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Axiomatic Rewriting Theory |

A Diagrammatic Standardization Theorem

Paul-Andgé Mellies

Equipe Preuves, Programmes et $ysts
CNRS, Universi¢ Paris 7 Denis Diderot

Dedicated to Jan Willem Klop

Abstract. By extendingnondeterministidransition systems witltoncurrency
andcopy mechanism#\xiomatic Rewriting Theory provides a uniform frame-
work for a variety of rewriting systems, ranging from higher-order systems to
Petri nets and process calculi. Despite its generality, the theory is surprisingly
simple, based on a mild extension of transition systems with independence: an ax-
iomatic rewriting system is defined as a 1-dimensional transition g¥agjuipped

with 2-dimensional transitions describing trezlex permutationsf the system,

and their orientation. In this article, we formulate a series of elementary axioms
on axiomatic rewriting systems, and establish a diagrammatic standardization
theorem.

Foreword by the author

Many concepts of Rewriting Theory started in thealculus — which is by far the
most studied rewriting system in history. A remarkable illustration iscinefluence
theorem The theorem was formulated by A. Church and J.B. Rosser in the early years
of theA-calculus [7]. The theorem was then generalized and applied extensively to other
rewriting systems. It became eventually an object of study in itself, in a line of research
pioneered by H.-B. Curry and R. Feys in their book on Combinatory Logic (1958).
This culminated in a series of beautiful papers by G. Huet, J. W. Klop, and &vy. L
published at the end of the 1970s and beginning of the 1980s. Today, more than half
a century after its appearance in thealculus, the confluence property is universally
accepted as the theoretical principle underlydegerministiccomputations.

The article is concerned with another key property of Xbealculus: thestandard-
ization theoremwhich was discovered by A. Church and J.B. Rosser quite at the same
time as the confluence property. We advocate in this article that, in the same way as
confluence underlies deterministic computations, standardization geédisslcom-
putations. It is worth clarifying here what kind of causality we have in mind, since the
concept has been used in so many different ways. First of atiplhputationwe mean
a rewriting path

My =2 My =2 My —s -+ — M,y = M,

in which every termM;, describes a particular state of the system, and in which every
redexuy describes a particular transition on states,ffox & < n. Then, bycausal



computationwe mean a computation in which every transitignis enabled by a chain
or cascade of previous transitions. We are particularly interested in situations where the
chain of causality leading to,, is not necessarily the whole rewriting path

Mli)Mzﬂ)Mg—)"'—)Mkfluk—_)le. (l)

At this point, we advise the reader to practice the following spiritual exercise: think of
today as a particular sequence of transitions (1) starting from your bedroomX&tpte
and leading you to the current position in the day (st&fig@. Then, callv = u;, the
transition consisting in reading this very article:

Vv = Ug : M;, —)Mk+1.

You must admit that some transitions performed today amongithe ., u;_{ are not
necessary to read this article. And that it seems particularly difficult to disentangle the
necessary transitions from the unnecessary ones. This is the point of this article: we
investigate how to perform this task in Rewriting Theoryd®rmutingtransitions — in

the spirit of true concurrency and Mazurkiewicz traces. Suppose for instance that your
last actionu = u;_; today has been to drink coffee:

U = Ug—1 : My 1 — M.

Do you really need that coffee to read these lines? The simplest way to answer is to
check whether the transitionmay be permuted before the transitionlf this is the

case, then coffee is not necessary. Of course, you may reply that you have already drunk
your coffee ten minutes ago, and thus, that it is far too tete to permute the order

of events! You are certainly right... but this is not what matters here: the very fact that
permuting the transition before the transitiom is possiblan principle is sufficient to
establish that performing transitienis not necessary in order to perform transition

Suppose on the other hand that your last actitvas been to fetch this article from
the library. In that case, performing the transitiois absolutely necessary in order to
perform the transition). There is no way indeed (either in reality or in principle) to
permute the order of the two transitions... and this is precisely the reason why you went
to the library on the first hand!

Of course, separating the necessary transitions from the unnecessary ones may in-
volve more than just one permutation. Suppose for instance that you have drunk coffee
just before fetching the article from the library. In that case, it takes two permutations
(permute your coffee time after your visit to the library, and then after your exploration
of the article) in order to demonstrate that drinking coffee is not necessary.

Everyday life shows that chains of causality may be reconstructed by applying rele-
vant series of permutations on transitions. Now, Rewriting Theory complicates matters
by implementing a symbolic universe in which computations magrasedor dupli-
catedat will. New situations arise, which often defy common sense! We illustrate this
with a simple example, involving a coffee machiheproducing a cup of coffe€, and
a duplicator. The situation proceeds in three transitions:

1. M produces the cup of coffeg,



2. Duplicator replicated/ in two exact copies\/; and M., each one containing its
own cup of coffee”; andC.,
3. You fetch the cup of coffe€, from A1, and drink it.

The situation is particularly intricate from a conceptual point of view. On the one hand,
producing the cup of coffe€ (first transition) is necessary to fetch the cup of coffge
(last transition) since the cug; is just a copy of the cug’. On the other hand, the first
two transitions produce the cup of coffée which is not necessary to fetch the cup of
coffee C; in the last transition. The only way to clarify things here is to permute the
duplication of the machiné/ (second transitionpeforethe production of the cup of
coffeeC (first transition). From this results a series of four transitions:

1. Duplicator replicated/ in two exact copied/; and M,
2. M, produces the cup of coffag,,

3. M- produces the cup of coffags,

4. You fetch the cup of coffe€; from M, and drink it.

There is more work for everybody now (except for Duplicator possibly) since each
machineM; and M, has to produce its own cup of coffég andCs. On the other
hand, starting by duplicating the machimé enables to disentangle now the necessary
part (producing the cup of coffe@,) from the unnecessary part (producing the cup
of coffee C;). The chain of causality leading to the cup of cofiég is exhibited by
permuting the two last steps in the previous sequence of transitions, to obtain:

1. Duplicator replicated/ in two exact copied/; and M,
2. M, produces the cup of coffeg,,
3. You fetch the cup of coffe€, from A1, and drink it.

This long discussion explains why standardization reorganizes computations by giv-
ing priority to duplicators and erasers: duplication and erasure are an inherent part of
disentanglement. This aspect of causality is fundamental but subtle, and thus often mis-
understood, even by specialists.

