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Axiomatic Rewriting Theory I

A Diagrammatic Standardization Theorem

Paul-Andŕe Melliès

Equipe Preuves, Programmes et Systèmes
CNRS, Universit́e Paris 7 Denis Diderot

Dedicated to Jan Willem Klop

Abstract. By extendingnondeterministictransition systems withconcurrency
andcopy mechanisms, Axiomatic Rewriting Theory provides a uniform frame-
work for a variety of rewriting systems, ranging from higher-order systems to
Petri nets and process calculi. Despite its generality, the theory is surprisingly
simple, based on a mild extension of transition systems with independence: an ax-
iomatic rewriting system is defined as a 1-dimensional transition graphG equipped
with 2-dimensional transitions describing theredex permutationsof the system,
and their orientation. In this article, we formulate a series of elementary axioms
on axiomatic rewriting systems, and establish a diagrammatic standardization
theorem.

Foreword by the author

Many concepts of Rewriting Theory started in the�-calculus — which is by far the
most studied rewriting system in history. A remarkable illustration is theconfluence
theorem. The theorem was formulated by A. Church and J.B. Rosser in the early years
of the�-calculus [7]. The theorem was then generalized and applied extensively to other
rewriting systems. It became eventually an object of study in itself, in a line of research
pioneered by H.-B. Curry and R. Feys in their book on Combinatory Logic (1958).
This culminated in a series of beautiful papers by G. Huet, J. W. Klop, and J.-J. Lévy
published at the end of the 1970s and beginning of the 1980s. Today, more than half
a century after its appearance in the�-calculus, the confluence property is universally
accepted as the theoretical principle underlyingdeterministiccomputations.

The article is concerned with another key property of the�-calculus: thestandard-
ization theorem, which was discovered by A. Church and J.B. Rosser quite at the same
time as the confluence property. We advocate in this article that, in the same way as
confluence underlies deterministic computations, standardization guidescausalcom-
putations. It is worth clarifying here what kind of causality we have in mind, since the
concept has been used in so many different ways. First of all, bycomputation, we mean
a rewriting path

M1 u1�!M2 u2�!M3 �! � � � �!Mn�1 un�!Mn
in which every termMk describes a particular state of the system, and in which every
redexuk describes a particular transition on states, for1 � k � n. Then, bycausal
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computation, we mean a computation in which every transitionuk is enabled by a chain
or cascade of previous transitions. We are particularly interested in situations where the
chain of causality leading touk is not necessarily the whole rewriting path

M1 u1�!M2 u2�!M3 �! � � � �!Mk�1 uk�1�! Mk: (1)

At this point, we advise the reader to practice the following spiritual exercise: think of
today as a particular sequence of transitions (1) starting from your bedroom (stateM1)
and leading you to the current position in the day (stateMk). Then, callv = uk the
transition consisting in reading this very article:

v = uk : Mk �!Mk+1:
You must admit that some transitions performed today among theu1; : : : ; uk�1 are not
necessary to read this article. And that it seems particularly difficult to disentangle the
necessary transitions from the unnecessary ones. This is the point of this article: we
investigate how to perform this task in Rewriting Theory bypermutingtransitions — in
the spirit of true concurrency and Mazurkiewicz traces. Suppose for instance that your
last actionu = uk�1 today has been to drink coffee:

u = uk�1 : Mk�1 �!Mk:
Do you really need that coffee to read these lines? The simplest way to answer is to
check whether the transitionv may be permuted before the transitionu. If this is the
case, then coffee is not necessary. Of course, you may reply that you have already drunk
your coffee ten minutes ago, and thus, that it is far too latenow to permute the order
of events! You are certainly right... but this is not what matters here: the very fact that
permuting the transitionv before the transitionu is possiblein principle is sufficient to
establish that performing transitionu is not necessary in order to perform transitionv.

Suppose on the other hand that your last actionu has been to fetch this article from
the library. In that case, performing the transitionu is absolutely necessary in order to
perform the transitionv. There is no way indeed (either in reality or in principle) to
permute the order of the two transitions... and this is precisely the reason why you went
to the library on the first hand!

Of course, separating the necessary transitions from the unnecessary ones may in-
volve more than just one permutation. Suppose for instance that you have drunk coffee
just before fetching the article from the library. In that case, it takes two permutations
(permute your coffee time after your visit to the library, and then after your exploration
of the article) in order to demonstrate that drinking coffee is not necessary.

Everyday life shows that chains of causality may be reconstructed by applying rele-
vant series of permutations on transitions. Now, Rewriting Theory complicates matters
by implementing a symbolic universe in which computations may beerasedor dupli-
catedat will. New situations arise, which often defy common sense! We illustrate this
with a simple example, involving a coffee machineM producing a cup of coffeeC, and
a duplicator. The situation proceeds in three transitions:

1. M produces the cup of coffeeC,

2



2. Duplicator replicatesM in two exact copiesM1 andM2, each one containing its
own cup of coffeeC1 andC2,

3. You fetch the cup of coffeeC1 fromM1, and drink it.

The situation is particularly intricate from a conceptual point of view. On the one hand,
producing the cup of coffeeC (first transition) is necessary to fetch the cup of coffeeC1
(last transition) since the cupC1 is just a copy of the cupC. On the other hand, the first
two transitions produce the cup of coffeeC2 which is not necessary to fetch the cup of
coffeeC1 in the last transition. The only way to clarify things here is to permute the
duplication of the machineM (second transition)beforethe production of the cup of
coffeeC (first transition). From this results a series of four transitions:

1. Duplicator replicatesM in two exact copiesM1 andM2,
2. M1 produces the cup of coffeeC1,
3. M2 produces the cup of coffeeC2,
4. You fetch the cup of coffeeC1 fromM1, and drink it.

There is more work for everybody now (except for Duplicator possibly) since each
machineM1 andM2 has to produce its own cup of coffeeC1 andC2. On the other
hand, starting by duplicating the machineM enables to disentangle now the necessary
part (producing the cup of coffeeC1) from the unnecessary part (producing the cup
of coffeeC2). The chain of causality leading to the cup of coffeeC1 is exhibited by
permuting the two last steps in the previous sequence of transitions, to obtain:

1. Duplicator replicatesM in two exact copiesM1 andM2,
2. M1 produces the cup of coffeeC1,
3. You fetch the cup of coffeeC1 fromM1, and drink it.

This long discussion explains why standardization reorganizes computations by giv-
ing priority to duplicators and erasers: duplication and erasure are an inherent part of
disentanglement. This aspect of causality is fundamental but subtle, and thus often mis-
understood, even by specialists.

Technically speaking, the article is built on a seminal observation made by Jan
Willem Klop in his PhD thesis, more than twenty-five years ago. The PhD thesis, pub-
lished in 1980, contains two proofs of the standardization theorem for the leftmost-
outermost�-calculus. In the second proof, Jan Willem Klop reduces standardization
to strong normalization and confluence of a2-dimensionalrewriting process on the�-rewriting paths, understood here as1-dimensionalentities. The process consists in
permuting the so-calledanti-standardpairs of�-redexesu andv in the following way:

P v
��M

u ..

w 00
+ N
Q h

GG
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The 2-dimensional transitionf =) g transforms the�-rewriting pathf = u � v into
the�-rewriting pathg = w � h where:

– the�-redexw is the ancestor of the�-redexv before�-reduction of the�-redexu,
– the�-rewriting pathh develops the residuals of the�-redexu after�-reduction of

the�-redexw.

By anti-standard pair, one means that the�-redexw lies outside or to the left of the�-redexu. Jan Willem Klop shows that the 2-dimensional procedure=) strongly nor-
malizes and converges on a unique normal form for every�-rewriting path. The result-
ing normal form is precisely the standard (that is, leftmost-outermost)�-rewriting path
associated to the original�-rewriting path.

In this article, we generalize the construction to a wide class of rewriting systems,
ranging from higher-order systems to Petri nets or process calculi. This provides evi-
dence thatcausalityis a general phenomenon in Rewriting Theory, and that its scope
is not limited to deterministic computations. We proceed in a purely diagrammatic
way: we start by formulating a series of3-dimensional principleswhich regulate the
2-dimensional permutationsacting on the1-dimensional rewriting paths.We then show
that every Rewriting System satisfying these elementary principles (called axioms) sat-
isfies our diagrammatic standardization theorem. The theorem states that applying 2-
dimensional permutations to a rewriting pathf leads eventually to auniquerewriting
path g — modulo a fundamental notion of reversible permutation introduced in the
course of the article. The standard rewriting path is finallydefinedas the unique normal
form obtained at the end of the 2-dimensional procedure.

I have had several occasions to appreciate the extraordinary quality and insight of
Jan Willem Klop’s contribution to Rewriting Theory. It is thus a great pleasure and
honour for me to dedicate today this article to Jan Willem Klop, on the occasion of his
60th birthday.

1 Standardization: From Syntax to Diagrams

1.1 Computing leftmost outermost is judicious... in the�-calculus

The�-calculus is the pure calculus of functions. It has a unique reduction rule, called
the�-rule, (�x:M)P �!M [x := P ] (2)

which substitutes every free variablex in the �-termM with the �-termP . Despite
its simplicity, the�-rule enables an extraordinary range of behaviours. For instance,
depending on the number of times the variablex occurs inM , the�-redex (2) duplicates
its argumentP , or erases it... Typically, the�-term� = (�x:xx) defines a duplicator,
while the�-termK = (�x:�y:x) defines an eraser, with the following behaviours:

�P �! PP; KPQ �! (�y:P )Q �! P:
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Amusingly, the duplicator� applied to itself defines a�-term�� whose computation
loops: �� �! �� �! � � �
The�-termKa(��) obtained by applying the eraserK to the variablea and to the
loop�� is particularly interesting, because its behaviour depends on the strategy cho-
sen to compute it. When computed from left to right, the�-termKa(��) reduces in
two steps to its resulta:

Ka(��) �! (�y:a)(��) �! a (3)

On the other hand, when computed from right to left, the same�-termKa(��) loops
for ever on the unnecessary computation of its subterm��:

Ka(��) �! Ka(��) �! � � � (4)

To summarize: applying the “wrong” strategy on the�-termKa(��) computes it for
ever, whereas applying the more judicious strategy (3) transforms it into its resulta.
This raises a very pragmatic question: does there exist a “judicious” strategy for every�-term? This strategy would avoid useless computations, and reach the result of the�-
term, whenever this result exists. Remarkably, such a “judicious” strategy exists, and its
recipe is surprisingly uniform: reduce at each step theleftmost outermost�-redex of the�-term! Note that this is precisely the strategy applied successfully in (3) to compute
the�-termKa(��).

We recall below the definition of the leftmost outermost strategy, formulated origi-
nally by A. Church and J. B. Rosser in the�I-calculus (the�-calculus without erasers)
then adapted to the�-calculus by H.-B. Curry and R. Feys. A�-redex is a pattern(�x:P )Q occurring in the syntactical tree of a�-term. The�-terms(�x:P ) andQ are
called respectively thefunctionand theargumentof the�-redex(�x:P )Q. A �-term
which does not contain any�-redex is called anormal form: it cannot be computed
further. Now, consider a�-termM containing a�-redex at least. Itsleftmost outermost�-redex is defined by induction on the size of the�-termM :

1. as(�x:P )Q whenM = �x1:::�xk:((�x:P )QR1:::Rm),
2. as the leftmost outermost�-redex ofQ when

M = �x1:::�xk:(xP1:::PmQR1:::Rn)
and everyPi is a normal form.

Theorem 1 (Curry-Feys) Suppose that there exists a rewriting path from a�-termM
to a normal formP . The strategy consisting in rewriting at each stepMi the leftmost
outermost�-redex inMi constructs a rewriting path

M = M0 �!M1 �! � � � �!Mk�1 �!Mk = P
fromM to P .

Theorem 1 may be stated alternatively by defining99K as the least relation between�-terms satisfying the inductive steps of Figure 1, then by establishing thatM �!�! P
is equivalent toM 99K P , for every�-termM and normal formP . We leave the reader
check as exercise that the definition of99K constructs the rewriting path (3) in the case
of M = Ka(��).
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1.2 Computing leftmost outermost is not necessarily judicious... in other
rewriting systems

This clarifies how a term should be computed in the�-calculus: from left to right. It
appears however that this orientation is very particular to the�-calculus. Consider for
instance the term rewriting system defined by the rules

A! AB ! CF (x;C)! D (5)

Then, the rightmost outermost strategy (6) rewrites the termF (A;B) to a resultD:

F (A;B) �! F (A;C) �! D (6)

whereas the leftmost outermost strategy loops for ever on the termF (A;B):
F (A;B) �! F (A;B) �! � � � (7)

One must admit here that there exists no universal “syntactic orientation” in Rewriting
Theory. This should not be a surprise: after all, the “syntactic orientation” of a rewrit-
ing system is extremely sensitive to its notation! Think only of the�-calculus written
through the Looking Glass, in a reverse notation: now, the calculus is oriented right to
left, instead of left to right... The general case is even worse. A rewriting system does
not enjoy any uniform orientation in general, and finding the “judicious” strategy, even
if we know that it exists, is a non decidable problem, see [18].

Despite the apparent mess, we will initiate in this article agenerictheory of ori-
entations and causality in rewriting systems. But on what foundations? Obviously, we
need to abstract away from syntax in order to describe uniformly examples (3), (4), (6)
and (7). We are thus compelled to reasondiagrammaticallyinstead ofsyntactically, and
to develop asyntax-freeRewriting Theory, based on a 2-dimensional refinement of the
traditional notion ofAbstract Rewriting Systemdeveloped in [32, 17, 21].

(VAR) x 99K x
(BETA)

M 99K �x:P P [x := N ] 99K QMN 99K Q
(APP)

M 99K xP1:::Pk N 99K QMN 99K xP1:::PkQ
(X I) M 99K P�x:M 99K �x:P

Fig. 1.An inductive definition of Curry and Feys’ leftmost outermost strategy.
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1.3 Forget syntax, think diagrammatically!

The diagrammatic approach to Rewriting Theory which we plan to develop starts with
a simple but surprising observation: despite their syntactic differences, the two termsKa(��) andF (A;B) defineexactlythe same transition system, which we draw be-
low.

Ka(��)
K ��

�1 // Ka(��)
K��(�y:a)(��) �2 //

� ��
(�y:a)(��)

���a ida a

F (A;B)
B ��

A1 // F (A;B)
B��F (A;C) A2 //

F ��
F (A;C)

F��D idD D

(8)

Apparently, thedynamical analogybetween the two termsKa(��) andF (A;B) goes
beyond the equality of their transition systems. Observe indeed that in the lefthand side
and the righthand side of the diagram:

– the steps�1 andA1 are “unnecessary” because they may be “erased” by the pathsK � � andB � F ,
– the pathsK �� andB �F are more “judicious” than the paths�1 �K �� andA1 �B �F

because they avoid computing the “unnecessary” redexes�1 andA1.

This analogy between the two termsKa(��) andF (A;B) is too strong to be reflected
by the transition systems of Diagram (8). Nevertheless, it is possible torefinethe notion
of transition system, in order to capture the analogy. The refinement is based on the con-
cept ofredex permutationintroduced by J.-J. Ĺevy in his work on the�-calculus and on
term rewriting systems, see [24, 18, 3]. Permuting redexes inside rewriting paths enables
to express by local transformations that two different rewriting paths compute the same
events, but in a different order. Typically, the transition system of the termsKa(��)
andF (A;B) may be equipped with the two permutations [1] and [2] indicated below:

Ka(��)
[1]K ��
�1 // Ka(��)

K��(�y:a)(��) �2 //
[2]� ��

(�y:a)(��)
���a ida a

F (A;B)
[1]B ��
A1 // F (A;B)

B��F (A;C) A2 //
[2]F ��

F (A;C)
F��D idD D

(9)

Consider for instance the transition system of the�-termKa(��) on the lefthand side
of Diagram 9:

– the two paths�1 �K � � andK ��2 � � areequivalentmodulo permutation [1] of
the�-redexes�1 andK, and
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– the two pathsK � �2 � � andK � � areequivalentmodulo permutation [2] of the�-redexes�2 and�.

All put together, the two pathsf = �1 � K � � andg = K � � are equivalent modulo
the two permutations [1] and [2]. In particular, they compute the sameevents, but in
a different order. Note however that the redex�1 has disappeared in the process of
reorganizing the rewriting pathf into the rewriting pathg. Remarkably, the same story
may be told of the termF (A;B): the redexA1 has disappeared during the process of
reorganizing the rewriting pathf = A1 �B � F into the rewriting pathg = B � F using
the two permutations [1] and [2].

The process of reorganizing a pathf : P �!�! Q into the properly oriented pathg : P �!�! Q is known asthe standardization procedure. The rewriting pathg obtained
at the end of the procedure is calledthe standard pathassociated to the pathf . J.-J. Ĺevy
introduced the idea of anequivalence relationbetween rewriting pathsmodulo redex
permutation. Here, weorient the redex permutations and thus refine Lévy equivalence
relation into apreorder on rewriting paths. We call this preorder thestandardization
preorder. This enables us to describe standardization in a purely diagrammatic way, as
anextremal problem:

standard paths= minimal paths wrt. the standardization preorder.

All this is explained here in Sections 1.4—1.8, and illustrated by the�-calculus in three
different ways in Section 1.9. A concise and subjective history of the standardization
theorem is provided in Section 1.10.

1.4 Standardization as 2-dimensional rewriting “modulo”

Standardization is too often explained syntactically, and this complicates matters... In
order to understand the reorganization of redexes in a simple and diagrammatic way,
we decide toorient the permutations [1] and [2], and to define standardization as the
2-dimensional process of transforming the path�1 �K �� into the pathK ��. During that
transformation, each permutation [1] and [2] plays the role of a 2-dimensional rewriting
step=) reducing a rewriting path into another “more standard” rewriting path:

�1 �K � � =) K ��2 � � =) K � �: (10)

The normal form of�1 � K � � is the standard pathK � �. In this way, we define
uniformly — for the first time — standardization for a wide class of existing rewriting
system. The 2-dimensional perspective unifies already our two favourite examples: the
rewriting pathA1 �B �F is rewritten as the “rightmost outermost” rewriting pathB �F
by the same 2-dimensional procedure as example (10):

A1 �B � F =) B �A2 � F =) B � F:
The interpretation of standardization as 2-dimensional rewriting is the author’s redis-
covery of an old idea published fifteen years earlier by J. W. Klop in his PhD thesis.
At the time of J. W. Klop’s PhD thesis (1975-80) standardization was limited to the
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�-calculus and similar “leftmost-outermost” standardization theorems. J. W. Klop ob-
served that standardization could be expressed nicely as aplain 2-dimensional rewrit-
ing system. Quite at the same time, G. Huet and J.-J. Lévy reshaped the field entirely
by establishing a revolutionary standardization theorem for term rewriting systems,
in [18]. Unfortunately, the richer standardization mechanisms disclosed by G. Huet and
J.-J. Ĺevy cannot be expressed as a plain 2-dimensional rewriting system anymore —
and J. W. Klop’s elegant idea would simply not work.

It is only fifteen years later, trying to abstract away from the syntactical details of
[18] that the 2-dimensional approach took shape again. This was a completely inde-
pendent discovery originating from a long and obsessive reflexion on the diagrammatic
presentation of [13]. Already in germ there and in the author’s PhD thesis [27] the idea
emerged finally that the standardization mechanism described by G. Huet and J.-J. Lévy
reduces to distinguishing two classes of permutations:

– thereversiblepermutations — for instance, permutation [1] in Diagram (9),
– the irreversiblepermutations — for instance, permutation [2] in Diagram (9).

In this way, the standardization mechanisms disclosed by G. Huet and J.-J. Lévy can
be reformulated as a 2-dimensional rewriting systemmodulo reversible permutations
— which then specializes to a plain 2-dimensional rewriting system in the case of the
“leftmost-outermost” standardization theorems studied by J. W. Klop in his PhD thesis.

At this point, it is worth explaining briefly and informally the difference between a
reversible and an irreversible permutation. Permutation [1] is calledreversiblebecause
it permutes twodisjoint rewriting stepsK and�1, or B andA1 — disjoint in the
syntactic sense that no redex contains the other redex in the tree nesting order. The
permutation is thusneutralfrom the point of view of standardization.

Ka(��)
[1]K ��
�1 // Ka(��)

K��(�y:a)(��) �2 // (�y:a)(��)

F (A;B)
[1]B ��
A1 // F (A;B)

B��F (A;C) A2 // F (A;C)
Permutation [2] is calledirreversiblebecause it replaces the “inside-out” computation�2 � � or A2 � F by its “outside-in” equivalent� or F — thusstrictly improvingthe
computation from the point of view of standardization.

(�y:a)(��) �2 //
[2]� ��

(�y:a)(��)
���a ida a

F (A;C) A2 //
[2]F ��

F (A;C)
F��D idD D

1.5 The basic vocabulary of Axiomatic Rewriting Theory

It is time to introduce several key definitions related to our diagrammatic theory of
standardization.
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Definition 1 (transition system) A transition system (or oriented graph)G is a quadru-
ple (terms; redexes; source; target)
consisting of a setterms of vertices (=terms), a setredexes of edges (= rewriting
steps, orredexes), and two functionssource; target : redexes ! terms (= the
source and target functions). We write

u : M �! N whensource(u) = M andtarget(u) = N .

Recall that apath in a transition systemG is a sequence

f = (M1; u1;M2; :::;Mm; um;Mm+1) (11)

whereui : Mi �! Mi+1 for everyi 2 [1:::m]. We writef : M1 �! Mm+1. The
lengthof f is m andf is said to be empty whenm = 0. Two pathsf : M �!�! N
andg : P �!�! Q are coinitial (resp. cofinal) whenM = P (resp.N = Q). The
pathf ; g : M �!�! Q denotes the concatenation of two pathsf : M �!�! P andg : P �!�! Q.

Definition 2 (2-dimensional transition system)A 2-dimensional transition systemis
a pair (G;B) consisting of a transition systemG and a binary relationB on the paths
of G. The relationB is required to relate coinitial and cofinal paths:

8f : M �!�! N; g : P �!�! Q; f B g ) (M;N) = (P;Q)
The starting point of Axiomatic Rewriting Theory is to replace a concrete rewriting
system by its 2-dimensional transition system. This has the effect of revealing unex-
pected similarities: typically, the two termsKa(��) andF (A;B) behave differently
syntactically (left to right vs. right to left) but induce the same 2-dimensional transition
system (drawn below) in the�-calculus and in the term rewriting system (5).

X
u ��

w1 // X
u��Y w2 //

v ��
Y
v��Z idZ Z

w1 � u B u � w2u � w2 B w1 � uw2 � v B v (12)

It should be obvious at this point of the exposition that the dynamical analogy observed
previously between the termsKa(��) andF (A;B) (Section 1.3) follows from the
identity of their 2-dimensional transition system (12).

Definition 3 (permutation) A permutation(f; g) in a 2-dimensional transition system(G;B) is a pair of paths such thatf B g. We often use the more explicit (and over-
loaded) notationf B g for a permutation(f; g).
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Definition 4 (standardization step, 1=)) Astandardization stepfrom a pathd : M �!�!N to a coinitial and cofinal pathe : M �!�! N in a 2-dimensional transition system(G;B), is a triple (d1; f B g; d2) consisting of a permutationf B g and two pathsd1,d2 such that:

d = M d1�!�! P f�!�! Q d2�!�! N e = M d1�!�! P g�!�! Q d2�!�! N
We writed 1=) e when there exists a standardization step fromd to e.
Definition 5 (standardization preorder =), Lévy equivalence�) In every 2-dimensional
transition system(G;B)

– thestandardization preorder=) is the least transitive reflexive relation containing1=). We say that a pathe : M �!�! N is more standardthan a pathd : M �!�! N
whend =) e.

