
HAL Id: hal-00112616
https://hal.science/hal-00112616

Submitted on 9 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ordered categories and ordered semigroups
Jean-Eric Pin, Arnaud Pinguet, Pascal Weil

To cite this version:
Jean-Eric Pin, Arnaud Pinguet, Pascal Weil. Ordered categories and ordered semigroups. Communi-
cations in Algebra, 2002, 30, pp.5651-5675. �hal-00112616�

https://hal.science/hal-00112616
https://hal.archives-ouvertes.fr


Ordered categories and ordered semigroups

Jean-Eric Pin∗, Arnaud Pinguet, and Pascal Weil†

Jean-Eric.Pin@liafa.jussieu.fr, apinguet@clipper.ens.fr,

Pascal.Weil@labri.u-bordeaux.fr‡

Abstract

We use ordered categories to study semidirect decompositions of
finite ordered semigroups. We obtain ordered analogues of the derived
category theorem and of the delay theorem. Next we prove that the
ordered analogues of semilattices and of J -trivial monoids constitute
local varieties, and we derive some decomposition theorems from these
results.

In [10], Pin and Weil initiated a study of the semidirect decomposition
of finite ordered semigroups. We refer the reader to the introduction of
that article for details on the motivations for such a study, especially in
connection with formal language theory. In another paper [11], Pin and
Weil give some applications of semidirect decomposition results to language
theory, some of which depend on results from the present article.

The foundations for the study of the semidirect product of ordered semi-
groups, are given in [10], as are some interesting decomposition results for
classes of finite ordered semigroups, notably regarding naturally ordered in-
verse monoids, ordered monoids in which the unit is the maximum element,
and ordered monoids in which the unit is maximum among the idempotents.

In order to go further towards decomposing varieties of ordered semi-
groups and monoids, we need to extend our scope and to consider finite
ordered semigroupoids and categories, just like in the decomposition the-
ory of unordered semigroups and monoids. Semigroupoids are defined like
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categories, only dropping the requirement that there exist a unit at each
object. In the unordered case, this approach was introduced by Tilson [20],
following pioneering work of Tilson [19], Nico [7], Thérien and Weiss [17] and
Margolis and Pin [6]. It gave rise to numerous applications, and to founda-
tional papers such as Almeida and Weil’s [1], Jones and Pustejovsky’s [3],
Rey’s [12, 13, 14], Teixeira’s [16], etc.

There is no particular difficulty in defining varieties of ordered semi-
groupoids and categories, and we prove in Section 1 that the varieties of
ordered categories can be defined by strongly connected graph identities, an
ordered version of Tilson’s so-called Bonded Component Theorem [20].

Section 2 is devoted to the ordered version of the derived semigroupoid
theorem, whose unordered version is again due to Tilson [20]. This theo-
rem characterizes the situations where a relational morphism ϕ from an or-
dered semigroup into an unordered semigroup T can be factorized through a
semidirect product V ∗T or a wreath product V ◦T (V ordered), in terms of
an ordered semigroupoid associated with ϕ, called the derived semigroupoid
of ϕ.

Just like in the unordered case, the ordered derived semigroupoid theo-
rem emphasizes the importance of the notion of local varieties V of monoids.
A variety V of ordered semigroups is said to be local if, whenever the loop
semigroups of a finite semigroupoid C are in V (we say that C ∈ `V), then
C divides a semigroup in V (C ∈ gV). The decidability of the membership
problem for varieties of the form V∗W (with W unordered) depends in part
on the membership problem for gV. In general, this is a difficult problem;
however, if V is decidable and local, then gV is simply seen to be decidable.

In Section 3, we prove the ordered delay theorem, which is a case in
point: it reduces the membership problem of V ∗ LI, where V is a variety
of ordered monoids and LI is the variety of locally trivial semigroups, to
the membership problem in gV. The decidability of V ∗ LI is proved for a
large class of varieties V: in fact, as soon as V is decidable and local, or V

is decidable and contains a certain 6-element ordered monoid.
The last section is a study of the locality of two simple, yet important

varieties of ordered monoids: the class J+ of ordered monoids in which 1 is
maximum, and the class J+

1
of idempotent and commutative elements of J+.

These classes are ordered analogues of the class J of J -trivial monoids and
of the class J1 of semilattices (see [9] for details), which play an important
role in formal language theory [8]. These classes also occurred as factors in
semidirect decompositions in [10]. Not surprisingly, J+

1
is a local variety,

just like its unordered counterpart J1 was one of the first varieties to be
proved to be local. It is more surprising that J+ is local as well, as J is the

2



typical example of a non-local variety [5, 18].
Both these locality results can be used, in conjunction with the delay

theorem, to give semidirect decompositions of the class of finite ordered
semigroups that are locally in J+

1
and in J+ respectively. The latter, LJ+,

which is also denoted B+

1
, plays a crucial role in the study of the concate-

nation product of languages and of the dot-depth hierarchy, see [4, 5, 9].
Before we embark into the paper, let us emphasize again that we deal

here only with semidirect decompositions of ordered semigroups and mon-
oids using products of the form V ∗ T where V is ordered and T is not.
The main tool we introduce, namely the ordered derived semigroupoid of
a relational morphism ϕ : S → T , depends on the order on S but not on
that on T . Some of the semidirect decomposition results in [11] have both
semidirect factors ordered, but these results do not use the ordered derived
semigroupoid. It may be the case that future applications will require the
development of category-theoretic tools taking into account the order rela-
tions on both the domain and the target of a relational morphism; however,
the tools described here suffice for the language-theoretic applications which
we have in mind, and which are described in [11].

1 Ordered semigroupoids and categories

In this section we give the basic definitions regarding finite ordered semi-
groupoids and categories and their varieties, and we show that every such
variety can be defined by a set of strongly connected identities.

1.1 Elementary definitions

Recall that a graph C consists of the following data: a set of objects, or
vertices, written Obj(C); and for every pair (u, v) of objects of C, a set
C(u, v) of arrows from u to v.

Let x, y be arrows of C. We say that x and y are coterminal if there
exist objects u, v of C such that x, y ∈ C(u, v); they are consecutive arrows
if x ∈ C(u, v) and y ∈ C(v, w) for some objects u, v, w; and x is a loop
around u if u is an object and x ∈ C(u, u).
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Figure 1: Coterminal arrows, consecutive arrows and a loop.

A composition rule on the graph C, assigns to each pair (x, y) of consecutive
arrows x ∈ C(u, v) and y ∈ C(v, w) an arrow xy ∈ C(u,w). We say the
composition rule is associative if whenever t, u, v, w are objects of C and
x ∈ C(t, u), y ∈ C(u, v) and z ∈ C(v, w), then x(yz) = (xy)z. A graph
equipped with an associative composition rule is called a semigroupoid. A
local identity at object u is an element 1u ∈ C(u, u) such that, for every
object v, x1u = x for every x ∈ C(v, u) and 1ux = x for every x ∈ C(u, v).
If C admits a local identity at every object, then we say that C is a category.

Here we view semigroupoids and categories as generalizations of semi-
groups and monoids: it is immediately verified that a one-object semi-
groupoid (resp. category) is a semigroup (resp. a monoid). A semigroupoid
(resp. category) C is trivial if every set of arrows C(u, v) has cardinality at
most 1.