Technically speaking, the article is built on a seminal observation made by Jan
Willem Klop in his PhD thesis, more than twenty-five years ago. The PhD thesis, pub-
lished in 1980, contains two proofs of the standardization theorem for the leftmost-
outermosti-calculus. In the second proof, Jan Willem Klop reduces standardization
to strong normalization and confluence oRalimensionalrewriting process on the
B-rewriting paths, understood here kslimensionalentities. The process consists in
permuting the so-callednti-standardpairs of 5-redexea: andwv in the following way:

N
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The 2-dimensional transitiofi —> ¢ transforms the3-rewriting pathf = u - v into
the B-rewriting pathg = w - h where:

— the-redexw is the ancestor of th@-redexv befores-reduction of the3-redexu,
— the -rewriting pathh develops the residuals of tiferedexu after 5-reduction of
the B-redexw.

By anti-standard pair, one means that theedexw lies outside or to the left of the
B-redexu. Jan Willem Klop shows that the 2-dimensional procedsse strongly nor-
malizes and converges on a unique normal form for eergwriting path. The result-
ing normal form is precisely the standard (that is, leftmost-outernibet)vriting path
associated to the originghrewriting path.

In this article, we generalize the construction to a wide class of rewriting systems,
ranging from higher-order systems to Petri nets or process calculi. This provides evi-
dence thatausalityis a general phenomenon in Rewriting Theory, and that its scope
is not limited to deterministic computations. We proceed in a purely diagrammatic
way: we start by formulating a series 8fdimensional principlesvhich regulate the
2-dimensional permutatioracting on thel-dimensional rewriting path&Ve then show
that every Rewriting System satisfying these elementary principles (called axioms) sat-
isfies our diagrammatic standardization theorem. The theorem states that applying 2-
dimensional permutations to a rewriting patheads eventually to aniquerewriting
pathg — modulo a fundamental notion of reversible permutation introduced in the
course of the article. The standard rewriting path is findéfinedas the unique normal
form obtained at the end of the 2-dimensional procedure.

| have had several occasions to appreciate the extraordinary quality and insight of
Jan Willem Klop’s contribution to Rewriting Theory. It is thus a great pleasure and
honour for me to dedicate today this article to Jan Willem Klop, on the occasion of his
60th birthday.

1 Standardization: From Syntax to Diagrams

1.1 Computing leftmost outermost is judicious... in the-calculus

The A-calculus is the pure calculus of functions. It has a unique reduction rule, called
the 5-rule,
(A.M)P — M|z := P] 2

which substitutes every free variabiein the A-term M with the A-term P. Despite

its simplicity, the3-rule enables an extraordinary range of behaviours. For instance,
depending on the number of times the variabtEcurs inM/, the3-redex (2) duplicates

its argumentP, or erases it... Typically, thé-term A = (A\z.zz) defines a duplicator,
while theA-term K = (Az.\y.z) defines an eraser, with the following behaviours:

AP — PP, KPQ — (\y.P)Q — P.



Amusingly, the duplicatorA applied to itself defines &-term AA whose computation
loops:
AA — AA — ---

The M-term Ka(AA) obtained by applying the eraséf to the variablen and to the

loop AA is particularly interesting, because its behaviour depends on the strategy cho-
sen to compute it. When computed from left to right, #iterm Ka(AA) reduces in

two steps to its result:

Ka(AA) — (\y.a)(AA) — a (3)

On the other hand, when computed from right to left, the sasterm Ka(AA) loops
for ever on the unnecessary computation of its subtdet

Ka(AA) — Ka(AA) — -+ (4)

To summarize: applying the “wrong” strategy on théerm Ka(AA) computes it for

ever, whereas applying the more judicious strategy (3) transforms it into its result
This raises a very pragmatic question: does there exist a “judicious” strategy for every
A-term? This strategy would avoid useless computations, and reach the resulfef the
term, whenever this result exists. Remarkably, such a “judicious” strategy exists, and its
recipe is surprisingly uniform: reduce at each stefdéfienost outermost-redex of the
A-term! Note that this is precisely the strategy applied successfully in (3) to compute
the d-termKa(AA).

We recall below the definition of the leftmost outermost strategy, formulated origi-
nally by A. Church and J. B. Rosser in thécalculus (the\-calculus without erasers)
then adapted to tha-calculus by H.-B. Curry and R. Feys. A-redexis a pattern
(Az.P)@ occurring in the syntactical tree of)aterm. The\-terms(\z.P) and( are
called respectively th&unctionand theargumentof the 5-redex(Az.P)Q. A A-term
which does not contain any-redex is called aormal form it cannot be computed
further. Now, consider a-term M containing g3-redex at least. Itieftmost outermost
B-redex is defined by induction on the size of théerm M:

1. as(\z.P)Q whenM = \zy..\xg.((Az.P)QR;...R,,),
2. as the leftmost outermoStredex of@) when
and everyP; is a normal form.

Theorem 1 (Curry-Feys) Suppose that there exists a rewriting path fromk-term A/
to a normal formP. The strategy consisting in rewriting at each stefy the leftmost
outermost3-redex inM; constructs a rewriting path

M=My—M —---— My_1 — M, =P
from M to P.

Theorem 1 may be stated alternatively by defining as the least relation between
A-terms satisfying the inductive steps of Figure 1, then by establishing/that P

is equivalent ta\f --» P, for everyA-term A and normal formP. We leave the reader
check as exercise that the definition-ef constructs the rewriting path (3) in the case
of M = Ka(AA).



1.2 Computing leftmost outermost is not necessarily judicious... in other
rewriting systems

This clarifies how a term should be computed in #ealculus: from left to right. It
appears however that this orientation is very particular to\tealculus. Consider for
instance the term rewriting system defined by the rules

A—- A

B—C (5)

F(z,C)— D
Then, the rightmost outermost strategy (6) rewrites the #(a, B) to a resultD:
F(A,B)— F(A,C) — D (6)

whereas the leftmost outermost strategy loops for ever on theférimB):

F(A,B) — F(A,B) — --- (7)

One must admit here that there exists no universal “syntactic orientation” in Rewriting
Theory. This should not be a surprise: after all, the “syntactic orientation” of a rewrit-

ing system is extremely sensitive to its notation! Think only of Xealculus written

through the Looking Glass, in a reverse notation: now, the calculus is oriented right to
left, instead of left to right... The general case is even worse. A rewriting system does
not enjoy any uniform orientation in general, and finding the “judicious” strategy, even

if we know that it exists, is a non decidable problem, see [18].
Despite the apparent mess, we will initiate in this articlgemerictheory of ori-

entations and causality in rewriting systems. But on what foundations? Obviously, we
need to abstract away from syntax in order to describe uniformly examples (3), (4), (6)

and (7). We are thus compelled to reasiimgrammaticallyinstead ofyntactically and

to develop asyntax-freeRewriting Theory, based on a 2-dimensional refinement of the

traditional notion ofAbstract Rewriting Systedeveloped in [32,17, 21].