– the Lévy permutation equivalence� is the least equivalence relation containing=). Alternatively, the equivalence relation� is the least equivalence relation con-
tainingB and closed under composition.

To illustrate our definitions with Diagram (12), one shows that the pathu � v is more
standard than the pathw1 � u � v by exhibiting the sequence of standardization steps:

w1 � u � v 1=) u � w2 � v 1=) u � v:
1.6 Reversible and irreversible permutations

Permutations of(G;B) are discriminated in two classes, reversible and irreversible,
according to the following definition.

Definition 6 (reversible, irreversible permutation) In every 2-dimensional transition
system(G;B)
1. A permutation(f; g) is reversiblewheng B f . A box} signals reversible permu-

tationsf } g in text and diagrams.
2. A permutation(f; g) is irreversiblewhen:(g B f). A triangleI signals irre-

versible permutationsf I g in text and diagrams.

Check that the definition matches the previous qualification in Section 1.4 of permu-
tation [1] as reversible, and permutation [2] as irreversible, in Diagrams (9) and (12).
We illustrate our new diagrammatic conventions on the 2-dimensional transition sys-
tem (12).

X
}u ��
w1 // X

u��Y w2 //
Jv ��

Y
v��Z idZ Z

w1 � u } u � w2w2 � v I v (13)
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In the definition below, the discrimination on permutations generalizes to the obvi-
ous discrimination on standardization steps. The key concept of reversible permutation
equivalence' is revealed, as a stronger version of usual Lévy permutation equivalence�.

Definition 7 (REV=) ; IRR=), reversible permutation equivalence') In every 2-dimensional
transition system(G;B)

– A standardization step(e; f B g; h) is reversible(resp.irreversible) when the per-
mutationf B g is reversible (resp. irreversible). We write

d REV=) e d IRR=) e
when there exists a Reversible (resp. Irreversible) standardization step fromd to e.

– Thereversible permutation equivalence' is the least equivalence relation contain-

ing the relation
REV=) .

1.7 Standard rewriting paths

Definition 8 (standard path) A rewriting pathd : M �!�! N is standardwhen there
does not exist any sequence of standardization steps

d REV=) d1 REV=) � � � REV=) dk IRR=) dk+1
consisting of a series ofk Reversible steps followed by an Irreversible step.

So, a standard path is just a normal form of the standardization process, modulo re-
versible steps. Consequently, when a rewriting pathd is standard, and whend =) e,
thend ' e and the rewriting pathe is standard.

For instance, the pathX w1�! X u�! Y v�! Z in Diagram (12) is transformed in
two steps in the standard pathX u�! Y v�! Z. The rewriting pathX w1�! X u�! Y
is another example of standard path, because every standardization sequence from it to
itself or toX u�! Y w2�! Y is reversible.

1.8 The standardization theorem

One main challenge of Axiomatic Rewriting Theory is to capture the diagrammatic
properties of redex permutations insyntacticrewriting systems, in order to establish the
following diagrammaticstandardization theorem: for every rewriting pathd : M �!�!P in the transition systemG,

1. existence:there exists a standardization sequence

d =) e
transforming the rewriting pathd into a standard pathe,
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2. uniqueness:every standardization sequence

d =) f
may be extended to a standardization sequence leading to the standard pathe:

d =) f =) e:
The uniqueness property has a series of remarkable consequences. Suppose for instance
that the rewriting pathf is standard. In that case, the standardization sequence

f =) e
consists of Reversible steps. Thus, f ' e:
From this follows that there exists a unique standard pathe such that

d =) e
modulo reversible permutation equivalence. In fact, the uniqueness property ensures
that there exists a unique standard path, modulo reversible permutation equivalence, in
the Lévy equivalence class of the rewriting pathd.

In this article, we formulate a series of nine elementary axioms on the 2-dimensional
transition system(G;B) and deduce from them the diagrammatic standardization the-
orem stated above. The axioms uncover a series of simple and elegantprinciplesof
causality in computations. They also illustrate that a purelydiagrammaticandsyntax-
free theory of computations is possible, and useful, since it enscopes almost every ex-
isting rewriting system, from Petri nets to higher-order rewriting systems.

1.9 Illustration: the �-calculus and its three standardization orders

There are at least three different ways to interpret the�-calculus as a 2-dimensional
transition system, each one associated to a particularnesting orderon the�-redexes of�-terms. The underlying transition systemG� is the same in the three cases. It is defined
in [10, 24] as follows:

– its vertices are the�-terms, modulo�-conversion,
– its edges are the�-redexesu : M �! N .

Recall that a�-redexu = (M;o;N) is a triple consisting of a�-termM , the occurrenceo of a�-pattern(�x:P )Q in M and the�-termN obtained after�-reducing

(�x:P )Q �! P [x := Q]
in the�-termM .

It is worth noting that there are two different edgesI(Ia) �! Ia in the graphG�:
each edge corresponds to the reduction of a particular identity combinatorI = (�x:x)
in the�-termI(Ia).

There are at least three different ways to refine the transition systemG� as a 2-
dimensional transition system, depending on the order chosen on�-redexes:
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– thetree-order: a�-redexu is smaller than a�-redexv whenv occurs in the function
or argument part ofu; or equivalently, when the occurrence ofu is a strict prefix of
the occurrence ofv. We use the notation:u �tree v.

– theleft-order: a�-redexu is smaller than a�-redexv whenv occurs in the function
or argument part ofu, or when there exists an occurrenceo of an application nodePQ in the �-term M , such thatu occurs inP and v occurs inQ. We use the
notation:u �left v.

– theargument-order: a �-redexu is smaller than a�-redexv whenv occurs in the
argument ofu. We use the notation:u �arg v.

Each order induces in turn its own permutation relationBtree, Bleft andBarg on the
transition systemG�. The order considered in the literature is generally theleft-order,
see [10, 24, 20]. However, we prefer to study here the tree-order, because this seems the
most natural choice after the work by G. Huet and J.-J. Lévy on term rewriting sys-
tems [18]. The two alternative orders�left and�arg are discussed briefly in Section 8.

We define the relationBtree as follows. Two pathsf; g are related asf Btree g
precisely when:

1. the pathsf andg factor asf = v � u0 andg = u � h whereu, v, u0 are�-redexes
andh is a path,

2. the two�-redexesu andv are coinitial, and:(v �tree u),
3. the�-redexu0 is the (unique) residual ofu after v, and the pathh develops the

(possibly) several residuals ofv afteru. [For a definition of residual and complete
development, see [10, 24, 18, 3, 21, 22] or Section 6.]

Thus, every permutationf Btree g is of the form:

M v //
u �� (tree

Q
u0��P h // N

f = v � u0g = u � h (14)

whereu andv are different�-redexes,u0 is a�-redex andh is a path. The three paradig-
matic examples of�-redex permutationf Btree g are:

PQ v //
u �� (tree

P 0Q
u0��PQ0 v0 // P 0Q0

(�x:a)P v //
u �� (tree

(�x:a)P 0
u0��a ida a

�P v //
u �� (tree

�P 0
u0��PP v1�v2 // P 0P 0

whereP �! P 0 andQ �! Q0 are two�-redexes. The three permutations are respec-
tively reversible, irreversible and irreversible in the 2-dimensional transition system(G�;Btree).
Remark: the argument-order�arg is included in the tree-order�tree which is included
in the left-order�left. From this follows that the permutation relationBarg contains the

14



permutation relationBtree which contains in turn the permutation relationBleft. It is
not difficult then to establish that every rewriting path standard wrt. the left-order�left
is standard wrt. the tree-order�tree, and that every rewriting path standard wrt. the tree-
order�tree is standard wrt. the argument-order�arg. The converse is obviously false
in the two cases.

1.10 A concise history of the standardization theorem

Many authors have written on the standardization theorem. We do not draw below a
comprehensive list, but deliver a concise history of the subject, in eight key steps.

[1936] A. ChurchandJ.B. Rosserintroduce the�I-calculus, a�-calculus without era-
sure, and prove that the number of�-steps from a�I-term to its normal form is
boundedby the length of the leftmost outermost computation. This result is the
ancestor of all later standardization theorems.

[1958] H.B. CurryandR. Feysformulate the first standardization theorem for the�-
calculus: the two authors prove that every time a�-termP �-reduces to a�-termQ,
there exists also astandardway to�-reduceP toQ. The theorem extends Church
and Rosser result for the�I-calculus, and plays a role in Curry and Feys’ defense
of their erasing combinatorK.

[1978] J.-J. Ĺevyformulates the standardization theorem in its modern algebraic form:
using an equivalence relation on rewriting paths — called today Lévy permutation
equivalence — Ĺevy proves that there exists auniquestandard rewriting path in
each equivalence class. The uniqueness result was so striking at the time that the
theorem was called thestrongstandardization theorem by subsequent authors. De-
spite its conceptual novelty, the theorem is still limited to the�-calculus and to its
leftmost-outermost order.

[1979] G. HuetandJ.-J. Ĺevyformulate and establish a standardization theorem for
term rewriting systems without critical pairs. This is probably the most revolution-
ary step in the history of standardization, the first time at least that another standard-
ization order is considered than the “leftmost outermost” order of the�-calculus.
The theorem is still limited to term rewriting systems — because its proof relies
heavily on syntactical notions like tree-occurrence — but the article delivers the
message that standardization is a general property of rewriting systems, related to
causality and domain-theoretic notions like stability and sequentiality.

[1980] J. W. Klop introduces a 2-dimensional rewriting system on paths, consist-
ing in permuting “anti-standard” paths of length 2 into “standard” paths of arbi-
trary length. In this way, Klop deduces Lévy’s strongstandardization theorem for
leftmost-outermost�-calculus, by establishing confluence and strong normaliza-
tion of the 2-dimensional rewriting process: the standard path is obtained as the
normal form of the procedure. Another important contribution of J. W. Klop is to
stress the role of the finite development lemma in the proof of standardization, and
to extend to any “left-regular” Combinatory Reduction System the standardization
theorem for leftmost-outermost�-calculus.

[Early 1980s] G. Boudolextends G. Huet and J.-J. Lévy standardization theorem to
term rewriting systems with critical pairs. This is another decisive step, because it
extends the principle of standardization to non deterministic rewriting systems.
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[1992] G. GonthierandJ.-J. ĹevyandP-A. Mellièsdeliver an axiomatic standard-
ization theorem, where the syntactical proof of [18] is replaced by diagrammatic
arguments on redexes, residuals and the nesting relation. Subsequently reworked
by the author in his PhD thesis [27], the theorem extends G. Huet and J.-J. Lévy’s
original theorem to a great variety of rewriting systems with and without critical
pairs — with the remarkable and puzzling exception (as first noted by R. Kenn-
away) of rewriting systems based on directed acyclic graphs.

[1996] D. Clark andR. Kennawayadapt the syntactical works of G. Huet, J.-J. Lévy
and G. Boudol and establish a standardization theorem for (possibly conflicting)
rewriting systems based on directed acyclic graphs (dags).

It took the author nine years to derive the current axiomatics from [13]. One difficulty
was to find the simplest possible description of rewriting systems with critical pairs. The
trinity of residual, compatibility and nesting relations operating in [13] was certainly
too complicated. Slowly, the 2-dimensional presentation emerged, leading the author to
the elementary axiomatics of this article. Twenty-five years ago, the work of [18, 6] on
term rewriting systems revealed that the “conflict-free left-regular” rewriting systems
considered earlier was the emerged part of the much wider and exciting world ofcausal
computations. This is that world and its boundaries which we will explore here in our
2-dimensional diagrammatic language.

Structure of the paper

Axiomatic Rewriting Systems (AxRS) are introduced in Section 2, along with their
nine standardization axioms. A less innovative but more traditional axiomatics based
on residuals, critical pairs and nesting is formulated in Section 6. Standard paths are
characterized in Section 3 as the paths which do not contain a particular “anti-standard”
pattern, just as in [13, 27]. The standardization theorem is proved in Section 4, and re-
formulated 2-categorically in Section 5. An alternative axiomatization based on resid-
uals and nesting orders is formulated in Section 6. A few additional hypotheses on ax-
iomatic rewriting systems are discussed in Section 7. Finally, we illustrate our definition
of AxRS with a series of examples in Section 8, like asynchronous transition systems,
term rewriting systems, call-by-value�-calculus,�-calculus with explicit substitutions.

2 The Standardization Axiomatics

An Axiomatic Rewriting System (AxRS)is defined as a 2-dimensional transition sys-
tem (G;B) which satisfies moreover the series of ninestandardization axiomspre-
sented in this section. Each axiom of the section is illustrated by the�-calculus and
its 2-dimensional transition system(G�;Btree) defined in Section 1.9.

2.1 Axiom 1: shape

The first axiom generalizes to every AxRS the shape of permutations encountered in
the�-calculus — see Diagram (14)in Section 1.9.
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Axiom 1 (Shape) We ask that in every permutationf B g,

– the pathf is of length 2,
– the pathg is of length at least 1,
– the initial redexes off andg are different.

Thus, every permutationf B g in the 2-dimensional transition system(G;B) has the
following shape:

M v //
u �� (

Q
u0��P h // N

f = v � u0g = u � h (15)

whereu andv are different redexes,u0 is a redex andh is a path. In case of areversible
permutationf } g, this shape specializes to a2� 2 square:

M v //
u �� }

Q
u0��P v0 // N

f = v � u0g = u � v0

whereu, u0, v andv0 are redexes,u andv different.

2.2 Axioms 2, 3, 4, 5: ancestor, reversibility, irreversibility and cube

The standardization theorem is usually established by a fine-grained analysis of syntac-
tic mechanisms like erasure, duplication, etc... related to Lévy theory of residuals. The
fragment of Ĺevy theory necessary to the theorem, e.g. the finite development prop-
erty, appears in our axiomatics... but reformulated, because the more geometric idea of
“oriented permutation” replaces the traditional concept of “residual of a redex”. The
residual theory is particularly visible in the four Axiomsancestor, reversibility , irre-
versibility andcubeintroduced below, as well as in Axiomtermination of Section 2.6.

Axiom ancestorincorporates two properties of the�-calculus, traditionally called
uniqueness of ancestorandfinite development. The existence of a permutationf Btree g
between two�-rewriting paths:

f = M v�! Q u0�! N g = M u�! P h�!�! N
means that the�-redexu0 is the unique residual of the�-redexu after�-reduction of
the redexv, and that the pathh is a complete development of the residuals of the redexv
after�-reduction of the redexu. In that case, we say that the redexu is anancestorof
the redexu0 before�-reduction of the redexv. The uniqueness of ancestorproperty
states that the redexu is the unique such ancestor of the redexu0. Besides, thefinite
developmentproperty of the�-calculus, recalled in Section 6, states that two complete
developments of the same set of�-redexes, are Ĺevy equivalent. From this follows that
any rewriting pathg0 involved in a permutationf Btree g0 factors asg0 = u0 � h0 whereu = u0 andh �tree h0. This leads us to formulate the
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Axiom 2 (Ancestor) Suppose thatu; u0 are redexes, thatf; h; h0 are rewriting paths,
forming together permutationsf B u � h and f B u0 � h0. We ask thatu = u0 andh � h0.

Axiom reversibility indicates that every permutationf B g is either reversible, or
reduces to a rewriting pathg for which there exists no permutation of the formg B h.
This mirrors the following property of the�-calculus. Suppose thatf; g; h : M �!�! N
are three�-rewriting paths involved in permutationsf Btree g andg Btree h. The
pathsf andg are of length 2, the pathh is of length at least 1, and the pathsf; g; h
decompose as

f = M v�! Q u0�! N; g = M u�! P v0�! N; h = M v00�! O hu�!�! N
where the two redexesv andv00 are ancestor of the same redexv0, and thusv = v00; and
where the�-redexu0 is the unique residual of the�-redexu, and the rewriting pathhu
is a development of the residuals ofu afterv, and thushu = u0. It follows thatf = h.

Axiom 3 (Reversibility) We ask thatf = h whenf B g andg B h.

Axiom irreversibility completes the two previous axioms. The axiom mirrors the
fact that in the�-calculus and in many rewriting systems, standardization preserves
complete developments — see [24, 18] or Section 6 for a definition of complete devel-
opments. Let us explain briefly what we mean here. Consider any�-rewriting pathh :M �!�! N which defines a complete development of a multi-redex(M;U) in the�-
calculus, and suppose that the pathh factors as

h = M h1�!�!M 0 h2�!�! N 0 h3�!�! N
where the�-rewriting pathh2 is involved in a standardization permutation

h2 B h02:
By definition ofBtree, the two�-rewriting pathsh2 andh02 decompose as

h2 = M 0 v�! P u0�! N 0 and h02 = M 0 u�! Q h00�!�! N 0:
We claim here that the resulting�-rewriting path

h0 = M h1�!�!M 0 h02�!�! N 0 h3�!�! N
defines a complete development of(M;U). How do we prove this? We establish first
that the two redexesu andv are residual of a redex inU after the�-rewriting pathh1.
The very definition of the pathh as a complete development of the multi-redex(M;U)
induces already that:

– the redexv is residual of a redexv0 2 U after the�-rewriting pathh1; and
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– the redexu0 is residual of a redexu0 2 U after the�-rewriting pathh1 � v.

We know moreover that the�-redexu is the uniqueancestor of the�-redexu0 be-
fore reduction of the�-redexv. This uniqueness property ensures that the�-redexu
is residual of the redexu0 2 U after the�-rewriting pathh1. This establishes that the
two redexesu andv are residual of a redex inU after the�-rewriting pathh1. Now, we
know by definition ofBtree that the two pathsh2 andh02 define complete developments
of the multi-redex(M 0; fu; vg). Thefinite developmentproperty of the�-calculus states
moreover that the two�-rewriting pathsh2 andh02 define the same residual relation. It
follows quite immediately that, as we claimed, the�-rewriting pathh1 � h02 � h3 de-
fines a complete development of the multi-redex(M;U). We conclude more generally
that every path more standard than the pathh is also a complete development of the
multi-redex(M;U).

How is this result interpreted in our axiomatic setting? Consider an irreversible
permutationf Itree g between two�-rewriting paths

f = M v�! Q u0�! N g = M u�! P hv�!�! N
and a�-rewriting pathh such that

g =) h:
It follows from our previous argument that, just like the�-rewriting pathf andg, the�-rewriting pathh is a complete development of the multi-redex(M; fu; vg). Besides,
the first�-redex reduced in the pathh is not the�-redexv. Thus, the�-rewriting pathh
decomposes necessarily as

h = M u�! P h0v�!�! N
where hv =) h0v:
Here, we apply our previous argument another time, and deduce fromhv =) h0v that,
just like the�-rewriting pathhv, the�-rewriting pathh0v is a complete development of
the residuals of the�-redexv after reduction of the�-redexu. This shows in particular
thatf Itree h. This leads to

Axiom 4 (Irreversibility) We ask thatf I h whenf I g andg =) h.

Axiom cubeincorporates thecube lemmaestablished in [24, 18] as well as a careful
analysis of nesting in the�-calculus. Suppose thatC[�] is a context, see [3] for a
definition, and that a�-rewriting pathg : C[M ] �!�! C[N ] computes only insideM , never insideC[�]. Then, just as the�-rewriting pathg, every Ĺevy equivalent�-
rewriting pathf : C[M ] �!�! C[N ] computes only insideM , never insideC[�]. So,
every�-redexw insideC[�] has the same (unique) residualw00 after the�-rewriting
pathsf andg. Diagrammatically speaking, the property amounts to the cube property
stated in the next axiom, whenf Btree g andf = v � u0 andg = u � v1 � � � vn andw00 = wn+1. The axiom requires that the property holds in every AxRS.
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Axiom 5 (Cube) We ask that every diagram

hu

��

v //
u�� (*

w???
__???

u0��v1���vn //
w1�������� wn+1???

��???h1���hn //(���(

with u; u0; v andv1; :::; vn andw;w1; :::; wn; wn+1 a series of redexes andh1; :::; hn a
series of paths forming permutations

v � u0 B u � v1 � � � vn u �w1 B w � hu vi �wi+1 B wi � hi for 1 � i � n
may be completed as a diagram:

hu

��

hv //
(

hu0

��

v //
u�� (*

w???
__???

u0��

w0���
??���

v1���vn //
w1�������� wn+1???

��???
*

h1���hn //(���(

hv //

hu

��

� hu0

��h1���hn //
wherew0 is a redex andhv; hu0 are paths which form permutations

u0 � wn+1 B w0 � hu0 v � w0 B w � hv
and induce the equivalence

hv � hu0 � hu � h1 � � �hn:
2.3 Axiom 6: enclave

Axiom enclaveis based on a fundamental property of the�-calculus, observed for the
first time in the preliminary work of [13]. Suppose that a�-redexv is nested under a�-
redexu— that isu �tree v — and that the�-redexv creates a�-redexw0. By creation,
we mean that the�-redexw0 has no ancestor before reduction of the�-redexv. In
that case, the�-redexw0 is necessarily nested under the (unique) residualu0 of the�-
redexu after reduction of the�-redexv. The next axiom formulates the property as its
contrapose. The existence of the permutation

u0 � wn+1 Btree w0 � hu0
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means that the�-redexw0 is not nested under the�-redexu0. And from this follows
that the�-redexw0 is not created, and thus, has an ancestorw before reduction of the�-redexv. The axiom requires that thisenclave propertyholds in every AxRS.

Axiom 6 (Enclave) We ask that every diagram

hu0

��

v //
u �� J u0��

w0���
??���

v1���vn // wn+1???
��???

*

whereu; v; u0 andv1; :::; vn andw0; wn+1 are redexes, andhu0 is a path, forming the
permutations (recalling our convention, the symbolI means that the permutation is
irreversible)

v � u0 I u � v1 � � � vn u0 � wn+1 B w0 � hu0
may be completed as a diagram:

hu

��

hv //
(

hu0

��

v //
u�� J*

w???
__???

u0��

w0���
??���

v1���vn //
w1�������� wn+1???

��???
*

h1���hn //(���(

withw;w1; :::; wn a series of redexes andhu; hv andh1; :::; hn a series of paths, form-
ing then+ 2 permutations

v � w0 B w � hv u � w1 B w � hu vi � wi+1 B wi � hi for 1 � i � n
2.4 Axioms 7 and 8: stability and reversible stability

Axiom stability incorporates another key property of the�-calculus, also observed for
the first time in the preliminary work of [13]. Consider any reversible permutation

M u�! P v0�! N } tree M v�! Q u0�! N
in which the�-redexu creates a�-redexw1 and the�-redexv creates a�-redexw2. It
is not difficult to establish that there exists no�-redexw12 in the�-termN which would
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be at the same time residual of the�-redexw1 after reduction of the�-redexv0, and
residual of the�-redexw2 after reduction of the�-redexu0. The property is axiomatized
below as its contrapose. The axiom states that thecharacteristic functionof theeventof
creating the�-redexw12 (or equivalently the�-redexw1, or the�-redexw2) is stable
in the sense of G. Berry, see [5]. Axiomreversible-stability repeats the axiom in the
reversible case.