1 2 3 4

Figure 2: A trivial category

Let X be a graph. The free semigroupoid on X is denoted by X+: it has the
same object set as X, and its arrows are the non-empty paths in X, with
obvious composition. Allowing also empty paths around each vertex yields
the free category on X, written X∗.

We say that a relation ≤ on the set of arrows of a semigroupoid C, is
compatible if the following properties are satisfied:

(1) if x ≤ y, then x and y are coterminal;

(2) if x, y are coterminal arrows and x, z are consecutive arrows, and if
x ≤ y, then xz ≤ yz;

(3) if x, y are coterminal arrows and z, x are consecutive arrows, and if
x ≤ y, then zx ≤ zy.

If the semigroupoid C is equipped with a compatible order relation, we say
that C is an ordered semigroupoid. A compatible equivalence relation is
called a congruence of semigroupoid.
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1.2 Relational morphisms and varieties

Let C and D be semigroupoids. Let us recall the following definitions,
from [20, 1]. A relational morphism τ : C → D is given by a mapping
τ : Obj(C) → Obj(D) and for each pair (u, v) of objects of C, by a relation
τ : C(u, v) → D(τ(u), τ(v)) such that

(1) τ(x)τ(y) ⊆ τ(xy) for any consecutive arrows x and y of C,

(2) τ(x) is non-empty for any arrow x.

If τ(x) is a singleton for each arrow x, then τ is a morphism. It is said to
be faithful if it is injective on each set C(u, v), and to be a quotient if it is
onto, and a bijection on the set of objects. We say that a relational mor-
phism τ : C → D is a division (of semigroupoids) if it satisfies the following
injectivity condition:

(3) if x and y are coterminal arrows such that τ(x)∩τ(y) 6= ∅, then x = y.

It is known (see for instance [1]) that there exists a division from C to D if
and only if there exists a semigroupoid E, a faithful morphism from E to
D, and a quotient morphism from E to C.

If (C,≤) and (D,≤) are ordered semigroupoids and if τ : C → D is a
morphism, we say that it is a morphism of ordered categories if whenever
x and y are coterminal arrows of C and x ≤ y, then τ(x) ≤ τ(y). We say
that the morphism τ is ordered-faithful if, in addition, τ(x) ≤ τ(y) implies
x ≤ y.

If τ : C → D is a relational morphism, we say that τ is a division of
ordered semigroupoids if, whenever x and y are coterminal arrows and x′ ≤ y′

for some x′ ∈ τ(x) and y′ ∈ τ(y), then x ≤ y.
It is easily verified that any division of ordered semigroupoids is also a

division of semigroupoids. Also one verifies that there exists a division of
ordered semigroupoids from C to D if and only if there exists an ordered
semigroupoid E, an ordered-faithul morphism from E to D and a quotient
morphism of ordered semigroupoids from E to C.

This definition leads to that of a variety of ordered categories and that of
a variety of ordered semigroupoids. A variety of ordered categories is a class
of finite ordered categories containing the one-element semigroup, which is
closed under taking finite direct products and under division (of ordered
categories). As in the unordered case [20], these closure properties need
to be slightly strengthened to obtain a satisfactory definition of a variety of
semigroupoids: a variety of ordered semigroupoids is a class of finite ordered
semigroupoids containing the one-element semigroup, which is closed under
taking finite direct products and coproducts, and closed under division of or-
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dered semigroupoids (for categories, coproducts can be obtained as divisors
of direct products).

If V is a variety of ordered semigroups (resp. monoids), we let gV be
the variety of ordered semigroupoids (resp. categories) generated by V,
that is, the class of ordered semigroupoids (resp. categories) which divide
an element of V. We also let `V be the variety of all ordered semigroupoids
(resp. categories) C which are locally in V, that is, for each object u of C,
the ordered semigroup (resp. monoid) C(u, u) lies in V. As in the unordered
case, these varieties play a particular role.

It is immediate that `V is decidable if V is, and that gV is contained in
`V. The converse inclusion is not true in general. As we will see throughout
this paper, the decidability of gV has important consequences, and it can
be ascertained in a number of cases. We say that a variety V of ordered
semigroups or monoids is local if gV = `V. If V is decidable and local,
then gV is clearly decidable. In the unordered case, it is well-known that
the varieties of monoids G and J1 are local. The first result is elementary
and can be found in [20]. The second one is due to Simon, (see [20, Section
15]). We will see other important examples of local varieties in Section 4.
On the other hand, it is known that J is not a local variety. A famous result
of Knast characterizes membership in gJ by a decidable condition on the
2-object subcategories [5, 18].

Like in the unordered case, the decidability of gV follows from that of
V for a large class of varieties, see [20, Proposition 13.4] and [15]. Let B+

2

be the 6-element ordered monoid B+

2
= {0, 1, a, b, ab, ba} given by aba = a,

bab = b and a2 = b2 = 0, and in which the order relation is given by s ≤ t if
and only if s = t or s = 0. More generally, if Q is a finite non-empty set, we
let B+

Q be the ordered monoid B+

Q = {0, 1} ∪ (Q×Q) whose multiplication
is given by

(p, q)(p′, q′) =

{

(p, q′) if q = p′,

0 otherwise,

and whose order is given by s ≤ t if and only if s = t or s = 0. It is not
difficult to verify that B+

Q divides a direct product of copies of B+

2
.

We first prove a technical result. Let C be a category. The consolidated
semigroup Ccd is the set

Ccd = {0} ∪ {(u, s, v) | u, v ∈ Obj(C), s ∈ C(u, v)}

equipped with the product

(u, s, v)(u′, s′, v′) =

{

(u, ss′, v′) if v = u′,

0 otherwise.
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If C is an ordered category, Ccd is ordered by letting 0 ≤ s for each s ∈ Ccd,
and (u, s, v) ≤ (u′, s′, v′) if and only if u = u′, v = v′ and s ≤ s′. Next the
monoid C1

cd = Ccd∪{1} is ordered in such a way that the added unit 1 is not
≤-comparable to any other element (as in [10, Section 2.2]). It is immediate
that C divides C1

cd.

Lemma 1.1 Let C be an ordered category and let M be an ordered monoid
divided by C. Then C1

cd divides M ×B+

Q.

Proof. The proof is the same as the analogous result in [15, 20]. Let ϕ : C →
M be a division of ordered categories. We define ϕ′ : C1

cd → M × B+

Q by
letting

ϕ′(u, s, v) = ϕ(s) × {(u, v)}

ϕ′(1) = {(1, 1)}

ϕ′(0) = M × {0}

It is verified in, say, [20, Proposition 3.3], that ϕ′ is a division of monoids,
and we only need to check that it is a division of ordered monoids as well.
Let us assume that m,m′ ∈ M , b, b′ ∈ B+

Q and x, x′ ∈ C1
cd are such that

(m, b) ∈ ϕ′(x), (m′, b′) ∈ ϕ′(x′) and (m, b) ≤ (m′, b′). Then m ≤ m′ and
b ≤ b′. If b = 1, then b′ = b = 1 and x = x′ = 1, so that x ≤ x′. If b = (u, v),
then b′ = b, x = (u, s, v), x′ = (u, s′, v), m ∈ ϕ(s) and m′ ∈ ϕ(s′). Since ϕ
is a division of ordered categories and since s and s′ are coterminal arrows
of C, it follows that s ≤ s′, and hence x ≤ x′. Finally, if b = 0, then x = 0
and hence x ≤ x′.