(VAR) T --»x
B M --»Xz.P  Plx:=N]--»Q
(BETA) MN >0
M --szP...P N --
(APP il > Q
MN --» :L‘Plka
M --» P
(X1) o.M --+ \z.P

Fig. 1. An inductive definition of Curry and Feys’ leftmost outermost strategy.



1.3 Forget syntax, think diagrammatically!

The diagrammatic approach to Rewriting Theory which we plan to develop starts with
a simple but surprising observation: despite their syntactic differences, the two terms
Ka(AA) andF (A, B) defineexactlythe same transition system, which we draw be-
low.

Ka(AA) —21 > Ka(AA) F(A,B) -2~ F(4A, B)
K lK Bi \LB
(Ay.a)(AA) —Ax> (Ay.a)(AA) F(A,C)—4>F(4,0) (8)
Al lA - lF
= ¢ D=0 7D

Apparently, thelynamical analogypetween the two term&a(AA) andF (A, B) goes
beyond the equality of their transition systems. Observe indeed that in the lefthand side
and the righthand side of the diagram:

— the stepsA\; and A; are “unnecessary” because they may be “erased” by the paths
K-)\andB - F,

— the pathd - A andB- F are more “judicious” than the paths, - K- A andA;-B-F
because they avoid computing the “unnecessary” redaxeend A, .

This analogy between the two terfisi(AA) andF( A, B) is too strong to be reflected

by the transition systems of Diagram (8). Nevertheless, it is possibdditethe notion

of transition system, in order to capture the analogy. The refinement is based on the con-
cept ofredex permutatiomtroduced by J.-J. &vy in his work on the\-calculus and on

term rewriting systems, see [24, 18, 3]. Permuting redexes inside rewriting paths enables
to express by local transformations that two different rewriting paths compute the same
eventsbut in a different order. Typically, the transition system of the tefng AA)
andF'(A, B) may be equipped with the two permutations [1] and [2] indicated below:

Ka(AA) —21 5 Ka(AA) F(A,B) 2~ F(4, B)
K (1] K Bi (1] lB
(\y.a)(AA) —a0> (Ay.a)(AA) F(A,C) —as=F(A,C)  (9)
N | |
TR b=—3¢—70

Consider for instance the transition system of Xherm K a(AA) on the lefthand side
of Diagram 9:

— the two pathsd; - K - A andK - A, - X areequivalentmodulo permutation [1] of
the B-redexesA; andK, and



— the two pathds - A, - A and K - \ areequivalentmodulo permutation [2] of the
B-redexesq, and.

All put together, the two path§ = A, - K - A andg = K - \ are equivalent modulo
the two permutations [1] and [2]. In particular, they compute the seweats but in
a different order. Note however that the reddx has disappeared in the process of
reorganizing the rewriting patfiinto the rewriting patly. Remarkably, the same story
may be told of the terni’( A, B): the redex4, has disappeared during the process of
reorganizing the rewriting patf = A, - B - F' into the rewriting patty = B - F using
the two permutations [1] and [2].

The process of reorganizing a path. P —» () into the properly oriented path
g : P —» @ is known aghe standardization procedur&he rewriting patty obtained
at the end of the procedure is calkbé standard pathssociated to the pagh J.-J. Llevy
introduced the idea of aequivalence relatioletween rewriting pathsiodulo redex
permutation Here, weorient the redex permutations and thus refiree/iz equivalence
relation into apreorderon rewriting paths. We call this preorder teandardization
preorder. This enables us to describe standardization in a purely diagrammatic way, as
anextremal problem

standard paths = minimal paths wrt. the standardization preorder.

All this is explained here in Sections 1.4—1.8, and illustrated bytealculus in three
different ways in Section 1.9. A concise and subjective history of the standardization
theorem is provided in Section 1.10.

1.4 Standardization as 2-dimensional rewriting “modulo”

Standardization is too often explained syntactically, and this complicates matters... In
order to understand the reorganization of redexes in a simple and diagrammatic way,
we decide taorient the permutations [1] and [2], and to define standardization as the
2-dimensional process of transforming the pdth K - X into the pathi - A. During that
transformation, each permutation [1] and [2] plays the role of a 2-dimensional rewriting
step— reducing a rewriting path into another “more standard” rewriting path:

AKX = K-Ay- A = K-\ (10)

The normal form ofA; - K - X is the standard pat - \. In this way, we define
uniformly — for the first time — standardization for a wide class of existing rewriting
system. The 2-dimensional perspective unifies already our two favourite examples: the
rewriting path4, - B - F'is rewritten as the “rightmost outermost” rewriting pah £’

by the same 2-dimensional procedure as example (10):

A,-B-F = B-Ay,-F = B-F.

The interpretation of standardization as 2-dimensional rewriting is the author’s redis-
covery of an old idea published fifteen years earlier by J. W. Klop in his PhD thesis.
At the time of J. W. Klop’s PhD thesis (1975-80) standardization was limited to the



A-calculus and similar “leftmost-outermost” standardization theorems. J. W. Klop ob-

served that standardization could be expressed nicelypésra2-dimensional rewrit-

ing system. Quite at the same time, G. Huet and J&¥ylreshaped the field entirely

by establishing a revolutionary standardization theorem for term rewriting systems,
in [18]. Unfortunately, the richer standardization mechanisms disclosed by G. Huet and
J.-J. levy cannot be expressed as a plain 2-dimensional rewriting system anymore —
and J. W. Klop’s elegant idea would simply not work.

