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On a conjecture of Schnoebelen.

Antonio Cano Gómez
∗

and Jean-Éric Pin
†

Jean-Eric.Pin@liafa.jussieu.fr, acano@dsic.upv.es

Abstract

The notion of sequential and parallel decomposition of a language over

a set of languages was introduced by Schnoebelen. A language is decom-

posable if it belongs to a finite set of languages S such that each member

of S admits a sequential and parallel decomposition over S. We disprove

a conjecture of Schnoebelen concerning decomposable languages and es-

tablish some new properties of these languages.

1 Introduction

The shuffle product is a standard tool for modeling process algebras [1]. This
motivates the study of “robust” classes of recognizable languages which are
closed under shuffle product. By “robust” classes, we mean classes which are
closed under standard operations, like boolean operations, morphims or inverse
morphisms, etc. For instance, a complete classification is known for varieties of
languages.

2 Preliminaries

We assume that the reader has a basic background in formal language theory.

2.1 Rational and recognizable sets

Let M be a monoid. A subset P of M is recognizable if there exists a finite
monoid F , and a monoid morphism ϕ : M → F such that P = ϕ−1(ϕ(P )). It is
well known that the class Rec(M) of recognizable subsets of M is closed under
finite union, finite intersection and complement.

The class Rat(M) of rational subsets of M is the smallest set R of subsets
of M satisfying the following properties:

(1) For each m ∈M , {m} ∈ R

(2) The empty set belongs to R, and if X , Y are in R, then X ∪ Y and XY
are also in R.
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(3) If X ∈ R, the submonoid X∗ generated by X is also in R.

Let us briefly remind some important results about recognizable and rational
sets.

Theorem 2.1 (Kleene) For every finite alphabet A, Rec(A∗) = Rat(A∗).

Proposition 2.2 Let M be a monoid. Then Rec(M) is closed under boolean
operations and left and right quotients. Furthermore, if ϕ is a monoid morphism
from M into N , X ∈ Rec(N) implies ϕ−1(X) ∈ Rec(M).

In other words, recognizable sets are closed under boolean operations, quo-
tients and inverse morphisms.

Proposition 2.3 Let M be a monoid. Then Rat(M) is closed under finite
union, finite product and star. Furthermore, if ϕ is a monoid morphism from
M into N , X ∈ Rat(M) implies ϕ(X) ∈ Rat(N).

In other words, rational sets are closed under rational operations (union,
product and star) and under morphisms.

Theorem 2.4 (McKnight) The intersection of a rational set and of a recogniz-
able set is rational.

Theorem 2.5 (Mezei) LetM1, . . . ,Mn be monoids. A subset of M1×· · ·×Mn is
recognizable if and only if it is a finite union of subsets of the form R1×· · ·×Rn,
where Ri ∈ Rec(Mi).

Proposition 2.6 Let A1, . . . , An be finite alphabets. Then Rec(A∗
1×A

∗
2×· · ·×

A∗n) is closed under product.

A substitution from A∗ into a monoid M is a monoid morphism from A∗

into P(M).

3 Decompositions of languages

Consider the transductions τ and σ from A∗ into A∗ ×A∗ defined as follows:

τ(w) = {(u, v) ∈ A∗ ×A∗ | w = uv}

σ(w) = {(u, v) ∈ A∗ ×A∗ | w ∈ u X v}

Proposition 3.1 The transduction σ is a substitution.

Proof. We claim that σ(x1x2) = σ(x1)σ(x2). First, if (u1, v1) ∈ σ(x1) and
(u2, v2) ∈ σ(x2), then x1 ∈ u1 X v1 and x2 ∈ u2 X v2. It follows that x1x2 ∈
u1u2 X u2v2 and thus (u1u2, v1v2) ∈ σ(x1x2). Conversely, if (u, v) ∈ σ(x1x2),
then x1x2 ∈ u X v. Therefore, u and v can be decomposed as u = u1u2,
v = v1v2 in such a way that x1 ∈ u1 X v1 and x2 ∈ u2 X v2. It follows that
(u, v) ∈ σ(x1)σ(x2).

Let S be a set of languages. A languageK admits a sequential decomposition
over S if τ(K) is a finite union of sets of the form L×R, where L,R ∈ S.
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A languageK admits a parallel decomposition over S if σ(K) is a finite union
of sets of the form L×R, where L,R ∈ S.

A sequential (resp. parallel) system is a finite set S of languages such that
each member of S admits a sequential (resp. parallel) decomposition over S. A
language is sequentially decomposable if it belongs to some sequential system. It
is decomposable if it belongs to a system which is both sequential and parallel.
Thus, for each decomposable language L, one can find a sequential and parallel
system S(L) containing L.

Theorem 3.2 Let K be a language of A∗. The following conditions are equiv-
alent:

(1) K is rational,

(2) τ(K) is recognizable,

(3) K is sequentially decomposable.

Proof. (1) implies (3). Let K be a rational language and let A be the minimal
automaton of K. For each state p, q of A, let Kp,q be the language accepted by
A with p as initial state and q as unique final state. Let S be the set of finite
unions of languages of the form Kp,q. Since A is finite, S is a finite set. We
claim that

τ(Kp,q) =
⋃

r∈Q

Kp,r ×Kr,q (1)

Indeed, if, for some state r, u ∈ Kp,r and v ∈ Kr,q, then p·u = r and r ·v = q
in A. It follows that uv ∈ Kp,q and (u, v) ∈ τ(Kp,q). Conversely, let (u, v) ∈
τ(Kp,q) and let r = p·u. Since uv ∈ Kp,q, p·uv = q, and thus r ·v = q, whence
v ∈ Kr,q. Thus (u, v) ∈ Kp,r ×Kr,q.
It follows from (1) that each language of S admits a sequential decomposition
on S. Thus S is a sequential system and K itself is sequentially decomposable.

(3) implies (1) (Arnold, Carton). Let S be a sequential system containing
K, and let ∼S be the equivalence on A∗ defined by u ∼S v if, for every F ∈ S,
u ∈ F is equivalent to v ∈ F . Clearly, ∼S is an equivalence of finite index,
which saturates K by definition. Therefore, it suffices to show that ∼S is a
congruence. Suppose that u ∼S v and let F be a language of S. Let w ∈ A∗

and suppose that uw ∈ F . Since F is sequentially decomposable over S, there
exist two languages L,R ∈ S such that u ∈ L, w ∈ R and LR ⊂ F . It follows
that v ∈ L, since u ∼S v, and thus vw ∈ F . Similarly, vw ∈ F implies uw ∈ F
and thus uw ∼S vw. A dual argument would show that wu ∼S wv, which
concludes the proof.

(2) implies (1). Suppose that τ(K) is recognizable. Observing that

τ(K) ∩ {1} ×A∗ = {1} ×K

it follows by McKnight’s theorem, that {1}×K is rational. NowK = π({1}×K),
where π denotes the second projection from A∗ × A∗ onto A∗. It follows by
Proposition 2.3 that K is rational.

(3) implies (2). If K is sequentially decomposable, it belongs to some sequen-
tial system S. By definition, each element of S is sequentially decomposable
and thus is rational, since (3) implies (1). Furthermore, τ(K) is a finite union
of languages of the form L×R, where L,R ∈ S. It follows, by Mezei’s theorem,
that τ(K) is recognizable.
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It follows that every decomposable language is rational. Another important
consequence is the following:

Proposition 3.3 For each decomposable language K, σ(K) is recognizable.

Proof. Indeed, if S is a parallel and sequential system for K, every language
of S is decomposable and hence rational, by Theorem 3.2. Since is sequentially
decomposable over S, σ(K) is a finite union of languages of the form L × R,
where L,R ∈ S. It follows, by Mezei’s theorem, that σ(K) is recognizable.

We shall see later that the converse does not hold. That is, there exist a
rational, indecomposable language K such that σ(K) is recognizable. How-
ever, Proposition 3.3 remains a powerful tool for proving that a language is not
decomposable. The most important example was already given in [5].

Proposition 3.4 (Schnoebelen) The set σ((ab)∗) is not recognizable. In par-
ticular, the language (ab)∗ is not decomposable.

Proof. Let K = (ab)∗. Suppose that

σ(K) =
⋃

1≤i≤n

Li ×Ri

Then, for every k ≥ 0, (ak, bk) ∈ σ(K) since (ab)k ∈ ak
X bk. It follows that

one of the blocks Li × Ri contains two distinct pairs (ar, br) and (as, bs) with
r 6= s. It follows that (ar, bs) also belongs to this block, and hence ar

X bs

should contain a word of (ab)∗, a contradiction.

4 Closure properties of decomposable languages

The following closure properties were established in [5], where the closure under
shuffle is credited to Arnold. For the convenience of the reader, we give a self-
contained proof.

Proposition 4.1 Decomposable languages are closed under finite union, prod-
uct and shuffle.

