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Abstract

We investigate numerical aspects of a portfolio selection problem studied in [10], in
which we suggest a model of liquidity risk and price impact and formulate the problem
as an impulse control problem under state constraint. We show that our impulse control
problem could be reduced to an iterative sequence of optimal stopping problems. Given
the dimension of our problem and the complexity of its solvency region, we use Monte
Carlo methods instead of finite difference methods to calculate the value function,
the transaction and no-transaction regions. We provide a numerical approximation
algorithm as well as numerical results for the optimal transaction strategy.
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1 Introduction

In this article, we investigate numerical aspects of a portfolio selection problem studied
in [10], in which we suggest a model of liquidity risk and price impact. Transactions are
allowed only in discrete times and incur some fixed costs. Under the impact of liquidity
risk, prices are pushed up when buying stock shares and moved down when selling shares.
The investor maximizes his expected utility of terminal liquidation wealth, under a sol-
vency constraint. This problem is formulated as an impulse control problem under state
constraint. In [10], we characterize the value function as the unique constrained viscosity so-
lution to the associated Hamilton-Jacobi-Bellman Quasi-Variational Inequality (HJBQVI).
Our associated HJBQVI has, in addition to time variable, three variables : x, y, and p,
respectively the cash holding, the stock holding, and the stock share price.

Hamilton-Jacobi-Bellman equations are usually solved by using numerical methods
based on finite difference methods. The Howard algorithm, which consists in comput-
ing two sequences: the optimal strategy and the value function, is known to be efficient for
the resolution of these types of equation. From Barles and Souganidis [1], we know that
a monotone, stable and consistant scheme insures the convergence of the algorithm to the
unique viscosity solution of the HJBQVI. This algorithm has a complexity in O(Nn) where
N is the number of points of the grid in one axis and n the dimension of the equation.
Chancelier, Øksendal, and Sulem [4] used the Howard algorithm to solve numerically a bi-
dimensional HJBQVI related to a problem of optimal consumption and portfolio with both
fixed and proportional transaction costs. They solved the problem in a bounded domain
and they assumed zero Neumann boundary conditions on the localized boundary. The
disadvantage of the finite difference method is its suitability to only solve HJB equations
when the solvency region has a simple shape such IRn

+ or when its boundaries are straight.
In the latter paper, the solvency region presents some corners. The authors omitted the
points of the domain where either the number of shares or the amount of money in the
portfolio is non-positive.

Korn [8] studied the problem of portfolio optimization with strictly positive transac-
tion costs and impulse control. He presented a sequence of optimal stopping problems
where the reward function is expressed in terms of the impulse operator. He proved the
convergence of the sequence of optimal stopping problems towards the value function of
the initial problem. Chancelier, Øksendal and Sulem [4] suggested an iterative method to
solve the impulse control problem. They considered an auxiliary value function where the
transactions number is bounded by a positive number.

In this article, we prove that both iterative methods coincide. We study numerically
our problem by reducing the impulse control problem to an iterative sequence of optimal
stopping problems. Then, we introduce a numerical approximation algorithm for every op-
timal stopping problem based on ideas of Monte Carlo numerical procedure which requires
the computation of many conditional expectations. Several methods can be used for the
valuation of these regression functions. We choose the Malliavin Calculus based Method
suggested in [7] and then developed in [2]. Our numerical approach named value-iteration
algorithm could be adapted to every shape of the solvency region and we don’t need to
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assume some artificial boundary conditions.
The paper is organized as follows. We first show that the value function could be

obtained as the limit of an iterative procedure when each step is an optimal stopping
problem and the reward function is related to the impulse operator. We then provide a
numerical method based on Malliavin calculus and give numerical results for the optimal
transaction strategy.

2 Problem formulation

This section presents the details of the model. Let (Ω,F , IP ) be a probability space equipped
with a filtration (Ft)0≤t≤T supporting an one-dimensional Brownian motion W on a finite
horizon [0, T ], T < ∞. We consider a continuous time financial market model consisting of
a money market account yielding a constant interest rate r ≥ 0 and a risky asset (or stock)
of price process P = (Pt). We denote by Xt the amount of money (or cash holdings) and
by Yt the number of shares in the stock held by the investor at time t.

Liquidity constraints. We assume that the investor can only trade discretely on [0, T ).
This is modelled through an impulse control strategy α = (τn, ζn)n≥1 : τ1 ≤ . . . τn ≤ . . . <

T are stopping times representing the intervention times of the investor and ζn, n ≥ 1, are
Fτn-measurable random variables valued in IR and giving the number of stock purchased
if ζn ≥ 0 or sold if ζn < 0 at these times. The sequence (τn, ζn) may be a priori finite or
infinite. The dynamics of Y is then given by :

Ys = Yτn , τn ≤ s < τn+1 (2.1)

Yτn+1 = Yτn + ζn+1. (2.2)

Notice that we do not allow trade at the terminal date T , which is the liquidation date.