We can now establish the announced decidability result.

Proposition 1.2 Let V be a decidable variety of ordered monoids contain-
ing B+

2
. Then gV is decidable.

Proof. Lemma 1.1 shows that if a category C lies in gV, then C 1
cd ∈ V.

But C divides C1
cd, so C ∈ gV if and only if C1

cd ∈ V. As C1
cd is effectively

constructible from C, it follows that gV is decidable.

1.3 Identities and strongly connected components

Within the confines of this section, we will consider some non-free infinite
categories and semigroupoids. We say that a collection of semigroupoids
(resp. categories) of arbitrary cardinality is a Birkhoff variety if it contains
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the one-element semigroup, and is closed under taking divisors and arbitrary
direct products and coproducts. As in the case of classes of finite structures,
requiring closure under coproduct is not necessary in the definition of a
Birkhoff variety of categories.

Adapting the presentation in [20] to the ordered case, we define an iden-
tity of ordered categories to be a triple of the form (X;x ≤ y) where X is a
graph, and x and y are coterminal paths in X∗. (Tilson calls the unordered
analogue of these identities laws in [20].) We say that an ordered cate-
gory C satisfies the identity (X;x ≤ y) if for each morphism of categories
ϕ : X∗ → C, we have ϕ(x) ≤ ϕ(y). Identities of ordered semigroupoids are
defined in an analogous fashion, considering only triples where x and y have
non-zero length.

If E is a set of identities, we denote by V(E) the class of all ordered
semigroupoids (resp. categories) – of arbitrary cardinality –, satisfying the
identities in E. It is easily verified that V(E) is a Birkhoff variety, called the
Birkhoff variety defined by E. Following step by step the reasoning in [20,
Section 9 and Appendix B], we get the following result (see [20, Proposition
9.8] for the unordered case).

Proposition 1.3 Every Birkhoff variety of ordered semigroupoids (resp.
categories) is defined by a set of identities.

We say that two sets of identities are equivalent if they define the same
Birkhoff variety. A set of identities is trivial if it is satisfied only by trivial
semigroupoids.

Example 1.4 Let Y be the graph with two objects p and q and two arrows
a, b : p → q. Then (Y ; a ≤ b) is a trivial identity. Indeed, if a semigroupoid
C satisfies (Y ; a ≤ b) and if a, b are coterminal arrows of C, then a ≤ b and
b ≤ a, whence a = b.

p q
a

b

Figure 3: The graph Y .

Following Tilson [20] we say that an identity (X;x ≤ y) is a path identity
if each arrow of X occurs in x or y. As in the unordered case, the rest of
this section concerns only categories, and the analogous statements do not
hold for semigroupoids.
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Let X be a graph. Two objects u, v of X are strongly connected if
X∗(u, v) andX∗(v, u) are non-empty. This defines an equivalence relation on
the set Obj(X), whose classes are called the strongly connected components
of X. An arrow t : u → v of X is a transition edge if u and v are not
in the same strongly connected component. We say that a path identity
(X;x ≤ y) is strongly connected if X is a strongly connected graph. We
have the following analogue of [20, Theorem 10.2].

Proposition 1.5 Every non-trivial path identity of ordered categories is
equivalent to a finite number of strongly connected path identities.

Proof. Let (X;x ≤ y) be a non-trivial path identity of categories. We first
assume that x and y traverse the same transition edges t1, . . . , tr. If r = 0,
then (X;x ≤ y) is a strongly connected path identity and we are done. We
now assume that r ≥ 1. Then x and y traverse these transition edges exactly
once each, and in the same order: we have factorizations of x and y of the
form x = x0t1x1 · · · trxr and y = y0t1y1 · · · trxr. For each 1 ≤ i ≤ r, letXi be
the subgraph of X consisting of the vertices and arrows occurring in ui or vi.
We claim that each (Xi;xi ≤ yi) is a strongly connected path identity and
that identity (X;x ≤ y) is equivalent to the collection of strongly connected
path identities ((X0;x0 ≤ y0), . . . , (Xr;xr ≤ yr)). The proof is exactly the
same as that of the analogous case in [20, Theorem 10.2].

Now we assume that there is a transition edge t : u→ v which occurs in
x and not in y (the symmetric case is handled similarly). We need to modify
slightly the proof of the analogous case in [20, Theorem 10.2]. Let n and
m be the initial and terminal vertices of x (and of y since these two paths
are coterminal). Let Y be the graph in Example 1.4 and let ϕ : X ∗ → Y ∗

be the morphism defined as follows: if k is a vertex such that there exists a
path (possibly empty) in X from v to k, then ϕ(k) = q; otherwise, ϕ(k) = p.
If c : k → k′ is an arrow of X, we let ϕ(c) = 1p if ϕ(k) = ϕ(k′) = p, and
ϕ(c) = 1q if ϕ(k) = ϕ(k′) = q. Finally, if ϕ(k) = p and ϕ(k′) = q, we let
ϕ(c) = a if c = t and ϕ(c) = b otherwise. Note that ϕ(x) = a and ϕ(y) = b.

Now any ordered category C satisfying (X;x ≤ y) satisfies (Y ;ϕ(x) ≤
ϕ(y)), that is, (Y ; a ≤ b), and hence C is trivial. Thus (X;x ≤ y) is a trivial
path identity, which concludes the proof.

Corollary 1.6 Every non-trivial Birkhoff variety of ordered categories is
defined by a set of strongly connected path identities.

We can now prove the ordered analogue of [20, Theorem 11.3].
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Theorem 1.7 Let C be an ordered category which is not locally trivial.
Then C divides a direct product of copies of its strongly connected compo-
nents. If C is finite, then this product may be assumed to be finite.

Proof. Let V be the Birkhoff variety generated by the strongly connected
components of C. By assumption, one of these components is not trivial, so
V is defined by a set of strongly connected path identities by Corollary 1.6.
It is easily verified that an ordered category satisfies a strongly connected
path identity if and only if each of its strongly connected components does.
Thus C ∈ V, and hence C divides a direct product of copies of its strongly
connected components.

If C is finite, each of its strongly connected components is finite, and
there are finitely many of them, say, C1, . . . , Cr. Let D = C1 × · · · × Cr.
Now there exists a division δ : C → DX for some set X. For each x ∈ X, let
δx : C → D be the composition of δ with the projection on the x-component
of DX . If x, y ∈ X and δx = δy, we let x ≡ y. By a classical argument,
the relation ≡ is a finite-index equivalence on X and C divides DX/≡. This
concludes the proof.

This theorem is often used in the form of the following corollary.

Corollary 1.8 Let V be a variety of ordered categories containing `I, and
let C be a finite ordered category. Then C ∈ V if and only if every strongly
connected component of C is in V.