Proof. Let K and K ′ be decomposable languages. Let S (resp. S ′) be a
sequential and parallel system for K (resp. K ′). Then S ∪ S ′ ∪ {K ∪K ′} is a
sequential and parallel system for K ∪K ′. Let us show that

R = S ∪ S ′ ∪ {XX ′ | X ∈ S and X ′ ∈ S ′}

is a sequential and parallel system for KK ′. Assume that

σ(K) =
⋃

1≤i≤n

Li ×Ri and σ(K ′) =
⋃

1≤j≤n′

L′j ×R′
j
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Since σ is a substitution by Proposition 3.1,

σ(KK ′) =
⋃

1≤i≤n

1≤j≤n′

LiL
′
j ×RiR

′
j

Furthermore, if

τ(K) =
⋃

1≤i≤n

Li ×Ri and τ(K ′) =
⋃

1≤j≤n′

L′j ×R′
j

then
τ(KK ′) =

⋃

1≤i≤n

(Li ×RiK
′) ∪

⋃

1≤j≤n

(KL′i ×R′
i)

It follows that KK ′ is decomposable. Finally, the system

T = {X X X ′ | X ∈ S and X ′ ∈ S ′}

is a sequential and parallel system for K X K ′. Indeed, we have, with the
previous notation,

τ(K X K ′) =
⋃

1≤i≤n

1≤j≤n′

(Li X L′j)× (Ri X R′
j)

σ(K X K ′) =
⋃

1≤i≤n

1≤j≤n′

(Li X R′
i)× (Lj X R′

j)

Therefore K X K ′ is decomposable.

We establish some new closure properties. We first consider inverse mor-
phisms. We shall see later (Proposition 7.7) that decomposable languages are
not closed under inverse morphisms. However, closure under inverse morphisms
holds for a restricted class of morphisms. Recall that a morphism ϕ : A∗ → B∗ is
length preserving (or litteral, or strictly alphabetic) if each letter of A is mapped
onto a letter of B.

Lemma 4.2 Let ϕ : A∗ → B∗ be a morphism and let K be a language of B∗.
If

τ(K) =
⋃

1≤i≤n

Li ×Ri

then
τ(ϕ−1(K)) =

⋃

1≤i≤n

ϕ−1(Li)× ϕ−1(Ri)

Furthermore, if ϕ is length preserving, and if

σ(K) =
⋃

1≤i≤n

Li ×Ri

then
σ(ϕ−1(K)) =

⋃

1≤i≤n

ϕ−1(Li)× ϕ−1(Ri)
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Proof. The first result follows from the following sequence of equivalences

(u, v) ∈ τ(ϕ−1(K)) ⇐⇒ uv ∈ ϕ−1(K)

⇐⇒ ϕ(uv) ∈ K

⇐⇒ ϕ(u)ϕ(v) ∈ K

⇐⇒ for some i ∈ {1, .., n}, (ϕ(u), ϕ(v)) ∈ Li × Ri

⇐⇒ for some i ∈ {1, .., n}, (u, v) ∈ ϕ−1(Li)× ϕ−1(Ri)

If ϕ is length preserving, then a word w belongs to u X v if and only if ϕ(w)
belongs to ϕ(u) X ϕ(v). Therefore, the following sequence of equivalences
holds:

(u, v) ∈ σ(ϕ−1(K)) ⇐⇒ (u X v) ∩ ϕ−1(K) 6= ∅

⇐⇒ (ϕ(u) X ϕ(v)) ∩K 6= ∅

⇐⇒ (ϕ(u), ϕ(v)) ∈ σ(K)

⇐⇒ for some i ∈ {1, .., n}, (ϕ(u), ϕ(v)) ∈ Li ×Ri

⇐⇒ for some i ∈ {1, .., n}, (u, v) ∈ ϕ−1(Li)× ϕ−1(Ri)

This proves the second part of the lemma.

Proposition 4.3 Decomposable languages are closed under inverse of length
preserving morphisms.

Proof. Let ϕ : A∗ → B∗ be a length preserving (or letter to letter) morphism.
Let K be a decomposable language of B∗ and let S be a sequential and parallel
system for K. By Lemma 4.2, the set {ϕ−1(L) | L ∈ S} is a sequential and
parallel system for ϕ−1(K).

Proposition 4.4 Decomposable languages are closed under left and right quo-
tients.

Proof. Let S be a sequential and parallel system for L and let a ∈ A. Let

τ(L) =
⋃

1≤i≤n

Li ×Ri

Observing that {a} × a−1L ⊆ τ(L), we set

J = {j | a ∈ Lj and a−1L ∩Rj 6= ∅}

We claim that a−1L =
⋃

j∈J Rj . Indeed, if u ∈ a−1L, then au ∈ L and (a, u) ∈
τ(L). Therefore, (a, u) ∈ Lj × Rj for some j. But since a ∈ Lj and u ∈
a−1L ∩ Rj , j belongs to J . Thus u ∈

⋃

j∈J Rj . Conversely, if u ∈ Rj for some

j ∈ J , then a ∈ Lj and hence (a, u) ∈ τ(L), whence au ∈ L and u ∈ a−1L.
It follows from the claim that a−1L is a finite union of elements of S. Since

the elements of S are decomposable, a−1L is decomposable.
A symmetrical argument would show that La−1 is decomposable.

The next result was proved by in [5].
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Proposition 4.5 (Schnoebelen) Every commutative rational language is de-
composable.

Proof. Let L be a commutative rational language. We claim that τ(L) = σ(L).
Indeed, if uv ∈ L, then u X v ∩ L 6= ∅. Conversely, if u X v meets L,
there exist two facorizations u = u0u1 · · ·uk and v = v1v2 · · · vk such that
u0v1u1 · · · vkuk ∈ L. It follows, since L is commutative, that uv ∈ L. It follows
from the claim that any sequential decomposition of L is also a parallel decom-
position. Now, by Theorem 3.2, L has a sequential decomposition. Therefore,
L is decomposable.

Since, by Proposition 4.1, decomposable languages are closed under union
and product. Denote by Pol(Com) the polynomial closure of commutative lan-
guages, that is, the finite union of products of commutative languages. This class
of languages includes the finite and the cofinite languages and the languages of
concatenation level 3/2.

Theorem 4.6 (Schnoebelen) Every language of Pol(Com) is decomposable.

Schnoebelen has conjectured that a language is decomposable if and only if
it belongs to Pol(Com). We shall disprove this conjecture in several ways and
offer an improved conjecture. First, we remind the reader of a result of [4].

Theorem 4.7 (Pin-Weil) A recognizable language gelongs to Pol(Com) if and
only if its syntactic ordered monoid belongs to the positive variety [[xωyxω ≤
xω ]] M©Com.

We shall see later that decomposable languages are not closed under inter-
section. However, Arnold has shown they are closed under intersection with
a commutative recognizable language. This result is based on the following
property.

Proposition 4.8 Let K and L be languages. Then τ(K ∩ L) = τ(K) ∩ τ(L).
Furthermore, if one of the languages is commutative, σ(K ∩L) = σ(K)∩ σ(L).

Proof. The first formula follows from the following sequence of equivalent state-
ments:

(u, v) ∈ τ(K ∩ L) ⇐⇒ uv ∈ K ∩ L⇐⇒ uv ∈ K and uv ∈ L

⇐⇒ (u, v) ∈ τ(L) and (u, v) ∈ τ(K)

The inclusion σ(K∩L) ⊆ σ(K)∩σ(L) is trivial. Assume that L is commutative
and let (u, v) ∈ σ(K) ∩ σ(L). Since L is commutative, σ(L) = τ(L) and hence
uv ∈ L. Furthermore there exist a word w of K such that w = u0v1u1 · · · vnun

for some factorizations u = u0u1 · · ·un and v = v1v2 · · · vn of u and v. Now uv
and w are commutatively equivalent, and thus w ∈ K ∩L. It follows that (u, v)
belongs to σ(K ∩ L) and hence σ(K ∩ L) = σ(K) ∩ σ(L).

Corollary 4.9 (Arnold) The intersection of a decomposable language with a
commutative recognizable language is decomposable

7



Proof.

Proposition 4.8 can also be used to give a non-trivial examples of indecom-
posable language.

Proposition 4.10 Let A = {a, b, c}. The language (ab)∗cA∗ is not decompos-
able.

Proof. Let L = (ab)∗cA∗. If L is decomposable, the language

Lc−1 = (ab)∗ ∪ (ab)∗cA∗

is decomposable by Proposition ??. The intersection of this language with the
recognizable commutative language {a, b}∗ is equal to (ab)∗, and thus by Corol-
lary 4.9 (ab)∗ should also be decomposable. But this contradicts Proposition
3.4 and thus L is not decomposable.

5 Schnoebelen’s conjecture

In this section, we disprove Schoebelen’s conjecture by giving an example of a
decomposable language which is not a finite union of products of commutative
languages.

Let u and v be two words of A. A word u = a1a2 · · · ak is said to be a subword
of v if v can be factorized as v = v0a1v1 · · · akvk where v0, v1, . . . , vk ∈ A∗.
Following Eilenberg [2], we set

(

v

u

)

= Card{(v0, v1, . . . , vk) ∈ A∗ ×A∗ × · · · ×A∗ | v0a1v1 · · · akvk = v}

Thus
(

v
u

)

is the number of distinct ways to write u as a subword of v. For

instance,
(

aabbaa
aba

)

= 8 and
(

an

am

)

=
(

n
m

)

. The basic properties of these binomial
coefficients are summarized by the following formulae

(1) For every word u ∈ A∗,
(

u
1

)

= 1.

