice between two

stable states, and .

If, in addition to the loop y3—y,—y7, one considers the elements directly connected to it,
one gets the subsystem of Figure 3, in which variables y4 and yq are treated as if they were
external variables whose value can be imposed from outside. The equations are

Ys=Yy4+Yy
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TABLE 4
The Complete (a) and Compact (b) State Tables of the Subsystem
Described in Figure 3

000 111 011 010 110
001 111 011 010 110
011 101 101 100 100
010 111 111 110 -110
110 110 110 110 110
111 100 100 100 100
101 110 010 010 110
100 110 010 010 110
(b)
11 10 Y6, Yo
000 000 000 000
001 001 001 001
011 011 011 011
010 010 010 010
a» ao ao ao
111 111 111 111
101 101 101 101
100 100 100 100
Yayayr Y3yay1 Yayayr Yayayr

Note: The variables in the positive loop (y3 — y4 — y7) are treated as internal variables (lines). Variables ys and yy are
treated as input variables (columns).

Ys=ya+y7
Y,=y3- Y6

In Table 4, we find the behavior of this subsystem.

We know that the stable state exists in the complete network, since as in all cases
considered so far, the elements Vs, V4, and y, are locked in states 1, 1, and 0, respectively. If
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the loop is in the state , then a number of elements have their value fixed:
y7=01imposes y;4 =1
Y14= 1 imposes yjo = 1

V10 =1 imposes y;3=0

y3= 1 imposes y;s =1

Y15 =1 imposes y,5 =0

We show this partial analysis because it accounts for a large part of the situations met to

this point: when the loop y3—y,—y; is in its state , Y3, Y4, Y10» Y14, and ys are, and
Yo and y;, may be, locked at value 1, while y,, y13, and y;¢ are locked at 0.

Since up to now, one of these states ( ) of the positive loop y;—ys,—y5 accounts for
the state, on or off, of most stabilized elements, it was reasoned that an efficient way to
modify the behavior of the whole system might consist in finding time delays that would
not lock the loop in this position. When such a set of time delays is used, the picture
becomes completely different, indeed. For example, if we set gy3 = 370 instead of 70, we get:

0--—- 00-- 1101 01-0

and if, in addition, we set 6, = 250, instead of 50, we get:

000- 001- 1101 01-0

as compared to the situation:

--11 --0- 11~-1 0110

obtained with the original set of time delays and also in the synchronous treatment.

Finally, one may ask whether the itregular behavior mentioned above is chaos or simply
some kind of multiple periodicity. In the case analyzed here, it can be shown to be due sim-
ply to the coexistence of two negative loops with noncommensurable periods. This is not
true chaos.
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INDEX

A

Abortive lysogeny, 237

Addition, 74

Adjacency matrices (matrices of interactions), 37—
40

Algebraic addition, 74

Algebraic multiplication, 74

Allotypes, 258

AND, 16—18, 25, 39, 74, 87

Anti-anti-antibody, 259

Anti-antibody, 258

Antibodies, 258—259

Antigenic variation, 200—201

Antigens, 258, 259

Aperiodic behavior, 2

Asynchronous behavior, 301—304

Asynchronous description, 11—13, 301—308

Attenuation, 128

Attractors, 2, 144

Autocatalysis, 158, 202

Autocatalytic feedback loops, see Positive feedback
loops

B

Bacteriophage lambda, 204—205, 233—245
feedback between models and experiments in,
243—245
gene dosage and, 244—245
immunity and, 237, 240—243
integration-excision and, 235—240
negative feedback loops and, 244—245
Basal levels, 107—111
Binary functions, 16
Binary variables, 16, 85—86
Biological regulation, see Regulation
Boolean description, see Logical description
Boolean states, 53, 54
Boolean two-element negative circuit, 32
Boolean variables, 85—86, 89, 90, 95, 96
dimensionless, 100
two-cell systems and, 211
Boundary values, 111

C

Cell hybrids, 274—276
Chaotic behavior, 2
Characteristic equation, 80, 296, 297
Chloroplasts, 200
Choice between pathways,
logical analysis of, 42—48
role of time delays, 41—57
stochastic aspects of, 42, 240
CI-cro system of bacteriophage lambda, see
Bacteriophage lambda
Circuits, 36, 37, see also Feedback loops; specific
types