2 Ordered derived semigroupoid

Our next result is again the ordered version of a theorem due to Tilson [20].
Let ϕ : S → T be a relational morphism between semigroups. We define the
derived semigroupoid of ϕ as follows. First we define the semigroupoid Rϕ

whose objects are the elements of T 1, and whose arrows from object t1 to
object t2 are the triples of the form (t1, s, t) where t ∈ ϕ(s) and t1t = t2. Its
composition rule is given by (t1, s, t)(t2, s

′, t′) = (t1, ss
′, tt′).

t1 t2 t3
(t1, s, t) (t2, s

′, t′)

(t1, ss
′, tt′)

Figure 4: The composition of arrows in Rϕ.
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Next we define a relation ∼ on Rϕ as follows. If (t1, s, t) and (t1, s
′, t′) are

coterminal arrows of Rϕ, we set

(t1, s, t) ∼ (t1, s
′, t′) if s1s = s1s

′ for each s1 ∈ ϕ−1(t1).

By convention and as in [20, Appendix B], if S or T is not a monoid, then ϕ
is extended to a relational morphism from S1 to T 1 in the natural way before
we compute ϕ−1(1). Now, the relation ∼ is a congruence of semigroupoids
and the quotient Dϕ = Rϕ/∼ is called the derived semigroupoid of ϕ. The
∼-class of (t1, s, t) is written [t1, s, t].

If S is an ordered semigroup, the derived semigroupoid Dϕ is naturally
equipped with the following order relation: if [t1, s, t], [t1, s

′, t′] are coterminal
arrows of Dϕ, we set

[t1, s, t] ≤ [t1, s
′, t′] if s1s ≤ s1s

′ for each s1 ∈ ϕ−1(t1).

It is immediately verified that ≤ is a compatible order on Dϕ, and (Dϕ,≤)
is called the ordered derived semigroupoid of ϕ.

We now state the ordered analogue of Tilson’s celebrated derived semi-
groupoid theorem [20, Theorems 16.3 and B.1].

Theorem 2.1 Let S and V be ordered semigroups, and let T be a semi-
group.

(1) Let θ : S → V ∗T be a division, π be the natural projection from V ∗T
onto T and let ϕ = π ◦ θ. Then there exists a division of ordered
semigroupoids from Dϕ into V .

(2) Let ϕ : S → T be a relational morphism such that there exists a division
of ordered semigroupoids from Dϕ into V . Then S divides the wreath
product V ◦ T (in the sense of ordered semigroups).

Proof. In order to prove the first statement, we construct a division of
ordered semigroupoids fromDϕ into V . Our construction is directly adapted
of one used by Tilson in an unpublished version of [20]. For each pair (t1, t2)
of elements of T 1 (i.e. of objects of Dϕ), and for each element w of Dϕ(t1, t2),
let

ψ(w) = {t1 · v | [t1, s, t] = w for some s ∈ S, t ∈ T such that (v, t) ∈ θ(s)}.

It is a routine verification that ψ is a relational morphism from Dϕ in V .
We now verify that ψ is a division of ordered semigroupoids. Consider in
Dϕ two arrows w and w′ from t1 to t2. Assume that there exist elements

11



x ∈ ψ(w) and x′ ∈ ψ(w′) such that x ≤ x′. Then x = t1 · v and x′ = t1 · v
′

for some v, v′ ∈ V for which there exist s, s′ ∈ S and t, t′ ∈ T satisfying the
following conditions:

(v, t) ∈ θ(s), (v′, t′) ∈ θ(s′), w = [t1, s, t], w′ = [t1, s
′, t′]

Let s1 ∈ ϕ−1(t1). Then there exists v1 ∈ V such that (v1, t1) ∈ θ(s1). Then
(v1, t1)(v, t) = (v1 + t1 ·v, t2) lies in θ(s1s) and (v1, t1)(v

′, t′) = (v1 + t1 ·v
′, t2)

lies in θ(s1s
′). Since t1 · v ≤ t1 · v′, we have (v1, t1)(v, t) ≤ (v1, t1)(v

′, t′).
Now, using the fact that θ is a division of ordered semigroupoids, it follows
that s1s ≤ s1s

′. As this holds for each s1 ∈ ϕ−1(t1), we have w ≤ w′. Thus
ψ is a division of ordered semigroupoids.

We now prove the second part of the theorem. Let ψ : Dϕ → V be a
division of ordered semigroupoids. Let θ : S → V ◦T be the relation defined,
for each s ∈ S, by

θ(s) = {(f, t) ∈ V ◦ T | t ∈ ϕ(s), f(t1) ∈ ψ[t1, s, t] for each t1 ∈ T}.

In the proof of [20, Theorem 5.2], Tilson shows that θ is a relational mor-
phism, and that it is a division. We need to modify the last part of the proof,
to verify that θ is a division of ordered semigroups. Let s, s′ ∈ S be such that
there exist (f, t) ∈ θ(s) and (f ′, t′) ∈ θ(s′) with (f, t) ≤ (f ′, t′). In particu-
lar, we have t ≤ t′, that is, t = t′. In addition, f ≤ f ′, so that f(1) ≤ f ′(1).
By definition of θ, we have f(1) ∈ ψ[1, s, t] and f ′(1) ∈ ψ[1, s′, t]. Since ψ
is a division of ordered semigroupoids, it yields [1, s, t] ≤ [1, s′, t]. Finally,
since 1 ∈ ϕ−1(1), it follows that s ≤ s′. Thus we have proved that θ is a
division of ordered semigroups.

Just like in the unordered case, this result leads to decidability results.
For instance, if S is an ordered semigroup, T is a semigroup and V is
a variety of ordered semigroups such that gV is decidable, then one can
decide whether S divides a semidirect product of the form V ∗ T , with
V ∈ V. Extending this result by making T a variable, that is, deciding
membership in a product variety V ∗ W is much more difficult. Standard
reasoning on free objects leads to the conclusion that if V is a variety of
ordered semigroups such that gV is decidable and if W is a locally finite
variety of (unordered) semigroups with effectively computable free objects,
then V ∗ W is decidable. The following section offers another decidability
result for a product variety.
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3 The delay theorem in the ordered case

In this section, we state and prove the ordered version of the delay theorem.
Let D be the variety of all finite semigroups S such that se = e for each
s ∈ S and for each idempotent e of S; D is a sub-variety of LI.

For each integer n ≥ 1, let Dn be the variety of semigroups defined by the
identity yx1 · · · xn = x1 · · · xn, and let LIn be defined by x1 · · · xnyx1 · · · xn =
x1 · · · xn. It is an elementary verification that Dn ⊆ LIn for each n, and D

(resp. LI) is the union of the Dn (resp. LIn) for n ≥ 1 [2].
For each n ≥ 1, let An be the set of words on alphabet A of length

at most n. For each word w ∈ A+, let ρn(w) be the word equal to w if
|w| ≤ n, and to the length n suffix of w if |w| > n. The set An is made into
a semigroup by letting w · w′ = ρn(ww

′) for each w,w′ ∈ An. Then ρn is a
morphism from A+ onto An. Note that the semigroups An generate Dn.