Price impact. The large investor affects the price of the risky stock P by his purchases
and sales : the stock price goes up when the trader buys and goes down when he sells
and the impact is increasing with the size of the order. We then introduce a price impact
positive function Q(ζ, p) which indicates the post-trade price when the large investor trades
a position of ζ shares of stock at a pre-trade price p. In absence of price impact, we have
Q(ζ, p) = p. Here, we have Q(0, p) = p meaning that no trading incurs no impact and Q is
nondecreasing in ζ with Q(ζ, p) ≥ (resp. ≤) p for ζ ≥ (resp. ≤) 0. Actually, in the rest of
the paper, we consider a price impact function in the form

Q(ζ, p) = peλζ , where λ > 0. (2.3)

The proportionality factor eλζ represents the price increase (resp. discount) due to the ζ

shares bought (resp. sold). The positive constant λ measures the fact that larger trades gen-
erate larger quantity impact, everything else constant. This form of price impact function
is consistent with both the asymmetric information and inventory motives in the market
microstructure literature (see [9]).

We then model the dynamics of the price impact as follows. In the absence of trading,
the price process is governed by

dPs = Ps(bds + σdWs), τn ≤ s < τn+1, (2.4)
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where b, σ are constants with σ > 0. When a discrete trading ∆Ys := Ys − Ys− = ζn+1

occurs at time s = τn+1, the price jumps to Ps = Q(∆Ys, Ps−), i.e.

Pτn+1 = Q(ζn+1, Pτ−n+1
). (2.5)

Notice that with this modelling of price impact, the price process P is always strictly
positive, i.e. valued in IR∗

+ = (0,∞).

Cash holdings. We denote by θ(ζ, p) the cost function, which indicates the amount for
a (large) investor to buy or sell ζ shares of stock when the pre-trade price is p :

θ(ζ, p) = ζQ(ζ, p).

In absence of transaction, the process X grows deterministically at exponential rate r :

dXs = rXsds, τn ≤ s < τn+1. (2.6)

When a discrete trading ∆Ys = ζn+1 occurs at time s = τn+1 with pretrade price Ps− =
Pτ−n+1

, we assume that in addition to the amount of stocks θ(∆Ys, Ps−) = θ(ζn+1, Pτ−n+1
),

there is a fixed cost k > 0 to be paid. This results in a variation of cash holdings by ∆Xs

:= Xs −Xs− = −θ(∆Ys, Ps−)− k, i.e.

Xτn+1 = Xτ−n+1
− θ(ζn+1, Pτ−n+1

)− k. (2.7)

The assumption that any trading incurs a fixed cost of money to be paid will rule out
continuous trading, i.e. optimally, the sequence (τn, ζn) is not degenerate in the sense that
for all n, τn < τn+1 and ζn 6= 0 a.s. A similar modelling of fixed transaction costs is
considered in [12] and [8].

Liquidation value and solvency constraint. The solvency constraint is a key issue in
portfolio/consumption choice problem. The point is to define in an economically mean-
ingful way what is the portfolio value of a position in cash and stocks. In our context,
we introduce the liquidation function `(y, p) representing the value that an investor would
obtained by liquidating immediately his stock position y by a single block trade, when the
pre-trade price is p. It is given by :

`(y, p) = −θ(−y, p).

If the agent has the amount x in the bank account, the number of shares y of stocks at the
pre-trade price p, i.e. a state value z = (x, y, p), his net wealth or liquidation value is given
by :

L(z) = max[L0(z), L1(z)]1y≥0 + L0(z)1y<0, (2.8)

where

L0(z) = x + `(y, p)− k, L1(z) = x.

The interpretation is the following. L0(z) corresponds to the net wealth of the agent when
he liquidates his position in stock. Moreover, if he has a long position in stock, i.e. y ≥ 0,
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he can also choose to bin his stock shares, by keeping only his cash amount, which leads to
a net wealth L1(z). This last possibility may be advantageous, i.e. L1(z) ≥ L0(z), due to
the fixed cost k. Hence, globally, his net wealth is given by (2.8). In the absence of liquidity
risk, i.e λ = 0, and fixed transaction cost, i.e. k = 0, we recover the usual definition of
wealth L(z) = x + py. Our definition (2.8) of liquidation value is also consistent with
the one in transaction cost models where portfolio value is measured after stock position
is liquidated and rebalanced in cash, see e.g. [5] and [13]. Another alternative would be
to measure the portfolio value separately in cash and stock as in [6] for transaction cost
models. This study would lead to multidimensional utility functions and is left for future
research.

We then naturally introduce the liquidation solvency region (see Figure 1) :

S =
{
z = (x, y, p) ∈ IR× IR× IR∗

+ : L(z) > 0
}

,

and we denote its boundary and its closure by

∂S =
{
z = (x, y, p) ∈ IR× IR× IR∗

+ : L(z) = 0
}

and S̄ = S ∪ ∂S.