It is only fifteen years later, trying to abstract away from the syntactical details of
[18] that the 2-dimensional approach took shape again. This was a completely inde-
pendent discovery originating from a long and obsessive reflexion on the diagrammatic
presentation of [13]. Already in germ there and in the author's PhD thesis [27] the idea
emerged finally that the standardization mechanism described by G. Huet anéwy-J. L
reduces to distinguishing two classes of permutations:

— thereversiblepermutations — for instance, permutation [1] in Diagram (9),
— theirreversiblepermutations — for instance, permutation [2] in Diagram (9).

In this way, the standardization mechanisms disclosed by G. Huet and &adcan

be reformulated as a 2-dimensional rewriting systaondulo reversible permutations

— which then specializes to a plain 2-dimensional rewriting system in the case of the

“leftmost-outermost” standardization theorems studied by J. W. Klop in his PhD thesis.
At this point, it is worth explaining briefly and informally the difference between a

reversible and an irreversible permutation. Permutation [1] is cadleetsiblebecause

it permutes twaodisjoint rewriting stepsK and Ay, or B and A; — disjoint in the

syntactic sense that no redex contains the other redex in the tree nesting order. The

permutation is thuseutralfrom the point of view of standardization.

Ka(AA) —21 > Ka(AA) F(A,B) —2~ F(4, B)
Ki [1] lK Bi [1] lB
(A-a)(A4) ——> (\y.a)(A) F(A,0) ——> F(4,C)

Permutation [2] is calledfreversiblebecause it replaces the “inside-out” computation
As - N or Ay - F by its “outside-in” equivaleni or F' — thusstrictly improvingthe
computation from the point of view of standardization.

(M\y.a)(AA) —225 (Ay.a)(AA) F(A,0) 225 F(4,0)
,\l [2] \LA Fl [2] iF
@ ida a D idp D

1.5 The basic vocabulary of Axiomatic Rewriting Theory

It is time to introduce several key definitions related to our diagrammatic theory of
standardization.



Definition 1 (transition system) A transition system (or oriented grap8)is a quadru-
ple

(terms, redexes, source, target)

consisting of a seterms of vertices (=termg, a setredexes of edges (= rewriting
steps, orredexey and two functionsource, target : redexes — terms (= the
source and target functions). We write

u: M — N whensource(u) = M andtarget(u) = N.
Recall that gpathin a transition systerg is a sequence
f: (M17u17M27"';MM7um;Mm+1) (11)

whereu; : M; — M, for everyi € [1...m]. We write f : M; — M,, 1. The
lengthof f is m and f is said to be empty whem = 0. Two pathsf : M —» N
andg : P —» (@) are coinitial (resp. cofinal) when/ = P (resp.N = Q). The
path f;g : M —» (@ denotes the concatenation of two paths M —» P and
g:P—» Q.

Definition 2 (2-dimensional transition system)A 2-dimensional transition systeis
a pair (G, >) consisting of a transition syste¢hand a binary relation> on the paths
of G. The relation> is required to relate coinitial and cofinal paths:

Vi:M —»N,g:P—Q, frg = (MN)=(PQ)

The starting point of Axiomatic Rewriting Theory is to replace a concrete rewriting
system by its 2-dimensional transition system. This has the effect of revealing unex-
pected similarities: typically, the two terndsa(AA) and F(A, B) behave differently
syntactically (left to right vs. right to left) but induce the same 2-dimensional transition
system (drawn below) in the-calculus and in the term rewriting system (5).

w1

X X

ul iu wy -u > Uu-ws

Y w2——>Y U-wy > wy - U (12)
”l i” we v > v

A e A

idz

It should be obvious at this point of the exposition that the dynamical analogy observed
previously between the termfsa(AA) and F(A, B) (Section 1.3) follows from the
identity of their 2-dimensional transition system (12).

Definition 3 (permutation) A permutationf, ¢) in a 2-dimensional transition system
(G, ) is a pair of paths such thaf > g. We often use the more explicit (and over-
loaded) notationf > ¢ for a permutation(f, g).

10



Definition 4 (standardization step,:1>) Astandardization stefpom a pathd : M —»
N to a coinitial and cofinal patte : M —» N in a 2-dimensional transition system
(G,>), isatriple(dy, f > g,ds) consisting of a permutatiofi > ¢ and two pathsl;,
d» such that:

d=M2 P Ly 2N e=M-TP 2 Q - N
We writed = e when there exists a standardization step fdto e.

Definition 5 (standardization preorder —>, Lévy equivalence=) In every 2-dimensional
transition systen(g, )

— thestandardization preordet= is the least transitive reflexive relation containing

= We say that a path: M —» N is more standarthan a pathd : M —» N
whend = e.

— the Lévy permutation equivalence is the least equivalence relation containing
= . Alternatively, the equivalence relatianis the least equivalence relation con-
taining > and closed under composition.

To illustrate our definitions with Diagram (12), one shows that the path is more
standard than the pathy - u - v by exhibiting the sequence of standardization steps:

1 1
Wy UV == U W V== U V.

1.6 Reversible and irreversible permutations

Permutations of G, >) are discriminated in two classes, reversible and irreversible,
according to the following definition.

Definition 6 (reversible, irreversible permutation) In every 2-dimensional transition
systemg, )

1. A permutatior(f, g) is reversiblewheng > f. A box< signals reversible permu-
tations f <> g in text and diagrams.

2. A permutation(f, g) is irreversiblewhen—(g > f). A triangle » signals irre-
versible permutationg » ¢ in text and diagrams.

Check that the definition matches the previous qualification in Section 1.4 of permu-
tation [1] as reversible, and permutation [2] as irreversible, in Diagrams (9) and (12).
We illustrate our new diagrammatic conventions on the 2-dimensional transition sys-
tem (12).

X —2 X

ek

v W >y wy-u U ws (13)
wa vV P v

o)

=7

11



In the definition below, the discrimination on permutations generalizes to the obvi-
ous discrimination on standardization steps. The key concept of reversible permutation
equivalence~ is revealed, as a stronger version of usuahy permutation equivalence

Definition 7 (@/, @, reversible permutation equivalence~) In every 2-dimensional
transition systentg, o)

— A standardization stefe, f > g, h) is reversible(resp.irreversiblg when the per-
mutationf > g is reversible (resp. irreversible). We write

E I
dR:;/e d:>RRe

when there exists a Reversible (resp. Irreversible) standardization stepi/from
— Thereversible permutation equivalenceis the least equivalence relation contain-

ing the relation®2Y .