Axiom 7 (Stability) We ask that every diagram

hu0

��

v //
u �� } u0��

w2���
??���

v0 //
w1�������� w12???

��???
*

hv0 //(

whereu; v; u0; v0 andw1; w2; w12 are redexes andhu0 ; hv0 are paths, forming the per-
mutations (recalling our convention, the symbol} means that the permutation is
reversible)

v � u0 } u � v0 u0 � w12 B w2 � hu0 v0 � w12 B w1 � hv0
may be completed as a diagram

hu

��

hv //
(

hu0

��

v //
u�� }*

w???
__???

u0��

w2���
??���

v0 //
w1�������� w12???

��???
*

hv0 //(

wherew is a redex andhu; hv are two paths, forming two permutations

v � w2 B w � hv u � w1 B w � hu
Axiom 8 (Reversible stability) We ask that every diagram

u12

��

v //
u �� } u1��

w2���
??���

v1 //
w1�������� w12???

��???
}

v12 //}
(16)
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whereu; v; u1; v1 andw1; w2; w12; u12; v12 are redexes forming the reversible permu-
tations

v � u1 } u � v1 u1 � w12 } w2 � u12 v1 � w12 } w1 � v12
may be completed as a diagram

u2

��

v2 //
}

u12

��

v //
u�� }}

w???
__???

u1��

w2���
??���

v1 //
w1�������� w12???

��???
}

v12 //}

v2 //

u2

��

} u12

��v12 //
wherew; u2; v2 are three redexes forming the reversible permutations

v � w2 } w � v2 and u � w1 } w � u2 and v2 � u12 } u2 � v12
Remark: Axiomreversible-stability may be understood as a converse of the reversible
variant of Axiomcube formulated in Section 7.3. Indeed, Axiomreversible-stability
states that every diagram

u
�������

���� v
��????

?????
}

w1
��

v1???
?

��???? w2
��

u1����������

w12
��

}}
v12 ��????

????? u12�������
����

(17)

may be completed into the diagram

u
�������

���� v
��????

?????w
��w1

��

}
w2
��

}
u2���������� v2???

?
��????}

v12 ��????
????? u12�������

����
(18)
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u ��
v1 //
( (

v2 //
u2��

//
u3��

vn //
(un�� v��h1 // h2 // // hn //

Fig. 2.The pathf = v1 � � � vn drags the redexv to the redexu.

and conversely, Axiomreversible-cubeformulated in Section 7.3 states that Diagram (18)
may be completed as Diagram (17). Besides, it is remarkable that the two Axioms
reversible-stability andreversible-cubearedual in the sense that each axiom may be
obtained from the other one byreversingthe orientations of all the arrows in diagrams.

2.5 Drag and extraction

We need to introduce a few definitions related to standardization in order to state the
last axiom of the theory (Axiom 9).

Definition 9 (drag) A path f : M �!�! N dragsa redexv outgoing fromN to a
redexu outgoing fromM , when

– f = idM andv = u,
– or f = v1 � � � vn and there existsn+ 1 redexesu1; :::; un+1 andn pathsh1; :::; hn

such that:� u1 = u andun+1 = v,� the rewriting pathsvi � ui+1 andui � hi form a permutationvi � ui+1 B ui � hi
for every index1 � i � n.

Notation: we writeu f � [ v when the rewriting pathf drags the redexv to the redexu.
See Figure 2.

Lemma 10 (preservation of drag) For every pathf : M �!�! N , the relation
f � [ is

a partial function, from the redexes outgoing fromN to the redexes outgoing fromM .
Moreover, the relation is invariant by permutation onf :

8g : M �!�! N; f � g ) f � [ = g � [ :
Proof. Suppose thatu f � [ v andu0 f � [ v. Thenu = u0 by Axiom ancestor, and an
easy induction on the length off . Now, by Axiomcube, the relation increases byanti-
standardization: if the rewriting pathg drags the redexv to the redexu, andf =) g,
then the rewriting pathf drags the redexv to the redexu. By Axiom enclave, the
relation increases also bystandardization: if the rewriting pathf drags the redexv to
the redexu, andf =) g, then the rewriting pathg drags the redexv to the redexu as
well. We conclude. ut
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u ��
v1 //( (

v2 //u2��
//u3��

vi�1 //(ui�1�� vi��h1 // h2 // // hi�1 // vi+1���vn //
Fig. 3. The redexu is extractible from the pathf = v1 � � � vn and the pathg = h1 � � �hi�1 �vi+1 � � � vn is a projection of the rewriting pathf by extraction of the redexu.

Definition 11 (extraction, projection,&u) A redexu : M �! P is extractiblefrom
a pathf = v1 � � � vn : M �!�! N when there exists an index1 � i � n such that
the pathv1 � � � vi�1 drags the redexvi to the redexu. In that case, we callprojection
of the rewriting pathf by extraction of the redexu : M �! P any rewriting pathg : P �!�! N which decomposes as

g = h1 � � �hi�1 � vi+1 � � � vn
where there exists redexesu1; :::; ui with u1 = u andui = vi and a permutation

vj � uj+1 B uj � hj
for every index1 � j � i� 1.

Notation: We writef &u g when the redexu is extractible from the pathf , andg is a
projection off by extraction of the redexu. See figure 3.

Lemma 12 (preservation of extraction) Suppose that a redexu is extractible from a
path g : M �!�! N more standard than a pathf : M �!�! N . Then the redexu is
also extractible from the pathf . Moreover, every projection off by extraction ofu and
every projection ofg by extraction ofu are Lévy equivalent.

Proof. Suppose that the redexu is extractible from the pathf = v1 � � � vn : M �!�! N .
By definition, there exists an index1 � i � n such that the pathv1 � � � vi�1 drags the
redexvi to the redexu. We show that the indexi is unique. Suppose that there exists
another index1 � j � n such thatv1 � � � vj�1 drags the redexvj to the redexu. We may
suppose without loss of generality thati < j. Let the rewriting pathh be a projection
of the rewriting pathv1 � � � vi by extraction of the redexu at positioni. By definition of
extraction and projection, the two rewriting pathsv1 � � � vi andu �h are Ĺevy equivalent.
From this follows that the two paths

v1 � � � vj�1 = v1 � � � vi � vi+1 � � � vj�1 and u � h � vi+1 � � � vj�1
are Ĺevy equivalent. Here comes the contradiction. By Lemma 10 (preservation of
drag), the pathu � h � vi+1 � � � vj�1 drags the redexvj to the redexu. This may be
decomposed in two steps: first, the pathh �vi+1 � � � vj�1 drags the redexvj to a redexv,
then the redexu drags the redexv to the redexu. This very last point means that there
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exists a permutation of the formu � v B u � h0. This contradicts the Axiomshape. We
thus conclude that the indexi is unique for a givenu.

We may suppose without loss of generality that there exists a unique standardiza-
tion step from the rewriting pathf to the rewriting pathg. The remainder of the lemma
follows then from Axiomsreversibility andcubewhen the standardization step fromf
to g is reversible, and from Axiomsirreversibility , ancestorandcubewhen the stan-
dardization step is irreversible. ut
Remark: the uniqueness of the indexi in the proof of Lemma 12 is not really necessary
to establish the property, but it is a safeguard, since after all, we have not supposed
anything like the optional hypothesisdescendantformulated in Section 7.1.

2.6 Axiom 9: termination

Axiom termination mirrors in our theory thefinite developmentproperty of the�-
calculus, which states that every development of a set of�-redexes terminates. Jan
Willem Klop uses the property in his PhD thesis to deduce that it is not possible to
extract infinitely many times a�-redex from a fixed�-rewriting path, see [20] as well
as Section 6.

Axiom 9 (Termination) There exists no infinite sequence

f1 &u1 f2 &u2 � � � &uk�1 fk &uk � � �
wherefi are paths andui are redexes.

3 A Direct Characterization of the Standard Paths

In this section, we establish a key preliminary step in our proof of the standardization
theorem, performed in Section 4, by characterizing standard rewriting path in a more
direct and explicit way. In Section 3.1, we introduce the notions ofstarts and stops
of a rewriting path, and analyze their properties. From this, we deduce in Section 3.2
that every path is epi (left cancellable) with relation to the Reversible permutation rela-
tion'. In Section 3.3, we introduce the notion ofanti-standardpath and establish that
a rewriting path is standard if and only if it does not contain any occurrence of such
anti-standard path.

3.1 The structure of starts and stops

Definition 13 (starts and stops)A redexu : M �! P startsa pathf : M �!�! N
when there exists a pathg : P �!�! N such thatf ' u �g. A redexv : Q �! N stopsa
pathf : M �!�! N with remainderg : M �!�! Q whenf ' g �v. A redexv : Q �! N
stopsa pathf : M �!�! N when the redexv stops the pathf with some remainderg : M �!�! Q.

Definition 14 (reversible permutation of path and redex) A pathf : M �!�! N fol-
lowed by a redexv : N �! Q permutes reversiblyto a redexu : M �! P followed
by a pathg : P �!�! Q, when
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M
u ��

u1 //
} }

u2 //
w2��

//
w3��

un //
}wn��

N
v��P v1 // v2 // // vn // Q

Fig. 4. The pathf = u1 � � �un : M �!�! N followed by the redexv : N �! Q permutes
reversibly to the redexu : M �! P followed by the pathg = v1 � � � vn : P �!�! Q. Alter-
natively, the redexu : M �! P followed by the pathg = v1 � � � vn : P �!�! Q permutes
reversibly to the pathf = u1 � � �un : M �!�! N followed by the redexv : N �! Q.

– f = idM andg = idP andv = u : M �! P ,
– or f = u1 � � �un and g = v1 � � � vn and there exists a series ofn + 1 redexesw1; :::; wn+1 such that� w1 = u andwn+1 = v,� the two pathsui �wi+1 andwi �vi form a reversible permutationui �wi+1 }wi �vi for every index1 � i � n.

In that case, we say also that the redexu : M �! P followed by the pathg : P �!�! Q
permutes reversiblyto the pathf : M �!�! N followed by the redexv : N �! Q. See
Figure 4.

Remark: in Definition 14, the redexu and the rewriting pathg are uniquely determined
by the rewriting pathf and the redexv — and conversely, the rewriting pathf and the
redexv are uniquely determined by the redexu and the rewriting pathg. The one-to-one
relationship follows from Axiomreversibility .

Lemma 15 (structure of stops) A redexv : Q �! N stops a pathf = u1 � � �un :M �!�! N with remainderg : M �!�! Q iff there exists an index1 � i � n and a pathvi+1 � � � vn such that

– the redexui followed by the pathui+1 � � �un permutes reversibly to the pathvi+1 � � � vn
followed by the redexv,

– the rewriting path(u1 � � �ui�1) �(vi+1 � � � vn) is equivalent to the pathg modulo'.

Proof. We declare that a redexv : Q �! N super-stopsa pathf = u1 � � �un :M �!�! N at position1 � i � n with remainderg : M �!�! Q when there exists a
pathvi+1 � � � vn such that

– the redexui followed by the pathui+1 � � �un permutes reversibly to the pathvi+1 � � � vn
followed by the redexv,

– the rewriting path(u1 � � �ui�1) � (vi+1 � � � vn) is equivalent to the pathg modulo'.

We declare that a redexv super-stopsa pathf with remainderg when it super-stops the
pathf with remainderg at some positioni.

The lemma states that a redexv stops a pathf with remainder a pathg iff the redexv
super-stopsf with remainderg. Right-to-left implication(() is immediate. The other
direction ()) reduces to showing that whenever the two assertions below holds:
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– a redexv : Q �! N super-stops a pathf = u1 � � �un with remainderg, and
– the pathf 0 is equivalent to the pathf modulo reversible permutations,

then the redexv super-stops the pathf 0 with remainder the same rewriting pathg. This
elementary but fundamental preservation property is established in the following way.
We may suppose without loss of generality that the two rewriting pathsf = u1 � � �un
andf 0 = u01 � � �u0n are related by a unique reversible permutation

f REV=) f 0
occurring at a position1 � j � n� 1 in the rewriting pathf . We thus have:

– u0k = uk for every index1 � k � n different toj andj + 1, and
– uj � uj+1 } u0j � u0j+1:

Now, call i any position (there exists in fact only one of these positions,1 � i � n,
but nobody cares about that here) such that the redexv : Q �! N super-stops the
pathf = u1 � � �un at positioni with remainderg. We show by case analysis on the
indicesi andj that there exists an index1 � k � n such that the redexv : Q �! N
super-stops the path f 0 = u01 � � �u0k�1 � u0k � u0k+1 � � �u0n
at positionk with remainderg. To that purpose, we define a rewriting pathv0k+1 � � � v0n
consisting ofn� k redexes, such that:

a. the redexu0k followed by the pathu0k+1 � � �u0n permutes reversibly to the pathv0k+1 � � � v0n
followed by the redexv,

b. the rewriting path(u01 � � �u0k�1)�(v0k+1 � � � v0n) is equivalent to the pathg modulo'.

� The construction is immediate whenj + 1 � i: simply takek = i andv0i � � � v0n =vi � � � vn.� The construction is also nearly immediate whenj = i: simply takek = i + 1 andv0i+2 � � � v0n = vi+2 � � � vn, then apply Axiomreversibility to establish the two proper-
ties a. and b.� The difficult case is the remaining case whenj > i. In that case, let the redexx denote
the unique redex such that the redexui followed by the pathui+1 � � �uj�1 permutes re-
versibly to the pathvi+1 � � � vj�1 followed by the redexx. Consider the diagram below,
which describes in two perspectives how the redexx followed by the pathuj � uj+1
permutes reversibly to the pathvj � vj+1 followed by the redexz:

x??? ��???
vj

��

u0j //uj�� }} u0j+1��uj+1 //
y0���
??���

vj+1 //} z???
__???

or u0j+1
��

x //vj �� } uj��

u0j���
??���

y0 //vj+1�������� uj+1???
��???

}

z //}
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By Axiom reversible-stability, the diagram may be completed in the following way

x??? ��???
vj

��

v0j //
} y��������

v0j+1
��

u0j //uj�� }} u0j+1�� }uj+1 //
y0���
??���

vj+1 //} z???
__???

v0j+1
��

y //
}

u0j+1
��

x //vj�� }}
v0j???
__???

uj��

u0j���
??���

y0 //vj+1�������� uj+1???
��???

}

z //}

wherey andv0j andv0j+1 denote three redexes involved in the three reversible permuta-
tions:

x � u0j } v0j � y; and vj � vj+1 } v0j � v0j+1 and y � u0j+1 } v0j+1 � z:
The completed diagram shows (in two perspectives again) that the redexx followed by
the pathu0j � u0j+1 permutes reversibly to the pathv0j � v0j+1 followed by the redexz. So,
by takingk = i and by definingv0l = vl for every indexi + 1 � l � n different toj
andj + 1, one obtains that:

a. the redexui followed by the pathu0i+1 � � �u0n permutes reversibly to the pathv0i � � � v0n
followed by the redexv,

b. the rewriting path(u1 � � �ui�1) � (v0i+1 � � � v0n) is equivalent to the pathg modulo'.
This very last point follows from the series of equivalence

g ' (u1 � � �ui�1) � (vi+1 � � � vn) and vi+1 � � � vn ' v0i+1 � � � v0n: ut
Unfortunately, the characterization ofstarts is not as simple as the characterization of
stops. The main reason is that the following 2-dimensional transition system

u2

��

v2 //
}

u12

��

v //
u�� }}

w???
__???

u1��

w2���
??���

v1 //
w1�������� w12???

��???
J

v12 //N

v2 //

u2

��

} u12

��v12 //
where

u � v1 } v � u1 v � w2 } w � v2 w2 � u12 I u1 � w12u2 � v12 } v2 � u12 u � w1 } w � u2 w1 � v12 I v1 � w12
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satisfies the nine properties required of an axiomatic rewriting system in Section 2. The
series of equivalence

u � w1 � v12 ' w � u2 � v12 ' w � v2 � u12 ' v � w2 � u12
illustrates then that a redexumay start the pathv�w2 �u12 even if the pathv�w2 followed
by the redexu12 does not permute reversibly. However, the situation is not entirely
hopeless: observe that the pathv �w2 is'-equivalent to the pathw � v2 which followed
by the redexu12 permutes reversibly to the redexu followed by the pathw1 � v12. Next
lemma shows that the property characterizesstartsin any axiomatic rewriting system.

Lemma 16 (structure of starts) A redexu : M �! P starts a pathu1 � � �un :M �!�! N if and only there exists an index1 � i � n and two pathsv1 � � � vi�1
andw1 � � �wi�1 such that

– the pathv1 � � � vi�1 is equivalent to the pathu1 � � �ui�1 modulo',
– the pathv1 � � � vi�1 followed by the redexui permutes reversibly to the redexu

followed by the pathw1 � � �wi�1.

Proof. We declare that a redexu : M �! P super-startsa pathu1 � � �un : M �!�! N
when there exists an index1 � i � n and two pathsv1 � � � vi�1 andw1 � � �wi�1 such
that

– u1 � � �ui�1 ' v1 � � � vi�1,
– the pathv1 � � � vi�1 followed by the redexui permutes reversibly to the redexu

followed by the pathw1 � � �wi�1.

We prove that a redexu starts a pathf iff the redexu super-startsf . Right-to-left
implication (() is immediate: the redexu super-starts the pathf implies the redexu
starts the pathf . The converse implication()) reduces to the following preservation
property: when a redexu super-starts a pathf , and when the pathg is obtained from
the pathf by applying a reversible permutation, then the redexu super-starts also the
pathg.

So, consider a redexu : M �! P and a pathf = u1 � � �un : M �!�! N such that
the redexu super-starts the pathf . By definition, there exists an index1 � i � n and
two pathsv1 � � � vi�1 andw1 � � �wi�1 such that

– u1 � � �ui�1 ' v1 � � � vi�1,
– the redexu followed by the pathw1 � � �wi�1 permutes reversibly to the pathv1 � � � vi�1

followed by the redexui.
Consider any reversible standardization step

f REV=) g
or equivalently, any index1 � j � n � 1 and reversible permutationuj � uj+1 } u0j �u0j+1. We claim that the redexu super-starts the path

g = (u1 � � �uj�1) � (u0j � u0j+1) � (uj+2 � � �un):
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We proceed by case analysis.� The two first cases, whenj � i� 2 or whenj � i, are immediate.� The remaining case, whenj = i� 1, is the only difficult case. The equivalence

u1 � � �ui�1 ' v1 � � � vi�1
shows that the redexui�1 stops the pathv1 � � � vi�1 with remainderu1 � � �ui�2. By
Lemma 15, there exists an index1 � k � i� 1 and a pathv0k+1 � � � v0i�1 such that

– the redexvk followed by the pathvk+1 � � � vi�1 permutes reversibly to the pathv0k+1 � � � v0i�1 followed by the redexui�1,
– the path(v1 � � � vk�1) � (v0k+1 � � � v0i�1) is equivalent to the pathu1 � � �ui�2 mod-

ulo'.

We are also in a situation where

– there exists a reversible permutationui�1 � ui } u0i�1 � u0i
– the pathvk+1 � � � vi�1 followed by the redexui permutes reversibly to a redexy

followed by the pathwk+1 � � �wi�1.

All put together, we deduce by applying Axiomreversible-stability i � k � 1 times,
and Axiomreversibility once, that there exists a redexx and pathw0k+1 � � �w0i�1 such
that

a. the redexu followed by the pathw1 � � �wk�1 permutes reversibly to the pathv1 � � � vk�1
followed by the redexx,

b. the redexx followed by the redexwk permutes reversibly to the redexvk followed
by the redexy,

c. the redexy followed by the pathwk+1 � � �wi�1 permutes reversibly to the pathvk+1 � � � vi�1
followed by the redexui,

d. the redexx followed by the pathw0k+1 � � �w0i�1 permutes reversibly to the pathv0k+1 � � � v0i�1 followed by the redexu0i�1,
e. the redexwk followed by the pathwk+1 � � �wi�1 permutes reversibly to the pathw0k+1 � � �w0i�1

followed by the redexu0i.
Points a–d. are summarized in the diagram below.

P w1���wk�1 //

wk

��

w0k+1���w0i�1 //
}���}

u0i

��

M v1���vk�1 //u
``AAAAAAAA }���}

v0k+1���v0i�1 //
vk�� }���}}

x9999
\\9999

ui�1��

u0i�1����
BB����

vk+1���vi�1 //
y�������� ui???? ��????

}

wk+1���wi�1 //}���}
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Point e. completes the diagram above by providing the front face of the cuboid gener-
ated by the redexesx andvk and the pathv0k+1 � � � v0i�1.

w0k+1���w0i�1 //

wk
��

}���} u0i
��wk+1���wi�1 //

It appears now that the redexu super-starts the path

g = (u1 � � �ui�2) � (u0i�1 � u0i) � (ui+1 � � �un):
because

– the pathu1 � � �ui�2 is equivalent to the path(v1 � � � vk�1) � (v0k+1 � � � v0i�1) mod-
ulo',

– the path(v1 � � � vk�1) � (v0k+1 � � � v0i�1) followed by the redexu0i�1 permutes re-
versibly to the redexu followed by the path(w1 � � �wk�1) � (w0k+1 � � �w0i�1).

This establishes the equivalence between starting and super-starting a path. Since this
is precisely what our lemma asserts, we conclude. ut
3.2 Application: every rewriting path is epi wrt. '
We illustrate the previous section with an application of Lemma 15.

Lemma 17 (epi wrt.') If f � g1 ' f � g2 theng1 ' g2.

Proof. We may suppose without loss of generality that the rewriting pathf is a redexu.
We prove thatu � g1 ' u � g2 implies g1 ' g2 by induction on the length ofg1 (and
of g2). The property is immediate wheng1 (and thereforeg2) is empty. Otherwise, the
pathg1 factors asg1 = h1 � v for some pathh1 and redexv. By Lemma 15, because
the redexv stops the pathu � g2 with remainderu � h1, one of the two following cases
occurs:

– either there exists a pathh2 such thatg2 ' h2 � v andu � h1 ' u � h2,
– or there exists a pathh2 such that the redexu followed by the pathg2 permutes

reversibly to the pathh2 followed by the redexv, and such thath2 ' u � h1.

In the first case, we deduce thath1 ' h2 by induction hypothesis onu � h1 ' u � h2,
and conclude thatg1 ' g2 by the series of equivalence:

g1 = h1 � v ' h2 � v ' g2
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u ��
v1 //
} }

v2 //
��

//
��

vn //
}�� v ��

x //
N h��u1 // u2 // // un // y //

Fig. 5. The definition of an anti-standard pathu � u1 � � �un � y: the redexu followed by the
pathu1 � � �un permutes reversibly to the pathv1 � � � vn followed by the redexv which permutes
irreversibly with the redexy, as follows:v � y I x � h.

Now, we prove that the second case does not occur. Obviously, the pathh2 drags the
redexv to the redexu. By Lemma 10 (preservation of drag) and equivalenceh2 ' u�h1,
the pathu � h1 drags the redexv to the redexu. In particular, there exists a redexw and
a pathh such thatu � w B u � h. This contradicts Axiomshape, and we conclude. ut
Remark: in Section 7.2 an additional hypothesis ofreversible-shapeis required to com-
plete the property to an epi-mono property wrt.'.