(2) For every non-empty word u ∈ A∗,
(

1
u

)

= 0.

(3) If w = uv, then
(

w
x

)

=
∑

x1x2=x

(

u
x1

)(

v
x2

)

.

Let A = {a, b} be an alphabet, and let K be the language of words x over the
alphabet A such that

(

x

ab

)

≡ 1 mod 2. The minimal automaton of this language
is represented in Figure 5.1.
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Figure 5.1: An automaton for M .

The syntactic monoid of K is a non-abelian group with eight elements.
For i, j, k ∈ {0, 1} and c ∈ A, let us set

M i,j
k =

{

x ∈ A∗ | |x|a ≡ i mod 2, |x|b ≡ j mod 2 and

(

x

ab

)

≡ k mod 2
}

M i,j =
{

x ∈ A∗ | |x|a ≡ i mod 2, |x|b ≡ j mod 2
}

M i,j
c = M i,j ∩ A∗cA∗

Let F be the set of languages that are finite union of languages of the form
M i,j

k , M i,j
c or {1}. Observe that, since

M i,j = M i,j
0 ∪M i,j

1

M i,j belongs to F . We claim that F is a sequential and parallel system. We
first show it is a sequential system by proving that the languages M i,j

k , M i,j
c or

{1} have a sequential decomposition over F . This is the purpose of the next
proposition.

Proposition 5.1

(a) τ(1) = {1} × {1}

(b) For i, j, k ∈ {0, 1},

τ(M i,j
h ) =

⋃

k+m≡i mod 2
`+n≡j mod 2

h≡p+q+kn mod 2

(Mk,`
p ×Mm,n

q ) (2)

(c) For i, j ∈ {0, 1}, and any c ∈ A,

τ(M i,j
c ) =

⋃

k+m≡i mod 2
`+n≡j mod 2

(Mk,`
c ×Mm,n)

⋃

k+m≡i mod 2
`+n≡j mod 2

(Mm,n ×Mk,`
c ) (3)

Proof. (a) is trivial.
(b) Let (u, v) ∈ τ(M i,j

h ), that is, uv ∈ M i,j
h . Define k, `,m, n, p, q ∈ {0, 1} by

the conditions |u|a ≡ k mod 2, |u|b ≡ ` mod 2,
(

u
ab

)

≡ p mod 2, |v|a ≡ m mod 2,

|v|b ≡ n mod 2 and
(

v
ab

)

≡ q mod 2. By definition, u ∈ Mk,`
p and v ∈ Mm,n

q .

9



Furthermore, since |uv|a ≡ i mod 2 and |uv|b ≡ j mod 2, k +m ≡ i mod 2 and
`+ n ≡ j mod 2. Finally, since

(

u

ab

)

≡ h mod 2, the formula

(

uv

ab

)

≡

(

u

ab

)

+

(

v

ab

)

+ |u|a|v|b ≡ p+ q + kn mod 2 (4)

shows that p+ q + kn ≡ h mod 2. This proves that (u, v) belongs to the right
hand side of (2).

In the opposite direction, let u ∈Mk,`
p and v ∈Mm,n

q , with k+m ≡ i mod 2,
` + n ≡ j mod 2 and h ≡ p + q + kn mod 2. Then |uv|a ≡ k + m ≡ i mod 2,
|uv|b ≡ `+ n ≡ j mod 2, and, by Formula (4),

(

u
ab

)

≡ p+ q + kn ≡ h mod 2.
(c) Let (u, v) ∈ τ(M i,j

c ), that is, uv ∈M i,j
c . Define k, `,m, n ∈ {0, 1} by the

conditions |u|a ≡ k mod 2, |u|b ≡ ` mod 2, |v|a ≡ m mod 2 and |v|b ≡ n mod 2.
Since |uv|a ≡ i mod 2 and |uv|b ≡ j mod 2, the relations k +m ≡ i mod 2 and
`+n ≡ j mod 2 hold. Furthermore, since uv ∈M i,j

c , the letter c occurs at least
once in uv. Thus it occurs in u or in v and hence (u, v) ∈ (Mk,`

c ×Mm,n) ∪
(Mm,n ×Mk,`

c ).
In the opposite direction, let u ∈Mk,`

c and v ∈Mm,n, with k+m ≡ i mod 2
and `+ n ≡ j mod 2 (the proof would be similar for u ∈ Mk,` and v ∈ Mm,n

c ).
Then |uv|a ≡ k + m ≡ i mod 2, |uv|b ≡ ` + n ≡ j mod 2, and since |u|c > 0,
|uv|c > 0 and uv ∈M i,j

c , that is, (u, v) ∈ τ(M i,j
c ).

We now prove that F is a parallel system. The proof relies on a simple, but
useful observation.

Lemma 5.2 For any words x, y ∈ A∗,
(

xaby

ab

)

=
(

xbay

ab

)

+ 1.

Proof. We have on the one hand
(

xaby

ab

)

=
(

y

ab

)

+
(

xa

a

)(

by

b

)

+
(

x

ab

)

=
(

y

ab

)

+ (|x|a + 1)(|y|b + 1) +
(

x

ab

)

and, on the other hand
(

xbay

ab

)

=
(

ay

ab

)

+
(

xb

a

)(

ay

b

)

+
(

xb

ab

)

=
(

y

ab

)

+ |y|b + |x|a|y|b + |x|a +
(

x

ab

)

which proves the lemma.

Proposition 5.3

(a) σ(1) = {1} × {1}

(b) For any i, j ∈ {0, 1},

σ(M i,j
0 ) =

⋃

k+m≡i mod 2
`+n≡j mod 2

(Mk,` ×Mm,n) (5)

(c) For any i, j ∈ {0, 1},

σ(M i,j
1 ) =

⋃

k+m≡i mod 2
`+n≡j mod 2

(

(Mk,`
a ×Mm,n

b ) ∪ (Mk,`
b ×Mm,n

a )
)

∪ ({1} ×M i,j
1 ) ∪ (M i,j

1 × {1}) (6)

10



(d) For any i, j ∈ {0, 1}, for any c ∈ A, σ(M i,j
c ) = τ(M i,j

c ).

Proof. (a) is trivial.
(b) Let (u, v) ∈ σ(M i,j

0 ), and let w ∈ (u X v) ∩M i,j . Define k, `,m, n ∈ {0, 1}
by the conditions |u|a ≡ k mod 2, |u|b ≡ ` mod 2, |v|a ≡ m mod 2 and |v|b ≡
n mod 2. Then (u, v) ∈ Mk,` ×Mm,n. Furthermore, since |w|a ≡ i mod 2 and
|w|b ≡ j mod 2, the relations k +m ≡ i mod 2 and `+ n ≡ j mod 2 hold. Thus
(u, v) belongs to the right hand side of (5).

Conversely, let (u, v) ∈ Mk,` ×Mm,n with k + m ≡ i mod 2 and ` + n ≡
j mod 2. First, if (u, v) ∈ (A∗aA∗ ×A∗bA∗) ∪ (A∗bA∗ ×A∗aA∗), then {u, v} =
{(x1ay1, x2by2)} for some words x1, x2, y1, y2 ∈ A∗. Setting x = x1x2 and
y = y1y2, the set u X v contains the words xaby and xbay. Note that |xaby|a =
|xbay|a = |uv|a ≡ i mod 2 and |xaby|b = |xbay|b = |uv|b ≡ i mod 2. It follows
by Lemma 5.2 that one of these words is in M i,j

0 and thus (u, v) ∈ σ(M i,j
0 ). If

now, (u, v) /∈ (A∗aA∗ × A∗bA∗) ∪ (A∗bA∗ × A∗aA∗), then (u, v) ∈ (a∗ × a∗) ∪
(b∗ × b∗) and thus

(

uv
ab

)

= 0. Therefore uv ∈M i,j
0 and (u, v) ∈ σ(M i,j

0 ).

(c) The proof of is quite similar to that of (b). Let (u, v) ∈ σ(M i,j
1 ), and let

w ∈ (u X v) ∩M i,j . Since
(

w
ab

)

≡ 1 mod 2, |w|a > 0 and |w|b > 0.
(d) holds, since M i,j

c is a commutative language.

Theorem 5.4 The language K is decomposable.

Proof. Indeed, K belongs to the parallel and sequential system F , since K =
⋃

0≤i,j≤1 M
i,j
1 .

It remains to show that K does not belong to Pol(Com). By Theorem
4.7, the syntactic monoid of a language of Pol(Com) belongs to the variety
[[xωyxω ≤ xω ]] M©Com. But this variety is contained in A M©Com and, by
a well-known result, every group in this variety is commutative. Since the
syntactic monoid of K is a non-commutative group, K is not in Pol(Com).

6 Non decomposable languages

In this section, we give several examples of non decomposable languages. We
first generalize Proposition 3.4 to a larger class of languages.