The delay of a finite semigroup S, written del(S), is defined as follows:
if S is a monoid, then del(S) = 0; otherwise del(S) is the least integer k
such that either, for each k-tuple (s1, . . . , sk) of elements of S, there exists
an idempotent e and an integer 1 ≤ i ≤ k such that s1 · · · sie = s1 · · · si; or,
for each k-tuple (s1, . . . , sk) of elements of S, there exists an idempotent e
and an integer 1 ≤ i ≤ k such that esi · · · sk = si · · · sk. It is easily verified
that if Sn = Sn+1, then n ≥ del(S). In particular, |S| ≥ del(S) (for instance
[20]).

Finally, the Cauchy category of S, denoted SE, has object set the set
of idempotents of S, and its arrow sets are of the form SE(e, f) = eSf for
all e, f ∈ E. If S is ordered, then each set eSf is ordered as well, and this
makes SE an ordered category.

Now we prove the following result, the ordered counterpart of the Delay
theorem [20, Theorem 17.1].

Theorem 3.1 If V is a variety of ordered monoids, then V ∗D = V ∗ LI.
An ordered semigroup S belongs to V∗LI if and only if SE ∈ gV. Moreover,
if n ≥ del(S), then S ∈ V ∗ LI if and only if S ∈ V ∗ Dn.

Before we prove Theorem 3.1, let us note a few of its consequences.
One verifies immediately that if V is a variety of ordered monoids and

if S is an ordered semigroup, then S ∈ LV if and only if SE ∈ `V. In view
of the Delay theorem, this yields the following corollary.

Corollary 3.2 Let V be a variety of ordered monoids. Then V is local if
and only if LV = V ∗ LI.
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Proof. If V is local and S is an ordered semigroup, then we have

S ∈ LV ⇐⇒ SE ∈ `V ⇐⇒ SE ∈ gV ⇐⇒ S ∈ V ∗ LI,

so that LV = V ∗ LI.
To verify the converse, we first note that if C is an ordered category,

then C and (Ccd)E divide each other as ordered categories. The proof in
[20, Proposition 16.1] of the unordered version of this result carries over to
the ordered case without any difficulty.

Let us now assume that LV = V ∗ LI. If C is an ordered category in
`V, the ordered category (Ccd)E also lies in `V. It follows that Ccd ∈ LV,
so Ccd ∈ V ∗ LI and hence (Ccd)E ∈ gV. But C divides (Ccd)E , so C ∈ gV

as expected.

Of course, if V is local and decidable, it follows that V ∗ LI is de-
cidable. More generally, the following result is immediately deduced from
Theorem 3.1.

Corollary 3.3 Let V be a variety of ordered monoids. If gV is decidable,
then V ∗ LI is decidable.

In view of Proposition 1.2, we have the following particular case.

Corollary 3.4 Let V be a decidable variety of ordered monoids containing
B+

2
. Then V ∗ LI is decidable.

We also note the following refinement of the equality V ∗ D = V ∗ LI,
which is useful in the context of applications to formal language theory (see
[11, Proposition 4.22]).

Proposition 3.5 Let V be a non-trivial variety of ordered monoids and let
n ≥ 1 be an integer. Then V ∗ LIn = V ∗Dn.

Proof. To prove the non-trivial containment, let us consider a generator of
the variety V ∗ LIn in the form of a unitary semidirect product V ∗ T with
V ∈ V and T ∈ LIn. One verifies immediately that if (v1, t1), . . . , (vn, tn)
are elements of V ∗ T , then (1, t1 · · · tn) is idempotent and

(v1, t1) · · · (vn, tn) (1, t1 · · · tn) = (v1, t1) · · · (vn, tn),

so del(V ∗T ) ≤ n. Now Theorem 3.1 implies V ∗T ∈ V∗Dn, as expected.
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Finally, we prove two propositions, Propositions 3.6 and 3.8, which (to-
gether with the ordered derived semigroupoid theorem, Theorem 2.1 above)
establish Theorem 3.1.

Proposition 3.6 Let S be an ordered semigroup, let n ≥ |S|, and let
σ : A+ → S be an onto morphism. Let ϕ : S → An be the relational mor-
phism given by ϕ = ρn ◦ σ

−1. Then Dϕ divides an element of the variety of
ordered categories generated by SE.

Proof. Here again, we rely on the proof of the analogous statement in
[20] (see the proof of Theorem 18.2 therein). We first consider the ordered
monoid S1, the ordered monoid A1

n and ψ, the natural extension of ϕ to a
relational morphism ψ : S1 → A1

n. Then Dψ is an ordered category and Dϕ

divides Dψ as an ordered semigroupoid.
Next we show that Dψ lies in the variety generated by SE . Using Theo-

rem 1.7, it suffices to consider the only non-trivial bonded component of Dψ,
namely the subcategory of Dψ whose set of vertices is An, the set of words of
length n. We assume that for each word w of length n, there exist an idem-
potent e of S and a factorization w = uv of w such that σ(u) = σ(u)e. (By
definition of del(S), if that is not the case, then for each word w of length
n, there exist an idempotent e of S and a factorization w = uv of w such
that σ(v) = eσ(v) and the proof is dual of what follows.) One fixes uw to
be the shortest such word u, setting vw to be the word such that w = uwvw,
and one lets θ(w) = ew be an idempotent such that σ(uw) = σ(uw)ew.

Let w1, w2 be words of length n. If x ∈ Dψ(w1, w2), let θ(x) be the
following subset of SE(ew1

, ew2
):

θ(x) = {t ∈ ew1
Sew2

| σ(uw1
) tσ(vw2

) = σ(w1)s and σ(uw1
)t ≤L σ(uw2

)
for some s, w such that [w1, s, w] = x}.

In the proof of [20, Theorem 18.2], it is shown that θ is a relational morphism
and a division of categories.

Let us verify that θ is also a division of ordered categories. Let x, x′ ∈
Dψ(w1, w2) and let t ∈ θ(x) and t′ ∈ θ(x′) be such that t ≤ t′. Then there
exist elements s, s′ ∈ S1 and words w, w′ such that

[w1, s, w] = x σ(uw1
)tσ(vw2

) = σ(w1)s

[w1, s
′, w′] = x′ σ(uw1

)t′σ(vw2
) = σ(w1)s

′

ρn(w1w) = ρn(w1w
′) = w2

In particular, we have

σ(w1)s = σ(uw1
)tσ(vw2

) ≤ σ(uw1
)t′σ(vw2

) = σ(w1)s
′.
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Now let s1 ∈ ψ−1(w1). Then there exists a word x1 such that σ(x1w1) = s1.
By left multiplication of the above inequality by σ(x1), we get s1s ≤ s1s

′.
It follows that

x = [w1, s, w] ≤ [w1, s
′, w′] = x′,

thus proving that θ is a division of ordered categories.

The next result is the ordered analogue of [20, Lemma 18.3].

Lemma 3.7 Let S and T be ordered semigroups. If S divides T in the sense
of ordered semigroups, then SE divides TE in the sense of ordered categories.

Proof. Let ϕ : S → T be a division. Since T is finite, for each idempotent e
of S, ϕ(e) is a non-empty semigroup, so we can choose an idempotent ψ(e)
in ϕ(e). Next, for each pair (e, e′) of objects of SE , let ψ be the relation from
SE(e, e′) into TE(ψ(e), ψ(e′)) given by ψ(s) = ψ(e)ϕ(s)ψ(e′). In the proof
of [20, Lemma 18.3], Tilson proves that ψ is a relational morphism, and a
division of categories. We now verify that it is also a division of ordered
categories.