3.3 Characterization lemma

We introduce below the fundamental notion ofanti-standardpath. These anti-standard
paths are calledconflictsin [13, 27]. We change the terminology here because the word
conflict is generally understood asnon determinism, and because the notion ofanti-
standard pathspecializes to the notion ofanti-standard pairintroduced by J. W. Klop
in the particular case of the�-calculus equipped with the left-order�left — see [20]
and Section 1.9.

Definition 18 A path isanti-standard(see Figure 5) when it factors as

M u�! P f�!�! Q y�! N
whereu andy are redexes andf is a rewriting path, and

– the redexu followed by the pathf permutes reversibly to the pathg followed by the
redexv,

– the redexv and the redexy induce an irreversible permutationv � y I x � h, for
some redexx and rewriting pathh.

The�-rewriting path taken earlier as illustration

Ka(��) �1�! Ka(��) K�! (�x:a)(��) ��! a
is a typical example of anti-standard path in the axiomatic rewriting system(G�;Btree).
Compare indeed Diagrams (9) and (13) to Figure 5.

This leads us to the main result of the section.
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Lemma 19 (characterization) A pathu1 � � �un is standard if and only if there exists
no pair of indices1 � i < j � n such thatui � � �uj defines an anti-standard path.

Proof. Left-to-Right implication()) is immediate. Proving the converse direction(()
reduces to showing that:

– when two rewriting pathsf andg are equivalent modulo reversible permutations',
and

– when the pathf contains an anti-standard path,

then the pathg contains also an anti-standard path.
So, consider two rewriting pathsf = u1 � � �un andg = u01 � � �u0n, and suppose that

the pathg is obtained after a unique reversible standardization step on the pathf :

f REV=) g: (19)

Let 1 � k � n � 1 denote the index where the reversible permutation occurs in the
pathf . Obviously,

u01 � � �u0k�1 = u1 � � �uk�1 and u0k �u0k+1 } uk �uk+1 and u0k+2 � � �u0n = uk+2 � � �un:
Now, suppose that the pathf contains an anti-standard path, in the sense that there exist
two indices1 � i < j � n such that the pathui � � �uj is anti-standard. Lety denote the
redexuj . By definition of an anti-standard path, there exists a pathvi+1 � � � vj�1 and
redexw such that:

– the redexui followed by the pathui+1 � � �uj�1 permutes reversibly to the pathvi+1 � � � vj�1 followed by the redexw,
– the redexesw andy form an irreversible permutationw �y I x �h for some redexx

and pathh.

We establish now that there exist two indices1 � I < J � n such that the pathu0I � � �u0J
is anti-standard. This will show in particular that the pathg contains an anti-standard
path.� The property is immediate whenk > j: simply take(I; J) = (i; j).� The property follows from Lemma 15 whenk + 1 < j:

– take(I; J) = (i� 1; j) whenk = i� 1,
– take(I; J) = (i+ 1; j) whenk = i,
– take(I; J) = (i; j) otherwise.

There remain only two difficult cases to treat: whenk = j � 1 and whenk = j.
�We treat the first case, whenk = j � 1. The situation is summarized by the diagram:

h

��

vj�1 //
v �� } w��

x���
??���

uj�1 //
u0j�1�������� y??? ��???

N

u0j //}1
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where the reversible permutation} 1 relates the rewriting pathsf and g in Equa-
tion (19) and where the irreversible permutationw � y I x � h between the redexw
and the redexy witnesses the fact that the pathui � � �uj�1 � y (or equivalently the
pathui � � �uj�1 � uj) is anti-standard.

The diagram may be completed by Axiomstability in the following way:

hv0

��

h0 //
(

h

��

vj�1 //
v�� }*

v0j�1???
__???

w��

x���
??���

uj�1 //
u0j�1�������� y??? ��???

N

u0j //}

wherev0j�1 is a redex, whereh0 andhv0 are two rewriting paths, forming permutations

v � u0j�1 B v0j�1 � hv0 and vj�1 � x B v0j�1 � h0:
We proceed by case analysis on the permutationv � u0j�1 B v0j�1 � hv0 :
— Either the permutation is irreversible. In that case, the pathui � � �uj�2 � u0j�1 is
anti-standard, and we may thus conclude with(I; J) = (i; j � 1).
— Or the permutation is reversible. In that case, the pathhv0 is a redex; we write
it v0 for clarity’s sake. We claim that the pathui � � �uj�2 � u0j�1 � u0j is anti-standard.
Indeed, the redexui followed by the pathui+1 � � �uj�2 � u0j�1 permutes reversibly to
the pathvi+1 � � � vj�2 � v0j�1 followed by the redexv0, and we establish now that the
redexesv0 andu0j are involved in an irreversible permutationv0 � u0j I v0j � h00 for some
redexv0j and rewriting pathh00. First of all, the rewriting pathv �u0j�1 drags the redexu0j
to the redexvj�1. So, by Lemma 10 (preservation of drag), the pathv0j�1 � v0 which is
Lévy equivalent to the pathv � u0j�1, drags the redexu0j to the redexvj�1. From this
follows that there exists a permutation of the formv0 �u0j B v0j �h00 for some redexv0j and
rewriting pathh00. There remains to show that this permutation is irreversible in order
to establish our claim. We proceed by contradiction and suppose that the permutationv0 �u0j B v0j �h00 is reversible. Then, it follows from Axiomreversible-stability applied
around the permutationv � u0j�1 } v0j�1 � v0 that:

– there exists a reversible permutation starting from the rewriting pathv � uj�1; this
permutation is necessarily the permutationv �uj�1 } vj�1 �w by Axiom reversibil-
ity ,

– there exists a reversible permutation starting from the rewriting pathw � y.

By Axiom reversibility , this last assertion contradicts the fact that there exists an irre-
versible permutation starting from the rewriting pathw � y. From this, we conclude that
the permutationv0 � u0j B v0j � h00 starting from the rewriting pathv0 � u0j is irreversible,
and thus that the rewriting pathui � � �uj�2 � u0j�1 � u0j is anti-standard. We may thus
take(I; J) = (i; j).
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� We treat the second case, whenk = j, and thus, the two redexesuj anduj+1 are
permuted reversibly in the pathf to obtain the pathg. Again, we lety denote the
redexuj . So, the redexui followed by the pathui+1 � � �uj�1 permutes reversibly to
the pathvi+1 � � � vj�1 followed by the redexw; and the redexw induces the irreversible
permutationw �y I x�hwith the redexy, witnessing the fact that the pathui � � �uj�1 �y
(or equivalently the pathui � � �uj�1 � uj) is anti-standard.

The situation is summarized in the diagram below:

x //
w �� N h��y //

u0j�������� uj+1???
��???u0j+1 //}1

where the reversible permutation} 1 relates the rewriting pathsf and g in Equa-
tion (19).

Here, we apply Axiomenclaveand complete the diagram in the following way:

hw0

��

h0 //
(

h1���hm

��

x //
w�� N*

v0j???
__???

h��

vj+1���
??���

y //
u0j�������� uj+1???

��???

*
...*

u0j+1 //}

with two redexv0j and two rewriting pathshw0 andh0 inducing permutations:

w � u0j B v0j � hw0 and x � vj+1 B v0j � h0:
Note moreover that the pathh grabs the redexuj+1 to a redexvj+1, and that the redexx
grabs the redexvj+1 to the redexv0j .

We proceed by case analysis on the permutationw � u0j B v0j � hw0 :
— Either the permutation is irreversible. In that case, the rewriting pathui � � �uj�1 �u0j is anti-standard, and we may thus conclude with(I; J) = (i; j).
— Or the permutation is reversible. In that case, the pathhw0 is a redex; we thus
write it w0 for clarity’s sake. We claim that the rewriting pathui � � �uj�1 � u0j � u0j+1
is anti-standard. Indeed, the redexui followed by the pathui+1 � � �uj�1 � u0j permutes
reversibly to the pathvi+1 � � � vj�1 � v0j followed by the redexw0, and we establish
now that the redexesw andu0j+1 induce together an irreversible permutation starting
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from the pathw0 � u0j�1. The pathw � u0j grabs the redexu0j+1 to the redexx. By
Lemma 10 (preservation of drag), the pathv0j � w0 which is Lévy equivalent to the
pathw � u0j , drags the redexu0j+1 to the redexx. This ensures that the two redexesw0
andu0j+1 induce together a permutation starting from the rewriting pathw0 �u0j+1. There
remains to show that this permutation is irreversible. We proceed by contradiction and
suppose that the permutationv0 � u0j B v0j � h00 is reversible. Then, it follows from
Axiom reversible-stability applied around the permutationw � u0j } v0j � w0 that there
exists a reversible permutation starting from the rewriting pathw � y. This together with
Axiom reversibility contradicts the existence of the irreversible permutationw � y Ix � h which starts also from the rewriting pathw � y. We conclude that, as claimed, the
two redexesw0 andu0j+1 are involved in an irreversible permutation starting from the
rewriting pathw0 �u0j+1. Thus, the rewriting pathui � � �uj�1 �u0j �u0j+1 is anti-standard.
This concludes the proof, with(I; J) = (i; j + 1).
Conclusion: we have just established that when a pathf contains an anti-standard path,
then every pathg equivalent to the pathf modulo reversible permutations' contains
also an anti-standard path. Lemma 19 follows immediately. ut
Lemma 20 (interface) Suppose that two pathsf : M �!�! P andg : P �!�! N are
standard. Then, the composite pathf � g : M �!�! N is standard if and only if the pathu � g is standard, for every redexu which stopsf .

Proof. Follows immediately from Lemma 19. ut
4 The Standardization Theorem

All along this section, we suppose that the 2-dimensional transition system(G;B) de-
fines an axiomatic rewriting system — equivalenly, that it satisfies the nine axioms
formulated in Section 2. From this assumption, we deduce the diagrammatic standard-
ization theorem (Theorem 2) evocated in the Introduction — in Section 1.8.

4.1 The outermost redex

For every nonempty pathf : M �!�! N , we define a redexoutm(f) : M �! P
extractible from the pathf , in these sense of Definition 11. This redex is called the
outermostredex of the rewriting pathf . We will see at the later stage of the proof that
the redexoutm(f) is the first redex of a particular standard pathg associated to the
pathf . The definition of the redexoutm(f) is by induction on the length of the pathf .

Definition 21 (outermost redex) For every non-empty pathf : M �!�! N , the re-
dexoutm(f) is defined as follows:

outm(v) = v for a redexv;
outm(v � f) = �u when the redexv drags the redexoutm(f) to the redexu,v when there is no permutation of the formv � outm(f) B h.
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Lemma 22 (preservation of outermost)Let f : M �!�! N be a path. Suppose thatu : M �! P is a redex extractible fromf , and thatg is a projection off by extraction
of u. Then,

– eitheroutm(f) = u,
– or the pathg is nonempty, andoutm(g) u � [ outm(f).

Proof. By induction on the length of the pathf . The property is immediate when the
pathf is a redex. Otherwise, suppose that the pathf factors asf = v � f 0 wherev is
a redex and wheref 0 is a nonempty path satisfying the property stated in the lemma.
Suppose moreover that the redexu is extractible from the pathf , and thatf &u g (see
Definition 11 for a definition of the notation&u.)

We proceed by case analysis, depending whether the two redexesu andv coincide.� Suppose thatu = v, and thus, that the redexu is the first redex rewritten in the pathf .
Then, by definition of the redexoutm(�), eitheru = outm(f) or outm(f 0) u � [outm(f). We conclude because the equalityf 0 = g holds.� Suppose now thatu 6= v. By definition off &u g, there exists a redexu0 and two
pathshv0 andg0 such that (1) the pathg factors asg = hv0 � g0, and (2)f 0 &u0 g0 and
(3) v � u0 B u � hv0 . The situation is summarized in the diagram below:

M v //
u �� (

f 0 //
u0�� (

N
P hv0 // g0 // N

Since the proof is finished whenoutm(f) = u, we suppose from now on thatoutm(f) 6=u. From this follows thatoutm(f 0) 6= u0 by definition ofoutm(�) and by Axiom
ancestor. Here, we apply our induction hypothesis on the pathf 0, and deduce that

outm(f 0) u0 � [ outm(g0). The diagram below describes the situation:

h

��

M v //
u �� ( u0��

outm(f 0) AA��������

P hv0 //
outm(g0) ��<<<<

<<<<
*

From now on, we proceed by case analysis on the permutationv � u0 B u � hv0 .

— Either the permutation v �u0 B u�hv0 is irreversible. In that case, we apply Axiom
enclave, and deduce that

1. the redexv drags the redexoutm(f 0) to the redexoutm(g), and

38



2. the pathhv0 drags the redexoutm(g0) to the redexoutm(g), and
3. the redexu drags the redexoutm(g) to the redexoutm(f).

The third assertion concludes the proof.

— Or the permutation v � u0 B u � hv0 is reversible. In that case, the pathhv0 is a
redex. We write itv0 for clarity’s sake. Again, we proceed by case analysis, depending
on whether the redexv coincides with the redexoutm(f).
1. Suppose that the redexv does not coincide withoutm(f). By definition ofoutm(�),

the redexv drags the redexoutm(f 0) to the redexoutm(f). From this follows that
the pathv � u0 drags the redexoutm(g0) to the redexoutm(f). By Lemma 10
(preservation of drag), the pathu �v0 which is Lévy equivalent to the pathv �u0, the
pathu � v0 drags the redexoutm(g0) to the redexoutm(f). From this follows that
the redexv0 drags the redexoutm(g0) to the redexoutm(g), and that the redexu
drags the redexoutm(g) to the redexoutm(f). This concludes the proof.

2. Suppose that the redexv is equal to the redexoutm(f). In that case, we claim
that the redexv0 coincides with the redexoutm(g). We proceed by contradiction
and suppose thatv0 6= outm(g). By definition of outm(�), the redexv0 drags
the redexoutm(g0) to the redexoutm(g). It follows from Axiom stability ap-
plied around the reversible permutationv � u0 } u � v0, that the redexv drags the
redexoutm(f 0) to a redexw. This contradicts the equalityv = outm(f). We con-
clude thatv0 = outm(g), and thus, that the redexu drags the redexv0 = outm(g)
to the redexv = outm(f). We conclude.

All this concludes our proof by induction on the length of the pathf . ut
Lemma 23 Let f : M �!�! N be a path. The redexoutm(f) is extractible from any
pathu1 � � �un : M �!�! N obtained as follows:

f &u1 f2 &u2 � � � fn &un idN :
Proof. Immediate consequence of Lemma 22. ut
4.2 Uniqueness

Lemma 24 Suppose that(M1 u1�! M2 u2�! � � � un�1�! Mn un�! Mn+1) is a standard
path. Suppose moreover that, for every index1 � i � n, the pathui � � �un is more
standard than every path in its Lévy equivalence class:

8 1 � i � n; 8h : Mi �!�!Mn+1; h � ui � � �un implies h =) ui � � �un:
Then, for every pathf1 : M1 �!�! Mn+1 Lévy equivalent to the pathu1 � � �un, there
exists a series of rewriting pathsfi : Mi �!�! Mn+1 indexed by1 � i � n and a
sequence of extractions:

f1 &u1 f2 &u2 � � � fn &un idMn+1 :
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Proof. We proceed by induction on the lengthn of the rewriting pathu1 � � �un. Suppose
thatf : M �!�! N is a rewriting path Ĺevy equivalent to the pathu1 � � �un. Note that
the redexu1 is extractible from the pathu1 � � �un with resulting projection the pathu2 � � �un. Now, by hypothesis, the pathu1 � � �un is more standard than the pathf . From
this and Lemma 12 (preservation of extraction) follows that the redexu1 is extractible
from the pathf1 = f with projection a pathf2 Lévy equivalent to the pathu2 � � �un.
We know by induction that there exists a sequence of extractions

f2 &u2 f3 &u3 � � � fn &un idMn+1 :
We have thus established that there exists a sequence of extractions

f1 &u1 f2 &u2 � � � fn &un idMn+1 :
This concludes our proof by induction. ut
Lemma 25 (uniqueness)A standard path is more standard than every path in its Lévy
equivalence class.

Proof. We proceed by induction on the length of the standard path. Suppose from now
on that the property is satisfied for every path of lengthn� 1, and suppose that

f = (M1 u1�!M2 u2�! � � � un�1�! Mn un�!Mn+1)
is a standard path of lengthn. We establish that the pathf is more standard than every
path in its Ĺevy equivalence class.
Step 1. First of all, we claim that in order to establish that property of the pathf , we
only need to show that the redexu1 is extractible from every path Ĺevy equivalent to
the pathf . Suppose indeed that this is the case, and consider a pathg Lévy equivalent
to the standard pathf . By definition of Ĺevy equivalence, there exists a sequence of
permutations f = f1 1� f2 1� � � � 1� fm 1� fm+1 = g
of standardization stepsfi 1=) fi+1 or fi 1(= fi+1, for every1 � i � m. For
each such indexi, the rewriting pathfi is Lévy equivalent to the pathf . We have
just assumed that the redexu1 is thus extractible from each pathfi. Now, we may
apply Lemma 12 (preservation of extraction) as many times as there are permutation
steps from the pathf to the pathg to deduce that the two pathsf and g have the
same projections (modulo Lévy equivalence) after extraction of the redexu1. Now, the
pathu2 � � �un is the unique projection of the pathf by extraction of the redexu1. We
conclude that any projectiong0 of the rewriting pathg obtained by extraction of the
redexu1 is Lévy equivalent to the pathu2 � � �un. By applying our induction hypothesis
on the pathu2 � � �un, we know that the pathu2 � � �un is more standard than the pathg0.
It follows that the pathf = u1 � � �un is more standard than the pathu1 � g0, which is,
by construction, more standard than the pathg. This establishes that the pathf is more
standard than every path in its Lévy equivalence class.
Step 2. We have just shown in Step 1. that we only need to prove here that the redexu1
is extractible from every path Ĺevy equivalent to the pathf = u1 � � �un. We introduce
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the necessary notation to that purpose. The proof proceeds by contradiction. We suppose
that the redexu1 is not extractible from a particular path in the Lévy equivalence class
of the pathf . By definition of Ĺevy equivalence, there exists a sequence

f1 1� f2 1� � � � 1� fm 1� fm+1
of standardization stepsfi 1=) fi+1 or fi 1(= fi+1, for every1 � i � m, such that:

– f1 = f ,
– the redexu1 is extractible from the pathfj , for every index1 � j � m,
– the redexu1 is not extractible from the pathfm+1.

For each index1 � i � m, we define the pathgi as any projection of the pathfi by
extraction of the redexu1. So,

81 � i � m; fi &u1 gi:
Note that Lemma 12 (preservation of extraction) implies that all the pathsg1 = u2 � � �un,
andg2, ... ,gm are Ĺevy equivalent.
Step 3. Here, we will be slightly more explicit than in Step 2. Letp denote the length
of the pathfm. Thus, the pathfm factors as

fm = v1 � � � vp
where eachvi denotes a redex, for1 � i � p. We know by construction thatfm 1�fm+1: It follows from Lemma 12 (preservation of extraction) that in fact

fm 1=) fm+1
because the redexu1 is extractible from the pathfm but not from the pathfm+1. By

definition of
1=), the pathsfm andfm+1 factor as:

fm = v1 � � � vk�1 �(vk �vk+1)�vk+2 � � � vp fm+1 = v1 � � � vk�1 �(wk �h)�vk+2 � � � vp
for some index1 � k � p � 1, wherewk is a redex andh is a path involved in a
permutationvk � vk+1 B wk � h: Now, it follows from Lemma 10 (preservation of drag)
and Axiomancestorthat:

– the permutationvk � vk+1 I wk � h is irreversible,
– the pathv1 � � � vk�1 drags the redexvk to the redexu1.

The situation is summarized in the diagram below:

M1
u1 ��

v1���vk�1 //
(���( vk ��

wk //
N h��M2 h1���hk�1 // vk+1 // vk+2���vp // Mn+1

Step 4. We establish the equalityoutm(fm) = outm(fm+1). We proceed by case anal-
ysis, depending whether the redexvk+1 coincides with the redexoutm(vk+1 � � � vp).
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– Suppose that the redexvk+1 is not equal to the redexoutm(vk+1 � � � vp). By Lemma 22,
the pathvk+2 � � � vp is nonempty, and the redexvk+1 drags the redexoutm(vk+2 � � � vp)
to the redexoutm(vk+1 � � � vp). By Axiom enclaveapplied around the irreversible
permutationvk � vk+1 I wk � h, the two pathsvk � vk+1 andwk � h drag the
redexoutm(vk+2 � � � vp) to the same redexoutm(vk � � � vp) = outm(wk � h �vk+2 � � � vp). The inductive definition ofoutm(�) ensures then thatoutm(fm) =outm(fm+1). We conclude.

– Suppose now that the redexvk+1 coincides with the redexoutm(vk+1 � � � vp). In
that case,outm(vk � � � vp) = wk because the redexvk drags the redexvk+1 =outm(vk+1 � � � vp) to the redexwk. Now, we claim thatoutm(wk �h�vk+2 � � � vp) =wk. First of all, it follows from Axiomsancestorandirreversibility and fromvk �vk+1 I wk �h that the redexwk is the only redex extractible from the pathwk �h. So,
there only remains to prove that the redexoutm(wk � h � vk+2 � � � vp) is extractible
from the pathwk � h. Suppose that it is not. In that case, the pathwk � h drags
the redexoutm(vk+2 � � � vp) to the redexoutm(wk �h �vk+2 � � � vp). By Lemma 10
(preservation of drag) the pathvk �vk+1 which is Lévy equivalent to the pathwk �h,
drags the redexoutm(vk+2 � � � vp) to the same redexoutm(vk � � � vp) = outm(wk �h � vk+2 � � � vp). This contradicts the equalitywk = outm(vk � � � vp) = vk+1. We
conclude thatoutm(vk � � � vp) = wk = outm(wk � h � vk+2 � � � vp) and thus thatoutm(fm) = outm(fm+1).

Step 5. We deduce from Step 4 that the redexu1 drags the redexoutm(gm) to the
redexoutm(fm). We have just proved thatoutm(fm) = outm(fm+1). From this fol-
lows that the redexoutm(fm) is extractible from the pathfm+1. Since by construction
of the pathfm+1, the redexu1 is not extractible from that path, the two redexesu1
andoutm(fm) are necessarily different. We may thus apply Lemma 22 on the extrac-
tion fm &u1 gm. This establishes our claim: the redexu1 drags the redexoutm(gm)
to the redexoutm(fm).
Step 6. We prove that the redexoutm(gm) is extractible from the pathg1 = u2 � � �un.
By induction hypothesis, each pathui � � �un is more standard than any of its Lévy
equivalent paths, for2 � i � n. We may thus apply Lemma 24 to the pathsg1
andu2 � � �un, and deduce that there exists a series of extractions

g1 &u2 � � � &un idMn+1 :
By Lemma 23, the series implies that the redexoutm(gm) is extractible from the pathu2 � � �un.
Step 7. We deduce from Step 6 that the redexoutm(gm) is extractible from all the
pathsg1; :::; gm. We have already noted at the end of Step 2 that all the pathsg1 =u2 � � �un, g2, : : :, gm are Ĺevy equivalent. By induction hypothesis, the standard pathg1 = u2 � � �un is more standard than every pathgi, for every index1 � i � m.
We also know that the redexoutm(gm) is extractible from the pathg1. By Lemma 12
(preservation of extraction), the redexoutm(gm) is thus extractible from the pathgi,
for every index1 � i � m.
Step 8. We deduce from Steps 4, 5 and 7 that the redexoutm(fm) is extractible
from the pathsf1; :::; fm; fm+1. By Step 4, the redexoutm(fm) is extractible from
the pathfm+1. So, there remains to show that the redexoutm(fm) is extractible from

42



the pathsf1; :::; fm. By Step 5, the redexu1 drags the redexoutm(gm) to the re-
dex outm(fm). By Step 7, the redexoutm(gm) is extractible from all the pathsg1,: : :, gm. From this follows that the redexgm is extractible from the pathsu1 � g1, : : :,u1 � gm. Now, for every index1 � i � m, the pathu1 � gi is more standard than the pathfi becausefi &u1 gi. We conclude by Lemma 12 (preservation of extraction) that the
redexoutm(fm) is extractible from the pathsf1; :::; fm.