Proposition 6.1 Let u and v be two words of A∗ such that uv 6= vu. Then
σ((uv)∗) is not recognizable. In particular, the language (uv)∗ is not recogniz-
able.

Proof. We first remind the reader with a classical result of combinatorics on
words (see [3]): two words commute if and only if they are powers of the same
word. Next we claim that σ((uv)∗) is recognizable if and only if σ((vu)∗) is
recognizable. Indeed, (vu)∗ = {1} ∪ v(uv)∗u and since σ is a substitution,

σ((vu)∗) = σ(1) ∪ σ(v)σ((uv)∗)σ(u)

Now σ(1), σ(u) and σ(v) are finite and, by Mezei’s theorem, belong to Rec(A∗×
A∗). Furthermore, Rec(A∗ ×A∗) is closed under union and product. It follows

11



that if σ((uv)∗) is recognizable, so is σ((vu)∗). The converse also holds by
duality, which proves the claim.

We can now assume, without loss of generality, that |u| ≤ |v|. LetK = (uv)∗.
If σ(K) is recognizable, it can be written as a finite union of blocks L×R, where
L,R ∈ Rec(A∗). For each n ≥ 0, (uv)n ∈ un

X vn, and hence (un, vn) ∈ σ(K).
Therefore, there exists a block L×R such that the set

S = {n ∈ N | (un, vn) ∈ L×R}

is infinite. Let s = minS. By assumption, we have us ∈ L and vn ∈ R for each
n ∈ S and thus (us

X vn) ∩ (uv)∗ 6= ∅.
Let us fix n ≥ 4s|u| and let k be such that (uv)k ∈ us

X vn. There exist
two factorizations us = x0 · · ·x`+1 and vn = y1 · · · y` such that x0, x`+1 ∈ A∗,
x1, y1, . . . , x`, y` ∈ A+ and x0y1x1 · · ·x`y`x`+1 = (uv)k. It follows, by the choice
of n

|y1 · · · y`| = n|v| ≥ 4s|u||v|

Now, since ` ≤ |x1 · · ·x`| ≤ s|u|, one of the words yi has length ≥ 4|v|. Now,
since yi is a factor of (uv)k and since |u| ≤ |v|, yi contains vuv as a factor. At
the same time, yi is a factor of vn of length ≥ 4|v|, that is, a factor of v5. It
follows that vuv is a factor of v5. Let us write v as the power of some primitive
word, say v = tp. Then tut is a factor of vuv, which is in turn a factor of
t5p. Now, a primitive word cannot have any conjugate, which means that if
t5p = xtuty, then x and y are necessarily powers of t. But this forces u itself to
be a power of t, a contradiction, since u and v are not powers of the same word.
Thus σ(K) is not recognizable.

7 Inverse morphisms

In this section, we show that decomposable languages are not closed under
inverse morphisms.

Let L be the language defined over the alphabet A = {a, b} by the following
regular expression:

L = (aab)∗ ∪ A∗b(aa)∗abA∗

We claim that this language is decomposable. The minimal automaton of L is
represented in Figure 7.2.
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a
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a
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a
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b

b

a
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b

a

b

a

b

a, b

Figure 7.2: The minimal automaton of L.

Its ordered syntactic monoid (M,≤) is presented by the relations bbb = bb,
aaab = abb, aabb = bb, abab = 0, baaa = bba, baab = b, bab = 0, bbaa = bb,
bbab = 0 and aaaaa = aaa. Thus M contains the elements

{1, a, b, a2, ab, ba, b2, a3, a2b, aba, ab2, ba2, bab, b2a, a4, a2ba, aba2, ab2a, a2ba}

The order relation is defined by 0 ≤ x for all x ∈ M and 1 < a4, a < a3,
a2ba < a, aba2 < a, b < bb, a2 < a4, abba < a2, a2ba2 < a2, ab < abb, ba < bba,
a2b < bb, ba2 < bb, bb < a4, a2ba2 < bb, abb < a3, bba < a3, aba < abba,
aba2 < abb, ba2 < a4 and a2ba < bba.

The J -class structure of M is shown in Figure 7.3.
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∗1

a

aa

a3, ∗a4

∗b2 b2a

ab2 ∗ab2a

b ba ∗ba2

ab ∗aba aba2

∗a2b a2ba a2ba2

∗bab

Figure 7.3: The J -class structure of M .

The order relation of (M,≤) is shown in Figure 7.4.
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bab

ba a2ba aba2 ab aba a2ba2 ba2 a2b b 1

b2a a ab2

a3 a4

ab2a

a2 b2

Figure 7.4: The order of M .

We now show that L is decomposable by constructing, step by step, a parallel
and sequential system containing L. First, consider the automaton A repre-
sented in Figure 7.5.

1 2

3

a

ab

Figure 7.5: The automaton A.

Let Ki,j be the language accepted by A with i as initial state and j as the
only final state. These languages are K1,1 = (aab)∗, K1,2 = (aab)∗a, K1,3 =
(aab)∗aa, K2,1 = (aba)∗ab, K2,2 = (aba)∗, K2,3 = (aba)∗a, K3,1 = (baa)∗b,
K3,2 = (baa)∗ba and K3,3 = (baa)∗. In the next proposition, we compute the
image by τ of these languages.
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Proposition 7.1 For 1 ≤ i, j ≤ 3,

τ(Ki,j) =
⋃

1≤k≤3

(Ki,k ×Kk,j)

Proof. If (u, v) ∈ τ(Ki,j), then uv ∈ Ki,j , and thus i · uv = j in A. Setting
k = i · u, we have k · v = j and thus u ∈ Ki,k and v ∈ Kk,j . In the opposite
direction, if u ∈ Ki,k and v ∈ Kk,j , then i ·u = k and k · v = j, whence i ·uv = j
and uv ∈ Ki,j .

Let L0 = A∗b(aa)∗abA∗. We first compute the image of L0 under σ and τ .

Proposition 7.2

τ(L0) = (A∗ × L0) ∪ (L0 ×A∗) ∪ (A∗b(aa)∗ × a(aa)∗bA∗)∪

(A∗b(aa)∗a× (aa)∗bA∗)

Proof. Let (u, v) ∈ τ(L0), that is, uv ∈ L0. First suppose that u ∈ L0 or
v ∈ L0, this implies that (u, v) ∈ (A∗×L0) or (u, v) ∈ (L0×A∗). Otherwise we
can write uv as u1b(aa)

nabv1 where n ≥ 0, u1 is a prefix of u and v1 is a suffix of
v, and then (u, v) ∈ (A∗b(aa)∗×a(aa)∗bA∗) or (u, v) ∈ (A∗b(aa)∗a× (aa)∗bA∗).
In the opposite direction, if u ∈ L0 its clear that for any v ∈ A∗, uv, vu ∈ L0.
Now suppose that u = u1b(aa)

n and v = a(aa)mbv1 (resp. u = u1(aa)
na and

v = (aa)mbv1) for some n,m ≥ 0, then uv ∈ L0.

Proposition 7.3

σ(L0) = (L0 ×A∗) ∪ (A∗ × L0) ∪ (A∗aA∗bA∗ ×A∗bA∗)

∪ (A∗bA∗aA∗ ×A∗bA∗) ∪ (A∗bA∗bA∗ ×A∗aA∗)

∪ (A∗bA∗ ×A∗aA∗bA∗) ∪ (A∗bA∗ ×A∗bA∗aA∗)

∪ (A∗aA∗ ×A∗bA∗bA∗)

Proof. If (u, v) ∈ σ(L0), then by definition (u X v) ∩ L0 6= ∅. Let us take
some w ∈ (u X v) ∩ L0. By definition of L0, w can be decomposed as w =
w1w2w3, where w1, w3 ∈ A∗ and w2 = banb with n odd. Since w ∈ u X v,
w2 can be written as w2 = u1v1 · · ·unvn with ui, vi ∈ A∗ for 1 ≤ i ≤ n, u =
u0u1 · · ·unun+1 and v = v0v1 · · · vnvn+1 for some u0, v0, . . . , un+1, vn+1 ∈ A∗.
Let us consider the words u = u1 · · ·un and v = v1 · · · vn. Since w2 = banb, the
words u and v can take the following values, where n = n1 + n2:

(1) u = ban1b and v = an2

(2) u = an1 and v = ban2b

(3) u = ban1 and v = an2b

(4) u = an1b and v = ban2

Let R be the right hand side of the equality to be proved. We show that σ(L0)
is a subset of R by considering the four cases separately.
Case (1). If n1 is odd, then u ∈ L0, and so (u, v) ∈ (L0×A∗), otherwise, if n1 is
even, and n1 +n2 is odd, we have n2 > 0, and then (u, v) ∈ A∗bA∗bA∗×A∗aA∗.
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Case (2). A proof similiar to that of case (1) shows that (u, v) belongs either to
A∗ × L0 or to A∗aA∗ ×A∗bA∗bA∗.
Case (3). If n1 > 0, (u, v) ∈ A∗bA∗aA∗ × A∗bA∗. Otherwise, since n1 + n2 is
odd, n2 > 0 and then (u, v) ∈ A∗bA∗ ×A∗aA∗bA∗.
Case (4). A proof similiar to that of case (3) shows that (u, v) belongs either to
A∗bA∗ ×A∗bA∗aA∗ or to A∗aA∗bA∗ ×A∗bA∗.