The boundary of the solvency region may then be explicited as follows (see Figures 2 and
3) :

∂S = ∂−` S ∪ ∂yS ∪ ∂x
0S ∪ ∂x

1S ∪ ∂x
2S ∪ ∂+

` S,

where

∂−` S =
{
z = (x, y, p) ∈ IR× IR× IR∗

+ : x + `(y, p) = k, y ≤ 0
}

∂yS =
{
z = (x, y, p) ∈ IR× IR× IR∗

+ : 0 ≤ x < k, y = 0
}

∂x
0S =

{
z = (x, y, p) ∈ IR× IR× IR∗

+ : x = 0, y > 0, p < kλe
}

∂x
1S =

{
z = (x, y, p) ∈ IR× IR× IR∗

+ : x = 0, 0 < y < y1(p)), p ≥ kλe
}

∂x
2S =

{
z = (x, y, p) ∈ IR× IR× IR∗

+ : x = 0, y > y2(p), p ≥ kλe
}

∂+
` S =

{
z = (x, y, p) ∈ IR× IR× IR∗

+ : x + `(y, p) = k, y1(p) ≤ y ≤ y2(p), p ≥ kλe
}

.

In the sequel, we also introduce the corner lines in ∂S :

D0 = {(0, 0)} × IR∗
+ ⊂ ∂yS, Dk = {(k, 0)} × IR∗

+ ⊂ ∂−` S
C1 = {(0, y1(p), p) : p ∈ IR∗

+} ⊂ ∂+
` S, C2 = {(0, y2(p), p) : p ∈ IR∗

+} ⊂ ∂+
` S.

Admissible controls. Given t ∈ [0, T ], z = (x, y, p) ∈ S̄ and an initial state Zt− = z,
we say that the impulse control strategy α = (τn, ζn)n≥1 is admissible if the process Zs =
(Xs, Ys, Ps) given by (2.1)-(2.2)-(2.4)-(2.5)-(2.6)-(2.7) (with the convention τ0 = t) lies in
S̄ for all s ∈ [t, T ]. We denote by A(t, z) the set of all such policies. We shall see later that
this set of admissible controls is nonempty for all (t, z) ∈ [0, T ] × S̄. In the sequel, for t

∈ [0, T ], z = (x, y, p) ∈ S̄, we also denote Z0,t,z
s = (X0,t,x

s , y, P 0,t,p
s ), t ≤ s ≤ T , the state

process when no transaction (i.e. no impulse control) is applied between t and T , i.e. the
solution to :

dZ0
s =

 rX0
s

0
bP 0

s

 ds +

 0
0

σP 0
s

 dWs, (2.9)
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starting from z at time t.

Investment problem. We consider an utility function U from IR+ into IR, strictly in-
creasing, concave and w.l.o.g. U(0) = 0, and s.t. there exist K ≥ 0, γ ∈ [0, 1) :

U(w) ≤ Kwγ , ∀w ≥ 0, (2.10)

We denote UL the function defined on S̄ by :

UL(z) = U(L(z)).

We study the problem of maximizing the expected utility from terminal liquidation wealth
and we then consider the value function :

v(t, z) = sup
α∈A(t,z)

IE
[
e−r(T−t)UL(ZT )

]
, (t, z) ∈ [0, T ]× S̄. (2.11)

3 Viscosity solution of the associated Quasi-variational Hamilton-

Jacobi-Bellman inequality

In Ly Vath, Mnif and Pham [10], we derived the HJB quasi-variational inequality satisfied
by the value function (2.11)

min
[
−∂v

∂t
− Lv , v −Hv

]
= 0, on [0, T )× S, (3.1)

where L as the infinitesimal generator associated to the system (2.9) corresponding to a
no-trading period :

Lϕ = rx
∂ϕ

∂x
+ bp

∂ϕ

∂p
+

1
2
σ2p2 ∂2ϕ

∂p2
− rϕ,

H is the impulse operator defined by

Hϕ(t, z) = sup
ζ∈C(z)

ϕ(t, Γ(z, ζ)), (t, z) ∈ [0, T ]× S̄,

Γ is the impulse transaction function defined from S̄ × IR into IR× IR× IR∗
+ :

Γ(z, ζ) = (x− θ(ζ, p)− k, y + ζ, Q(ζ, p)), z = (x, y, p) ∈ S̄, ζ ∈ IR,

and C(z) the set of admissible transactions :

C(z) =
{
ζ ∈ IR : Γ(z, ζ) ∈ S̄

}
= {ζ ∈ IR : L(Γ(z, ζ)) ≥ 0} .