Step 9. By Step 8, we may define for every index1 � i � m + 1 the pathf 0i
as an (arbitrary) projection of the pathfi by extraction ofoutm(fm). We thus havefi &outm(fm) f 0i . By Lemma 12 (preservation of extraction) appliedm times, the
rewriting pathsf 01 ,...,f 0m+1 are Ĺevy equivalent.

Step 10. In order to reach a contradiction with our hypothesis, we prove that the re-
dexu1 is extractible from the rewriting pathfm+1. We have already noted in Step 9
that the pathsf 01; :::; f 0m+1 are Ĺevy equivalent. The pathf 01 is standard of lengthn� 1
since it is defined as the projection of the standard pathf1 = u1 � � �un by extraction of
the redexoutm(fm). By induction hypothesis, the pathf 01 is more standard than all the
pathsf 01; :::; f 0m+1. Besides, the rewriting pathf 01 is not empty. We have proved indeed
in Step 5 that the redexesu1 andoutm(fm) are different redexes, and more precisely,
that the redexu1 drags the redexoutm(gm) to the redexoutm(fm). From this follows
that the extraction of the redexoutm(fm) from the standard pathf1 = u1 � � �un in-
duces a reversible permutationu1 �outm(gm)} outm(fm)�u01. The redexu01 is the first
redex of the pathf 01, and the pathf 01 is more standard than all the pathsf 01; :::; f 0m+1.
By Lemma 12 (preservation of extraction), the redexu01 is extractible from all the pathsf 01; :::; f 0m+1. The diagram below summarizes the situation:

f 0i //

u01

��

Mn+1

}
M1

outm(fm)^^======== fi //
u1 ��

Mn+1
M2

outm(gm)~~}}}}}}
}} gi // Mn+1

All this has the remarkable consequence that the redexu01 is extractible from the rewrit-
ing pathf 0m+1. From this follows that the redexu1 is extractible from the rewriting
pathoutm(fm) � f 0m+1. Now, the pathoutm(fm) � f 0m+1 is more standard than the pathfm+1 by definition offm+1 &outm(fm) f 0m+1. We conclude by Lemma 12 (preserva-
tion of extraction) that the redexu1 is extractible from the rewriting pathfm+1.

Step 11. This is the concluding step. We deduce from the contradiction reached in
Step 10 that the redexu1 is extractible from every path Ĺevy equivalent to the rewriting
pathf . By the preliminary discussion of Step 1, this concludes our proof by induction
of Lemma 25. ut
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4.3 Existence

Lemma 26 (towards existence)Suppose thatf : M1 �!�!Mn+1 is a non-empty path
whose projection by extraction of the redexoutm(f) : M1 �! M2 is Lévy equivalent
to a standard path

M2 u2�!M3 u3�! � � � un�1�! Mn un�!Mn+1:
Then, the rewriting path

M1 outm(f)�! M2 u2�!M3 u3�! � � � un�1�! Mn un�!Mn+1
is standard.

Proof. By induction onn. The lemma is immediate whenn = 1 because the pathoutm(f) is standard, like every path of length 1. Suppose that the property is estab-
lished for every standard path of lengthn� 2, and consider a standard path

M2 u2�!M3 u3�! � � � un�1�! Mn un�!Mn+1
of lengthn� 1. Consider moreover a nonempty pathf : M1 �!�!Mn+1, and suppose
that (one of) its projectiong by extraction of the redexoutm(f) : M1 �!M2 is Lévy
equivalent to the standard pathu2 � � �un. We writeu1 for the redexoutm(f).

We want to prove that the pathu1 � u2 � � �un is standard. We proceed by contradic-
tion, and suppose that the pathu1 � u2 � � �un is notstandard. By Lemma 19 (characteri-
zation lemma) there exists an anti-standard path inside the rewriting pathu1 �u2 � � �un.
Since the pathu2 � � �un is standard, this anti-standard path is necessarily of the formu1 � � �uk+1 for some index1 � k � n� 1.

By definition of an anti-standard path, and whatever the value of the indexk, there
exists a redexu02 and a pathhu01 forming a permutationu1 �u2 B u02 �hu01 . The situation
is summarized in the the diagram below:

Mn+1 ) Mn+1
M1 u1 //
u02�� (

fFFF
ccFFF

M2u2��

gxxxx
;;xxxx

hu01 // M3 u3���unFFF
##FFF

+

Mn+1

(20)

We show in Steps 2, 3, 4, 5 and 6 that the permutationu1 � u2 B u02 � hu01 is reversible,
or equivalently, thatk � 2.
Step 2.We show that the redexu02 is extractible from the pathf . By Lemma 25 (unique-
ness), the pathu2 � � �un is more standard than every Lévy equivalent path. In particular,
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the pathu2 � � �un is more standard than the pathg. It follows from Lemma 12 (preserva-
tion of extraction) that the redexu2 which is extractible from the pathu2 � � �un is also
extractible from the pathg. This and the existence of the permutationu1 �u2 B u02 �hu01
implies that the redexu02 is extractible from the pathu1 � g. The pathu1 � g is more stan-
dard than the pathf by definition of extractionf &u1 g. Thus, by applying Lemma 12
(preservation of extraction) again, the redexu02 is extractible from the pathf .
Step 3. Let the pathf 0 denote an arbitrary projection of the pathf by extraction of
the redexu02. By construction, and Axiomshape, the redexu02 does not coincide with
the redexoutm(f) = u1. By Lemma 22, the pathf 0 is non-empty and the redexu02
drags the redexoutm(f 0) (denotedu01 from now) to the redexu1 = outm(f). More
explicitly, the two redexesu01 andu02 are involved in a permutationu02 �u01 B u1 �hu2 for
some pathhu2 . Let the pathg0 denote an arbitrary projection of the pathf 0 by extraction
of the redexu01. The situation is summarized in the diagram below:

Mn+1
M1 u1 //
u02�� *+

fFFF
ccFFF

M2hu2��u01 //f 0uuuuzzuuuu g0IIII
$$IIIIMn+1

)
Mn+1

(21)

In the next Steps 4–7, we analyze the relationship between the two Diagrams (20)
and (21). We establish in Steps 4–6 that the pathshu01 andhu2 coincide respectively
with the redexesu01 andu2, and thus, that the permutationu1 � u2 B u02 � hu01 is re-
versible. We establish in Step 7 that the pathg0 is Lévy equivalent to the pathu3 � � �un.
This enables to combine the two Diagrams (20) and (21) in a larger diagram.
Step 4. Here, we deduce from Lemma 25 (uniqueness) that the redexu2 is extractible
from the pathhu2 � g0. By construction, the pathu1 � hu2 � g0 is more standard than the
pathf . The pathshu2 � g0 andg are the projections of the pathsu1 � hu2 � g0 andf by
extraction of the redexu1, respectively. By Lemma 12 (preservation of extraction), the
two pathshu2 � g0 andg are Ĺevy equivalent. Now, the pathg is also Ĺevy equivalent
to the standard pathu2 � � �un. From this and Lemma 25 (uniqueness) follows that the
pathu2 � � �un is more standard than the pathhu2 � g0. By Lemma 12 (preservation of
extraction), we conclude that the redexu2 is extractible from the pathhu2 � g0.
Step 5. We deduce from Step 4 that the redexu2 is extractible from the pathhu2 . We
proceed by contradiction, and suppose that it is not. The redexu2 is extractible from
the pathhu2 � g0. By definition of extraction, there exists a redexv extractible from the
pathg0 such that the pathhu2 drags the redexv to the redexu2. From this follows that
the pathu1 � hu2 drags the redexv to the redexu02. Now, the pathu1 � hu2 is Lévy
equivalent to the pathu02 � u01. By Lemma 10 (preservation of drag), the pathu02 � u01
drags the redexv to the redexu02. More explicitly, there exists a redexw such that: (a)
the redexu01 drags the redexv to the redexw; and (b) the redexu02 drags the redexw to
the redexu02. This very last statement (b) contradicts the Axiomshapesince it implies
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that there exists a pathh and permutationu02 �w B u02 �h. We conclude that the redexu2
is extractible from the pathhu2 .
Step 6. We deduce from Step 5 that the pathshu01 andhu2 coincide respectively with
the redexesu01 andu2, and that the permutationu1 � u2 B u02 � hu01 is reversible. By
definition of extraction, there exists a pathh such thathu2 =) u2 �h. From this follows
thatu02 � u01 B u1 � hu2 andu1 � hu2 =) u02 � hu01 � h. Diagrammatically,

M1
u1
��

u02
��

u02
��

hu01
��

( (
u01




M2
u2||||

|
}}||||| hu2>>>>>

��>>>>
>(���(M3 h 44

Suppose that the permutationu02 � u01 B u1 � hu2 is irreversible. In that case, it follows
from Axiom irreversibility thatu02 � u01 B u02 � hu01 � h. This last statement contradicts
Axiom shape, and we thus conclude that the permutationu02 �u01 B u1 �hu2 is reversible.
From this follows that the pathhu2 is a redex. The equalityhu2 = u2 follows immedi-
ately from the fact that the redexu2 is extractible from the pathhu2 . We conclude thatu02 � u01 B u1 � u2. At this point, there only remains to apply Axiomreversibility on the
permutationsu02 �u01 B u1 �u2. u1 �u2 B u02 �hu01 , from which we deduce thathu01 = u01
and that the permutationu1 � u2 B u02 � hu01 is reversible.
Step 7. We have just established that the permutationu1 � u2 } u02 � u01 is reversible.
In Step 4, we have also proved thatu2 � � �un is more standard than the pathhu2 � g0.
We know now that the pathhu2 � g0 is equal to the pathu2 � g0. The two pathsu3 � � �un
andg0 are respectively the projections of the pathsu2 � � �un andu2 � g0 by extraction of
the redexu2. By Lemma 12 (preservation of extraction), the pathg0 is Lévy equivalent
to the pathu3 � � �un.
Step 8. We have just established in Step 7 that the projectiong0 of the pathf 0 by
extraction of the redexu01 = outm(f 0) is Lévy equivalent to the pathu3 � � �un. This
enables to apply our induction hypothesis on the standard pathu3 � � �un. We deduce
that the pathu01 � u3 � � �un is standard. In particular, the pathu01 � u3 � � �uk+1 is not
anti-standard. From this follows that the pathu1 � u2 � � �uk+1 is notanti-standard. This
contradicts our original hypothesis. The pathu1 � u2 � � �un is thus standard. This con-
cludes the reasoning by induction, and the proof of Lemma 4.3. ut
Lemma 27 (existence)For every pathf : M �!�! N there exists a standard pathg : M �!�! N such thatf =) g.
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Proof. First, we show that every rewriting pathu1 � � �un : M �!�! N is standard when
it is obtained as a sequence of extractions from a pathf1 : M �!�! N :

f1 &u1 f2 &u2 f3 � � � fn &un idN (22)

whereui = outm(fi) for every index1 � k � n. The proof is nearly immediate, by
induction on the lengthn. Suppose that the property is established for every path of
lengthn� 1, and consider a pathu1 � � �un obtained as a series of extractions (22). By
induction hypothesis, the path

f2 &u2 f3 &u3 f4 � � � fn &un idN
is standard. By Lemma 26, the pathu1 � u2 � � �un = outm(f1) � u2 � � �un is also stan-
dard. We conclude.

Now, suppose thatf : M �!�! N is an arbitrary rewriting path. By Axiomtermi-
nation, every sequence of extractions

f = f1 &outm(f1) f2 &outm(f2) f3 � � � fn &outm(fn) � � �
is finite. Thus, there exists an indexn such that

f1 &u1 f2 &u2 f3 � � � fn &un idN
whereui = outm(fi), for all 1 � i � n. By construction, the pathu1 � � �un : M �!�!N is more standard than the pathf , and it is standard by the previous argument. We
conclude. ut
4.4 Standardization theorem

Theorem 2 (standardization) Suppose that(G;B) is an axiomatic rewriting system
and thatf : M �!�! N is a path in the transition systemG. Then:

– there exists a standard pathg : M �!�! N more standard thanf ,
– every standard path Ĺevy equivalent tof is equal tog modulo reversible permuta-

tion equivalence'.

The standard path of any pathf : M �!�! N may be computed by extracting recur-
sively the outermost redexoutm(fi) in a sequence of rewriting paths

f = f1 &outm(f1) f2 &outm(f2) f3 &outm(f3) � � � fn &outm(fn) idN :
We call this algorithmSTD as in [13]. Note that the algorithm is non deterministic
because it depends at each stepfi on the choice of the next rewriting pathfi+1.

Corollary 28 The relation=) on paths is confluent modulo'. The=)-normal form
of a path is computed by the algorithmSTD.
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5 Standardization from the 2-Categorical Point of View

In Sections 1—4. we interpret standardization as a 2-dimensional rewriting procedure
on 1-dimensional paths, and establish a confluence and normalization property for that
procedure. However, we say nothing there about the 2-dimensional reductionsf =) g
themselves. Intuitively, each such reductionf =) g describes a possible way to tile the
2-dimensionalsurfacelying between the two rewriting pathsf andg. In this section is
to show that all tilingsf =) g from a pathf to its standard pathg, are equivalent in
an intuitive sense. We refer the reader to the last chapter of [25] (second edition) for a
nice and motivated introduction to 2-categories.

5.1 Tiling graph, tiling paths, and partial injections

To every 2-dimensional transition system(G;B) we associate atiling graph in the fol-
lowing way:

Definition 29 (tiling graph, path, step) The graphtiling-graph(G;B) has the paths
of G as vertices, and the standardization steps(e; f B g; h) as edgese � f � h =)e�g�h. The paths intiling-graph(G;B) are calledtiling pathsto avoid confusion with the
rewriting pathsof the transition systemG. According to that spirit, we often calltiling
stepa standardization step. In the graphtiling-graph(G;B), we writeidf : f =) f
for the identity off , and� � � : f =) h for the composite of two paths� : f =) g
and� : g =) h.

Definition 30 (canonical equivalence on tiling path)To every tiling path� : f =)g, we associate a partial injection[�] : [g] + [f ] as follows.

– to every vertex oftiling-graph(G;B) we associate the finite set[f ] = f1; :::; ng of
cardinaln the length off as 1-dimensional path,

– to every edge� = (e; f B g; h) of tiling-graph(G;B) wheree; f; g andh decom-
pose as:

e = u1 � � �um f = v � u0 g = v1 � � � vn h = w1 � � �wp
we associate the partial injection[�] : [e � g � h] + [e � f � h] defined as� whenf}g: 8>><

>>:
k 7! k for every1 � k � mm+ 1 7! m+ 2m+ 2 7! m+ 1m+ 2 + k 7! m+ 2 + k for every1 � k � p

� whenf I g:8<
:

k 7! k for every1 � k � mm+ 1 7! m+ 2m+ n+ k 7! m+ 2 + k for every1 � k � p
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The partial injection[�] : f1; :::; ng+ f1; :::;mg associated to a tiling path

� : u1 � � �um =) v1 � � � vn
is defined by composing the partial injections[�i]’s:

[�] = [�n] � � � � � [�1]
Intuitively, the function[�] traces every redexvk back to its unique “ancestor”u[�](k)
in the 1-dimensional pathu1 � � �um, when this redex exists.

The main result of the section states that

Theorem 3 Suppose thatg is a standard rewriting path in an axiomatic rewriting sys-
tem(G;B). Then, every two tiling paths�; � : f =) g from a rewriting pathf to the
rewriting pathg define the same partial injection[�] = [�].
Reformulated 2-categorically, the theorem states that in the 2-category
2-cat(G;B) defined at the beginning of Section 5.3, the standard pathg : M �!�! N
is terminal in its connected component in the hom-category2-cat(G;B)(M;N). The
standard pathg is in fact strongly terminal, in the sense that in every cellg =) h, the
pathh is also standard, and thus terminal.

We proceed methodologically, and prove the theorem in two steps. In Section 5.2,
we give a series of conditions on an equivalence relation�= on the paths oftiling-graph (G;B)
to ensure that every two tiling paths�; � : f =) g from a pathf to a standard pathg, are equal modulo�=. In Section 5.3, we prove that the equivalence relation� �= �
induced by the equality[�] = [�] of partial injections, satisfies the formal conditions of
Section 5.2.

Remark: Theorem 3 repeats in dimension 2 the observation by J.-J. Lévy in the�-
calculus, or in any conflict-free (term) rewriting system, that there exists a unique path
from a term to its normal form, modulo permutation. Here, objects are 1-dimensional,
paths are 2-dimensional, permutations are 3-dimensional — and the concept of a conflict-
free 2-dimensional system remains to be clarified.

5.2 Standard=strong terminal

Definition 31 (horizontal composition) The horizontal composite� �h of a tiling step
(=standardization step)

� = (e; f B g; h) : e � f � h =) e � g � h : M �!�! N
and of a 1-dimensional pathh0 : N �!�! P is defined as the tiling step:

� � h = (e; f B g; h � h0) : e � f � h � h0 =) e � g � h : M �!�! P
The horizontal composite� � h of a tiling path

� = �1 � � � � � �n : f =) g : M �!�! N
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and a 1-dimensional pathh : N �!�! P is defined as the tiling path

� � h = (�1 � h) � � � � � (�n � h) : M �!�! P
The horizontal compositee � � of a 1-dimensional pathe : L �!�!M and a tiling path� : f � g : M �!�! N is defined symmetrically.

From now on, we consider an equivalence relation�= between the tiling paths oftiling-graph (G;B),
satisfying the four properties below:

1. for all tiling paths� : f =) f 0 and� : g =) g0,
� �= � ) f = g andf 0 = g0

2. for all tiling paths�; �0 : f =) g and�; �0 : g =) h,

� �= �0 and� �= �0 ) � � � �= �0 � �0
3. for all tiling paths�; � : g =) g0 : M �!�! N and all 1-dimensional pathsf : L �!�!M andh : N �!�! P ,

� �= � ) f � � � h �= f � � � h
4. for all of tiling paths� : f =) f 0 : M �!�! N and� : g =) g0 : N �!�! P ,

(� � g) � (f 0 � �) �= (f � �) � (� � g0)
Lemma 32 The equivalence relation�= defines a 2-category2-cat�=(G;B).
Proof. The 2-category2-cat�=(G;B) has vertices and paths ofG as objects and mor-
phisms, and equivalence classes modulo�= of tiling paths as cells. Conditions 1–3.
ensure the necessary compositionality properties of2-cat�=(G;B), while condition 4.
ensures the so-called interchange law of 2-categories, see [25]. ut
Suppose moreover that:

5. for every pathf = u � v whereu drags the redexv to a redexv0, and for every
standard pathg,

8�; �; �; � : f =) g ) � �= �
6. for every pathf = u � v � w where the redexu drags the redexv to a redexv0, and

where the pathu � v drags the redexw to a redexw0, and for every standard pathg,

8�; �; �; � : f =) g ) � �= �
These two additional conditions 5 and 6 regulate the potentialcritical pairs occurring
during the 2-dimensional transitions implementing standardization. The lemma below
establishes that the two assumptions are sufficient to the purpose.
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Lemma 33 Suppose that the equivalence relation�= satisfies Conditions 1–6. Then,
every standard pathh : M �!�! N is strongly terminal in its connected component in
the hom-category2-cat�=(G;B)(M;N).
Proof. By induction on the length ofh : M �!�! N . Suppose that the property is
established for every standard path of lengthn, and that the pathu � h is standard of
length1 + n. Suppose thatf is a path Ĺevy equivalent tou � h. We claim that for every
tiling path
 : f =) u � g resulting of an extractionf &u g, and for every tiling path� : f =) f 0 starting fromf , there exists a tiling path
0 : f 0 =) u � g0 resulting of an
extractionf 0 &u g0, such that


 � (u � �g) �= � � 
0 � (u � �g0) : f =) u � h (23)

where�g : g =) h and �g0 : g0 =) h are arbitrary tiling paths to the terminal
objecth. To prove the claim, it is sufficient to consider the case when� is a tiling step(f1; f2 B f 02; f3). The general case follows by a straightforward induction on the length
of �. So, we want to establish that the diagram below commutes modulo�= for a tiling
step� = (f1; f2 B f 02; f3) : f =) f 0 and a tiling path
 : f =) u � g resulting of an
extractionf &u g. f � +3



��

f 0

0
��u � g

u��g �'GGGG
GG GGGGGG

�=
u � g0

u��g0w� wwwwwwwwwwwwu � h
By definition of�, the pathsf andf 0 factor as

f = f1 � f2 � f3 f 0 = f1 � f 02 � f3:
The redexu is extractible from the pathf = f1 � f2 � f3. One of the three following
situations occurs. We say that the redexu is

1. extractible from the componentf1 when the redexu is extractible from the pathf1,
2. extractible from the componentf2 when the redexu is extractible from the pathf1 �f2 but not from the pathf1,
3. extractible from the componentf3 when the redexu is extractible from the pathf1 �f2 � f3 but not from the pathf1 � f2.

By definition of
 as the tiling path produced by the extractionf &u g, the rewriting
pathsg and the tiling path
 factor as

g = g1 � g2 � g3

 = (f1 � f2 � 
3) � (f1 � 
2 � g3) � (
1 � g2 � g3)

where the definitions ofg1; g2; g3 and
1; 
2; 
3 depend on the componentf1 or f2 or f3
from which the redexu is extractible:
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1. The redexu is extractible from the componentf1: in that case,g3 = f3 and
3 =idf3 , g2 = f2 and
2 = idf2 , and
1 : f1 =) u � g1 is the result of an extractionf1 &u g1,

2. The redexu is extractible from the componentf2: in that case,g3 = f3 and
3 =idf3 , 
2 : f2 =) u0 � g2 is the result of an extractionf2 &u0 g2, the pathf1 dragsu0 to u and
1 : f1 � u0 =) u � g1 is the result of the extractionf1 � u0 &u g1,

3. The redexu is extractible from the componentf3: in that case,
3 : f3 =) u00 �g3 is
the result of an extractionf3 &u00 g3, the pathf2 dragsu00 tou0 and
2 : f2 �u00 =)u0 � g2 is the result of the extractionf2 � u00 &u0 g2, the pathf1 dragsu0 to u and
1 : f1 � u0 =) u � g1 is the result of the extractionf1 � u0 &u g1.

The tiling path
0 is defined as


0 = (f1 � f 02 � 
3) � (f1 � 
02 � g3) � (
1 � g02 � g3)
where the definition of the tiling path
02 is by case analysis.