We now prove that R is a subset of σ(L0). If (u, v) ∈ (L0 × A∗) ∪ (A∗ ×
L0), it is clear that (u X v) ∩ L0 6= ∅. Suppose that (u, v) ∈ (A∗aA∗bA∗ ×
A∗bA∗). Observing that A∗aA∗bA∗ = A∗abA∗, the word u can be decomposed
as u = u1abu2 with u1, u2 ∈ A∗, and v can be decomposed as v = v1bv2 with
v1, v2 ∈ A∗. Now v1u1babv2 ∈ (u X v) ∩ L0 and thus (u, v) ∈ σ(L0). The
proof is similar if (u, v) belongs to A∗bA∗aA∗ ×A∗bA∗, A∗bA∗ ×A∗bA∗aA∗ or
A∗bA∗ ×A∗aA∗bA∗.

Finally, if (u, v) ∈ A∗bA∗bA∗ × A∗aA∗, then u can be decomposed as u =
u1ba

nbu2 with n ≥ 0, u1, u2 ∈ A∗, and v can be decomposed as v = v1av2 with
v1, v2 ∈ A∗. If n is even, u and v can be shuffled as u1v1ba

(n+1)bv2u2, a word
of L0, otherwise, u and v can be shuffled as u1v1ba

nbav2u2, another word of
L0. Thus (u, v) ∈ σ(L0) in both cases. The proof for A∗aA∗ × A∗bA∗bA∗ is
similar.

For 1 ≤ i, j ≤ 3, define the languages Li,j as the union of L0 with the
language Ki,j . We first compute the image of these languages under τ .

Proposition 7.4 For 1 ≤ i, j ≤ 3,

τ(Li,j) = τ(L0) ∪
⋃

1≤k≤3

(Li,k × Lk,j)

Proof. Let R be the right handside of the relation to be proved. Since Li,j =
L0 ∪ Ki,j , τ(Li,j) = τ(L0) ∪ τ(Ki,j). Now, by Proposition 7.1, τ(Ki,j) =
⋃

1≤k≤3(Ki,k ×Kk,j), and since each Ki,j is a subset of Li,j , τ(Ki,j) is a subset
of R. It follows that τ(Li,j) is a subset of R.

We now prove the opposite inclusion. Since L0 is a subset of Li,j , τ(L0) is a
subset of τ(Li,j). Furthermore, if (u, v) ∈ Li,k×Lk,j for some k, two possibilities
arise. First, if u ∈ L0 or v ∈ L0 then (u, v) ∈ τ(L0) and hence (u, v) ∈ τ(Li,j).
Otherwise, u ∈ Ki,k, v ∈ Kk,j , uv ∈ Ki,j and thus (u, v) ∈ τ(Li,j).

In order to compute the image of the languages Li,j under σ, we introduce
the languages

Mi,j = Ki,j ∩ a
∗(b ∪ 1)a∗

These languages are clearly finite and thus decomposable, and they belong to
some parallel and sequential systems S(Mi,j).

Proposition 7.5 For 1 ≤ i, j ≤ 3,

σ(Li,j) = σ(L0) ∪ σ(Mi,j) ∪ (Li,j × {1}) ∪ ({1} × Li,j)

Proof. If (u, v) ∈ σ(Li,j), then (u X v)∩Li,j 6= ∅. First, if u = 1 or v = 1 then
(u, v) ∈ (Li,j × {1}) ∪ ({1} × Li,j). Now, suppose that u and v are non-empty
words.
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If |u|b + |v|b < 2 then necessarily (u, v) ∈ σ(Mi,j). Suppose that |u|b + |b|v ≥
2. We claim that (u, v) ∈ (A∗aA∗bA∗ × A∗bA∗) ∪ (A∗bA∗aA∗ × A∗bA∗) ∪
(A∗bA∗bA∗×A∗aA∗)∪(A∗bA∗×A∗aA∗bA∗)∪(A∗bA∗×A∗bA∗aA∗)∪(A∗aA∗×
A∗bA∗bA∗) ⊆ σ(L0). Since u and v are both non-empty, they contain at least
one letter. If u and v are equal to b, (u X v) ∩ L0 = ∅, and so u or v
contains the letter a and since |u|b + |v|b < 2 the result holds. Conversely, if
(u, v) ∈ σ(L0) ∪ σ(Mi,j) ∪ (Li,j × {1}) ∪ ({1} × Li,j) by the definition of Mi,j ,
Proposition 7.3 and the definition of Li,j , (u, v) ∈ σ(Li,j).

We are now ready to show that L is decomposable. By Theorem 4.6, all
languages which are products of commutative languages are decomposable. In
particular, the following languages are decomposable: A∗b(aa)∗, (aa)∗abA∗,
A∗b(aa)∗a and (aa)∗bA∗, A∗aA∗bA∗, A∗bA∗aA∗, A∗bA∗bA∗, A∗aA∗ and A∗bA∗.

Theorem 7.6 The language L is decomposable.

Proof. Let us define a system S consisting of the unions of the following lan-
guages: L0, {1}, A∗, Li,j , for 1 ≤ i, j ≤ 3 and the languages of the sys-
tems S(A∗b(aa)∗), S((aa)∗abA∗), S(A∗b(aa)∗a), S((aa)∗bA∗), S(A∗aA∗bA∗),
S(A∗bA∗aA∗), S(A∗bA∗bA∗), S(A∗aA∗), S(A∗bA∗) and S(Mi,j) for 1 ≤ i, j ≤
3. Note that L belongs to S since L = L1,1.

It remains to show that for any language L′ of S, τ(L′) and σ(L′) can
be written as the union of languages (M × N) where M and N belong to S.
For L0, the result follows from Propositions 7.2 and 7.3. For Li,j , the result
follows from Propositions 7.4 and 7.5. Clearly, τ({1}) = σ({1}) = ({1} × {1})
and σ(A∗) = τ(A∗) = (A∗ × A∗). For any language of the systems described
above, its image under τ and σ can be obtained from the languages of these
systems, because they are parallel and sequential systems. Finally, since for any
language N1, N2, the formulas τ(N1 ∪N2) = τ(N1) ∪ τ(N2) and σ(N1 ∪N2) =
σ(N1) ∪ σ(N2) hold, the system S is a parallel and sequential system.

Proposition 7.7 Decomposable languages are not closed under inverse mor-
phism.

Proof. Let A = {a, b} and let ϕ : A∗ → A∗ be the morphism of monoids
defined by ψ(a) = aa and ψ(b) = b. If L = (aab)∗ ∪ A∗b(aa)∗abA∗, then
ϕ−1(L) = (ab)∗. Now L is decomposable by Theorem 7.6 but, by Proposition
3.4, ϕ−1(L) is not.

Corollary 7.8 Decomposable languages do not form a positive variety of lan-
guages.

8 Intersection

In this section, we show that decomposable languages are not closed under
intersection.
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Let L1 and L2 be languages defined over the alphabet A = {a, b} by the
following regular expressions:

L1 = (ab)+ ∪ (ab)∗bA∗

L2 = (ab)+ ∪ (ab)∗aaA∗

We claim that these two languages are decomposable. The minimal automata
for L1 and L2 are represented in Figure 8.6.

1

2 3

4 5

1

2 3

4 5

a

b

ab

a

b

a, b a, b

a

b

ab

a

b

a, b a, b

Figure 8.6: Automata for L1 (on the left) and L2 (on the right).

The languages L1 and L2 have the same syntactic monoid M but different
syntactic order relations, denoted respectively by ≤L1

and ≤L2
. The monoid M

is presented by the relations aaa = aa, aab = aa, aba = a, baa = abb, bab = b,
bba = bb and bbb = bb. Thus M contains the elements

{1, a, b, ab, ba, aa, baa, bb}

The J -class structure of M is shown in Figure 8.7.
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∗1

∗ab a

b ∗ba

∗aa

∗baa

∗bb

Figure 8.7: The J -class structure of M .

The order relation ≤L1
is defined by bb ≤L1

b, b ≤L1
ba, ba ≤L1

1, ba ≤L1

abb, 1 ≤L1
ab, abb ≤L1

ab, ab ≤L1
a and a ≤L1

aa. The order relation ≤L2
is

defined by aa ≤L2
ab, aa ≤L2

a, ab ≤L2
1, ab ≤L2

abb, a ≤L2
abb, 1 ≤L2

ba,
abb ≤L2

ba, abb ≤L2
b, ba ≤L2

bb and b ≤L2
bb. Both relations, ≤L1

and ≤L2
,

are represented in Figure 8.8.
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aa

a

ab

1 abb

ba

b

bb aa

aab

1 abb

ba b

bb

Figure 8.8: Order relations for L1 (on the left) and L2 (on the right).

We now show that L1 are L2 are decomposable by constructing, step by step,
a parallel and sequential system containing then. First, consider the automaton
A represented in Figure 8.9.

1 2

3 4

b a

a

b

a, b a, b

Figure 8.9: The automaton A.