Let s, s′ ∈ SE(e, e′), and let us assume that t ≤ t′ for some t ∈ ψ(s) and
t′ ∈ ψ(s′). By definition of ψ, there exist x ∈ ϕ(s) and x′ ∈ ϕ(s′) such that
ψ(e)xψ(e′) ≤ ψ(e)x′ψ(e′). As ψ(e) ∈ ϕ(e), we have ψ(e)xψ(e′) ∈ ϕ(ese′) =
ϕ(s). Similarly, ψ(e)x′ψ(e′) ∈ ϕ(s′). Since ϕ is a division, it follows that
s ≤ s′, which concludes the proof.

Now we can prove the following.

Proposition 3.8 Let V be a variety of ordered monoids and let S ∈ V∗LI.
Then SE lies in gV.

Proof. We proceed as in the proof of the analogous, unordered result,
Proposition 18.4 in [20]. Let S ∈ V ∗ LI: there exist elements T ∈ V

and W ∈ LI such that S divides T ∗W . In view of the above lemma, it
suffices to show the proposition when S = T ∗W .

Let (f, e) and (f ′, e′) be idempotent elements of S = T ∗W . Let E be
the set of idempotents of S. Let ϕ : SE((f, e), (f ′, e′)) → TE be the mapping
such that ϕ(t, w) : E → T maps any idempotent g of S to get. In the proof
of [20, Proposition 18.4], Tilson shows that ϕ is a relational morphism from
SE to TE and that it is a division of categories. Again we verify that it is
a division of ordered categories. Let us assume that (t, w) and (t′, w′) are
elements of SE((f, e), (f ′, e′)) such that ϕ(t, w) ≤ ϕ(t′, w′). That is, for each
idempotent g of S, we have get ≤ get′. Since (f, e)(t, w)(f ′, e′) = (t, w), we
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have ewe′ = w: in a semigroup of LI, this implies that w = ee′. Similarly
w′ = ee′, so w = w′. Also we have t = f + et+ ewf ′ = f + et+ ee′f ′. Since
get ≤ get′ for each idempotent g, letting g = e we get et ≤ et′. As a result,
we have t = f + et+ ee′f ′ ≤ f + et′ + ee′f ′ = t′. Thus (t, w) ≤ (t′, w′), which
concludes the proof.

4 Locality of certain varieties

In this section, we prove that J+

1
is local, like its unordered counterpart J1.

We also prove that J+ is local. This result is more surprising, since J is the
canonical example of a non-local variety.

4.1 Locality of J+

1

Let C be a category. If x is an arrow in the free category C ∗ (that is, a path
in the graph C or equivalently a finite sequence of consecutive arrows of C),
we denote by [x]C (or [x] if C is understood) the evaluation of x in C, that
is, the product in C of the arrows constituting x. The content c(x) of x is
the set of arrows of C occurring in x.

If x, y are arrows in C∗, we write x ≤ y if x and y are coterminal and if
c(y) ⊆ c(x). This relation is easily seen to be a compatible quasi-order on
C∗.

We need the following technical result [2, Lemma 7.3].

Lemma 4.1 Let C be an ordered category in `J+

1
. Let u, v be objects of

C, and let x ∈ C∗(u, v) and y ∈ C∗(v, v) be consecutive paths in C. If
c(y) ⊆ c(x), then [xy] = [x].

The proof of the following proposition is adapted from the proof of a
result due to Simon in the non-ordered case, see [2, Theorem 7.1].

Proposition 4.2 Let C be an ordered category. Then C ∈ `J+

1
if and only

if, whenever x, y are coterminal paths in C, x ≤ y implies [x] ≤ [y].

Proof. Let us assume that x ≤ y implies [x] ≤ [y] whenever x, y are coter-
minal paths in C. It is immediate that if x, y are loops around some object
u, then x ≤ 1u, xx ≤ x ≤ xx and xy ≤ yx. It follows that [x] ≤ 1u,
[x]2 = [x] and [xy] = [yx] in C. In particular, C ∈ `J+

1
.

To prove the converse implication, assume that C ∈ `J+

1
and consider

coterminal paths x, y ∈ C∗(u, v) such that x ≤ y. We show that [x] ≤ [y]
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by induction on the cardinality of c(x). If c(x) = ∅, the result is trivial. We
now assume that c(x) 6= ∅, and we let X be the subgraph of C consisting of
the arrows in c(x).

If X is strongly connected, then there exists a path z : v → u such that
c(z) ⊆ c(x). Then zy ∈ C∗(v, v) and we have [x] = [xzy] by Lemma 4.1.
But xz is also a loop, so we have [x] = [(xz)y] = [xz][y] ≤ [y] as expected.

If X is not strongly connected, then v and u are not in the same strongly
connected component of X. Thus there exists a transition edge a : s → t
which occurs in y, and y factors as y = y0ay1. Since c(y) is contained in c(x),
there also exists a factorization x = x0ax1. As a is a transition edge, these
factorizations are unique and c(y0) ⊆ c(x0) and c(y1) ⊆ c(x1). In addition,
since a is a transition edge, it occurs exactly once in x. In particular c(x0)
and c(x1) are proper subsets of c(x). By induction, it follows that [x0] ≤ [y0]
and [x1] ≤ [y1], and hence [x] ≤ [y].

We can now prove the announced result.

Theorem 4.3 The variety J+

1
is local.

Proof. Let C be a category in `J+

1
and let A be the set of all arrows of

C. The set P(A) of subsets of A, equipped with the operation of union and
the reverse inclusion relation is easily seen to be an ordered monoid in J+

1
.

In order to prove the theorem, it suffices to show that the content relation
κ : C → P(A) given by κ(x) = {c(x′) | x′ ∈ C∗, [x′] = x}, defines a division
of ordered categories.

The multiplicativity condition in the definition of a division is immedi-
ately verified. Now let x, y be coterminal arrows of C and let us assume that
there exist paths x′ and y′ in C such that [x′] = x, [y′] = y and c(x′) ⊇ c(y′),
that is, x ≤ y. By Proposition 4.2 it follows that [x′] ≤ [y′], i.e. [x] ≤ [y].
This concludes the proof.

In view of Corollary 3.2, we have now:

Corollary 4.4 LJ+

1
= J+

1
∗ D.

4.2 Locality of J+

4.2.1 Some combinatorics on paths

Let C be a graph and let m ≥ 1 be an integer. For each arrow x of C ∗, i.e.
for each path x in C, we define cm(x) to be the set of tuples (a1, . . . , am) of
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arrows of C such that x can be factored as x = x0a1x1 · · · amxm. Note that
c1(x) is the content of x defined in the previous section.

We define a relation ≤m on C∗ by letting x ≤m y if x and y are coterminal
and cr(y) ⊆ cr(x) for each r ≤ m. The relation ≤m is a compatible quasi-
order on C∗. What happens if cr(y) ⊆ cr(x) for each r ≤ m but x and y
are not coterminal, is described in the following statement, which is related
with [18, Lemma 2.2].