We related the value function (2.11) and the associated HJB quasi-variational inequality
(3.1) by means of constrained viscosity solutions. The definition of viscosity solutions is
given as follows:
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Definition 3.1 (i) Let O ⊂ S̄. A locally bounded function u on [0, T ) × S̄ is a viscosity
subsolution (resp. supersolution) of (3.1) in [0, T )×O if for all (t̄, z̄) ∈ [0, T )×O and ϕ ∈
C1,2([0, T )× S̄) s.t. (u∗ − ϕ)(t̄, z̄) = 0 (resp. (u∗ − ϕ)(t̄, z̄) = 0) and (t̄, z̄) is a maximum
of u∗ − ϕ (resp. minimum of u∗ − ϕ) on [0, T )×O, we have

min
[
−∂ϕ

∂t
(t̄, z̄)− Lϕ(t̄, z̄), u∗(t̄, z̄)−Hu∗(t̄, z̄)

]
≤ 0 (3.2)

( resp. ≥ 0). (3.3)

(ii) A locally bounded function u on [0, T )×S̄ is a constrained viscosity solution of (3.1) in
[0, T )× S if u is a viscosity subsolution of (3.1) in [0, T )× S̄ and a viscosity supersolution
of (3.1) in [0, T )× S.

In Ly Vath, Mnif and Pham [10], we obtained the following characterization

Theorem 3.1 The value function v is continuous on [0, T )×S and is the unique (in [0, T )×
S) constrained viscosity solution to (3.1) satisfying the boundary and terminal condition :

lim
(t′, z′) → (t, z)

z′ ∈ S

v(t′, z′) = 0, ∀(t, z) ∈ [0, T )×D0 (3.4)

lim
(t, z′) → (T, z)

t < T, z′ ∈ S

v(t, z′) = max[UL(z),HUL(z)], ∀z ∈ S̄, (3.5)

and the growth condition :

|v(t, z)| ≤ K
(
1 +

(
x +

p

λ

))γ
, ∀(t, z) ∈ [0, T )× S (3.6)

for some positive constant K < ∞.

4 Convergence of the iterative scheme

We first introduce the following subsets of A(t, z), the set of the admissible impulse control
strategies :

An(t, z) := {α = (τk, ξk)k=0,...,n ∈ A(t, z)}

and the corresponding value function vn, which describes the value function when the
investor is required to trade at most n times:

vn(t, z) := sup
α∈An(t,z)

IE[e−r(T−t)UL(ZT )] (t, z) ∈ [0, T ]× S. (4.1)

For t ∈ [0, T ] and z = (x, y, p) ∈ S, if x, y are both nonnegative, we clearly have
L(Z0,t,z

s ) ≥ 0, and so A0(t, z) is nonempty. Otherwise, if x < 0, y ≥ 0 or x ≥ 0, y < 0,
due to the diffusion term P 0,t,z, it is clear that the probability for L(Z0,t,z

s ) to be negative
before time T , is strictly positive, so that A0(t, z) is empty. Hence, the value function for
n = 0 is initialized to:

8



v0(t, z) =

{
IE
[
e−r(T−t)UL(Z0,t,z

T )
]

if x ≥ 0, y ≥ 0

−∞ otherwise

We now show the convergence of the sequence of the value functions vn towards our
initial value function v.

Lemma 4.1 For all (t, z) ∈ S

lim
n→∞

vn(t, z) = v(t, z).

Proof. From the definition of An(t, z), we have:

An(t, z) ⊂ An+1(t, z) ⊂ A(t, z).

As such,
vn(t, z) ≤ vn+1(t, z) ≤ v(t, z),

which gives the existence of the limit and the first inequality:

lim
n→∞

vn(t, z) ≤ v(t, z). (4.2)

Given ε > 0, from the definition of v, there exists an impulse control α = (τ1, τ2, ...; ξ1, ξ2, ...) ∈
A(t, z) such that

IE[e−r(T−t)UL(Zα
T )] ≥ v(t, z)− ε, (4.3)

with Zα diffusing under the impulse control α.
We now set the control

αn := (τ1, τ2, ..., τn−1, τ ; ξ1, ξ2, ..., ξn−1, yτn−1),

where τn−1 < τ < min{τn, T}. We see that αn ∈ An(t, z) and consider the corresponding
process Z(αn). Using Fatou lemma, we obtain:

lim inf
n→∞

IE[e−r(T−t)UL(Z(αn)
T )] ≥ IE[lim inf

n→∞
e−r(T−t)UL(Z(αn)

T )] = IE[e−r(T−t)UL(Zα
T )](4.4)

Using (4.3) and (4.4), we obtain

lim inf
n→∞

vn(t, z) ≥ lim inf
n→∞

IE[e−r(T−t)UL(Z(αn)
T )] ≥ v(t, z)− ε.

As we obtain the latter inequality with an arbitrary ε > 0, and combining with the relation
(4.2), we obtain the desired result:

lim
n→∞

vn(t, z) = v(t, z).