Let Li,j by the language of non-empty words accepted by A with i as initial
state and j as the only final state. Let Li,j,k by the language of non-empty
words accepted by A with i as initial state and j and k as final states. We are
interested in the languages Li,k with 1 ≤ i ≤ 2, 3 ≤ k ≤ 4 and in the languages
Li,j,k with 1 ≤ i, j ≤ 2, 3 ≤ k ≤ 4. These languages are L1,3 = (ab)∗bA∗, L1,4 =
(ab)∗aaA∗, L2,3 = (ba)∗bbA∗, L2,4 = (ba)∗aA∗, L1,1,3 = (ab)+ ∪ (ab)∗bA∗ = L1,
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L1,1,4 = (ab)+ ∪ (ab)∗aaA∗ = L2, L1,2,3 = (ab)∗a ∪ (ab)∗bA∗, L1,2,4 = (ab)∗a ∪
(ab)∗aaA∗, L2,1,3 = (ba)∗b ∪ L2,3 = (ba)∗bbA∗, L2,1,4 = (ba)∗b ∪ (ba)∗aA∗,
L2,2,3 = (ba)+ ∪ (ba)∗bbA∗ and L2,2,4 = (ba)+ ∪ (ba)∗aA∗.

Let us calculate τ for these languages.

Proposition 8.1 For 1 ≤ i, j ≤ 2, 3 ≤ k ≤ 4,

τ(Li,j,k) = ({1} × Li,j,k) ∪ (Li,k,j × {1}) ∪ (Li,k ×A∗)
⋃

1≤`≤2

(Li,`,k × L`,j,k)

Proof. If (u, v) ∈ τ(Li,j,k) for 1 ≤ i, j ≤ 2 and 3 ≤ k ≤ 4, then uv ∈ Li,j or
uv ∈ Li,k. It is clear that if u = 1 (resp. v = 1), then (u, v) ∈ ({1} × Li,j,k)
(resp. (u, v) ∈ Li,j,k×{1}). So, from now on, we suppose that u 6= 1 and v 6= 1.
If uv ∈ Li,j , then i · uv = j in A. Setting ` = i · u, we have ` · v = j and since
u and v are non-empty, u ∈ Li,` ⊆ Li,`,k and v ∈ L`,j ⊆ L`,j,k. Furthermore,
by the structure of the automaton A, one can see that either 1 ≤ ` ≤ 2, or
uv ∈ Li,k. In the latter case, i ·uv = k. Since u and v are non-empty, by setting
` = i · u, we have ` · v = k. Then, we have two possibilities, 1 ≤ ` ≤ 2 or ` = k.
If 1 ≤ ` ≤ 2, then u ∈ Li,` ⊆ Li,j,` and thus v ∈ L`,k ⊆ L`,j,k. On the other
hand, if ` = k, one has u ∈ Li,k and v ∈ A∗.

In the opposite direction, it is clear that if (u, v) ∈ ({1} × Li,j,k) ∪ (Li,j,k ×
{1}), then uv ∈ Li,j,k. If (u, v) ∈ (Li,k×A∗) for 3 ≤ k ≤ 4, then i ·u = k. Since
k ·v = k, it follows that i ·uv = k, and thus uv ∈ Li,k ⊆ Li,j,k for any 1 ≤ j ≤ 2.
Finally, if (u, v) ∈ (Li,`,k × L`,j,k) for 1 ≤ i, j, ` ≤ 2 and 3 ≤ k ≤ 4, then we
have two possibilities u ∈ Li,k or u ∈ Li,`. If u ∈ Li,k, them uv ∈ Li,j,k since
(Li,k × A∗) ⊆ τ(L). Otherwise, if u ∈ Li,`, then i · u = ` and since v ∈ L`,j,k,
`·v = j or `·v = k, and so i·uv = j or i·uv = k. In other words, uv ∈ Li,j,k.

Proposition 8.2 For 1 ≤ i ≤ 2, 3 ≤ k ≤ 4,

τ(Li,k) = ({1} × Li,k) ∪ (Li,k ×A∗)
⋃

1≤`≤2

(Li,`,k × L`,k)

Proof. Suppose that (u, v) ∈ τ(Li,k) for 1 ≤ i ≤ 2 and 3 ≤ k ≤ 4, then
uv ∈ Li,k. It is clear that if u = 1, then (u, v) ∈ ({1} × Li,k). So, from now on,
we suppose that u 6= 1. Since uv ∈ Li,k, we have that i · uv = k. Since u if not
the empty word, by setting ` = i · u, we have that ` · v = k. Now, we have two
possibilities, 1 ≤ ` ≤ 2 or ` = k. If 1 ≤ ` ≤ 2, then u ∈ Li,` ⊆ Lilk and thus
v ∈ L`,k. Otherwise if ` = k, we have that i · u = k, and so, for any v ∈ A∗,
i · uv = k, that is v ∈ A∗.

In the opposite direction, it is clear that if (u, v) ∈ ({1} × Li,j,k), then
uv ∈ Li,k. If (u, v) ∈ (Li,k×A∗) for 3 ≤ k ≤ 4, then i ·u = k, and since k ·v = k,
it follows that i · uv = k, and so uv ∈ Li,k. Now, if (u, v) ∈ (Li,`,k × L`,k) for
1 ≤ i, j ≤ 2 and 3 ≤ k ≤ 4 , we have two possibilities u ∈ Li,k or u ∈ Li,`. If
u ∈ Li,k then (u, v) ∈ τ(Li,k). Finally, if u ∈ Li,` this implies that i · u = `,
and since v ∈ L`,k, ` · v = k, that implies i · uv = k that is uv ∈ Li,k.

Now, let us calculate σ for these languages.
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Proposition 8.3

(1) σ(L1,3) = σ((ab)∗bA∗) = ((ab)∗bA∗ × A∗) ∪ (A∗ × (ab)∗bA∗)

(2) σ(L2,4) = σ((ba)∗aA∗) = ((ba)∗aA∗ ×A∗) ∪ (A∗ × (ba)∗aA∗)

Proof. Let us prove (1). It is clear that if (u, v) ∈ ((ab)∗bA∗ × A∗) ∪ (A∗ ×
(ab)∗bA∗), then (u X v)∩(ab)∗bA∗ 6= ∅. Now, suppose that (u, v) /∈ ((ab)∗bA∗×
A∗) ∪ (A∗ × (ab)∗bA∗), that is, u /∈ (ab)∗bA∗ and v /∈ (ab)∗bA∗, then u, v ∈
(ab)∗ ∪ (ab)∗a∪ (ab)∗aaA∗. And since

(

(ab)∗ ∪ (ab)∗a∪ (ab)∗aaA∗
)

X
(

(ab)∗ ∪

(ab)∗a ∪ (ab)∗aaA∗
)

= (ab)∗ ∪ (ab)∗a ∪ (ab)∗aaA∗, the result holds.
The proof for (2) is similar by swapping the letters a and b.

Proposition 8.4

(1)

σ(L14) = σ((ab)∗aaA∗) =((ab)∗aaA∗ ×A∗) ∪ (A∗ × (ab)∗aaA∗)

∪ ((ba)∗aA∗ × aA∗) ∪ (aA∗ × (ba)∗aA∗)

(2)

σ(L23) = σ((ba)∗bbA∗) =((ba)∗bbA∗ ×A∗) ∪ (A∗ × (ba)∗bbA∗)

∪ (bA∗ × (ab)∗bA∗) ∪ ((ab)∗bA∗ × bA∗)

Proof. Let us prove (1). It is clear that if (u, v) ∈ ((ab)∗aaA∗ × A∗) ∪ (A∗ ×
(ab)∗aaA∗), then (u X v) ∩ (ab)∗aaA∗ 6= ∅. On the other hand, if (u, v) ∈
(aA∗ × (ba)∗aA∗) ∪ ((ba)∗aA∗ × aA∗), then u = au′ and v = (ba)nav′ (resp.
u = (ba)nau′ and u = au′) for some n ≥ 0, and then a(ba)nau′v′ ∈ (ab)∗aaA∗,
that is (u X v) ∩ (ab)∗aaA∗ 6= ∅. Now, suppose that (u, v) ∈ σ((ab)∗aaA∗),
this implies that there exists w ∈ u X v such that, w ∈ (ab)∗aaA∗. If u = 1
(resp. v = 1) then (u, v) ∈ (A∗ × (ab)∗aaA∗) (resp. (u, v) ∈ ((ab)∗aaA∗ ×A∗)).
Then, suppose that u 6= 1 and v 6= 1. Now, if u = bu′ and v = bv′ for some
u′, v′ ∈ A∗, w = bw′ for some w′ ∈ A∗, and so w /∈ (ab)∗aaA∗. Now, if u = au′

and v = av′ for some u′, v′ ∈ A∗, then (u, v) ∈ (aA∗ × (ba)∗aA∗). Finally,
suppose that u = au′ and v = bv′ for some u′, v′ ∈ A∗. If u ∈ (ab)∗aaA∗, then
(u, v) ∈ ((ab)∗aaA∗×A∗), and if v ∈ (ba)+aA∗, then (u, v) ∈ (aA∗× (ba)∗aA∗).
So let us suppose that u /∈ (ab)∗aaA∗ and v /∈ (ba)∗aA∗. Then, necessarily
u ∈ (ab)+∪(ab)∗a∪(ab)∗bA∗ and v ∈ (ba)+∪(ba)∗b∪(ba)∗bbA∗, and then since,
(

(

(ab)+ ∪ (ab)∗a∪ (ab)∗bA∗
)

X
(

(ba)+ ∪ (ba)∗b∪ (ba)∗bbA∗
)

)

∩ (ab)∗aaA∗ = ∅

the result holds. The proof for u = bu′ and v = av′ for some u′, v′ ∈ A∗ is
similar.