Proposition 4.5 Let C be a graph, let u, v, s, t be objects of C and let x
be a path from u to v and y a path from s to t. If cr(y) ⊆ cr(x) for each
r ≤ m, then there exist paths x0 from u to s and x1 from t to v such that
x ≤m x0yx1.

s

u v

t

x0

x

y

x1

Proof. Let x0 be the shortest prefix of the path x which ends in s: such a
prefix exists since the first arrow of y is guaranteed to occur in x. Let x′ be
the corresponding suffix of x, that is, x = x0x

′.
Let r ≤ m. We first claim that cr(x0y) ⊆ cr(x). Indeed let z ∈ cr(x0y).

Then the tuple z is the concatenation of a tuple z0 ∈ cn(x0) and a tuple
z′ ∈ cr−n(y) for some 0 ≤ n ≤ r, — which we write z = z0z

′. If n = 0, then
z = z′ ∈ cr(y), and hence z ∈ cr(x). We now assume that n > 0. Since
z′ ∈ cr−n(y), we have z′ ∈ cr−n(x). If the first arrow of y, say a, is also the
first arrow of z′, then z′ is in fact in cr−n(x

′) by definition of x0 and x′. Thus
z = z0z

′ ∈ cr(x0x
′) = cr(x). Otherwise, az′ ∈ cr−n+1(y), so az′ ∈ cr−n+1(x)

and, as above, az′ ∈ cr−n+1(x
′). It follows that z′ ∈ cr−n(x

′) and hence
z = z0z

′ ∈ cr(x0x
′) = cr(x).

By the left-right dual of this reasoning applied to the paths x and x0y,
there also exists a suffix x1 of x starting in v such that cr(x0yx1) ⊆ cr(x).
This concludes the proof.

A 2-factorization of a path x in C is a triple of the form (x0, a, x1) such
that x0 and x1 are arrows of C∗, a is either an arrow of C or an empty path
in C∗, and x = x0ax1 in C∗. If x, y are paths in C, we let x ≤2

m y if for
every 2-factorization (x0, a, x1) of x, there exists a 2-factorization (y0, b, y1)
of y such that cr(y0) ⊆ cr(x0) and cr(y1) ⊆ cr(x1) for each r ≤ m, and b = a
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or b is an empty path of C∗. The following result is proved in [18, Theorem
2.3]. (In fact, [18] states a symmetrized version of this result, but the proof
is exactly that of our statement.)

Lemma 4.6 Let C be a category, let x, y be arrows of C ∗ and let m ≥ 1 be
an integer. Then x ≤2

m y if and only if cr(y) ⊆ cr(x) for each r ≤ 2m.

4.2.2 Categories locally in J+

Let Vm be the class of all ordered categories C such that if x, y are arrows
of C∗ such that x ≤m y, then x ≤ y. Let V be the union of the Vm (m ≥ 1).

Lemma 4.7 The classes V and Vm (m ≥ 1) are varieties of ordered cate-
gories.

Proof. Let C be an ordered category in Vm and let D be an ordered cate-
gory. Let ϕ : D → C be an ordered-faithful morphism. Then ϕ extends to a
length-preserving morphism ϕ : D∗ → C∗, such that [ϕ(x)]C = ϕ([x]D) for
each arrow x of D∗. Let x, y be arrows of D∗ such that x ≤m y. It is im-
mediately verified that the paths ϕ(x) and ϕ(y) in C satisfy ϕ(x) ≤m ϕ(y).
Therefore [ϕ(x)]C ≤ [ϕ(y)]C and hence, [x]D ≤ [y]D since ϕ is ordered-
faithful.

Now let ϕ : C → D be a quotient morphism of ordered categories. By
definition of a quotient morphism, we may assume that C and D have the
same set of objects. For each arrow a : u→ v of D we fix an arrow ψ(a) : u→
v in C such that ϕ(ψ(a)) = a. This choice induces a length-preserving
morphism ψ : D∗ → C∗ such that ϕ([ψ(x)]C ) = [x]D for each arrow x of D∗.
Let x, y be arrows of D∗ such that x ≤m y. Then ψ(x) ≤m ψ(y) in C∗, and
hence [ψ(x)]C ≤ [ψ(y)]C . It follows that [x]D ≤ [y]D since ϕ is a morphism
of ordered categories.

Thus Vm is closed under taking inverse images by ordered-faithful mor-
phisms and direct images by quotient morphisms of ordered categories. That
is, Vm is closed under division. The verification that Vm is closed under
taking direct products is routine. So Vm is a variety for any m. It is imme-
diate that Vm is contained in Vm+1 for each m: it follows easily that V is
a variety as well.

Our next result is the following theorem, analogous to results of Knast
[5] and Thérien [18] on gJ and to Theorem 4.2 above.

Theorem 4.8 `J+ = V.
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Before we can prove Theorem 4.8, we need to introduce some notation,
borrowed from [20, 18]. If C is a category, an ideal is a subset J of C such
that J = CJC. If x and y are arrows of C, we let x ≤J y if x lies in the
ideal generated by y, that is, if x ∈ CyC. We write x J y if x ≤J y and
y ≤J x: then J is an equivalence relation on the arrows of X. We say that
I is a minimal ideal of C if I is a non-empty ideal of C and if it does not
contain properly a non-empty ideal of C. It is easily verified [18, Lemma
1.1] that if C is strongly connected, then C has a unique minimal ideal I
and that I(u, v) 6= ∅ for any pair (u, v) of objects of C.

If the minimal ideal I of C is trivial, a 0-minimal ideal of C is an ideal
K such that the only non-empty ideal properly contained in K is I itself.
It can be shown [18, Lemma 1.2] that in that case, any 0-minimal ideal is
of the form I ∪ J , where J is a J -class of C. Moreover, C divides a direct
product of the form C1 × · · · × Cr, where each Ci is a divisor of C with a
unique minimal ideal which is trivial, and with a unique 0-minimal ideal.

Proof of Theorem 4.8.

Let C be an ordered category. If C ∈ V, then C ∈ Vm for some m ≥ 1.
It is immediate that if x is a loop of C∗ around some objet u, then x ≤m 1u,
so [x]C ≤ 1u for any x ∈ C(u, u). Thus V ⊆ `J+.

We now assume that C ∈ `J+. We show that C ∈ V by induction on
the cardinality of the set of arrows of C. The result is trivial if C has zero
or one arrow, or more generally if C is a trivial category. Let us consider
the case where C has at least two arrows. Since V is a variety and in view
of Theorem 1.7, we may assume without loss of generality that C is strongly
connected. According to the above discussion, C has a unique minimal ideal.

Let us verify that this minimal ideal, say I, is trivial. For each object u,
C(u, u) ∈ J+, so C(u, u) has a zero, say 0u. Then the set

⋃

{0ux0v | x ∈ I(u, v)}

(where the union runs over all pairs (u, v) of objects of C) is easily checked
to be an ideal contained in I. As I is minimal, it follows that x = 0ux0v for
each x ∈ I(u, v) and in particular, I(u, u) = 0u for each object u. Now let
x, y ∈ I(u, v). Since C is strongly connected, we may consider an element
z ∈ C(v, u). Then xz, yz ∈ I(u, u), so xz = yz = 0u. Similarly, zx = zy =
0v . Finally, x = 0ux = yzx = y0v = y.