2
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Theorem 4.1 We define ϕn(t, z) iteratively as a sequence of optimal stopping problems:

ϕn+1(t, z) = sup
τ∈St,T

IE
[
e−r(τ−t)Hϕn(τ, Z0,t,z

τ )
]
,

ϕ0(t, z) = v0(t, z),

where St,T is the set of stopping times in [t, T ]. Then

ϕn(t, z) = vn(t, z).

Remark 4.1 Theorem 4.1 together with Lemma 4.1 show that

lim
n→∞

ϕn(t, z) = v(t, z), (t, z) ∈ [0, T ]× S.

so that the iteration scheme for ϕn provides an approximation for v.

Remark 4.2 The value function ϕn satisfies the system of variational inequalities, which
can be solved by induction starting from ϕ0:

min
[
−∂ϕn+1

∂t
− Lϕn+1 , ϕn+1 −Hϕn

]
= 0, (t, z) ∈ [0, T )× S,

together with the terminal condition:

ϕn+1(T, z) = Hϕn(T, z).

Proof of Theorem 4.1. We show by induction that vn(t, z) = ϕn(t, z), for all n. First,
we have v0 = ϕ0. Considering an impulse control strategy α1 = (τ, ξ) ∈ A1(t, z), we
clearly have

ϕ1(t, z) ≥ IE[e−r(τ−t)Hϕ0(τ, Z0,t,z
τ )],

≥ IE[e−r(τ−t)Hv0(τ, Z0,t,z
τ )].

From the definition of the operator H, we obtain

ϕ1(t, z) ≥ IE[e−r(τ−t)v0(τ,Γ(Z0,t,z
τ , ξ))], ∀α1 = (τ, ξ) ∈ A1(t, z). (4.5)

Let Z(α1) be the diffusion of Z, starting at time t, with Z
(α1)
t = z, and evolving under the

impulse control α1. Relation (4.5) becomes:

ϕ1(t, z) ≥ E[e−r(τ−t)v0(τ, Z(α1)
τ )], ∀ α1 = (τ, ξ) ∈ A1(t, z). (4.6)

Given the arbitrariness of α1 and by using the dynamic programming principle applied to
v1(t, z), we obtain

ϕ1(t, z) ≥ v1(t, z).

From the definition of ϕ1, for a given ε > 0, there exists τ∗ such that

ϕ1(t, z)− ε ≤ IE[e−r(τ∗−t)Hϕ0(τ∗, Z
0,t,z
τ∗ )]. (4.7)
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From the compactness of the set of admissible transactions, there exists ξ∗ such that

ϕ1(t, z)− ε ≤ IE[e−r(τ∗−t)v0(τ∗,Γ(Z0,t,z
τ∗ , ξ∗))],

≤ E[e−r(τ∗−t)v0(τ∗, Z
(∗)
τ∗ )],

where Z(∗) is the processus starting at time t, with Z
(∗)
t = z, and evolving under the impulse

control α∗ := (τ∗, ξ∗).
Using the dynamic programming principle applied on v1(t, z), we obtain

ϕ1(t, z)− ε ≤ v1(t, z).

The latter inequality is satisfied for any value of ε > 0, as such, we have

ϕ1(t, z) ≤ v1(t, z),

which leads to ϕ1(t, z) = v1(t, z), for all (t, z) ∈ [0, T )× S.
By induction, assuming that for a given n, we have ϕn(t, z) = vn(t, z), we will prove that
ϕn+1(t, z) = vn+1(t, z). By definition, we have for any αn+1 = (τ1, ..., τn+1, ξ1, ..., ξn+1) ∈
An+1(t, z),

ϕn+1(t, z) ≥ IE[e−r(τ1−t)Hϕn(τ1, Z
0,t,z
τ1 )],

≥ IE[e−r(τ1−t)vn(τ1,Γ(Z0,t,z
τ1 , ξ1))],

≥ IE[e−r(τ1−t)vn(τ1, Z
(n+1)
τ1 )], (4.8)

where Z(n+1) is the diffusion starting at time t, with Z
(n+1)
t = z and evolves under the

control αn+1. Given the arbitrariness of the control αn+1 and by using the dynamic pro-
gramming principle applied to vn+1, relation (4.8) becomes:

ϕn+1(t, z) ≥ vn+1(t, z).

To prove the opposite inequality, we use the definition of ϕn+1. For any ε > 0, there exists
τ∗ such that

ϕn+1(t, z)− ε ≤ IE[e−r(τ∗−t)Hϕn(τ∗, Z0,t,z
τ∗ )], (4.9)

≤ IE[e−r(τ∗−t)Hvn(τ∗, Z0,t,z
τ∗ )]. (4.10)

From the compactness of the set of admissible transactions, there also exists ξ∗ such that

Hvn(τ∗, Z0,t,z
τ∗ ) = vn(τ∗, Z(α∗)

τ∗ ),

where Z(α∗), the processus starting at time t, with Zt = z, evolves under the impulse
control α∗ := (τ∗, ξ∗). Using the dynamic programming principle applied on vn+1, the
relation (4.10) becomes

ϕn+1(t, z)− ε ≤ IE[e−r(τ∗−t)vn(τ∗, Z(α∗)
τ∗ )],

≤ vn+1(t, z).