1. The redexu is extractible from the componentf1: in that case,g02 = f 02 and
02 :f 02 =) g02 is defined asidf 02 . Equivalence (23) follows from induction hypothesis
onh, as well as conditions 2, 3 and 4 on the equivalence relation�=.

2. The redexu is extractible from the componentf2: in that case, the pathg02 and
02 : f 02 =) u0 � g02 are the result of an arbitrary extractionf 02 &u0 g02. Equivalence
(23) follows from the series of equivalence:


 � (u � �g)�= 
 � (u � g1 � (g2 =) g002 ) � g3) � (u � �g1�g002 �g3) by ind. hyp.�= (f1 � (
2 � �2) � g3) � (
1 � g002 � g3) � (u � �g1�g002 �g3) by cond. 2, 3, 4.�= (f1 � ((f2 B f 02) � 
02 � �02) � g3) � (
1 � g002 � g3) � (u � �g1�g002 �g3) by cond. 5.�= (f1 � (f2 B f 02) � f3) � (f1 � (
02 � �02) � g3) � (
1 � g002 � g3) � (u � �g1�g002 �g3)
by cond. 2, 3, 4.�= � � (f1 � 
02 � g3) � (
1 � g02 � g3) � (u � g1 � �02 � g3) � (u � �g1�g002 �g3) by cond. 2, 3, 4.�= � � 
0 � (u � �g1�g02�g3) by ind. hyp.�= � � 
0 � (u � �g0)

whereg002 is a standard path Ĺevy equivalent to the pathsg2 andg02, and where

�2 : u � g2 =) u � g002 and �02 : u � g02 =) u � g002�g1�g02�g3 : g1 � g02 � g3 =) h and �g1�g002 �g3 : g1 � g002 � g3 =) h
are arbitrary tiling paths.

3. The redexu is extractible from the componentf3: in that third case,g02 and
02 :f 02�u00 =) u0�g02 are the result of an arbitrary extractionf 02�u00 &u0 g02. Equivalence
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(23) follows from the series of equivalence:


 � (u � �g)�= 
 � (u � g1 � (g2 =) g002 ) � g3) � (u � �g1�g002 �g3) by ind. hyp.�= (f1 � f2 � 
3) � (f1 � (
2 � �2) � g3) � (
1 � g002 � g3) � (u � �g1�g002 �g3) by cond. 2, 3, 4.�= (f1 � f2 � 
3) � (f1 � (((f2 B f 02) � u00) � 
02 � �02) � g3) � (
1 � g002 � g3)�(u � �g1�g002 �g3)
by cond 6.�= (f1 � (f2 B f 02) � f3) � (f1 � f 02 � 
3) � (f1 � (
02 � �02) � g3) � (
1 � g002 � g3) � (u � �g1�g002 �g3)
by cond. 2, 3, 4.�= � � (f1 � f 02 � 
3) � (f1 � 
02 � g3) � (
1 � g02 � g3) � (u � g1 � �02 � g3) � (u � �g1�g002 �g3)
by cond. 2, 3, 4.�= � � 
0 � (u � �g1�g02�g3) by ind. hyp.�= � � 
0 � (u � �g0)

whereg002 is a standard path Ĺevy equivalent tog2 andg02, and where

�2 : u � g2 =) u � g002 and �02 : u � g02 =) u � g002�g1�g02�g3 : g1 � g02 � g3 =) h and �g1�g002 �g3 : g1 � g002 � g3 =) h
are arbitrary tiling paths.

This proves our introductory claim. Now, we prove the lemma as follows. Let
 : f =)u � g be the result of an arbitrary extractionf &u g. Consider any tiling path� from f
to u � h. By property (23) proved above, there exists a tiling path
0 such that:


 � (u � �g) �= � � 
0 � (u � �h) : f =) u � h
In that particular case, as the result of the “empty” extractionu �h&u h, the tiling path
0 is the identityidu�h : u � h =) u � h. Moreover, the tiling path�h is the identityidh : h =) h by induction hypothesis. It follows that

� �= 
 � (u � �g)
This concludes the proof. ut
5.3 The 2-category 2-cat(G;B)
Definition 34 (2-cat(G;B)) The 2-category 2-cat(G;B) is the 2-category
2-cat�=(G;B) associated to the following equivalence relation on tiling paths:

� �= � () [�] = [�]
The main goal of the section is to prove Theorem 4.

Lemma 35 Suppose that� : f =) g : M �!�! N is a tiling path between the 1-
dimensional pathsf = u1 � � �um andg = v1 � � � vn. Suppose thatw is a redex outgoing
fromM . The two following assertions are equivalent:

1. the pathv1 � � � vi�1 drags the redexvi to the redexw,
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2. the index[�](i) = j is defined and the pathu1 � � �uj�1 drags the redexuj to the
redexw.

Proof. By induction on the length of�. ut
Theorem 4 In the 2-category2-cat(G;B), every standard path is strongly terminal in
its Lévy equivalence class.

Proof. By Lemma 33, we only need to check conditions 5 and 6 on the equivalence
relation�= on tiling paths�; � : f =) g induced by the equality[�] = [�]. Consider

– a pathf = u � v0 such thatu dragsv0 to a redexv
– or a pathf = u � v0 � w00 such thatu dragsv0 to a redexv, andu � v0 dragsw00 to a

redexw.

Consider two tiling paths�; � : f =) g standardizingf into a standard pathg =v1 � � � vn. Suppose that[�](i) = j for somei 2 [n]. By Lemma 35(1 ) 2), the pathv1 � � � vi�1 drags the redexvi to the redext = uwhenj = 1, to redext = v whenj = 2,
or to the redext = w whenj = 3. Thus, by Lemma 35(1) 2), the index[�](i) = k is
defined and such that the pathu1 � � �uk�1 drags the redexuk to the redext. This implies
thatj = k. Applying the argument to everyi 2 [n], and by symmetry, we deduce that[�] = [�]. This proves conditions 5 and 6, and we conclude. ut
Remark. In the case of the�-calculus, and more generally in any axiomatic rewriting
system derived from an axiomatic nesting system, see Section 6, the partial injection[�] : [g] + [f ] may be replaced by atotal function[�] : [g] �!�! [f ] without breaking
Theorem 4. The idea is to replace the partial function[�] associated to an irreversible
standardization step� in Definition 30 by the following total function[�]:

[�] :
8>><
>>:

k 7! k for every1 � k � mm+ 1 7! m+ 2m+ 1 + k 7! m+ 1 for every1 � k � n� 1m+ n+ k 7! m+ 2 + k for every1 � k � p
It is not difficult to show that conditions 5 and 6 of Section 5.2 still hold with the new
definition — in the case of the�-calculus or any axiomatic nesting systems. Theorem 4
follows. However, Theorem 4 does not generally hold with the alternative definition.
The axiomatic rewriting system

id

id
J

u00

��

v //
u�� }N

w???
__???

u0��

w2���
??���

v0 //
w1�������� w00???

��???
N

v00 //J

u00 = v00v � u0 } u � v0u0 � w00 I w2 � u00v0 � w00 I w1 � v00u � w1 I wv � w2 I w
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and tiling paths

�1 : u � v0 � w00 1=) v � u0 � w00 1=) v � w2 � u00 1=) w � u00
�2 : u � v0 � w00 1=) u � w1 � v00 1=) w � v00 = w � u00

illustrate this point, since both�1 and�2 transform the pathu � v0 � w00 to the standard
pathw � u00 = w � v00, but do not define the sametotal functions[�1] and [�2], since[�1](2) = 1 and[�2](2) = 2.

6 An Alternative Axiomatics Based on Residuals and Nesting

The 2-dimensional axiomatics formulated in Section 2 is particularly adapted to reason
and prove diagrammatically... but it is also far away from common practice, and may
be difficult to understand for someone simply interested in checking that the axioms are
satisfied by his or her favorite rewriting system. For that reason, we step back (in this
section only) to the axiomatics developed in [13] and [27] and based on the trinity of
residuals, critical pairs andnesting order. Since the formulation is nearly independent
of the remainder of the article, the reader may very well jump this section at a first
reading.

The section is organised as follows. Axiomatic nesting system are defined in Sec-
tion 6.1, and their axioms are formulated in Sections 6.2–6.5. We establish in Sec-
tion 6.6 that every axiomatic nesting system(G; [[�]];�; ") defines an axiomatic rewrit-
ing system, that is, a 2-dimensional transition system(G;B) which satisfies the axioms
of Section 2.

Remark: we provide two examples in Section 8

– the argument-nesting�-calculus,
– the graph of sequentializations of an ordered setX.

which demonstrate that the axiomatics presented in this section is at the same time
strictly more generalthan the axiomatics of [13] which inspired it, andstrictly less
generalthan the 2-dimensional axiomatics formulated in Section 2.

6.1 Axiomatic Nesting Systems

The main definition of the section follows.

Definition 36 An Axiomatic Nesting System is a quadruple (G; [[�]];�;") consisting of:

1. a transition system (or oriented graph)G = (terms; redexes; source;target),
2. for every redexu : M �! N , a binary relation[[u]] relating the redexes outgoing

fromM to the redexes outgoing fromN ,
3. for every vertexM of G, a transitive reflexive antisymmetric relation�M between

the redexes outgoing fromM ,
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4. for every vertexM of G, a reflexive relation"M between the redexes outgoing
fromM .

Every nesting system is supposed to satisfy a series of ten (4+2+4) axioms. The first
four Axioms Finite, Compat, Ancestor, Self state elementary properties of residuals
and compatibility. The two next AxiomsFinDev, Perm enforce the well-known prop-
erty of finite developments, appearing for instance in [32, 18, 20, 3, 27]. The four last
Axioms I , II , III , IV regulate the properties of the nesting relation vs. the compatibility
and residual relations. The ten axioms are calledN-axioms(N stands for nesting) to
distinguish them from the 2-dimensional axioms of Section 2.

6.2 The first N-axioms: Finite, Compat, Ancestor, Self

N-axiom Finite (finite residuals). We ask that a redexv : M �! Q has at most a
finite number of residuals after a coinitial redexu : M �! P .

8u; v 2 redexes; the set fv0 j v[[u]]v0g is finite.

N-axiom Compat (forth compatibility). We ask that two compatible redexesu :M �! P andv : M �! Q have compatible residualsu0 andv0 after a coinitial
redexw : M �! N .

8u; v; w; u0; v0 2 redexes; u[[w]]u0 and v[[w]]v0 and u " v ) u0 " v0
N-axiom Ancestor (unique ancestor). We ask that two different coinitial redexesu : M �! P andv : M �! Q do not have any residual in common after a coinitial
redexw : M �! N .

8u; v; w; u0; v0 2 redexes; u[[w]]u0 and v[[w]]v0 and u0 = v0 ) u = v
N-axiom Self (self-destruction). We ask that a redexv : M �! Q has no residual
after itself, or after an incompatible coinitial redexu : M �! P .

8u; v 2 redexes; (u = v or :(u " v)) ) fv0 j v[[u]]v0g = ;

6.3 A few preliminary definitions: multi-redex, development

We need a few preliminary definitions to formulate the N-axiomsFinDev andPerm.

Definition 37 (residual through path) Given a pathf : M �!�! N , the relation[[f ]]
between the redexes outgoing fromM and the redexes outgoing fromN , is defined as
follows:
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– [[f ]] is the identity relation whenf = idM ,
– [[f ]] is the composite relation[[v1]] � � � [[vn]] whenf = v1 � � � vn.

Explicitly, for every two redexesu andu0,
u[[idM ]]u0 () u = u0

u[[v1 � � � vn]]u0 () 9u2; :::; un�1 2 redexes;u[[v1]]u2[[v2]]u3 � � �un�2[[vn�1]]un�1[[vn]]u0
Definition 38 (multi-redex) A multi-redexin (G; [[�]];�; ") is a pair (M;U) consist-
ing of a termM and a finite setU of pairwise compatible redexes of sourceM .

Remark: every redexu : M �! N may be identified to the multi-redex(M; fug).
Definition 39 (multi-residual) Suppose that(M;U) is a multi-redex and thatv is a
redex compatible with every redex inU . Themulti-residualof (M;U) afterv, notation(M;U)[[v]], is the multi-redex(N;W ) whereW = fw j u[[v]]wg.
Remark: Definition 39 defines a multi-redex(N;W ) thanks to the N-axiomsFinite
andCompat.

Definition 40 (development) A complete development of a multi-redex(M;U) is a pathf such that:

– f = idM whenU is empty,
– f = u � g whenu : M �! N is a redex inU , and the pathg is a complete

development of the multi-redex(M;U)[[u]].
A developmentof (M;U) is a pathf : M �!�! P which is prefix of a complete devel-
opmentg : M �!�! N of (M;U). Here, we callf a prefix ofg when there exists a pathh : P �!�! N such thatg = f � h.

We define two notions mentioned informally in Sections 1 and 2, and which appear in
the N-axiomsIII andIV .

Definition 41 (created redex) A redexu : M �! P creates a redexv : P �! N ,
when there does not exist any redexw outgoing fromM , such thatv is a residual ofw
afteru.

Definition 42 (disjoint) Two redexesu andv are disjoint when:(u � v) and:(v �u).
6.4 The N-axioms related to finite developement: FinDev and Perm

N-axiom FinDev (finite developments). Let (M;U) be a multi-redex. Then, there
does not exist any infinite sequence of redexes

M1 u1�!M2 u2�! � � � un�1�! Mn un�!Mn+1 un+1�! � � �
such that, for every indexn, the pathu1 � � �un is a development of(M;U).
N-axiom Perm (compatible permutation). For every two coinitial, compatible and
different redexesu : M �! P andv : M �! Q, there exists a complete developmenthu of u[[v]], and a complete developmenthv of v[[u]], such that:
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1. the pathshu andhv are cofinal,
2. the residual relations[[u � hv]] and[[v � hu]] are equal.

6.5 The fundamental N-axioms: I, II, III, IV

N-axiom I (unique residual). We ask that

u " v and :(v � u) ) 9!u0; u[[v]]u0
whenu andv are coinitial redexes.
N-axiom II (context-free). Suppose thatu; v; w are pairwise compatible redexes, that
the redexu0 is residual ofu afterw, and the redexv0 residual ofv afterw. We ask that,

a. (u � v ) u0 � v0) or (w � u and w � v)
b. (u0 � v0 ) u � v) or w � v

N-axiom III (enclave). Suppose thatu andv are two compatible redexes, and thatu � v. Callu0 the residual ofu afterv. We ask that for every redexv0 created byv,

u0 � v0 or :(u0 " v0)
N-axiom IV (stability). Suppose thatu andv are two compatible disjoint redexes.
Call u0 the residual ofu afterv, andv0 the residual ofv afteru. We ask that there exists
no triple of redexes(w1; w2; w) such thatw1 is a redex created byu, w2 is a redex
created byv, and w1[[v0]]w and w2[[u0]]w

6.6 Every axiomatic nesting system defines an axiomatic rewriting system

Definition 43 Every axiomatic nesting system(G; [[�]];�; ") defines a 2-dimensional
transition system(G;B) as follows:

B is the least relation between paths ofG such thatv � hu B u � hv when
– the pathsu � hv andv � hu are cofinal, and satisfy[[u � hv]] = [[v � hu]],
– u andv are two coinitial redexes outgoing from a termM ,
– u " v and:(v � u),
– the pathhu is a complete development of(M; fug)[[v]],
– the pathhv is a complete development of(M; fvg)[[u]].

Observe that the 2-dimensional transition system(G�;Btree) of Section 1.9 is the result
of applying Definition 43 to the axiomatic nesting system(G�; [[�]]�;�tree; "�) below:

– [[�]]� is the usual residual relation between�-redexes in the�-calculus, as defined
in [10, 24, 20, 3],
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– "� is the compatibility relation between�-redexes, in that case the total relation,
indicating that every two coinitial�-redexes are compatible,

– �tree is the tree-nesting relation between�-redexes, defined in Section 1.9.

The main result of the section (Theorem 5) states that the 2-dimensional transition sys-
tem(G;B) of Definition 43 satisfies the standardization axiomatics of Section 2. Before
proving that theorem, we start with five preliminary lemmas.

Lemma 44 The 2-dimensional transition system(G;B) of Definition 43 satisfies Axiom
shape.

Proof. Suppose thatf B g is a permutation in(G;B). By definition, the two first steps
of f andg are different. By the N-axiomsI andSelf, the length of the rewriting pathf
is 2. Axiomshapefollows. ut
Definition 43 exports from axiomatic rewriting systems to axiomatic nesting systems
the definitions of standardization preorder=) and Ĺevy equivalence relation� in Sec-
tion 1.5, as well as (thanks to Lemma 44) the definitions of extraction and projection in
Section 2.5. We prove

Lemma 45 (cube lemma)Suppose that(M;U) is a multi-redex in an axiomatic nest-
ing system(G; [[�]];�; "). Then, every two complete developmentsf andg of (M;U)
are Lévy equivalent.

Proof. By the N-axiomsFinite andCompat, the complete developments of(M;U)
ordered by prefix, define a finitely branching tree. The tree is thus finite by König’s
lemma and N-axiomFinDev. We proceed by induction on the length of the longest
path of that tree, called the “depth” of(M;U). Suppose that the lemma is established
for every multi-redex of depth less thann, and let(M;U) be a multi-redex of depthn+ 1. Let f andg be two complete developments of(M;U). If one of the two pathsf
or g is empty, then the setU is empty, and thus the two complete developmentsf
andg are empty: it follows thatf � g. Otherwise, the two pathsf andg factor asf = u � f 0 and g = v � g0 where the redexesu and v are elements of the multi-
redex(M;U), the pathf 0 is a complete development of(M;U)[[u]], and the pathg0
is a complete development of(M;U)[[v]]. We proceed by case analysis. Eitheru = v oru 6= v. In the first case, both pathsf 0 andg0 are complete developments of the multi-
redex(M;U)[[u]] = (M;U)[[v]]; the equivalencef 0 � g0 follows from our induction
hypothesis applied to the multi-redex(M;U)[[u]], and we conclude thatf � g. In the
second case, whenu 6= v, it follows from N-axiomPerm that there exist two complete
developmentshu of u[[v]] andhv of v[[u]], such that the pathsv � hu andu � hv are
coinitial and cofinal, and induce the same residual relation[[u � hv]] = [[v � hu]]. Let h
be any complete development of the multi-redex(M;U)[[u � hv]] = (M;U)[[v � hu]].
By definition of a complete development, the pathhv � h is a complete development
of (M;U)[[u]], and the pathhu � h is a complete development of(M;U)[[v]]. The two
equivalence relationshv � h � f 0 andhu � h � g0 follow from our induction hypothesis
applied to the multi-redexes(M;U)[[u]] and(M;U)[[v]]. We conclude thatf � g by the
series of equivalence:

f = u � f 0 � u � hv � h � v � hu � h � v � g0 = g
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ut
Lemma 46 Suppose that the pathf is a complete development of a multi-redex(M;U)
in an axiomatic nesting system(G; [[�]];�; "). Suppose that a redexu is element ofU ,
and satisfies:(v � u) for every redexv in the setU � fug. Then, the redexu is
extractible from the pathf .

Proof. By induction on the length of the complete developmentf . The pathf is not
empty. It thus factors asf = w � g, wherew : M �! P is a redex ofU , andg is a
complete development of(M;U)[[w]]. The lemma is obvious whenu = w. Otherwise,
by hypothesis,u " w and:(w � u). By N-axiomI , the redexu has a unique residual
residual after reduction of the redexw. Let us call this redexu0. Letv0 denote any redex
in (N;U 0) = (M;U)[[w]] different from the redexu0. We prove that:(v0 � u0). By
definition of the redexv0, there exists a redexv in U , such thatv[[w]]v0. Obviously, the
redexv is different from the redexu becauseu0 is the unique residual of the redexu
afterw. It follows from hypothesis onu that:(v � u). We apply the N-axiomII b.
to :(v � u) and:(w � u) to deduce that:(v0 � u0). We have just proved that:(v0 � u0) for any redexv0 in U 0 � fu0g. Our induction hypothesis implies then that
the redexu0 is extractible from the complete developmentg of (N;U 0).

To summarize, we know thatu " w, that:(w � u), and that the unique residual
of u afterw, denotedu0, is extractible from the pathg. We claim that it follows from
this that the redexu is extractible from the pathw � g. Indeed, by N-axiomPerm,
there exists a complete developmenthu of the multi-redex(M; fug)[[v]] and a complete
developmenthw of the multi-redex(M; fwg)[[u]], such that the pathsu�hw andv�hu are
coinitial, cofinal, and induce the same residual relation[[u � hw]] = [[v � hu]]. Moreover,hu = u0 by N-axiomsI andSelf. By definition,w � u0 B u � hw. It follows that the
redexu is extractible from the pathf = w � g. This concludes our proof by induction.ut
Lemma 47 Suppose thatf : M �!�! N is a complete development of a multi-redex(M;U)
in an axiomatic nesting system(G; [[�]];�; "). Then, every path more standard thanf
is a complete development of(M;U).
Proof. Suppose that a complete development of(M;U) factors as

M f1�!�! P f�!�! Q f2�!�! N
and thatf B g. We show that the pathf1 � g � f2 is also a complete development
of (M;U). By definition of a complete development, we may suppose without loss of
generality that the pathf1 is empty. By definition ofB, the pathsf andg are two cofinal
complete development of a multi-redex(M; fu; vg), and factor asf = v �u0 andg = u �hv where:(v � u), the redexu0 is the unique residual ofu afterv andhv is a complete
development of the residuals ofv afteru. By definition of a complete development of(M;U), one ancestor ofv0 beforeu is element ofU . By the N-axiomAncestor, this
ancestor is unique, and we already have one candidate: the redexv. We conclude that
the redexv is element ofU . By definition ofB, the rewriting pathsf andg induce the
same residual relation[[f ]] = [[g]]. We conclude thatf1 �g �f2 is a complete development
of the multi-redex(M;U). ut
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Lemma 48 Suppose that the rewriting pathf : M �!�! N is a complete development
of a multi-redex(M;U) in the axiomatic nesting system(G; [[�]];�; "). Then,

– every redexu extractible from the pathf is element ofU ,
– every projection of the pathf by extraction of a redexu is a complete development

of the multi-redex(M;U)[[u]].
Proof. Immediate consequence of Lemma 47. ut
Theorem 5 By Definition 43, every axiomatic nesting system(G; [[�]];�; ") defines an
axiomatic rewriting system(G;B).
Proof. We establish that the 2-dimensional transition system(G;B) satisgies the nine
axioms of Section 2.
Axiom 1. Axiom shapeis established in Lemma 44,
Axiom 2. Axiom ancestorfollows from N-axiomAncestorand Lemma 45,
Axiom 3. We prove Axiomreversibility . Suppose thatf B g B h. By definition ofB,
there exists five redexesu; v; w; u0; v0 and a pathh0 such thatf = u � v0 andg = v � u0
andh = w � h0, andu " v andv " w and:(u � v) and:(v � w). By definition off B g, the redexu0 is the complete development of the residuals ofu after v, thus a
fortiori a residual ofu afterv. By definition ofg B h, the redexu0 is a residual ofw
afterv. The equalityu = w follows from N-axiomAncestor. Thus,h0 is a complete de-
velopment of the residuals ofv afteru = w. But, by definition off B g and N-axiomI ,
the redexv0 is the unique residual ofv afteru. Thus,h0 = v0 and we conclude Axiom
reversibility with the equalityh = u � h0 = u � v0 = f .
Axiom 4. We prove Axiomirreversibility . Suppose thatf I g andg =) h. By defini-
tion off B g, the pathsf andg are complete developments of a multi-redex(M; fu; vg)
with, say, the pathsf andg starting by reducingv andu respectively. The nesting rela-
tion u � v follows easily fromf I g. By Lemma 47, and our hypothesis thatg B h,
the pathh is a complete development of(M; fu; vg). We prove thath starts by reducing
the redexu. By definition ofg =) h, there exists a sequence

g = h1 1=) h2 1=) � � �hn 1=) hn+1 = h
of complete development of(M; fu; vg) and an index1 � i � n such thathi starts
by reducing the redexu, andhi+1 starts by reducing the redexv. This means thathi
andhi+1 factor ashi = u � w � h0 andhi+1 = v � hu � h0, whereu � w B v � hu.
This contradictsu � v. We conclude that the pathh starts by reducingu. Obviously,
the complete developmentsf andh are cofinal and induce the same residual relation[[f ]] = [[h]]. The relationf I h follows from that andu � v. This proves Axiom
irreversibility .
Axiom 5. We prove Axiomcube. Among its hypothesis, we have thatv � u0 B u �v1 � � � vn and that the redexwn+1 is residual of the redexw after the pathu � v1 � � � vn.
By definition of v � u0 B u � v1 � � � vn, the redexwn+1 is also residual ofw after the
pathv � u0. By N-axiomSelf, the redexesu; v; w are pairwise compatible and different.
Thus, the pair(M; fu; v; wg) defines a multi-redex.