Boolean two-element negative, 32

negative, see Negative feedback loops

overlapping, 53

of time delays, 53
Classical continuous analysis, 208
Combinatorial logic, 10, 15—26

binary variables and functions in, 16

incompletely specified maps and, 24

logical functions and, 20—24

logical operators and, 16—19

necessary vs. sufficient conditions and, 24—26
Compartmentalized systems, 208
Complement (logical), 16
Complementary representation, 85—86
Complexity (logical vs. structural), 3—35
Conditions

logical analysis, 42—48

necessary vs. sufficient, 24—26

on the delays determining the

choice between pathways, 41—57

Continuous analysis, 208
Conventional (unsigned) graph, 39
Corresponding function, 28
Coupling strength, 214—217
Cycles, 37, see also Feedback loops; specific types

choice of, 65—67

conditions for entering, 54

limit, 65—67, 144—146

stability analysis of, 48—54

stable, 2, 53

types of, 53

unstable, 53, 55
Cyclic attractoer, 144

D

Damped periodic behavior, 138—142
Damping, 32
Decay, 76
Delays, see Time delays
Delphine, 53
Description, see also specific types
asynchronous, 11—13
Boolean, see Logical description
differential, see Differential description
generalized, 88—89
of immune response, 260—266
levels of, 2—3
logical, see Logical description
quantitative mathematical, 2
of regulatory process, 279—280
sequential, 12—13
synchronous, 11, 55, 56
verbal, 2—3, 42
Destabilization, 193—196
Destruction
trivial, spontaneous decay, 70
regulated, 109—111
Determination, 269—276
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Differential description, 2—3, 10, 69—82, 100—
103, 157—166
basal levels and, 107—111
of differentiation, 157—166
evolution and, 80-—82
of immune response, 265—266
linear stability analysis and, 79—80
logical description vs., 10, 103—106
of multiple-element positive feedback loops, 164—
166
multiple interactions and, 74—75
nature of steady states and, 79—80
nonlinear interactions and, 72—74
nullclines and, 76—79
of one-element negative feedback loops, 134—138
of one-element positive feedback loops, 158—160
regulated destruction and, 107—111
steady-state equations and, 76—79
steady-state location and, 111—121
steady states and, 70—72
steady-state values and, 76—79
of three-element negative feedback loops, 142—
147
trajectories and, 80—82
of two-element negative feedback loops, 75—76,
138—142
of two-element positive feedback loops, 160—164
Differential equations, 32, 70, see also specific types
linear, 73, 102
linear approximations of, 79
nonlinear, 79
piecewise, 73, 101, 102
systems of, 77
Differential parameters, 103—105
Differential system, 32
Differentiation, 269—276
cis VS. trans processes in, 272—274
differential description of, 157—166
fundamental problem of, 158
hybrids and, 274—276
logical description of, 167—171
positive feedback loops and, 270—272
Differentiative regulation, see Epigenetic regulation
Diffusion, 207—222
coupling strength and, 214—217
differential formulation and, 208—211
passive, 216
Teservoir concentration and, 214—217
stable asymmetric concentration pattern and, 217—
221
stable states and, 214—217
two-cell system and, 208—214
Direct autocatalysis, 158
Discontinuous variables, 3
Discrete scale for variables, 84—86
Dynamics, 11, 70, 73, 281

E

Edge, 36

Electric switches, 16
Embryonic development, 11
End-product inhibition, 1
Enzymes, 12, see also specific types
Epigenetic regulation, 1—2, 127, 270, 278
defined, 1
Monod and Jacob models of, 203—204
multiple steady states and, 199—206
Escherichia coli, 201—202, 224, 234
Essential prime implicants, 23
Euler formula, 101, 291
Evolution, 28, 29, 80—82, 137—138, 291—292
Excision, 235—240
Exclusive OR, 17, 19

F

Feedback loops, 3, 10, see also Circuits; Cycles
individual controls vs., 129—130
intertwisted, 280
lack of, 120
more than one for one variable, 185—188
negative, see Negative feedback loops
nonlinear, 281
one-element, see One-element feedback loops
positive, see Positive feedback loops
simple, 126—127, see also specific types
systems with positive and negative, 189—196
three-element, see Three-element feedback loops
two-element, see Two-element feedback loops

Final states, 42

Florine’s logic, 12

Former values, 10

Four-element systems, 301—304

Functions, see also specific types
binary, 16
corresponding, 28
internal, 10, 12, 13, 248
logical, see Logical functions
monotonic, 134
multivalued logical, 84
output, 12
regulatory, 3
sigmoid, 74
step, 3
transient signals and, 173—179