1.7 Standard rewriting paths

Definition 8 (standard path) A rewriting pathd : M —» N is standardvhen there
does not exist any sequence of standardization steps

REY

REYV REYV IRR

di = = d, = dk+1
consisting of a series @&f Reversible steps followed by an Irreversible step.

So, a standard path is just a normal form of the standardization process, modulo re-
versible steps. Consequently, when a rewriting phih standard, and wheth = e,
thend ~ e and the rewriting path is standard.

For instance, the pati % X - Y — Z in Diagram (12) is transformed in
two steps in the standard path — Y — Z. The rewriting pathY —» X -5 Y
is another example of standard path, because every standardization sequence from it to
itselforto X —— ¥ 2 Y is reversible.

1.8 The standardization theorem

One main challenge of Axiomatic Rewriting Theory is to capture the diagrammatic
properties of redex permutationssypntacticrewriting systems, in order to establish the
following diagrammaticstandardization theorenfor every rewriting pathl : M —»

P in the transition systerg,

1. existence:there exists a standardization sequence
d=e

transforming the rewriting pattiinto a standard paty
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2. uniqueness:every standardization sequence
d=f
may be extended to a standardization sequence leading to the standard path
d= f=e.

The uniqueness property has a series of remarkable consequences. Suppose for instance
that the rewriting patlf is standard. In that case, the standardization sequence

f=e

consists of Reversible steps. Thus,
fx~e

From this follows that there exists a unique standard painch that
d—=—e

modulo reversible permutation equivalence. In fact, the uniqueness property ensures
that there exists a unique standard path, modulo reversible permutation equivalence, in
the Lévy equivalence class of the rewriting path

In this article, we formulate a series of nine elementary axioms on the 2-dimensional
transition systentg, i) and deduce from them the diagrammatic standardization the-
orem stated above. The axioms uncover a series of simple and efggaiples of
causality in computations. They also illustrate that a pudéhgrammaticandsyntax-
freetheory of computations is possible, and useful, since it enscopes almost every ex-
isting rewriting system, from Petri nets to higher-order rewriting systems.

1.9 lllustration: the A-calculus and its three standardization orders

There are at least three different ways to interpretittmlculus as a 2-dimensional
transition system, each one associated to a partioglsting orderon thes-redexes of
A-terms. The underlying transition systéin is the same in the three cases. Itis defined
in [10, 24] as follows:

— its vertices are tha-terms, modulax-conversion,
— its edges are thg-redexes: : M — N.

Recall that &3-redexu = (M, 0, N) is a triple consisting of a-term M, the occurrence
o of ag-pattern(Az.P)Q in M and the\-term N obtained afte-reducing

(Az.P)Q — Pz := (@]

in the \-term M.

It is worth noting that there are two different edgé$a) — Ia in the graphg,:
each edge corresponds to the reduction of a particular identity combihatdt\z.x)
in the A\-termI(Ia).

There are at least three different ways to refine the transition sySfeas a 2-
dimensional transition system, depending on the order chosgrredexes:
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— thetree-order aS-redexu is smaller than &-redexv whenv occurs in the function
or argument part of; or equivalently, when the occurrenceuwis a strict prefix of
the occurrence af. We use the notation: <;,ee v.

— theleft-order. a 3-redexu is smaller than @&-redexv whenv occurs in the function
or argument part ofi, or when there exists an occurrencef an application node
PQ in the M\-term M, such thatu occurs inP andwv occurs in@). We use the
notation:u <jef; .

— theargument-ordera S-redexu is smaller than &-redexv whenwv occurs in the
argument of:. We use the notationi <, v.

Each order induces in turn its own permutation relati@f., Sieft andar, 0N the
transition systend;,. The order considered in the literature is generallyldfieorder,
see [10, 24, 20]. However, we prefer to study here the tree-order, because this seems the
most natural choice after the work by G. Huet and J.&wLon term rewriting sys-
tems [18]. The two alternative order§. and=<,., are discussed briefly in Section 8.

We define the relatiom-(,.. as follows. Two pathg, g are related ag >¢ee ¢
precisely when:

1. the paths andg factor asf = v - v’ andg = u - h whereu, v, u’ are3-redexes
andh is a path,

2. the twog-redexes: andv are coinitial, and-(v <iyee ),

3. theS-redexu’ is the (unique) residual af afterv, and the patth develops the
(possibly) several residuals ofafteru. [For a definition of residual and complete
development, see [10, 24,18, 3, 21, 22] or Section 6.]

Thus, every permutatiofi > g is of the form:

(14)

I
>

e
-~
iy
a
o
@\
Q

Il
S <
<

whereu andv are different3-redexesy’ is ag-redex and: is a path. The three paradig-
matic examples of-redex permutatiotf ... g are:

PQ d P'Q (A\z.a)P —> (A\z.a)P' AP ———> AP

ul Stree lu' ul Stree lul “i Stree lu'

PQ ——— P'Q) 4@ ———=u PP ————>P'P
. .

whereP — P’ and@) — Q' are twoj3-redexes. The three permutations are respec-
tively reversible, irreversible and irreversible in the 2-dimensional transition system
(g)\y [>tree)-

Remark: the argument-ordet,,, is included in the tree-ordete. Which is included
in the left-order<;.¢. From this follows that the permutation relatipn,, contains the
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permutation relatiom>... which contains in turn the permutation relatipf. . It is

not difficult then to establish that every rewriting path standard wrt. the left-otder

is standard wrt. the tree-ordet,.., and that every rewriting path standard wrt. the tree-
order <. iS standard wrt. the argument-ordey,.. The converse is obviously false
in the two cases.

1.10 A concise history of the standardization theorem

Many authors have written on the standardization theorem. We do not draw below a
comprehensive list, but deliver a concise history of the subject, in eight key steps.

[1936] A. ChurchandJ.B. Rosseintroduce the\l-calculus, a\-calculus without era-
sure, and prove that the number @&teps from a\l-term to its normal form is
boundedby the length of the leftmost outermost computation. This result is the
ancestor of all later standardization theorems.

[1958] H.B. CurryandR. Feysformulate the first standardization theorem for fe
calculus: the two authors prove that every timei@rm P -reduces to a-termq,
there exists also standardway to S-reduceP to Q. The theorem extends Church
and Rosser result for the-calculus, and plays a role in Curry and Feys’ defense
of their erasing combinatak’.