The proof for (2) is similar but changing the letters a by b and b by a.

Proposition 8.5

(1) σ(L1,1,3) = σ((ab)+ ∪ (ab)∗bA∗) = σ((ab)∗bA∗) ∪ (L1,1,3 × L1,1,3)

(2) σ(L2,2,4) = σ((ba)+ ∪ (ba)aA∗) = σ((ba)aA∗) ∪ (L2,2,4 × L2,2,4)
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Proof. Let us prove (1). If (u, v) ∈ σ((ab)∗bA∗), then by definition (u, v) ∈
σ((ab)+ ∪ (ab)∗bA∗). On the other hand if (u, v) ∈ (L1,1,3×L1,1,3) we have two
possibilities. If u ∈ L1,3 = (ab)∗bA∗ (resp. v ∈ L1,3 = (ab)∗bA∗) we know by
Proposition 8.3 that (u, v) ∈ σ(L1,3). Then, suppose that (u, v) ∈ (ab)+×(ab)+,
this implies that (u X v) ∩ (ab)+ 6= ∅, that is, (u X v) ∩ L1,1,3 6= ∅, since
uv ∈ (ab)+.

In the opposite direction. Let (u, v) ∈ σ(L1,1,3). If (u X v) ∩ (ab)∗bA∗ 6= ∅,
then the result holds by definition. So, let us suppose that (u X v)∩(ab)∗bA∗ =
∅, then by Proposition 8.3, necessarily, (u, v) ∈

(

(ab)+ ∪ (ab)∗a ∪ (ab)∗aaA∗
)

×
(

(ab)+∪ (ab)∗a∪ (ab)∗aaA∗
)

. Now, if u ∈ (ab)∗aaA∗ (resp.v ∈ (ab)∗aaA∗), then
(u X v)∩ (ab)+ = ∅. So, suppose that (u, v) ∈ (ab)+ ∪ (ab)∗a× (ab)+ ∪ (ab)∗a.
If u ∈ (ab)∗a (resp. v ∈ (ab)∗a), then for any w ∈ u X v, w /∈ (ab)+ since
the number of a’s of w is greater than the number of b’s of w. And so, (u, v) ∈
(ab)+ × (ab)+ ⊆ L1,1,3 × L1,1,3.

The proof for (2) is similar.

Proposition 8.6

(1)

σ(L1,2,3) = σ((ab)∗a ∪ (ab)∗bA∗) = σ((ab)∗bA∗) ∪ (L1,1,3 × L1,2,3)

∪ (L1,2,3 × L1,1,3)

(2)

σ(L2,1,4) = σ((ba)∗b ∪ (ba)∗aA∗) = σ((ba)∗aA∗) ∪ (L2,2,4 × L2,1,4)

∪ (L2,1,4 × L2,2,4)

Proof. Let us prove (1). If (u, v) ∈ σ((ab)∗bA∗), then by definition (u, v) ∈
σ((ab)+ ∪ (ab)∗bA∗). On the other hand if (u, v) ∈ (L1,1,3 × L1,2,3) (resp.
(u, v) ∈ (L1,1,3 × L1,2,3) ) we have two possibilities. If u ∈ L1,3 = (ab)∗bA∗

(resp. v ∈ L1,3 = (ab)∗bA∗) we know by Proposition 8.3 that (u, v) ∈ σ(L1,3).
Then suppose that (u, v) ∈ (ab)+ × (ab)∗a (resp.(u, v) ∈ (ab)∗a× (ab)+ ), since
uv ∈ (ab)∗a, this implies that (u X v)∩(ab)∗a 6= ∅, and so, (u X v)∩L1,2,4 6= ∅.

In the opposite direction. Let (u, v) ∈ σ(L1,2,3). If (u X v) ∩ (ab)∗bA∗ 6= ∅,
then the result holds by definition. So, let us suppose that (u X v)∩(ab)∗bA∗ =
∅, then by Proposition 8.3, necessarily, (u, v) ∈ (ab)+ ∪ (ab)∗a ∪ (ab)∗aaA∗ ×
(ab)+ ∪ (ab)∗a ∪ (ab)∗aaA∗. Now, if u ∈ (ab)∗aaA∗ (resp.v ∈ (ab)∗aaA∗ ), then
(u X v)∩ (ab)+ = ∅. So, suppose that (u, v) ∈ (ab)+ ∪ (ab)∗a× (ab)+ ∪ (ab)∗a.
If (u, v) ∈ ((ab)+ × (ab)+) we have that for any w ∈ u X v, w /∈ (ab)∗a since
the number of a’s of w is the same that the number of b’s of w. If (u, v) ∈
(ab)∗a× (ab)∗a we have that for any w ∈ u X v, w /∈ (ab)∗a, since the number
of a’s of w is the same that the number of b’s of w plus 2. And so, (u, v) ∈
((ab)+ × (ab)∗a) ∪ ((ab)∗a× ((ab)+) ⊆ (L1,1,3 × L1,2,3) ∪ (L1,2,3 × L1,1,3).

The proof for (2) is similar.

Proposition 8.7
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(1)

σ(L1,2,4) = σ((ab)∗a ∪ (ab)∗aaA∗) =σ((ab)∗aaA∗)

∪ (L1,2,4)× (L2,2,4) ∪ (L2,2,4)× (L1,2,4)

(2)

σ(L2,1,3) = σ((ba)∗b ∪ (ba)∗bbA∗) =σ((ba)∗bbA∗)

∪ (L2,1,4)× (L1,1,4) ∪ (L1,1,4)× (L2,1,4)

Proof. Let us prove (1). If (u, v) ∈ σ((ab)∗aaA∗), then by definition (u, v) ∈
σ((ab)+ ∪ (ab)∗aaA∗). If (u, v) ∈ (L1,2,4 × L2,2,4) we have several possibilities.
If u ∈ L1,4 = (ab)∗aaA∗ we know by Proposition 8.4 that (u, v) ∈ σ(L1,4). If
v ∈ L2,4 = (ba)∗aA∗, v = (ba)nav′ for some n ≥ 0 and some v′ ∈ A∗, and
since u ∈ L1,2,4, u = au′ for some u′ ∈ A∗, and so a(ba)nau′v′ ∈ u X v.
Then, suppose that (u, v) ∈ (ab)∗a × (ba)+, since uv ∈ (ab)∗a, we have that
(u X v) ∩ (ab)∗a 6= ∅, that is, (u X v) ∩ L1,2,3 6= ∅. Arguing in the same sense
for (L2,2,4)×(L1,2,4), we can suppose that (u, v) ∈ (ba)+×(ab)∗a ⊆ L2,2,4×L1,2,4,
and then vu ∈ (ab)∗a.

In the opposite direction. Let (u, v) ∈ σ(L1,2,4). If (u, v) ∈ σ((ab)∗aaA∗),
the result holds by definition. So, let us suppose that (u X v)∩ (ab)∗aaA∗ = ∅.
This implies, by Proposition 8.4, that (u, v) ∈ (aA∗ × bA∗) ∪ (bA∗ × aA∗).
Suppose that (u, v) ∈ (aA∗× bA∗), then, again by Proposition 8.4, we have that
necessarily u ∈ (ab)+ ∪ (ab)∗a ∪ (ab)∗bA∗ and v ∈ (ba)+ ∪ b(ab)∗ ∪ (ba)∗bbA∗.
Now, if u ∈ (ab)∗bA∗ (resp. v ∈ (ba)∗bbA∗ and v ∈ b(ab)∗), then for any
w ∈ u X v such that w = aw′ for some w′ ∈ A∗, w ∈ (ab)+ ∪ (ab)∗bA∗, and so
we can suppose that (u, v) ∈ ((ab)+ ∪ (ab)∗a)× (ba)+. If (u, v) ∈ (ab)+× (ba)+,
then for any w ∈ u X v, w /∈ L1,2,4 since if w = aw′ for some w′ ∈ A∗,
w ∈ (ab)+ ∪ (ab)∗bA∗. And so, (u, v) ∈ ((ab)∗a× (ba)+) ⊆ (L1,2,4)× (L2,2,4). If
we suppose that (u, v) ∈ (bA∗ × aA∗), arguing in the same sense, we obtain the
same result for (u, v) ∈ ((ba)+ × (ab)∗a) ⊆ (L2,2,4)× (L1,2,4).

The proof for (2) is similar.