G

Gene expression, defined, 5
Global operation of biological systems, 2
Grafting of positive feedback loops onto negative
feedback loops, 190—193
Graphs, 35—40, see also specific types
conventional (unsigned), 39
of immunity, 260
of interactions, 35—37, 42, 260
oriented, 36, 39
of sequences of states, 32, 37, 42, 48
signed, 36



Gray code order, 22

Hill functions, 72
coefficient n in, 182
composition of, 75, 77, 162
decreasing, 134
increasing, 159
negative, 190
positive, 190
Hill sigmoids, 146
Homeostatic regulation, 1—2, 127, 128, 156, 278
defined, 1
one-element negative feedback loops and, 136—
137, 140—142
three-element negative feedback loops and, 146—
147
Hybrids of cells, 274—276
Hypersurface, 165
Hypervariable regions, 258

I

Image of vectors, 31
Immune memory, 258
Immune paralysis, 258, 259
Immunity, 237, 257—266
antibody diversity and, 258—259
control of, 240—243
differential description of, 265—266
formal description of, 260—266
generalized description of, 263—265
lymphocytes and, 259, 260
naive logical description of, 261—263
primary, 259
secondary, 259
Immunoglobulins, 258
Implicants (prime), 22—24
Implication, 24—26
Inclusive OR, 17, 74
Incompletely specified maps, 24
Individual controls vs. feedback loops, 129—130
Inductive approach to kinetic logic, 59—67
Input variables, 12, 33—35
Integration-excision, 235—240
Interesting systems, 3, 12
Internal functions, 10, 12, 13, 248
Internal variables, 10, 12, 13, 34, 248
Tteration, 283—289

J
Jacobian matrix, 143, 298, 299

K
Kappa factor, 200

Kamaugh maps, 22, 24, 66
Kauffman’s sixteen-element network, 304—308
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Kinetic constants, 100

Kinetic logic, 10, 12—13, 27—57, 83—96, 280
binary variables and, 85-—86
discrete scales for variables and, 84—=86
generalized, 190
generalized description of, 88—89
generalized logical description and, 90—96
generalized (multilevel) logical variables and, 84—

85

graphs and, 35—40
inductive use of, 59—67
input variables and, 33—35
limit cycle choice in, 65—67
logical cycles and, 48—54
logical parameters and, 86—87
naive logical description and, 30—33
oscillating behavior and, 61-—65
stability analysis and, 48—354
three-variable example of, 42—48
time delay analysis and, 54—57
two-element example of, 60——61

Kinetics, 2, 73, 208

Kinetosomes, 200

L

Lactose operon, 201—202, 224, 234
Lambda, see Bacteriophage lambda
Leech locomotion, 251—255
Level of elements, 28, 29
Limit cycles, 65—67, 144—146
Limit speed, 70
Linear approximation of differential equations, 79
Linear equations, 73, 100, 102
Linear stability analysis, 105, 293—300
multiple-element positive feedback loops and, 166
one-clement negative feedback loops and, 141
steady state nature and, 79—80
three-element negative feedback loops and, 143—
144
two-element positive feedback loops and, 162
Logic, see also specific types
combinatorial, see Combinatorial logic
Florine's, 12
kinetic, see Kinetic logic
sequential, 10—11, 12
Logical analysis, 3, 37, see also specific types
Logical AND, 74
Logical complexities, 3—35
Logical cycles, 48—54
Logical description, 2—3, 5—6, 10, 100—103
basal levels and, 107—111
defined, 10
differential description vs., 10, 103—106
of differentiation, 167—171
generalized, 90—96, 153—156
naive, see Naive logical description
of negative feedback loops, 149—156
of positive feedback loops, 167—171
regulated destruction and, 107—111
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steady state location and, 111—121
of two-cell systems, 211—214
Logical functions, 16, 28-30, see also specific types
different expressions of, 20—24
multivalued, 84
Logical inclusive OR, 74
Logical operators, 16—19, see also specific types
Logical parameters, 84, 86—87
Logical relations, 42
Logical stable state, 32
Logical structure, 42
Logical tables, 103—105
Logical variables, 28—30, 84—85, 89
Loops, see Feedback loops
Lymphocytes, 259, 260
Lysogeny, 237