[1978] J.-J. Levyformulates the standardization theorem in its modern algebraic form:
using an equivalence relation on rewriting paths — called todayylpermutation
equivalence — EBvy proves that there existsumiquestandard rewriting path in
each equivalence class. The unigueness result was so striking at the time that the
theorem was called th&rongstandardization theorem by subsequent authors. De-
spite its conceptual novelty, the theorem is still limited to Mhealculus and to its
leftmost-outermost order.

[1979] G. HuetandJ.-J. Levyformulate and establish a standardization theorem for
term rewriting systems without critical pairs. This is probably the most revolution-
ary step in the history of standardization, the first time at least that another standard-
ization order is considered than the “leftmost outermost” order of\tealculus.

The theorem is still limited to term rewriting systems — because its proof relies
heavily on syntactical notions like tree-occurrence — but the article delivers the
message that standardization is a general property of rewriting systems, related to
causality and domain-theoretic notions like stability and sequentiality.

[1980] J. W. Klopintroduces a 2-dimensional rewriting system on paths, consist-
ing in permuting “anti-standard” paths of length 2 into “standard” paths of arbi-
trary length. In this way, Klop deducesiy’s strongstandardization theorem for
leftmost-outermosi-calculus, by establishing confluence and strong normaliza-
tion of the 2-dimensional rewriting process: the standard path is obtained as the
normal form of the procedure. Another important contribution of J. W. Klop is to
stress the role of the finite development lemma in the proof of standardization, and
to extend to any “left-regular” Combinatory Reduction System the standardization
theorem for leftmost-outermoatcalculus.

[Early 1980s] G. Boudolextends G. Huet and J.-Jély standardization theorem to
term rewriting systems with critical pairs. This is another decisive step, because it
extends the principle of standardization to non deterministic rewriting systems.
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[1992] G. GonthierandJ.-J. Levyand P-A. Melligs deliver an axiomatic standard-
ization theorem, where the syntactical proof of [18] is replaced by diagrammatic
arguments on redexes, residuals and the nesting relation. Subsequently reworked
by the author in his PhD thesis [27], the theorem extends G. Huet and 8wjsL
original theorem to a great variety of rewriting systems with and without critical
pairs — with the remarkable and puzzling exception (as first noted by R. Kenn-
away) of rewriting systems based on directed acyclic graphs.

[1996] D. Clark andR. Kennawaydapt the syntactical works of G. Huet, J.-&vi
and G. Boudol and establish a standardization theorem for (possibly conflicting)
rewriting systems based on directed acyclic graphs (dags).

It took the author nine years to derive the current axiomatics from [13]. One difficulty
was to find the simplest possible description of rewriting systems with critical pairs. The
trinity of residual, compatibility and nesting relations operating in [13] was certainly
too complicated. Slowly, the 2-dimensional presentation emerged, leading the author to
the elementary axiomatics of this article. Twenty-five years ago, the work of [18, 6] on
term rewriting systems revealed that the “conflict-free left-regular” rewriting systems
considered earlier was the emerged part of the much wider and exciting wodd il
computationsThis is that world and its boundaries which we will explore here in our
2-dimensional diagrammatic language.

Structure of the paper

Axiomatic Rewriting Systems (AXRS) are introduced in Section 2, along with their
nine standardization axioms. A less innovative but more traditional axiomatics based
on residuals, critical pairs and nesting is formulated in Section 6. Standard paths are
characterized in Section 3 as the paths which do not contain a particular “anti-standard”
pattern, just as in [13, 27]. The standardization theorem is proved in Section 4, and re-
formulated 2-categorically in Section 5. An alternative axiomatization based on resid-
uals and nesting orders is formulated in Section 6. A few additional hypotheses on ax-
iomatic rewriting systems are discussed in Section 7. Finally, we illustrate our definition
of AXRS with a series of examples in Section 8, like asynchronous transition systems,
term rewriting systems, call-by-valuecalculus \-calculus with explicit substitutions.

2 The Standardization Axiomatics

An Axiomatic Rewriting System (AxRiS)defined as a 2-dimensional transition sys-
tem (G, >) which satisfies moreover the series of nstandardization axiomsgre-
sented in this section. Each axiom of the section is illustrated byibalculus and
its 2-dimensional transition systef@,, >, ) defined in Section 1.9.

2.1 Axiom 1: shape

The first axiom generalizes to every AXRS the shape of permutations encountered in
the A-calculus — see Diagram (14)in Section 1.9.
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Axiom 1 (Shape) We ask that in every permutatighy> g,

— the pathf is of length 2,
— the pathg is of length at least 1,
— the initial redexes of andg are different.

Thus, every permutatiofi > ¢ in the 2-dimensional transition syste@, t>) has the
following shape:

ul ~= J{u’ f

g

P——=N

v -

ul
u-h (15)

whereu andv are different redexes, is a redex and is a path. In case of @versible
permutationf < g, this shape specializes t®ax 2 square:

o
ul o l“l f=v ul
g=u-v

P——>N

whereu, v/, v andv’ are redexes; andv different.

2.2 Axioms 2, 3, 4, 5: ancestor, reversibility, irreversibility and cube

The standardization theorem is usually established by a fine-grained analysis of syntac-
tic mechanisms like erasure, duplication, etc... relatedeyltheory of residuals. The
fragment of levy theory necessary to the theorem, e.g. the finite development prop-
erty, appears in our axiomatics... but reformulated, because the more geometric idea of
“oriented permutation” replaces the traditional concept of “residual of a redex”. The
residual theory is particularly visible in the four Axioragcestor, reversibility , irre-
versibility andcubeintroduced below, as well as in Axiotarmination of Section 2.6.

Axiom ancestorincorporates two properties of thecalculus, traditionally called
unigueness of ancestandfinite development he existence of a permutatige ¢ g
between twags-rewriting paths:

F=M-5QXN  g=M-SPlyN

means that th@-redexu’ is the unique residual of thé-redexu after 5-reduction of

the redex, and that the path is a complete development of the residuals of the redex
after 5-reduction of the redex. In that case, we say that the redeis anancestorof

the redexu’ before-reduction of the redex. The uniqueness of ancest@roperty
states that the redexis the unique such ancestor of the redéxBesides, thdinite
developmenproperty of the\-calculus, recalled in Section 6, states that two complete
developments of the same set®fedexes, are &vy equivalent. From this follows that
any rewriting pathy’ involved in a permutatiorf >... ¢’ factors ag/ = v’ - b’ where

u = u' andh = h'. This leads us to formulate the
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Axiom 2 (Ancestor) Suppose that, v’ are redexes, thaf, h, h’ are rewriting paths,
forming together permutationg > « - h and f > «' - h'. We ask thau = ' and
h="h.