Proposition 8.8

(1)

σ(L1,1,4) = σ((ab)+ ∪ (ab)∗aaA∗) =σ((ab)∗aaA∗)

∪ (L1,1,4)× (L2,2,4) ∪ (L1,2,4)× (L2,1,4)

∪ (L2,1,4)× (L1,2,4) ∪ (L2,2,4)× (L1,1,4)

(2)

σ(L2,2,3) = σ((ba)+ ∪ (ba)∗bbA∗) =σ((ba)∗bbA∗)

∪ (L1,1,4)× (L2,2,4) ∪ (L1,2,4)× (L2,1,4)

∪ (L2,1,4)× (L1,2,4) ∪ (L2,2,4)× (L1,1,4)

Proof.
Let us prove (1). If (u, v) ∈ σ((ab)∗aaA∗), then by definition (u, v) ∈

σ((ab)+ ∪ (ab)∗aaA∗). If (u, v) ∈ (L1,1,4 × L2,2,4) we have several possibili-
ties, if u ∈ L1,4 = (ab)∗aaA∗ we know by Proposition 8.4 that (u, v) ∈ σ(L1,4).
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If v ∈ L2,4 = (ba)∗aA∗, v = (ba)nav′ for some n ≥ 0 and some v′ ∈ A∗, and
since u ∈ L1,1,4, u = au′ for some u′ ∈ A∗, and so a(ba)nauv′ ∈ u X v. Then,
suppose that (u, v) ∈ (ab)+ × (ba)+, then u = (ab)n and v = (ba)m for some
n,m > 0, then a(ba)mb(ab)n−1 ∈ (ab)+, and so (u X v) ∩ (ab)+ 6= ∅, that is,
(u X v) ∩ L1,2,4 6= ∅. Arguing in the same sense for (L2,2,4) × (L1,1,4), we can
suppose that (u, v) ∈ (ba)+ × (ab)+, and then (u X v) ∩ (ab)+ 6= ∅.

If (u, v) ∈ (L1,2,4 × L2,1,4), there ave several possibilities. If u ∈ L1,4 =
(ab)∗aaA∗, we know by Proposition 8.4 that (u, v) ∈ σ(L1,4). If v ∈ L2,4 =
(ba)∗aA∗, v = (ba)nav′ for some n ≥ 0 and some v′ ∈ A∗, and since u ∈ L1,2,4,
u = au′ for some u′ ∈ A∗, and so a(ba)nau′v′ ∈ u X v. Then, suppose that
(u, v) ∈ (ab)∗a × (ba)∗b, then uv ∈ (ab)+, and so (u X v) ∩ (ab)+ 6= ∅,that
is, (u X v) ∩ L1,2,4 6= ∅. Arguing in the same sense for (L2,1,4) × (L1,2,4), we
can suppose that (u, v) ∈ (ba)∗b× (ab)∗a, and then (u X v) ∩ (ab)+ 6= ∅, since
vu ∈ (ab)+, that is, (u X v) ∩ (L1,1,4) 6= ∅.

In the opposite direction. Let (u, v) ∈ σ(L1,2,4). If (u, v) ∈ σ((ab)∗aaA∗),
the result holds by definition. So, let us suppose that (u X v)∩ (ab)∗aaA∗ = ∅.
This implies, by Proposition 8.4, that (u, v) ∈ (aA∗ × bA∗) ∪ (bA∗ × aA∗).
Suppose that (u, v) ∈ (aA∗× bA∗), then, again by Proposition 8.4, we have that
necessarily u ∈ (ab)+ ∪ (ab)∗a ∪ (ab)∗bA∗ and v ∈ (ba)+ ∪ b(ab)∗ ∪ (ba)∗bbA∗.
Now, if u ∈ (ab)∗bA∗ (resp. v ∈ (ba)∗bbA∗ ), then for any w ∈ u X v such
that w = aw′ for some w′ ∈ A∗, w ∈ (ab)∗bA∗, and so we can suppose that
(u, v) ∈ ((ab)+ ∪ (ab)∗a) × ((ba)+ ∪ (ba)∗b). If (u, v) ∈ (ab)+ × (ba)∗b (resp.
(u, v) ∈ (ab)∗a × (ba)+), then (u X v) ∩ (ab)∗ = ∅. And so, (u, v) ∈ (ab)+ ×
(ba)+ ∪ (ab)∗a × (ba)∗a ⊆ L1,1,4 × L2,2,4 ∪ L1,2,4 × L2,1,4. A similar argument
can by used to show that if (u, v) ∈ bA∗ × aA∗ with (u X v) ∩ (ab)∗aaA∗ = ∅,
then (u, v) ∈ (ba)+ × (ab)+ ∪ (ba)∗b× (ab)∗a ⊆ L2,2,4 × L1,1,4 ∪ L2,1,4 × L1,2,4.

The proof for (2) is similar.

We are now ready to show that L1 and L2 are not decomposable. By The-
orem 4.6, all languages which are products of commutative languages are de-
composable. In particular, the following languages are decomposable: aA∗ and
bA∗.

Theorem 8.9 The languages L1 and L2 are decomposable.

Proof. Let us define a system S consisting of the unions of the languages:
Li,j,k for 1 ≤ i, j ≤ 2 and 3 ≤ k ≤ 4, {1}, A∗ and the languages of the systems
S(aA∗) and S(bA∗). Note that L1 and L2 belong to S since L1 = L1,1,3 and
L2 = L1,1,4. It remains to show that for any language L′ of S τ(L′) and
σ(L′) can be obtained as the union of languages (M × N) where M and N
belong to S. For the languages Li,j,k and Li,k with 1 ≤ i, j ≤ 2 and 3 ≤ k ≤
4, the result follows from Propositions 8.1, 8.2, 8.3, 8.4 8.5, 8.6, 8.7 and 8.8.
Clearly, τ({1}) = σ({1}) = ({1} × {1}) and τ(A∗) = σ(A∗) = (A∗ × A∗). For
any language of the systems described above, its image under τ and σ can be
obtained from the languages of these systems, because they are parallel and
sequential systems. Finally, since for any languages N1 and N2, the formulas
τ(N1 ∪N2) = τ(N1)∪ τ(N2) and σ(N1 ∪N2) = σ(N1)∪σ(N2) hold, the system
S is a parallel and sequential system.

Proposition 8.10 Decomposable languages are not closed under intersection.
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Proof. We know by Theorem 8.9 that the languages of the previous section
L1 = (ab)+ ∪ (ab)∗bA∗ and L2 = (ab)+ ∪ (ab)∗aaA∗ are decomposable, but we
know that by Proposition 3.4 that L1 ∩ L2 = (ab)+ is not.

9 More on group languages

Let G be a finite group, let π : A∗ → G be a surjective morphism and let
L = π−1(1). A well-known result states that sufficiently long words contain a
factor in L. More precisely

Lemma 9.1 Every word of A∗ of length ≥ |G| contains a non-empty factor in
L.

Proof. Let a1 · · ·an be a word of length n ≥ |G|. Consider the sequence
1, π(a1), π(a1a2), . . . , π(a1a2 · · ·an). This sequence of length n + 1 necessarily
contains two equal terms, say π(a1 · · ·ai) = π(a1 · · ·aj) with j > i. It follows,
since G is a group, that π(ai+1 · · ·aj) = 1. Therefore ai+1 · · ·aj ∈ L.

Proposition 9.2 If the language L is decomposable, then every language rec-
ognized by π is recognizable.

Proof. Let P be a subset of G. Since decomposable languages are closed union
and since

π−1(P ) =
⋃

g∈P

π−1(g)

it suffices to prove that each language π−1(g) is decomposable. Now, let g be a
fixed element of G and let u be a word such that π(u) = g−1. We claim that
π−1(g) = Lu−1. Indeed if x ∈ π−1(g), then π(xu) = π(x)π(u) = gg−1 = 1.
It follows that xu ∈ L and x ∈ Lu−1. Conversely, if x ∈ Lu−1, then xu ∈ L,
that is, π(xu) = 1. Therefore π(x) = π(u)−1 = g and x ∈ π−1(g), which proves
the claim. Now, Proposition 4.4 shows that decomposable languages are closed
under quotients, and thus π−1(g) is decomposable.

We first give an explicit formula for σ(L).

Proposition 9.3 The following formula holds, with N = |G|4:

σ(L) =
⋃

r,s≤N

(a1···arXb1···bs)∩L6=∅

(La1La2L · · ·LarL) X (Lb1Lb2L · · ·LbsL)

Proof. Let a1 · · · ar and b1 · · · bs be two words such that r, s ≤ N and

(a1 · · · ar X b1 · · · bs) ∩ L 6= ∅

Then there exists in L a wordw of length r+s and a partition (I, J) of {1, · · · , r+
s} such that w[I ] = a1 · · ·ar and w[J ] = b1 · · · bs (if I = {i1, i2, . . . , ik}, then
w[I ] denotes the word ai1 · · · aik

).
Suppose that (u, v) ∈ (La1La2L · · ·LarL) X (Lb1Lb2L · · ·LbsL). Then u =

u0a1u1 · · ·arur and v = v0b1v1 · · · bsvs for some words u0, u1, . . . , ur, v0, . . . , vr ∈
L.
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