M

Many steady states, sec Multiple steady states
Maps, see also specific types

incompletely specified, 24

Kamaugh, 22, 24, 66
Mass exchanges, 208
Mass transfer, 208
Matrices of interactions (adjacency matrices),

37—40
Metabolite pools, 127, 128
Michaelis-Menten interaction, 73
Minimal nonlinearity, 144
Modifications of preexisting models, 60
Monod and Jacob models, 203—204
Monotonic approach to steady state, 79
Monotonic functions, 134
Multilevel variables, 56, 84—85, 89
Multiple-element positive feedback loops, 164-166,
see also specific types

Multiple interactions, 74—75
Multiple steady states, 181—188

diffusion and, 208

epigenetic differences and, 199—206
Multiplication, 74
Multistationarity, 182, 190—191, 278
Multivalued logical functions, 84
Multivariant sigmoids, 75
Mutatis muntandis, 154
Mutual mass exchanges, 208

N

Naive logical description, 30—33, 54, 55, 57
of immune response, 261—263
kinetic logic and, 84, 88
of negative feedback loops, 150—153
NAND, 18, 39
Necessary vs. sufficient conditions, 24—26
Negative feedback loops, 30, 88, 133—147, see also
specific types
bacteriophage lambda and, 244—245
behavior of, 127—129
Boolean two-element, 32

defined, 134
generalized logical description of, 153—156
grafting of positive feedback loops onto, 190—193
logical description of, 149—156
naive logical description of, 150—153
one-element, 134—138
simple, 126—127
systems with positive feedback loops and, 189—
196
three-element, 142—147, 151, 156
two-element, 75—76, 138—142, 152, 190
Negative interactions, 96, 151
Negative regulation, 129
Networks, see also specific types
of interacting positive feedback loops, 184—185
neuronal, see Neuronal networks
sequential, 13
sixteen-element, 304—308
Neuronal networks, 61, 247—255
leech locomotion and, 251—255
three-neuron oscillating, 249—251
Nonlinear chemical kinetics, 208
Nonlinear differential equations, 79
Nonlinear feedback loops, 281
Nonlinear interactions, 72—74
Nonlinearity, 144
Nonregulatory decay, 76
NOR, 18, 19, 39
NOT, 16—18, 25, 39
Nuliclines, 76—79
Numerical integration, 291

0

Off delays, 13, 29, 54, 56, 76
On delays, 13, 29, 54, 56
Orne-element feedback loops, 165
negative, 134—138
positive, 158—160, 168
Operators, logical, 16—19 see also specific types
Operon (lac operon of Escherichia coli, 201—203
OR, 16—19, 25, 39, 87
exclusive, 17, 19
inclusive, 17, 74
Oriented graph, 36, 39
Oscillating behavior, 61—65
Oscillating network of neurons, 249—251
Output functions, 12

P

Paramecium aurelia, 200—201
Pathways, 42
Patterns of behavior, 42
Periodic approach to steady state, 79, 80
Periodic behavior, 190
damped, 138—142
stable, 32, 142—147
sustained, 142
Perturbation, 293, 296
Phase diagrams, 61, 62



Piecewise equations, 73, 100—102
Plasmagenes, 200
Point attractors, 144
Positive feedback loops, 30, 88, 157—166, see also
specific types
behavior of, 127—129
differentiation and, 270—272
grafting of onto negative feedback loops, 190—
193
independent, 182—183
logical description of, 167—171
multiple-element, 164—166
networks of interacting, 184—185
one-element, 158—160, 168
simple, 126—127
systems with negative feedback loops and, 189—
196
three-element, 165, 169—171
two-element, 160—164, 168—169
Positive kinetic constants, 100
Positive regulation, 129
Present values, 10, 11
Previous value, 11
Primary immune response, 259
Prime implicants, 22
Product (logical), 17
Proper values of parameters, 144
Pseudo-Boolean expression, 86
Push-button problem, 174—177

Q

Qualitative features of systems, 3
Quantitative mathematical description, 2

R

Range-Kutta method, 291
Regulated destruction, 106—111
Regulation, 1, 3, 134, 278—279, see also specific
types
defined, 1
description of, 279—280
differentiative, see Epigenetic regulation
epigenetic, see Epigenetic regulation
homeostatic, see Homeostatic regulation
mass transfer and, 208
negative, 129
positive, 129
of SOS response, 224
Reservoir concentration, 214—217