We prove that:(u � w) and:(v � w). The first relation follows from the hypoth-
esis thatu �w1 B w �hu. The second relation is established by case analysis, depending
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on whetheru � v or :(u � v). In the first case, the relation:(v � w) holds by
transitivity of�, because:(u � w). In the second case, observe that the permutationv � u0 B u � v1 � � � vn is reversible. We write itv � u0 B u � v1. The relation:(v1 � w1)
follows from the hypothesis thatv1 � w2 B w1 � h1. By :(u � v) and:(u � w), and
N-axiomII a. the relation:(v � w) follows from:(v1 � w1).

We have just proved that:(u � w) and:(v � w). By Lemma 46, the redexw is
extractible from the two complete developmentsv �u0 �wn+1 andu � v1 � � � vn �wn+1 of(M; fu; v; wg). In particular, there exists a redexw0 and two pathshv andhu0 forming
permutationsu0 �wn+1 B w0 �hu0 andv �w0 B w �hv. This proves half of Axiomcube.

There remains to prove that the pathshv � hu0 andhu � h1 � � �hn are Ĺevy equiv-
alent. The two paths are projections by extraction ofw of the complete developmentsv � u0 � wn+1 andu � v1 � � � vn � wn+1 of (M; fu; v; wg). The Ĺevy equivalence follows
from Lemma 48. This concludes the proof of Axiomcube.
Axiom 6. We prove Axiomenclave. We recall its hypothesis: the irreversible permu-
tation v � u0 I u � v1 � � � vn and the permutationu0 � wn+1 B w0 � hu0 . The relationsu " v andu � v andu0 " w0 and:(u0 � w0) follow from this. By N-axiomIII , the
redexu : M �! N does not create the redexw0. Thus, there exists a redex outgoing
from M with residualw0 afteru. This redex is unique by N-axiomAncestor. We call
it w.

By definition ofv � u0 B u � v1 � � � vn, the residual relationw[[v � u0]]wn+1 implies
thatw[[v � v1 � � � vn]]wn+1. It follows from N-axiomSelf that the three redexesu; v; w
are pairwise different and compatible, thus define a multi-redex(M; fu; v; wg).

We prove that:(u � w) and :(v � w). The first relation follows from N-
axiom II a. applied to the relations:(v � u) and:(u0 � w0). The second relation
follows from transitivity of� and:(u � w) andu � v.

By Lemma 46, it follows that the redexw is extractible from the complete develop-
mentsv�u0�wn+1 andu�v1 � � � vn�wn+1 of the multi-redex(M; fu; v; wg). Equivalently,
both pathsv � u0 andu � v1 � � � vn drag the redexwn+1 to the redexw. This concludes
the proof of Axiomenclave.
Axiom 7. We prove Axiomstability . By definition ofu � v0 B v � u0 B u � v0, the two
redexesu : M �! P andv : M �! Q are compatible, and disjoint. By N-axiomIV ,
either the redexw1 is not created byu, or the redexw1 is not created byv.

Suppose for instance thatw2 is not created byv. In that case, there exists a redexw
such thatw[[v]]w2. Consequently, the redexw12 is residual ofw after the pathv � u0. By
definition ofu � v0 B v � u0, the redexw12 is also residual ofw afteru � v0. Thus, there
exists a residualw01 of w afteru, such thatw01[[v0]]w12. The equalityw1 = w01 follows
fromw1[[v0]]w12 and N-axiomAncestor. We conclude thatw1 is not created byv, and
residual ofw afteru. The case whenw1 is not created byu, is symmetric.

By N-axiom II a. andv[[u]]v0, w[[u]]w1, the relation:(v � w) follows from:(v0 �w1) and:(u � v). The relation:(u � w) holds for symmetric reasons. Axiomstabil-
ity follows easily.
Axiom 8. We prove Axiomreversible-stability. By Axiom stability , which was es-
tablished above, applied to the hypothesis of Axiomreversible-stability, there exists a
redexw such that

– u " w, :(u � w), andw1 is the unique residual ofw afterv,
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– v " w, :(v � w), andw2 is the unique residual ofw afteru.

We prove that:(w � u) and:(w � v). Suppose for instance thatw � u. By
N-axiom II a. andu[[v]]u1 andw[[v]]w2, the relationw2 � u1 follows from this and:(v � w). This contradicts definition ofw2 � u12 B u1 � w12. Thus,:(w � u), and
symmetrically:(w � v). Axiom reversible-stability follows from Lemma 46 applied
alternatively to extract the redexu from the complete developmentw � v2 � u12, and the
redexv from the complete developmentw � u2 � v12.
Axiom 9. We prove Axiomtermination using an argument found in [20]. Suppose
thath1 is a complete development of a multi-redex(M;U). By N-axiomFinDev and
Lemma 48, there does not exist any infinite sequence of extraction:

h1 &u1 h2 &u2 :::&ui�1 hi &ui hi+1:::
where, for everyi � 1, the pathhi+1 is a projection of the pathhi by extraction of the
redexui. Now, we prove that there does not exist any infinite sequence

f1 &u1 f2 &u2 :::&ui�1 fi &ui fi+1::: (24)

starting from a pathf1 : M1 �!�! N . We proceed by induction on the length off1.
Clearly, the property holds whenf1 = idM1 . From now on, we suppose that the pathf1
factors asf1 = u � g1 composed of a redexu and a pathg1 ¡ of length strictly smaller
than the length off1. Consider any infinite sequence of the form (24). We prove that,
for every indexi � 1, the pathfi factors asfi = hi � g�(i) where

– hi is a complete development of the multi-redex(Mi; Ui) defined as:

(Mi; Ui) = (Mi; u[[u1 � � �ui�1]]) = (M1; fug)[[u1]] � � � [[ui�1]]
– �(i) is an index1 � �(i) � i defining a sequence of extraction starting fromg1:

g1 &v1 g2 &v2 : : :&v�(i)�2 g�(i)�1 &v�(i)�1 g�(i)
for a series of redexesv1; :::; v�(i)�1.

Suppose that the property holds for a given indexi � 1, and let us prove it for the next
index i + 1. Consider the pathfi = hi � g�(i) and the redexui. Either the redexui is
extractible fromhi, or there exists a redexv�(i) extractible fromgi and dragged toui
by the pathhi. In the first case, we define�(i + 1) as�(i), and conclude that the pathfi+1 factors asfi+1 = hi+1 � g�(i+1), wherehi+1 is a projection ofhi by extraction
of ui; here, by Lemma 48, the pathhi+1 is a complete development of(Mi; Ui)[[ui]] =(Mi+1; Ui+1) becausehi is a complete development of(Mi; Ui). In the second case, we
define�(i+1) as�(i)+1, and observe that the pathfi+1 factors asfi+1 = hi+1�g�(i+1),
wherehi � v�(i) &ui hi+1 andg�(i) &v�(i) g�(i+1); here, by Lemma 48, the pathhi+1
is a complete development of the multi-redex(Mi; fuig [ Ui)[[ui]] = (Mi+1; Ui+1)
becausehi � v�(i) is a complete development of the multi-redex(Mi; fuig [ Ui). We
conclude that the factorization property holds, for every indexi � 1.
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The end of the proof follows easily. By induction hypothesis applied tog, there
exists an indexj � 1 such that�(j + i) = �(j), for every indexi � j. Thus, the
infinite sequence (24) induces an infinite sequence

hj &uj hj+1 &uj+1 : : :&uj+i�1 hj+i &uj+i hj+i+1 : : :
from the complete developmenthj of (Mj ; Uj). This contradicts a preliminary result
deduced from N-axiomFinDev. It follows that there exists no infinite sequence of the
form (24) starting fromf . This concludes our reasoning by induction, and establishes
Axiom termination . ut
7 Optional Hypothesis on Standardization

7.1 Epimorphisms wrt.�
In Lemma 17 of Section 3.1, we establish that every path is epi (=left-cancellable) in the
quotient category2-cat(G;B)='. The same epiness property modulo� instead of'
has been established in [24, 18, 6] for the�-calculus and any (left-linear) term rewriting
system. Quite interestingly, the redexv and Ĺevy equivalence

M v�! N u1�! P � M v�! N u2�! P
in the axiomatic rewriting system

P
M v //

u 11

u --

J
J N

u1mm

u2qqP

v � u1 I uv � u2 I u

illustrate that the epiness property modulo� does not generalize to axiomatic rewriting
systems. However, an additional hypothesis may be added on(G;B) to ensure epiness
of morphisms in the category2-cat(G;B)=�.

Optional hypothesis (descendant).Two redexesu0 andu00 are equal when they are
involved in permutationsv � u0 B u � f andv � u00 B u � g, whereu; v are redexes andf; g are paths.

Diagrammatically,

M
v ��

u
��Q

u0 ��
) P

fssN

and

M
v ��

u
��Q0

u00 ��
) P

gssN 0

) u0 = u00
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Obviously, hypothesisdescendantholds in every axiomatic rewriting system derived
from an axiomatic nesting system, see Definition 43. Thus, Lemma 49 generalizes the
property of epiness modulo� established in [24, 18, 6] for the�-calculus and term
rewriting systems.

Lemma 49 (epi wrt.�) Suppose thatf : M �!�! P and g1; g2 : P �!�! N are
three paths in an axiomatic rewriting system(G;B) and that(G;B) satisfies hypothesis
descendant. Then, f � g1 � f � g2 ) g1 � g2
Proof. By induction on the length of the standard pathh of f � g1 (and of f � g2.)
Let u be the first redex computed inh. We conclude by induction hypothesis whenu is extractible fromf . Otherwise, there exist a redexv1 extractible fromg1 and a
redexv2 extractible fromg2, such thatf dragsv1 andv2 to the redexu. By hypothesis
descendant, the two redexesv1 andv2 are the same redexv. We writef 0, h1 andh2
for arbitrary results of the extractionsf � v &u f 0 and g1 &v h1 and g2 &v h2.
Equivalencef 0 � h1 � f 0 � h2 follows from Lemma 12 (preservation of extraction), and
definition ofu as the first redex of a standard path off � g1 andf � g2. Equivalenceh1 � h2 follows from this equivalence and our induction hypothesis. The series of
equivalence g1 � v � h1 � v � h2 � g2
concludes the proof by induction. ut
7.2 Monomorphisms wrt.'
A well-known example in [24] shows that�-rewriting paths are not necessarily mono
(=right-cancellable) modulo Ĺevy equivalence�. The example is the�-redexw in the
Lévy permutation equivalence

I(Ia) u�! Ia w�! a � I(Ia) v�! Ia w�! a
The example may be adapted to show that�-rewriting paths are not necessarily mono
modulo'-equivalence in the�-calculus equipped with theargument-orderon�-redexes,
in the following way:

(�x:(�y:y)x)a u�! (�y:y)a w�! a } (�x:(�y:y)x)a v�! (�x:x)a w�! a
In contrast, we show that rewriting paths are mono modulo' in every axiomatic rewrit-
ing system satisfying the additional propertyreversible-shape. It follows that monoic-
ity modulo' holds in almost every rewriting system, in particular in the�-calculus
equipped with thetree-orderor theleft-orderon�-redexes, as well as on Petri nets and
term rewriting systems.

Optional hypothesis (reversible shape).Two redexesv andv0 are different when they
are involved in a reversible permutationu � v } u0 � v0.
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Lemma 50 (epi-mono wrt.') Suppose thatf : M �!�! P and g1; g2 : P �!�! Q
andh : Q �!�! N are four paths in an axiomatic rewriting system(G;B) satisfying
hypothesisreversible-shape. Then,

f � g1 � h ' f � g2 � h ) g1 ' g2
Proof. Immediate consequence of Lemma 15 for right-cancellation and Lemma 17 for
left-cancellation. ut
7.3 A simpler structure of starts

Thestructure of startsdescribed in Lemma 16 (Section 3.1) appears to be surprisingly
more complicated than thestructure of stopsdescribed in Lemma 15. However, a much
simpler characterization of starts is possible in any axiomatic rewriting system(G;B)
satisfying the additional hypothesisreversible-cubeformulated below. The new char-
acterization of starts appears in Lemma 51. Note that the property is satisfied by the�-calculus and more generally by any axiomatic rewriting system derived from an ax-
iomatic nesting system. On the other hand, it is not satisfied by the axiomatic rewriting
system defined on order sequentializations, and defined at the endof Section 8.

Optional hypothesis (reversible cube).We ask that every diagram

u2

��

v //
u�� }}

w???
__???

u1��v1 //
w1�������� w12???

��???v12 //}

whereu; v; u1; v1 andw;w1; w12; u2; v12 are redexes forming the reversible permuta-
tions

v � u1 } u � v1 u � w1 } w � u2 v1 � w12 } w1 � v12
may be completed as a diagram

u2

��

v2 //
}

u12

��

v //
u�� }}

w???
__???

u1��

w2���
??���

v1 //
w1�������� w12???

��???
}

v12 //}

v2 //

u2

��

} u12

��v12 //
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wherew2; v2; u12 are three redexes forming reversible permutations

v � w2 } w � v2 u1 � w12 } w2 � u12 v2 � u12 } u2 � v12

Lemma 51 (simpler structure of starts) Suppose thatu1 � � �un : M �!�! N is a path
in an axiomatic rewriting system(G;B) satisfying hypothesisreversible-cube. Then, a
redexu : M �! P starts the pathu1 � � �un : M �!�! N if and only there exists an
index1 � i � n and a pathv1 � � � vi�1 such that the pathu1 � � �ui�1 followed by the
redexui permutes reversibly to the redexu followed by the pathv1 � � � vi�1.

Proof. Suppose that a pathf followed by a redexv permutes reversibly to a redexu
followed by a pathg. Hypothesisreversible-cubeimplies that for every pathf 0 ' f ,
there exists a pathg0 ' g such that the pathf 0 followed by the redexv permutes
reversibly to the redexu followed by the pathg0. The lemma follows immediately from
this, and Lemma 16. ut
8 Examples and Open Problems

ASYNCHRONOUS TRANSITION SYSTEMS. Asynchronous transition systems extend
both non-deterministic transition systems, and Mazurkiewicz trace languages. They
were introduced independently in [4] and [39], see also [33].

An asynchronous transition systemT is a quintupleT = (S; i; E; I;Tran) where

– S is a set ofstateswith initial statei,
– E is a set ofevents,
– Tran � S � L� S is thetransition relation,
– I � E � E is an irreflexive, symmetric relation called theindependence relation.

Every asynchronous transition system is supposed to satisfy four axioms:

1. parsimony:8e 2 E; 9(s; s0) 2 S � S; (s; e; s0) 2 Tran,
2. determinacy: 8(s; e; s0); (s; e; s00) 2 Tran; s0 = s00,
3. independence: 8(s; e1; s1); (s; e2; s2) 2 Tran,

e1Ie2 ) 9s0; (s1; e2; s0) 2 Tran and(s2; e1; s0) 2 Tran
4. together: 8(s; e2; s2); (s2; e1; s0) 2 Tran,

e1Ie2 ) 9s1; (s; e1; s1) 2 Tran and(s1; e2; s0) 2 Tran
Every asynchronous transition systemT defines an axiomatic rewriting system(GT ;BT), as follows:

– the graphGT has states as vertices and transitions(s; e; s0) as arrows,
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– two pathsf andg are related asf BT g, precisely when there exist four transitions(s; e1; s1), (s; e2; s2), (s1; e2; s0), (s2; e1; s0) in Tran, such that� f = (s; e2; s2) � (s2; e1; s0),� g = (s; e1; s1) � (s1; e2; s0),� the two eventse1 ande2 are independent:e1Ie2.

We check that the standardization axioms hold in(GT ;BT ). Axiom shapefollows from
anti-reflexivity of the independence relation. Observe that every permutationf BT g
is reversible: it coexists with a permutationg BT f . The three Axiomsirreversibility ,
enclaveandtermination follow from this, as well as the equivalence between Axiom
stability and Axiomreversible-stability. We establish now the four Axiomsancestor,
reversibility , cubeandreversible-stability. The property (2) ofdeterminacy has two
remarkable consequences in every asynchronous transition systemT :

f }T g and f }T h ) g = h:
f }T g}T h ) f = h:

The two Axiomsancestorandreversibility follow from the first and second assertions,
respectively. By definition of the permutation relationBT , the three eventse1; e2; e3 are
pairwise independent:

e1Ie2 e2Ie3 e1Ie3:
in every diagram

e1

��

s e2 //
e1�� }T}T

e3DDDD
aaDDDD

s2
e1��s1 e2 //

e3}}}~~}}}
s12

e3DDDD !!DDDDs13 e2 //}T s123

or

s23

e1

��

s e2 //
e1 �� }T

s2
e1��

e3|||
>>|||

s1 e2 //
e3��������

s12
e3BBB   BBB
}T

s13 e2 //}T s123
So, it follows from the properties (2) and (4) ofdeterminacy togetherwith the prop-
erties of the asynchronous transition systemT , that the two diagrams above may be
completed as:

s3

e1
��

e2 //
}T s23

e1
��

s e2 //e1�� }T}T
e3DDD
aaDDD

s2e1��
e3www
;;www

s1 e2 //
e3zzz}}zzz

s12 e3GGG ##GGG
}T

s13 e2 //}T s123

s3 e2 //

e1
��

}T

s23
e1
��s13 e2 // s123
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Axioms cube and reversible-stability follow immediately. It is also nearly immedi-
ate that(GT ;BT ) enjoys the additional hypothesisdescendant, reversible-shapeand
reversible-cubeformulated in Section 7.

Remark: we have just proved the axiomatics (and the additional hypothesis) without
ever using properties (1) and (3) of the asynchronous transition systemT .

Remark: the standardization theorem is not really informative in(GT ;BT ) because ev-
ery permutation being reversible, all paths are standard. However, the axiomatics itself
ensures that every asynchronous system satisfies the stability theorem stated in [30]
which describes the structure of its successful runs.

PETRI NETS. The theory of Petri nets illustrates nicely the notion of asynchronous
transition system. A Petri net is a quintupleN = (C; j; F;pre;post) where

– C is a set ofconditions,
– j is a particular marking ofN , called theinitial marking, where amarkingof N is

defined as a multi-set of conditions,
– F is a set offirings,
– pre;postare two functions associating to every firinge 2 F the nonempty markings

pre(e) andpost(e), called respectively thepre-conditionandpost-conditionof e.
An asynchronous transition systemTN = (S; i; E; I;Tran) is associated to every Petri
netN in the following way, see [33]:

– S is the set of markings ofN ,
– i is the markingj 2 S,
– E is the setF of firings,
– Tran is the set of triples(p; e; q) such thatp = p0 ] pre(e) andq = p0 ] post(e)

for a markingp0, where] is the multi-set addition.
– I relates two firingse1; e2 2 F precisely whenpre(e1) \ pre(e2) andpost(e1) \

post(e2) are empty multi-sets.

The axiomatic rewriting system(GN ;BN ) associated to the asynchronous transition
systemTN may be described directly, as follows. Its transition systemGN has the mark-
ings ofN as vertices, and the triples

(p0 ] pre(e); e; p0 ] post(e)) = (p; e; q)
as edgesp �! q. The permutation relationBN relates two pathsu �v0 B v �u0 precisely
when:

1. u andv are edgesu = (p; e1; p1) andv = (p; e2; p2),
2. u0 andv0 are edgesu0 = (p2; e1; p0) andv0 = (p1; e2; p0),
3. pre(e1) \ pre(e2) andpost(e1) \ post(e2) are empty multi-sets.

BUBBLE SORT. The standardization procedure may be viewed as a generalization of
the bubble sort algorithm, in which the order is not givengloballybut locally. DefineG
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as the graph with a unique vertexM and, for every natural numberi 2 N, an edge[i] :M �!M . LetB be the least relation on paths such that

[j] � [i] B [i] � [j]
wheni < j. All the standardization axioms introduced in Section 2 are immediate on(G;B) — except Axiomenclavewhich follows from the transitivity of the order on
natural numbers. The standardization theorem of(G;B) states that every sequence of
natural numbers[j1] � � � [jk] may be reordered by local permutations into an increasing
sequence[i1] � � � [ik] — and that this reordering is unique, since all the permutations of(G;B) are irreversible.

HIERARCHICAL TRANSITION SYSTEMS. Here, we subsume the two previous examples
of asynchronous transition systems, and of bubble sort on natural numbers, into what
we call ahierarchical transition system. The idea is to order events in an asynchronous
transition system (typically firings in a Petri net) with a precedence relation� satisfying
aweak transitivitycondition.

A hierarchical transition systemis a quintupleT = (S; i; E;�;Tran) where

– S is a set ofstateswith initial statei,
– E is a set ofevents,
– Tran � S � L� S is atransition relation,
– � � E � E is a reflexive relation called theprecedence relation.

The independence relationI is defined as

eIe0 () :(e � e0) and:(e0 � e) (25)

The strict precedence relation� is defined as

e � e0 () e � e0 and:(e0 � e)
Every hierarchical transition system is supposed to satisfy three axioms:

1. determinacy: 8(s; e; s0); (s; e; s00) 2 Tran; s0 = s00,
2. independence:8(s; e2; s2); (s2; e1; s0) 2 Tran,

:(e2 � e1) ) 9s1; (s; e1; s1) 2 Tran and(s1; e2; s0) 2 Tran
3. weak transitivity: 8(e; e0; e00) 2 E � E � E,

e � e0 � e00 ) e � e00:
Hierarchical transition systems extend usual asynchronous transition systems, since ev-
ery asynchronous transition systemT = (S; i; E; I;Tran) may be seen as the hierarchi-
cal transition systemV (T ) = (S; i; E;�V (T );Tran) with precedence relation�V (T )
defined as: 8(e; e0) 2 E � E; e �V (T ) e0 () :(eIe0)
Here, weak transitivity of�V (T ) follows from symmetricity. Now, we associate to every
hierarchical transition systemT = (S; i; E;�;Tran) the following AxRS(GT ;BT ):
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– whose transition systemGT has states as vertices and transitions(s; e; s0) as arrows,
– whose permutation relationBT relates two pathsf andg asf BT g, precisely

whenf = (s; e2; s2) � (s2; e1; s0), g = (s; e1; s1) � (s1; e2; s0) and the two eventse1
ande2 satisfy:(e2 � e1).