Thus the minimal ideal I of C is trivial and, according to the above
discussion, we may assume, again without loss of generality, that C also has
a unique 0-minimal ideal, of the form I ∪ J where J is a J -class.
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Observe that C ∈ `J+ implies the following: if x, y ∈ C(u, v) are coter-
minal arrows of C and if x ≤J y, then x = x0yx1 where x0 ∈ C(u, u) and
x1 ∈ C(v, v) are loops. It follows that x ≤ 1uy1v = y. In particular, if
x, y ∈ C(u, v) and x ∈ I, then x ≤ y.

We first assume that J contains an idempotent e. Then C \ I is a
proper subcategory of C. Indeed, let s, t be consecutive arrows in C \ I.
By definition of J , we have e ≤J s and e ≤J t, so e = s0ss1 = t0tt1.
Now e = ee = s0ss1t0tt1. Since s and t are assumed to be consecutive,
s1t0 ∈ C(u, u) for some object u, so s1t0 ≤ 1u and e ≤ s0stt1. If st ∈ I,
then s0stt1 ∈ I, so s0stt1 ≤J e, whence s0stt1 ≤ e, and finally s0stt1 = e.
It follows that e ∈ I, a contradiction.

Thus in that case, C \ I ∈ `J+ and, by induction, there exists an integer
m such that x ≤m y in (C \ I)∗ implies [x]C\I ≤ [y]C\I . Now let x, y be
coterminal arrows in C∗ such that x ≤m y. If x ∈ (C \ I)∗, then y ∈ (C \ I)∗

and x ≤m y in (C \ I)∗, so we have [x]C\I ≤ [y]C\I . Since C \ I is a
subcategory of C, we have [x]C\I = [x]C and [y]C\I = [y]C , and the expected
inequality follows. If x 6∈ (C \ I)∗, then [x]C ∈ I. As observed above, this
implies that [x]C ≤ [y]C .

Now we assume that J does not contain an idempotent. Then we have
JJ ⊆ I. Otherwise there exist consecutive arrows x, y in J such that xy ∈ J .
Then x ≤J xy, so x = sxyt and hence, x = skx(yt)k for any integer k ≥ 1.
Since C is finite, some power (yt)k is idempotent, it lies in I ∪J , and it does
not lie in I since x 6∈ I. Thus (yt)k ∈ J , a contradiction.

Let D be the quotient of C by the ideal I ∪ J : as an ordered set, D is
equal to C \J and the product in D is the following. Let x, y be consecutive
arrows in C \ J . If the product xy in C is not in J , then the product x · y
in D is set to be x · y = xy. If in C we have xy ∈ J , then in D we let x · y
be the unique arrow of I which is coterminal with xy. The category D is
immediately verified to be a quotient of C so D ∈ `J+. By induction, there
exists an integer m such that, if x, y are coterminal arrows in D such that
x ≤m y, then [x]D ≤ [y]D.

Let x, y be coterminal arrows in C∗ such that x ≤2m y. We want to
show that [x]C ≤ [y]C . By Lemma 4.6, we have x ≤2

m y.
Let us first assume that x admits a factorization x = x0x1 such that

[x0]C , [x1]C 6∈ I ∪ J . Since x ≤2
m y, y can be factored as y = y0y1 with

cr(y0) ⊆ cr(x0) and cr(y1) ⊆ cr(x1) for each r ≤ m. By Proposition 4.5
there exist paths s, t, s′, t′ such that x0 ≤m sy0t and x1 ≤m s′y1t

′. It follows
that x0, x1, y0, y1, s, t, s

′, t′ are paths in D∗, and that

[x0]C = [x0]D, [x1]C = [x1]D, [sy0t]C = [sy0t]D and [s′y1t
′]C = [s′y1t

′]D.
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We now deduce from the properties of D that

[x0]C ≤ [sy0t]C , [x1]C ≤ [s′y1t
′]C and [x]C = [x0x1]C ≤ [sy0ts

′y1t
′]C .

Since y0 and y1 are consecutive, ts′ is a loop, say around vertex u, so [ts′]C ≤
1u and [x]C ≤ [sy0y1t

′]C = [syt′]C . Similarly, since x and y are coterminal,
s and t′ are loops, and we have [x]C ≤ [y]C as expected.

Now we assume that x has no factorization x = x0x1 as above, but
x factors as x = x0ax1 with [x0]C , [x1]C 6∈ I ∪ J and a an arrow of C.
Since x ≤2

m y, y can be factored either as y = y0ay1 or as y = y0y1 with
cr(y0) ⊆ cr(x0) and cr(y1) ⊆ cr(x1) for each r ≤ m. As above there exist
paths s, t, s′, t′ in C∗ such that [x]C ≤ [sy0tas

′y1t
′]C or [x]C ≤ [sy0ts

′y1t
′]C .

As above again, s, t, s′, t′ are loops in the first case, and s, ts′, t′ are loops in
the second case. From which it follows that [x]C ≤ [y0ay1]C in the first case,
and [x]C ≤ [y0y1]C in the second case: either way, we have [x]C ≤ [y]C .

The last situation occurs if x does not have a factorization of one of the
above forms. Let x0 be the longest prefix of x such that [x0]C 6∈ I ∪ J : x0

may be empty, but it is different from x, so we have x = x0ax1 where a is an
arrow of C. By assumption, [x0a]C , [x1]C ∈ I ∪ J , so [x]C = [x0a]C [x1]C ∈ I
and hence [x]C ≤ [y]C . This concludes the proof.

Corollary 4.9 The variety J+ is local.

Proof. Let C be a category in `J+. Let A be the set of all arrows of C.
The free monoid A∗ can be viewed as the set of arrows of the free category
over the graph with one object and with arrow set A. Let m ≥ 1 and let
x, y ∈ A∗. We say that x ≡m y if x ≤m y and y ≤m x. Then ≡m is easily
seen to be a finite index congruence on A∗. Let Jm be the quotient monoid
and let π : A∗ → Jm be the natural morphism. Then letting π(x) ≤ π(y)
whenever x ≤m y naturally equips Jm with a structure of ordered monoid,
such that Jm ∈ J+.

Now let m ≥ 1 be such that C ∈ Vm: by Theorem 4.8, such an integer
exists. Let δ : C → Jm be the relation defined on each C(u, v) by

δ(x) = {π(y) | y ∈ C∗(u, v), [y] = x}.

Then δ is immediately verified to be a relational morphism. If x, x′ ∈
C∗(u, v) are such that there exist elements z, z ′, respectively in δ(x) and
δ(x′), such that z ≤ z′, then there exist paths y, y′ ∈ C∗(u, v) such that
[y] = x, [y′] = x′ and y ≤m y′ in A∗. Since y and y′ are coterminal paths in
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C∗, it follows that y ≤m y′ in C∗ and, by definition of Vm, we have x ≤ x′.
Thus δ is a division of ordered categories.

Thus C ∈ gJ+, which completes the proof.

In [9], Pin and Weil introduced the variety (of semigroups) B+

1
in the

context of the study of the polynomial closure of certain classes of languages.
As it turns out, B+

1
is defined exactly to be LJ+. Corollary 3.2 now yields

the following.

Corollary 4.10 B+

1
= J+ ∗D.
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