The inequality is obtained for any given ε, this leads to the required inequality

ϕn+1(t, z) = vn+1(t, z).

2
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5 Numerical study

The objective of this section is the computation of a sequence of optimal stopping problem:

vn+1(t, z) = sup
τ∈St,T

E
[
e−r(τ−t)Hvn(τ,X0,t,x

τ , y, P 0,t,p
τ )

]
, z ∈ S̄

and the associated trade region and the no-trade region. We choose the Monte Carlo
numerical procedure for the implementation.

5.1 The Monte Carlo method

Let Tm = {tl = lT/m}0≤l≤m be the partition of the time interval T = [0, T ]. We denote
by ht the time step T

m , and by Sm,t,T the subset of St,T defined by

Sm,t,T = {τ ∈ St,T ; τ ∈ Tm}.

Let hz := (hx, hy, hp) = (1/M1, 1/M2, 1/M3), where (M1,M2,M3) ∈ IN∗3 denotes the finite
difference step in the state coordinate z = (x, y, p). Since the liquidation solvency region is
unbounded, we localize S̄ to D = {z ∈ S̄ s.t. −L1 ≤ x ≤ L1, −L2 ≤ y ≤ L2, 0 ≤ z ≤ L3},
where L1, L2 and L3 are positive constants. We define the grid

Ωhz = {z = (ihx, jhy, khp) ∈ D,−M1L1 ≤ i ≤ M1L1,−M2L2 ≤ j ≤ M2L2, 0 ≤ k ≤ M3L3} .

For the implementation, we simulate N independent Brownian motions as follows :

Wtl+1
−Wtl ∼ N(0, ht).

Then, the price path is given by

P 0
tl+1

= P 0
tl
e(b−σ2

2
)ht+σ(Wtl+1

−Wtl
)

For the approximation of the value function vn at the point (t, Z0
t ) where Z0

t is the random
vector (X0

t , y, Z0
t ) (the randomness is only in the third component of this vector), t ∈ Tm

, two cases are possible :
Case 1: If Zt ∈ [−M1,M1]× [−M2,M2]× [−M3,M3], then

Ẑ0
t =

N(Ωhz )∑
i=1

zi1Ai(Z
0
t ),

where N(Ωhz) := Card{z s.t. z ∈ Ωhz} and (Ai)1≤i≤N(Ωhz ) is a Borel partition of S̄ defined
by

Ai =
{

z ∈ S̄ s.t. |zi − z| = min
1≤j≤N(Ωhz )

|zj − z|
}

.

|.| denotes the canonical Euclidean norm, and we take vn(t, Z0
t ) ≈ vn(t, Ẑ0

t ).
Case 2: If Zt /∈ [−M1,M1] × [−M2,M2] × [−M3,M3], |Z0

t − Ẑ0
t | could be large. To

approximate vn(t, Z0
t ), we use the growth condition of the value function

v(t, z) ≤ eρ(T−t)

γ
(x +

p

λ
(1− e−λy))γ (5.11)

12



where ρ is a positive constant s.t. ρ > γ
1−γ

b2+r2+σ2r(1−γ)
σ2 (See Propopsition 4.1 in Ly Vath,

Mnif and Pham [10]).
The approximation of vn(t, Z0

t ) is given by

vn(t, Z0
t ) ≈ vn(t, Ẑ0

t )

(
X0

t + P 0
t (1−e−λy)

λ

)γ

(
X̂0

t + P̂ 0
t (1−e−λy)

λ

)γ (5.12)

The discrete time approximation for the value function vn is given by :

vn+1(t, z) = sup
τ∈Sm,t,T

E
[
e−r(T−τ)Hvn(τ, X̂0,t,x

τ , y, P̂ 0,t,p
τ )

]
, (t, z) ∈ Tm × Ωhz .

The Snell envelop is computed by backward induction :

vn+1(tm, z) = Hvn(tm, z)

and

vn+1(tl−1, z) = max
{
Hvn(tl−1, z); e−rhtE[vn+1(tl, Z0

l )|Ftl−1
]
}

, 1 ≤ l ≤ m,

where Ftl−1
= σ(Ptj , j ≤ l − 1) is the discrete-time filtration. Hence :

E[vn+1(tl, Z0
l )|Ftl−1

] = E[vn+1(tl, Z0
l )|Ptl−1

] =: ρ(tl−1, P
0
tl−1

), 1 ≤ l ≤ m.