Axiom reversibility indicates that every permutatight> ¢ is either reversible, or
reduces to a rewriting patihfor which there exists no permutation of the fogm> h.
This mirrors the following property of the-calculus. Suppose thgtg,h : M —» N
are threeg-rewriting paths involved in permutations t>i.ee g andg >iree h. The
pathsf andg are of length 2, the path is of length at least 1, and the patlisg, h
decompose as

F=M5Q%N, g¢g=M%P%N hr=MS0" N

where the two redexasandv” are ancestor of the same redéxand thus) = v"; and
where thes-redexu’ is the unique residual of the-redexu, and the rewriting path,,
is a development of the residualswohfterv, and thush,, = u'. It follows thatf = h.

Axiom 3 (Reversibility) We ask thaff = h whenf 1> g andg > h.

Axiom irreversibility completes the two previous axioms. The axiom mirrors the
fact that in the\-calculus and in many rewriting systems, standardization preserves
complete developments — see [24, 18] or Section 6 for a definition of complete devel-
opments. Let us explain briefly what we mean here. ConsideSamyvriting pathh :

M —» N which defines a complete development of a multi-reflek U) in the -
calculus, and suppose that the patfactors as

ho= M- M N s N
where thes-rewriting pathh, is involved in a standardization permutation
ho > hl2
By definition of >, the twojs-rewriting pathsh, andhl, decompose as

u

he=M 5P 5N and k=M "% Q% N
We claim here that the resultingyrewriting path
(YA Y SLING VIR Ny U IR

defines a complete development(df/, U). How do we prove this? We establish first
that the two redexes andv are residual of a redex i after theg-rewriting pathh; .
The very definition of the path as a complete development of the multi-redéx, U)
induces already that:

— the redew is residual of a redex, € U after theg-rewriting pathh,; and
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— the redex/’ is residual of a redey, € U after theg-rewriting pathh; - v.

We know moreover that thg-redexw is the unique ancestor of the3-redexu’ be-
fore reduction of the3-redexv. This uniqueness property ensures that fhedexu
is residual of the reden, € U after thes-rewriting pathh,. This establishes that the
two redexes: andv are residual of a redex iti after theg-rewriting pathh,. Now, we
know by definition oft>1,.. that the two path., andh/, define complete developments
of the multi-redex M, {u, v}). Thefinite developmengroperty of the\-calculus states
moreover that the tw@-rewriting pathsh, andhl, define the same residual relation. It
follows quite immediately that, as we claimed, theewriting pathh, - h} - hs de-
fines a complete development of the multi-redéx, U). We conclude more generally
that every path more standard than the paik also a complete development of the
multi-redex(M, U).

How is this result interpreted in our axiomatic setting? Consider an irreversible
permutationf » ... g between twg3-rewriting paths

F=M-50%N g=M-%plynN
and as-rewriting pathh such that
g = h.

It follows from our previous argument that, just like tHerewriting pathf andg, the
[-rewriting pathh is a complete development of the multi-redeé, {u,v}). Besides,
the firsts-redex reduced in the pathis not thes-redexwv. Thus, the3-rewriting pathh

decomposes necessarily as

h=M-%p N

where
h, = hl,.

Here, we apply our previous argument another time, and deduce/fyos> h., that,
just like thes-rewriting pathh,,, the 5-rewriting pathh! is a complete development of
the residuals of thg-redexwv after reduction of thg-redexu. This shows in particular
thatf » e h. This leads to

Axiom 4 (Irreversibility) We ask thaff » h whenf » g andg = h.

Axiom cubeincorporates theube lemmastablished in [24, 18] as well as a careful
analysis of nesting in the-calculus. Suppose th&t[—] is a context, see [3] for a
definition, and that &-rewriting pathg : C[M] —» C[N] computes only inside
M, never insideC[—]. Then, just as th@-rewriting pathg, every Lévy equivalents-
rewriting pathf : C[M] —» C[N] computes only insidé/, never insideC[—]. So,
every g-redexw inside C[—] has the same (unique) residuel after thes-rewriting
pathsf andg. Diagrammatically speaking, the property amounts to the cube property
stated in the next axiom, wheh >, gandf = v -« andg = v - v; -+ v, and
w" = wy+1. The axiom requires that the property holds in every AXRS.
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Axiom 5 (Cube) We ask that every diagram

withwu, v',v andvy, ..., v, andw, wy, ..., w,, wy11 @ Series of redexes arnd, ..., h,, a
series of paths forming permutations

veu' > u-vpceevp, U-wy > w - hy Vi wip1 > w;-hy fori<i<n

may be completed as a diagram:

ho hy
7
= )
AN
hal| o | < " | ha = By
R
wl/ e Wht
/ N

hyhp hi-hn
wherew'’ is a redex andh,, h, are paths which form permutations
u' Wy > w' - By vew' >w-h,
and induce the equivalence

hy - hy = hy - hy - hy,.

2.3 Axiom 6: enclave

Axiom enclaveis based on a fundamental property of thealculus, observed for the
first time in the preliminary work of [13]. Suppose thataedexv is nested under a-
redexu — that isu <.¢c v — and that thef-redexv creates g@-redexw’. By creation

we mean that thé3-redexw’ has no ancestor before reduction of theedexwv. In
that case, th@g-redexw’ is necessarily nested under the (unique) residuaf the 3-
redexu after reduction of the&-redexv. The next axiom formulates the property as its
contrapose. The existence of the permutation

’ '
U - Wnt1 Piree W * Pyt
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means that th&-redexw’ is not nested under thg-redexw’. And from this follows
that the-redexw’ is not created, and thus, has an ancestdefore reduction of the
B-redexv. The axiom requires that thenclave propertyolds in every AXRS.