In particular: the permutationf BT g is reversible iffe1Ie2 and irreversible iffe1 �e2. We claim that(GT ;BT ) is an axiomatic rewriting system. All the standardization
axioms hold in(GT ;BT ) for the same reasons as in the case of asynchronous transition
systems — except for Axiomenclave, which follows from the weak transitivity of the
precedence relation�.

This enables to state a standardization theorem for every hierarchical transition sys-
temT . A particularly interesting case is when the precedence relation� is a partial or-
der. In that case, the standard paths of(GT ;BT ) may be characterized as the sequences
of transition: s1 e1�! e2�! � � � en�1�! sn
in which there exists no pair of indices1 � i < j � n such thatej � ei (Hint: use
the characterization lemma, Lemma 19). Thus, the standardization theorem states that
every sequence of transitions inT

s1 e1�! e2�! � � � en�1�! sn
may be reorganised, after a series of permutationsBT , into such an ordered sequence,
and that this sequence is unique, modulo permutation of independent events.

We illustrate our point that weak transitivity of� is necessary to establish standard-
ization. Consider the pseudo hierarchical transition systemT with one states, three
eventsa; b; c, and the following precedence relation�

a � b b � c c � a
The relation� is not weakly transitive, and consequently, the uniqueness property fails:
the sequence s c�! s b�! s a�! s
may be standardized as any of the two transition paths

s b�! s c�! s a�! s and s c�! s a�! s b�! s
which are not equal modulo permutation of independent events (the independence rela-
tion is empty inT .)

ERASING TRANSITION SYSTEMS. We mention only briefly that it is possible to enrich
hierarchical transition systems with a notion oferasurebetween events. Start from a
hierarchical transition system(S; i; E;�;Tran) and equip it with a binary relationK on
events, called theerasingrelation, chosen among the subrelations of�. Then, replace
property (2) of hierarchical transition systems, by the two axioms:

1. K-erasure: 8(s; e2; s2); (s2; e1; s0) 2 Tran,

e1Ke2 and:(e2 � e1) ) (s; e1; s0) 2 Tran
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2. K-permutation: 8(s; e2; s2); (s2; e1; s0) 2 Tran,

:(e1Ke2) and:(e2 � e1) ) 9s1; (s; e1; s1) 2 Tran and(s1; e2; s0) 2 Tran
This defines what we call anerasing transition systemT = (S; i; E;�;K;Tran). The
definition of the AxRS(GT ;BT ) associated toT proceeds as in the case of hierarchical
transition system, except that permutations of the form

p
(Te1 ��

e2 // p1
e1��p0 idp0 p0

are considered whene1Ke2. The standardization axioms hold in(GT ;BT ) for the same
reasons as in the hierarchical case.

TERM REWRITING SYSTEMS. The reader interested in term rewriting systems will find
an introduction to the subject in [21, 19, 2, 11] and a comprehensive study of standard-
ization in [35]. Here, we recall only that

1. a term rewriting system is a pair� = (F ; f�1; :::; �ng) whereF is thesignature
of an algebra and every�i is a rewriting rule on this algebra.

2. arewriting rule � : L ! R is a pair of open terms of the algebra such that every
variable inR also occurs inL,

3. a redex in � is a quadruple(M;o; �; �) whereM is a term,o is an occurrence
of M , � is a rewriting ruleL ! R of the system and� is a valuation of the
variables appearing inL, such the termM decomposes asM = C[L�]o for some
contextC[�]o with unique hole[�] at occurrenceo. Notation: we writeu : M �!N for N = C[R�]o.

4. If the variablex occursk � 1 times inL, every redexv in a term�(x) corresponds
to k redexesv1; :::; vk in the termM = C[L�]o. We say thatu = (M;o; �; �) nests
each of the redexesvi; and that itneststhe redexv linearly whenk = 1,

5. We say that two redexesu : M �! P andv : M �! Q aredisjoint when their
occurrences inM are non comparable w.r.t the prefix order.

6. a rewriting ruleL ! R is left-linear whenL does not contain two occurrences of
the same variable. In that case, the only possibility for a redex to nest another redex,
is to nest it linearly.

The transition systemG� of the rewriting system� has the termsM of the algebra as
vertices and the redexesu : M �! N induced by the system as edges. The relationB
on path inG� is the least relation such that:

1. v � u0 B� u � v0 when the redexesu = (M;o1; �1; �1) : M �! P andv =(M;o2; �2; �2) : M �! Q are disjoint andu0 = (Q; o1; �1; �1) andv0 = (P; o2; �2; �2),
2. v �u0 B� u �f whenu = (M; o1; �1; �1) : M �! P nestsv = (M;o1; o; �2; �2) :M �! Q linearly, u0 = (Q; o1; �1; �1) : Q �! N andf : P �! N is the

complete developmentof the copies ofv throughu (see [21, 18, 27, 22] for a formal
definition of complete developments and copies).
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In order to prove that(G� ;B�) satisfies the standardization axioms, we mediate through
an axiomatic nesting system(G� ; [[�]]� ;�� ; "�) and the ten N-axioms of Section 6.
Our diagrammatic standardization theorem 2 will generalize the results of [18, 6] to
possibly non-left-linear term rewriting systems.

The main point to clarify is: how shall the usual compatibility, nesting and residual
relations be extended from left-linear to general term rewriting systems? There is a
constraint: that the resulting axiomatic nesting system(G� ; [[�]]� ;�� ; "�) generates
the axiomatic rewriting system(G� ;B�) defined hereabove. The definition follows
immediately. Two coinitial redexesu andv arecompatible, what we writeu "� v,
when

– the redexesu andv are disjoint,
– or when the redexu nests the redexv linearly,
– or when the redexv nests the redexu linearly.

We define the relation[[�]]� . Whenu andv are not compatible, the redexu has simply
no residual afterv (in particular,u[[u]]� is empty). Whenu andv are compatible, the
definition of the residuals ofu afterv proceeds as in left-linear rewriting systems:

– when the redexesu andv : M �! N are disjoint, or whenu nestsv linearly, thenu = (M;o1; �1; �1) has the redexu0 = (N; o1; �1; �01) with same occurrence inN
as residual.

– when the redexv = (M;o2; �2 = L �! R; �2) nests the redexu linearly, then
the redexu has a residualu0 afterv for each occurrence of the variablex in R —
wherex is the variable substituted inL by the term�2(x) containing the redexu.

Finally, we writeu �� v when the redexu nests the redexv linearly. Obviously, the
axiomatic rewriting system(G� ;B�) derives from the resulting axiomatic rewriting
system, by Definition 43. Moreover, each of the ten N-axioms are nearly immediate:
N-axiomsFinite, Compat, Ancestor, Self are obvious, while N-axiomsFinDev and
Perm generalize the well-known finite development lemma for left-linear term rewrit-
ing systems, established in [18, 20, 3, 27]. The four remaining N-axiomsI , II , III and
IV are also immediate.

Remark: consider the termF (A;A) in the non left-linear rewriting system�:

F (x; x) �! G(x) A �! B
Intuitively, thereshouldbe a permutation:

F (A;A) A1 //
F ��

F (B;A) A2 // F (B;B)
F��G(A) A // G(B)

(26)

oriented as follows:A1 �A2 �F =) F �A. However, in our presentation, we replace the
permutation by a critical pair (= a hole) between the two redexesF (A;A) �! G(A)
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andF (A;A) �! F (B;A). This is one limit of our current axiomatic theory: we do
not know how to integrate permutations like (26) in our standardization framework.
The 2-categorical approach of Section 5 is likely to provide a solution, at least because
it replaces the Axiomshapeby the more flexible notion of partial injection[�].
�-CALCULUS [TREE-NESTING ORDER]. We have already established in Section 2, at
least informally, that the nine standardization axioms hold for this�-calculus, and its
associated 2-dimensional transition system(G�;Btree). It is worth observing that the
axiomatic nesting system(G�; [[�]]�;�tree; "�) satisfies moreover the ten N-axioms of
Section 6. This follows on one part from traditional results on�-redexes and residuals
appearing in [24, 3], and on the other part, from elementary arguments on the dynamics
of �-reduction which establish together the N-axiomsI , II , III andIV . By Theorem 5,
this provides another way to prove that(G�;Btree) satisfies the 2-dimensional axiomat-
ics of Section 2.

�-CALCULUS [LEFT ORDER]. It is interesting to examine the reasons why the ax-
iomatic nesting system associated to the�-calculus and its left-order�left satisfies the
N-axioms formulated in Section 6. Six of the ten N-axioms do not mention the nesting
order, and were thus already discussed in the previous paragraph. The four remaining
axioms are N-axiomsI , II , III andIV . The two N-axiomI andIV are easy to check.
N-axiom IV for instance follows from the fact that the order�left is total, and thus,
that there exists no reversible permutations in the system. The two remaining N-axioms
II andIII are less obvious to establish. However, both of them hold inherently for the
reason that in a�-termPQ, no computation inQ may induce (by creation or residual)
a�-redex above the�-termP . This fundamental property of the�-calculus is precisely
the reason for theleft-orientationof this calculus, discussed at length in the introduction
of this article.

In that specific case, the diagrammatic standardization theorem repeats the tradi-
tional leftmost-outermoststandardization theorem established in [24, 20, 3]. Since there
exists no reversible permutation, the equivalence relation' modulo reversible permu-
tation coincides with the equality. This explains why the standard pathg of a pathf is
uniquein that case — and not just uniquemodulo.

�-CALCULUS [ARGUMENT ORDER]. In contrast to the two orders�tree and�left, this
particular order on�-redexes does not fall into the scope of our previous axiomatic
presented in [13] for the following reason. An axiom requires that whenever two�-
redexesu and v have respective residualsu0 and v0 after �-reduction of a coinitial�-redexw, then:

(u0 �arg v0 ) u �arg v) or (w �arg u andw �arg v): (27)

The axiom states that a redexw may only alter the relative positions of redexesu andv
when the two redexes are under the redexw. The argument-order�arg does not satisfy
this property in general, typically when the�-redexw : (�x:M)P substitutes its ar-
gumentP containing the�-redexv inside the argument of a�-redexu in the function
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(�x:M). This is illustrated by the three coinitial�-redexesu, v andw:

(�w:w)((�v:v)a) (�v:v)a

(�w:(�u:u)w)((�v:v)a) w //
v ��

u OO
(�u:u)((�v:v)a)

v0��

u0OO

(�w:(�u:u)w)a (�u:u)a
It is not difficult to see that Property (27) is not satisfied, since:

– the�-redexesu is not in the argument of the�-redexw: thus,:(w �arg u).
– the�-redexv is not in the argument of the�-redexu: thus,:(u �arg v),
– after�-contraction of the�-redexw, the residualv0 of the�-redexv appears in the

argument of the residualu0 of the�-redexu: thus,u0 �arg v0.
It took us a lot of time to realize after [13] that Property (27) can be weakened and
replaced by the N-axiomII b. formulated in Section 6, without breaking the standard-
ization theorem. We recall that the N-axiomII b. states that in the earlier situation:

(u0 �arg v0 ) u �arg v) or w �arg v:
In other words, it is possible for a redexw above a redexv to position one of its residu-
alsv0 under a redexu not nested by the redexw. This is precisely what happens in our
example. So, this weaker property and the nine other N-axioms are satisfied by the ax-
iomatic nesting system(G�;�arg; [[�]]�; "�). Thus, contrary to what happened in [13],
our axiomatics does not discriminate between the three different partial orders�tree,�left and�arg on the�-redexes in�-terms. Consequently, the argument-order�arg
induces a well-behaved standardization theorem on the�-calculus — just like the tree-
order�tree and the left-order�left.
�-CALCULUS [CALL -BY-VALUE ]. A valueof the�-calculus is defined either as a vari-
able or as a�-term of the form�x:M . G. Plotkin introduces in [38] the call-by-value�-calculus, whose unique�v-reduction(�x:M)V ! M [V=x] is the�-rule restricted
to value argumentsV . It is not difficult to show that the�v-calculus — interpreted as
an axiomatic nesting system — satisfies the ten N-axioms formulated in Section 6. The
resulting standardization theorem, which is non-trivial to prove directly on the syntax,
leads to Plotkin’s formalization of Landin’s SECD machine, see [12] for instance.

EXPLICIT SUBSTITUTIONS. The usual�-reduction(�x:M)P �! M [P=x] copies its
argumentP as many times as the variablex occurs inM . This is fine theoretically,
but inefficient if one wants to implement�-reduction in a computer. Thus, in most
implementations of the�-calculus, the argumentP is not substituted, but stored in
a closureand applied only when necessary. Unfortunately, the alternative evaluation
mechanism complicates the task of checking thecorrectnessof the implementation, by
translating it back to the�-calculus.
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Beta (�a)b! a[b � id]
App (ab)[s]! a[s]b[s] V arId 1[id]! 1Abs (�a)[s]! �(a[1 � (s � ")]) V arCons 1[a:s]! aClos a[s][t]! a[s � t] IdL id � s! sMap (a � s) � t! a[t] � (s � t) ShiftId " � id! "Ass (s1 � s2) � s3 ! s1 � (s2 � s3) ShiftCons " � (a � s)! s

Fig. 6.The 11 rules of the��-calculus

So, the��-calculus was introduced in [1] to bridge the�-calculus and its implemen-
tations. In the��-calculus, substitutions areexplicit, they can be delayed and stored just
like closures. This enables to factorize many translations from abstract machines to the�-calculus, see [15].

Abstract Machine
translation // ��-calculus

interpretation // �-calculus

Formally, the��-calculus contains two classes of objects: terms and substitutions.
Terms are written in the de Bruijn notation.

terms a ::= 1 j ab j �a j a[s]
substitutions s ::= id j " j a � s j s � t

Ten rules (called the�-rules) describe how substitutions should be delayed, propagated,
composed and performed. An eleventh rule of the calculus, theBeta rule, mimicks the�-rule of the�-calculus, see Figure 6.

This makes the��-calculus afiberedrewriting system with underlyingbasisthe�-calculus. The�-calculus is strongly normalizing and confluent. Thus, every (closed)��-term may be interpreted as the�-term�(a) obtained by�-normalization. The fiberFM indexed by the�-termM contains all��-termsa interpreted as�(a) = M . It is
possible to extend the interpretation from terms to computations, and to project every��-rewriting patha �! b to a�-rewriting path�(a) �! �(b) (modulo equivalence'
though). Properties of the interpretation are studied thoroughly in [14, 9, 40, 28].

The ��-calculus is kind of hybrid between deterministic and non-deterministic
rewriting systems. As a fibered system over the�-calculus, it satisfies many proper-
ties of conflict-free rewriting systems, like confluence. At the same time, with eleven
rules and eleven critical pairs (see Figure 7) the��-calculus is an elaborate instance
of a calculus with conflicts. Besides, to add some spice, its evaluation mechanism may
behave counter-intuitively, as witnessed by the author’s non-termination example of a
simply-typed��-term, presented in [26].

For all these reasons, the��-calculus has been our training partner since the early
days of the axiomatic theory. Many fundamental ideas of the theory (e.g. factorization,
stability) originate from the meticulous analysis of its evaluation mechanism. Of course,
like every term rewriting system, the��-calculus defines an axiomatic rewriting system.
As such, it satisfies the standardization theorem established in the article, as well as the
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App+Beta (�a)[s](b[s]) App ((�a)b)[s] Beta�! a[b � id][s]Clos+App (ab)[s � t] Clos (ab)[s][t] App�! (a[s](b[s]))[t]Clos+Abs (�a)[s � t] Clos (�a)[s][t] Abs�! (�(a[1 � s � "]))[t]Clos+ V arId 1[id � s] Clos 1[id][s] V arId�! 1[s]Clos+ V arCons 1[(a � s) � t] Clos 1[a � s][t] V arCons�! a[t]Clos+ Clos a[s][t � t0] Clos a[s][t][t0] Clos�! a[s � t][t0]Ass+Map (a � s) � (t � t0) Ass ((a � s) � t) � t0 Map�! (a[t] � s � t) � t0Ass+ IdL id � (s � t) Ass (id � s) � t IdL�! s � tAss+ ShiftId " � (id � s) Ass (" � id) � s ShiftId�! " � sAss+ ShiftCons " � ((a � s) � t) Ass (" � (a � s)) � t ShiftCons�! s � tAss+Ass (s � s0) � (t � t0) Ass ((s � s0) � t) � t0 Ass�! (s � (s0 � t)) � t0
Fig. 7.The 11 critical pairs of the��-calculus

factorization and stability theorems established in later articles [29, 30]. We believe that
this series of structure theorems play the same regulating role for the��-calculus as the
Church-Rosser property plays traditionnaly for the�-calculus. For instance, we were
able to formulate and establish in this way a normalization theorem for the needed
strategies of the��-calculus, see [28].

DAGS. The definition of a rewriting system� on directed acyclic graphs (dags) may
be found in [8]. We interpret any dag rewriting system� as the following axiomatic
rewriting system(G� ;B�). The graphG� has dags and redexes of� as vertices and
edges. Two pathsf andg are related asf B� g in two cases only:

– the reversible case:f = v �u0 andg = u �v0, whenu andv are different compatible
redexes,u0 is the unique residual ofu afterv, andv0 is the unique residual ofv afteru.

– the irreversible case:f = v � u0 andg = u, whenu andv are different compatible
redexes,u0 is the unique residual ofu afterv, andv does not have any residual afterv, or equivalently,v is erased byu.

The nine standardization axioms are not too difficult to establish on(G� ;B�) in the
same way as for erasing transition systems, considered a few paragraphs above.

Remark: in the case of a non-erasing dag rewriting system�, every rewriting path is
standard. This indicates that our current axiomatic description of dag rewriting systems
is not really satisfactory. Obviously, standardization should consider redex occurrence
instead of simply redex erasure. We still do not know how to integrate such considera-
tions in our standardization theory, see the discussion [27]. One solution may be to relax
the notion of 2-dimensional normal form (=standard path) in a way similar to B. Hilken
when he relaxes the definition of 1-dimensional normal form, in order to characterize
the��-long normal forms of simply-typed�-calculus, see [16, 28] and the paragraph
below.
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�-CALCULUS [ETA-EXPANSION]. B. Hilken considers the following permutation in
simply-typed�-calculus with�-reduction and�-expansion, see [16]:

(�xA:fA!BxA)yA
�

&&LLLLLL
LLLLLLL

LLLLLLL
LL

fA!ByA

�
99rrrrrrrrrrrrrrrrrrrrrr fA!ByA

(28)

In this way, B. Hilken characterizes the��-long normal forms as the�-termsM such
that, for every rewriting pathf : M �!�! N , there exists a pathg : N �!�! M such
thatf � g : M �!�! M is equivalent toidM : M �!�! M modulo permutation. This is
one of the most interesting open problems of our Axiomatic Rewriting Theory: despite
much effort, we do not know yet how permutations like (28) should be integrated in our
diagrammatic theory.

ORDER SEQUENTIALIZATION. Here, we illustrate the fact that axiomatic rewriting sys-
temsstrictly generalize axiomatic nesting systems. We fix a setX, and construct the
transition systemGX as follows:

– its vertices are the partial orders on the setX,
– its edges�1�!�2 are the quadruples(�1; a; b;�2) where(a; b) is a pair of in-

comparable elements in the partial order(X;�1), and the partial order�2 is de-
fined as:

�2 = �1 [ f(x; y) 2 X �X j x �1 a andb �1 yg
The 2-dimensional transition system(GX ;BX) is then defined as follows. Itsirre-
versiblepermutationsf IX g relate two paths

�1
IX
(a;b) //

(c;d) ��
�2

(c;d)���3 id �3
whenc �1 a andb �1 d. Thereversiblepermutation relation}X relates two paths

�1
}X
(a;b) //

(c;d) ��
�2

(c;d)���3 (c;d) // �4
when neither(c �1 a andb �1 d) nor (d �1 a andb �1 c).
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It is easy to prove that the 2-dimensional transition system(GX ;BX) defines an
axiomatic rewriting system, for every setX. The normal forms of this system are the
total orders onX. The interesting point is that the axiomatic rewriting system(GX ;BX)
associated toX = fa; b; cg does not satisfy Axiomreversible-cube formulated in
Section 7.3 — and thus, cannot be expressed as an axiomatic nesting system. Indeed,(GX ;BX) contains the diagram

(b < c)

(a;c)

��

(�) (a;b) //
(a;c)��

(b;c)KKKK
eeKKKK

}X}X
(a < b)
(a;c)��(a < c) (a;b) //

(b;c)ssssyyssss }X
(a < b; c)

(b;c)NNNN
&&NNNN(a; b < c) (a;b) // (a < b < c)

By Lemma 45 and 46 any such diagram may be completed as a reversible cube in an
axiomatic rewriting system associated to an axiomatic nesting system. However, this
diagram cannot be completed in(GX ;BX).
9 Conclusion

Axiomatic Rewriting Theory is the latest attempt since Abstract Rewriting Theory [32,
17, 21] to describeuniformlyall existing rewriting systems — from Petri nets to higher-
order rewriting systems. The theory uncovers a series of diagrammatic principles un-
derlying the syntactic mechanisms of computation, and reduces in this way the endemic
variety of syntax to a uniform geometry of causality. In about a decade, the theory has
bridged the gap with category theory and denotational semantics, and solved several
difficult problems of Rewriting Theory:

– a normalization theorem for needed strategies in the��-calculus, a�-calculus with
explicit substitutions, has been formulated and established in [28],

– a factorization theorem separating functorially the useful part of a rewriting path
from the junk has been established in [29],

– an algebraic characterization of head-reductions in rewriting systems with critical
pairs has been formulated in [30]. A syntactic characterization of head-reductions
has been also formulated in the case of the��-calculus [28].

This series of results demonstrates that a purely diagrammatic approach to Rewriting
Theory is possible and fruitful. It also opens a series of interesting research directions,
at the frontier of Rewriting Theory and Higher-Dimensional Categories, see for in-
stance [23] and [31]. More specifically, we would like to captureproperly the causal
principles underlying Rewriting Systems like the�-calculus with�-reduction and�-
expansion, the non left-linear term rewriting systems, or the directed acyclic graph
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rewriting systems. We are inclined to think that the diagrammatic language has some-
thing singular and innovative to articulate on these traditional topics of Rewriting The-
ory.
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18. G. Huet, J.-J. Ĺevy. Call by Need Computations in Non-Ambiguous Linear Term Rewriting
Systems.Rapport de recherche INRIA 359, 1979. Reprinted as: Computations in orthogonal
rewriting systems. In J.-L. Lassez and G. D. Plotkin, editors,Computational Logic; Essays
in Honor of Alan Robinson, pages 394–443. MIT Press, 1991.

19. J.-P. Jouannaud. Rewrite proofs and computations. InProof and Computation. Helmut
Schwichtenberg, ed. NATO series F: Computer and Systems Sciences, vol. 139, pp. 173-
218, Springer Verlag, 1995.

20. J.W. Klop.Combinatory Reduction Systems. Thèse de l’Universit́e d’Utrecht, Pays-Bas
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