5.2 Estimation of the conditional expectation using Malliavin Calculus

Here, we are interested in computing the conditional expectation E[vn(t + h, Z0
t+h)|Pt].

From the definition of vn, we have vn ≤ v. The main idea of the Malliavin method consists
in using the Malliavin integration by part formula in order to get rid of the Dirac point
masses in the following expression :

E[vn(t + h, Z0
t+h)|Pt = p] =

E[vn(t + h, Z0
t+h)δp(P 0

t )]
E[δp(P 0

t )]
. (5.13)

We focus on the calculation of E[vn(t+h, Z0
t+h)δp(P 0

t )]. We recall that P 0
t = p0e

(b−σ2

2
)t+σWt .

We now define

v̂n,t+h,x,y(Br) := vn(t + h, x, y, e(b−σ2

2
)(t+h)+σBr),

and

p̂t :=
1
σ

(ln
p

p0
− (b− σ2

2
)t).

We obtain :

E[vn(t + h, Z0
t+h)δp(P 0

t )] = E[v̂n,t+h,X0
t+h,y(Wt+h)δp̂t(Wt)].

By the independence of Brownian motion’s increments, we have :

E[v̂n,t+h,Xt+h,y(Wt+h)δp̂t(Wt)] =
∫ ∫

v̂n,t+h,Xt+h,y(w1 + w2)δp̂t(w1)ϕ(
w1√

t
)ϕ(

w2√
h

)
dw1√

t

dw2√
h

,
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where ϕ is the density of standard one dimensional normal distribution. Using the growth
condition of the value function v (5.11) we obtain

E[|vn(t + h, Z0
t+h)|2] < ∞. (5.14)

Recalling that δx(w1) is a derivative of 1w1≥x, using (5.14) and by integration by parts
formula with respect to w1 variable and then with respect to variable w2, we get :

E[v̂n,t+h,Xt+h,y(Wt+h)δp̂t(Wt)]

= E

[
v̂n,t+h,Xt+h,y(Wt+h)1[p̂t,∞)(Wt)

(
−Wt

t
+

Wt+h −Wt

h

)]
. (5.15)

By denoting Ah := Wt
t − Wt+h−Wt

h , it follows that :

E[vn(t + h, Zt+h)δp(Pt)] = E
[
vn(t + h, Zt+h)1[p,∞)(Pt)Ah

]
.

5.3 Variance reduction by localization

By using Monte Carlo Method, we recover a convergence rate of the order
√

N for the
conditional expectation estimator where N is the simulation number. However, the variance
of the estimator explodes as h tends to zero since lim sup

h−→0
Ah = ∞ and lim inf

h−→0
Ah = −∞.

To find a remedy to this problem, we introduce localizing functions. Such functions catch
the idea that the relevant information for the computation of E[g(St+h)|St = x] is located
in the neighborhood of x. Let ϕ be an arbitrary localizing function. By definition, ϕ is
smooth, bounded and it satisfies ϕ(0) = 1. Recalling the same arguments as in (5.15) and
using (5.14), we obtain a family of alternative representations of the conditional expectation
given by (5.13) :

E[vn(t + h, Z0
t+h)δp(P 0

t )] = E [vn(t + h, Zt+h)δp̂t(Wt)ϕ(Wt − p̂t)]

= E
[
1Wt>p̂t vn(t + h, Z0

t+h)(ϕ(Wt − p̂t)Ah − ϕ′(Wt − p̂t))
]
.

Moreover, it is possible to reduce the Monte Carlo estimator variance by a convenient choice
of the localizing function. We consider the integrated mean square error :

J(ϕ) :=
∫

IR
E
[
1Wt>p̂t v2

n(t + h, Z0
t+h)A2

h,ϕ

]
dx, (5.16)

where we adopted the following notation : Ah,ϕ := ϕ(Wt − p̂t)Ah − ϕ′(Wt − p̂t) and we
are interested in minimizing J respect to the subset { ϕ smooth, bounded and ϕ(0) = 1}.
Following [2], we prove that the optimal localizing function is given by :

ϕ(x) = eνhx where νh :=

(
E[v2

n(t + h, Z0
t+h)A2

h]
E[v2

n(t + h, Z0
t+h)]

) 1
2

.