S

Saddle points, 80, 163

Scrapie, 205—206

Secondary immune response, 259
Separatrices, 163, 165, 166
Sequences of states, 31, 32, 37, 42, 48
Sequential description, 12—13
Sequential logic, 12
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Sequential logical circuits, 10—11
Sequential networks, 13
Sigmoid curves, 3, 72
Sigmoids, 73—75, 77, 134, 165, 182
Hill, 146
multivariant, 75
two-cell systems and, 212
Signed graph, 36
Simple feedback loops, 126—127, see also specific
types
Single steady state, 120, 142
Sixteen-element networks, 304—308
Snoussi’s discretization of piecewise linear
differential equations, 102
SOS response, 223—231
formalization of, 224—231
regulation of, 224
Stability analysis, linear, see Linear stability
analysis, 48—54
linear, see Linear stability analysis
Stable asymmetric concentration patterns, 217—221
Stable cycles, 2, 53
Stable focus, 80
Stable periodic behavior, 32, 142—147
Stable states, 55, 56, see also specific types
coupling strength and, 214—217
logical, 32
reservoir concentration and, 214—217
Stable steady states, 2, 32, 79, 120, 139, 142
States, see also specific types
Boolean, 53, 54
final, 42
logical stable, 32
sequences of, 31, 32, 37, 42, 48
stable, see Stable states
steady, see Steady states
temporal sequence of, 31
total, 31
State tables, 31, 42
Steady-state equations, 76—79
Steady states, 11
iteration and finding of, 283—289
logical identification of location of all, 111—121
many, see Multiple steady states
monotonical approach to, 79
multiple, see Multiple steady states
nature of, 79—80
notion of, 70—72
of one-element negative feedback loops, 135—136
periodical approach to, 79, 80
single, 120, 142
stable, 2, 32, 120, 139, 142
of three-element negative feedback loops, 142
of two-element negative feedback loops, 138—142
unstable, 142
Steady-state values, 76—79
Step function, 3
Structural complexities, 3—5
Substrate inhibition, 158
Sufficient vs. necessary conditions, 24—26
Sum (logical), 17
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Switches, 16
Synchronous behavior, 301—304
Synchronous description, 11, 55, 56, 301—308

T

TAT, see Tyrosin aminotransferase
Temperate bacteriophages, 234
Temperature, 35
Temporal sequence of states, 31
Thermostats, 1, 134
Three-element feedback loops
negative, 142—147, 151, 156
positive, 165, 169—171
Three-neuron oscillating network, 249—251
Three-variable examples of kinetic logic, 42—48
Threshold, 74, 78, 85—86
Time, 11, 12
Time delays, 13, 29, 30, 32, 33, see also specific
types
assumptions in analysis of, 54—57
constraints on, 54
differences in, 55
equality in, 53
fluctuations in, 53, 55
history of system and, 56—57
inequalities between, 53
intrinsic fluctuations in, 55
length of, 42
off, 13, 29, 54, 56, 76
on, 13, 29, 54, 56

U

Unchanging, see Steady states

overlapping circuits of, 53

Time derivative, 70

Total state of system, 31

Trajectories, 80—82, 106, 137—138, 291—292
Transcription, 5 .
Transient signals, 173—179

Translation, 5

Two-cell systems, 208—214
Two-element example of kinetic logic, 60—61
Two-element feedback loops, 30, 37, see also
specific types
negative, 32, 75—76, 138—142, 152, 190
positive, 160—164, 168—169
Tyrosin aminotransferase (TAT), 275, 276

Unsigned (conventional) graph, 39
Unstable cycles, 55, 58

Unstable focus, 80

Unstable steady states, 79, 142

\%

Vaccination, 258
Values
steady-state, 7679
boundary, 111
Variables, see also specific types
binary, 16, 85—=86
Boolean, see Boolean variables
discontinuous, 3
discrete scale for, 84—86
generalized (multilevel) logical, 84—85
input, 12, 33—35
internal, 10, 12, 13, 34, 248
logical, 28—30, 89
logical value of, 13
more than one feedback loop for one, 185—188
multilevel, 56, 84—85, 89
subscripts to, 53
Verbal description, 2—3, 42
Vertex, 36
Vicious circular DNA, 177—179
Viruses, 234

W

Watt regulators, 134, 190—193
independent, 182—183