In conclusion, we obtain

E[vn(t + h, Zt+h)δp(Pt)] = E
[
vn(t + h, Zt+h)1[p,∞)e

νh(Wt−p̂t)(Ah − νh)
]
.
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5.4 Algorithm and discrete value function formula

The algorithm computes two sequences {vn, ζn}n≥1 by performing the following steps.
Parameters: ε, λ, k, L1, L2, L3, N the number simulation, T , M1, M2, M3 and m.
Initialisation: v0 = (v0(t, z))(t,z)∈Tm×Ωhz

, n = 0.
Step 1: Compute Hvn and ζn on Tm × Ωhz defined by

Hvn(t, z) = sup
ζ∈Ĉ(z)

vn(t, Γ̂(z, ζ)), (t, z) ∈ Tm × Ωhz ,

where Γ̂(z, ζ) = (x̂, ŷ, p̂) =
N(Ωhz )∑

i=1

zi1Ai(x− ζpeλy − k, y + ζ, peλζ), zi ∈ Ωhz and

Ĉ(z) = {ζ ∈ IR s.t. L̂(Γ̂(z, ζ)) := max
[
L̂0(z), L1(z)

]
1y≥0 + L̂0(z)1y<0 ≥ 0},

L̂0(z) is the closest point of the grid (ihx)−M1L1≤i≤M1L1 to the point x− l(y, p)− k.
Step 2: According to the previous section, we are able to calculate the value function :

vn+1(tl, z) = max
{
Hvn(tl, z); e−rht ρ̂n(tl, z)

}
, 0 ≤ l ≤ m− 1, z ∈ Ωhz ,

Let us denote P (i) the i-th price simulation such that 1 ≤ i ≤ N , where N is the simulation
number. Then, we define the estimators of ρn by :

ρ̃n(tl, z) =

1
N

N∑
i=1

vn(tl+1, Z
0(i)
tl+1

)1[p,∞)e
νh(W

(i)
tl+1

−p̂
(i)
tl+1

)(A(i)
h − νh)

1
N

N∑
i=1

1[p,∞)e
νh(W

(i)
tl+1

−p̂
(i)
tl+1

)(A(i)
h − νh)

,

where z = (x, y, p), A
(i)
h :=

W
(i)
tl
tl

−
W

(i)
tl+1

−W
(i)
tl+1

h , p̂i
tl

= 1
σ (ln p

p0
− (b − σ2

2 )tl) and W (i) i-th
simulation of W .
Taking into account the growth condition of the value function, we truncate the estimator
ρ̃n:

ρ̂n(tl, z) := ρ̃n(tl, z) ∧ 1
γ

eρ(T−tl)(x +
p

λ
)γ ,

which improves the algorithm.
Step 3: Stopping test: If ||vn+1 − vn||∞ ≤ ε , stop, otherwise go to step 1.

5.5 Numerical results

The computation is achieved with a cluster of 13 Intel Xeon Processors running at 2.8 Ghz
with 2 Giga Bytes of RAM. Numerical tests are performed with the following numerical
constants

γ = 0.5, r = 0.1, α = 0.12, σ = 0.3.
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Figure 1: The optimal transaction policy for p=2, λ=0.5 and k=1

Figure 2: The optimal transaction policy for p=3, λ=0.5 and k=1
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Figure 3: The optimal transaction policy for p=3, λ=0.6 and k=1

We take
L1 = L2 = L3 = 10, T = 1, hx = 1, hy = 0.5, hz = 1, ht = 0.1.

According to Bouchard and Touzi [3], in order to achieve an error estimate of the order of
n−1/2, we have to choose a number N of simulated trajectories such that N = O(n7/2). We
choose N = 10000. Contrary to the policy-iteration algorithm (named Howard algorithm),
the value-iteration algorithm needs more iterations to converge. At each iteration and each
step of time we must estimate 1267 conditional expectations (it is the number of points in
our domain). This explains that we need several days to achieve the whole computation.
We equally mention that by using the probabilistic approach, we do not need to assume
any boundary condition as in Chancelier, Øksendal, and Sulem [4]. However when the
trajectories are outside our bounded domain, we approximate the value function by taking
into account the growth condition (see (5.12)).

A partition of the solvency region S is displayed in figures (1)-(2)-(3) for different values
of P and λ. It consists of three regions: Buy (B), Sell (S), and No-Trade (NT) regions. The
domain between R1 and R2 corresponds to the region reached by the state variable after
a purchase or a sale of risky asset, dictated by the optimal strategy. Due to the presence
of fixed costs, the lines R1 and R2 do not coincide with D1 and D2 boundaries of the
no-transaction region.

We equally try to see the sensitivity of different parameters and variables.
? First, there is a reduction in the No-Trade region when the price of the risky asset P

increases, i.e. the line D1 moves downwards while the line D2 marginally moves upwards
(see Figures (1)-(2)). The interpretation of this observation is the following :

• in the case where the investor has a significant long position in the risky asset, he

17



is required to reduce his risky asset position when the share price goes up. This
phenomenon has also been observed in the Merton model [11].

• in the case where the investor has a significant short position in the risky asset, he is
required to buy back shares in order to reduce the risk when the share price goes up.

? Second, we look at the impact of the coefficient of the impact price λ. We notice that
when λ increases, the NT region widens (see Figures (2)-(3)). In particular, the line D1 sig-
nificantly moves upwards. Economically, it means that when the liquidity impact increases,
the investor should trade less frequently.
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