Axiom 6 (Enclave) We ask that every diagram

}ni
whereu, v, v andwy, ...,v, andw’, w, 1 are redexes, and. is a path, forming the
permutations (recalling our convention, the sympomeans that the permutation is
irreversible)

vou pu-v ey, ' Wa > w' - By

may be completed as a diagram:

Ry
\\ - /
7
Bu| 1 $ < , I
V1V
v e %nt

with w, wy, ..., w,, a series of redexes arid,, h, andh, ..., h,, a series of paths, form-
ing then + 2 permutations

vow' > w-h, U-wyp > w - hy Ui s Wipy > w; - hy fori<i<n

2.4 Axioms 7 and 8: stability and reversible stability

Axiom stability incorporates another key property of thealculus, also observed for
the first time in the preliminary work of [13]. Consider any reversible permutation

M5%P 5N Gue M-5Q5N

in which thes-redexu creates #-redexw; and thes-redexv creates &-redexws. It
is not difficult to establish that there exists figedexw, s in the \-term N which would
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be at the same time residual of tHeredexw; after reduction of thes-redexv’, and
residual of the3-redexw-, after reduction of th@-redexu’. The property is axiomatized
below as its contrapose. The axiom states thatltfagacteristic functiorof the eventof
creating the3-redexw;, (or equivalently the3-redexw,, or the3-redexw-) is stable
in the sense of G. Berry, see [5]. Axioraversible-stability repeats the axiom in the
reversible case.

Axiom 7 (Stability) We ask that every diagram

wi"
v /
ui & " i Ry
VAN
P4 N
h, i

whereu, v, v, v" andw,, w»,w,> are redexes and,,, h, are paths, forming the per-
mutations (recalling our convention, the symbgf means that the permutation is
reversible)

v-u' QSu-v u' - wig D> wy - Ay v - wig D> wy - Ay

may be completed as a diagram

hy

\ = w/

/
V>
hy i $ <& " i hoy

' —

/w/ - xm\
h/

wherew is a redex and,, h,, are two paths, forming two permutations
v we > w - hy u-wy > w- hy

Axiom 8 (Reversible stability) We ask that every diagram

—)‘
ui & 11/1 & u12 (16)
V] ——>
wl/ & \%




whereu, v, uy, vy andwy, ws, w12, u12, v12 are redexes forming the reversible permu-

tations
U'U1<>U'U1 U1'w12<>w2'u12 U1'w12<>w1'1112

may be completed as a diagram

v2

]2\‘&
vi2 V12

wherew, us, vo are three redexes forming the reversible permutations
and v+ U1a O Us + V12

v wo W vy and u-wi QW us
Remark: Axiomreversible-stability may be understood as a converse of the reversible

variant of Axiomcube formulated in Section 7.3. Indeed, Axioraversible-stability

states that every diagram

o
17

may be completed into the diagram
& I &

w1 / \ w2
U 2\
U12

NA
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v1 v2 Un

| | | i
u <= ua = u3 Up = v
l v v
———————————————————————— e — >
h1 ho hn

Fig. 2. The pathf = v; - - - v,, drags the redex to the redex.

and conversely, Axiormeversible-cubeformulated in Section 7.3 states that Diagram (18)
may be completed as Diagram (17). Besides, it is remarkable that the two Axioms
reversible-stability andreversible-cubearedual in the sense that each axiom may be
obtained from the other one bgversingthe orientations of all the arrows in diagrams.

2.5 Drag and extraction

We need to introduce a few definitions related to standardization in order to state the
last axiom of the theory (Axiom 9).

Definition 9 (drag) A pathf : M —s» N dragsa redexv outgoing fromN to a
redexu outgoing fromM , when

— f =idy; andv = u,
— or f =w; -+ - v, and there exists + 1 redexesuy, ..., u,+1 andn pathshy, ..., h,
such that:
e uy =uandu,,1 = v,
e the rewriting paths; - u;11 andu; - h; form a permutation; - w;+1 > u; - h;
for every indext <i < n.

Notation: we writeu <~ v when the rewriting patlf drags the redex to the redex.
See Figure 2.

Lemma 10 (preservation of drag) For every pathf : M —» N, the relation<’+ is

a partial function, from the redexes outgoing frawnto the redexes outgoing froid .
Moreover, the relation is invariant by permutation ¢gn

Yg: M —» N, ng:><L|:<L|.

Proof. Suppose that J o vandu’ < v, Thenu = ' by Axiom ancestor, and an
easy induction on the length ¢f Now, by Axiomcube, the relation increases anti-
standardizationif the rewriting pathg drags the redex to the redexu, andf — g,
then the rewriting patty drags the redex to the redexu. By Axiom enclave the
relation increases also Isfandardizationif the rewriting pathf drags the redex to
the redexu, andf = ¢, then the rewriting patl drags the redex to the redex: as
well. We conclude. O
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hi ha hi—1

Fig. 3. The redexu is extractible from the patlf = v, ---v, and the patty = hy---h;—1 -
vit1 - - - Un IS @ projection of the rewriting patfi by extraction of the redex.

Definition 11 (extraction, projection, \,,) A redexu : M — P is extractiblefrom
apathf = vy ---v, : M —» N when there exists an inddx< i < n such that
the pathv; - - - v;_; drags the redex; to the redexu. In that case, we calprojection
of the rewriting pathf by extraction of the redex : M — P any rewriting path
g : P —» N which decomposes as

g=hy-hi_1 Vi1V,

where there exists redexes, ..., u; withu; = v andu; = v; and a permutation
U wjr D> g hy

foreveryinded < j <i-—1.

Notation: We writef N\, g when the redex is extractible from the patlfi, andg is a
projection of f by extraction of the redey. See figure 3.

Lemma 12 (preservation of extraction) Suppose that a redexis extractible from a
pathg : M —» N more standard than a patli : M —» N. Then the redex is
also extractible from the patfi. Moreover, every projection gf by extraction ofu and
every projection ofy by extraction ofu are Levy equivalent.

Proof. Suppose that the redexis extractible from the patlf = vy ---v,, : M —» N.

By definition, there exists an index< i < n such that the path, - --v;_; drags the
redexw; to the redexu. We show that the indekis unique. Suppose that there exists
anotherindex < j < nsuchthat, - --v;_; drags the redey; to the redex:.. We may
suppose without loss of generality that j. Let the rewriting patth be a projection
of the rewriting pathy, - - - v; by extraction of the redex at position:. By definition of
extraction and projection, the two rewriting paths - - v; andu- h are Leévy equivalent.
From this follows that the two paths

'Ul""Ujfl:Ul"'Ui'UiH"'Ujfl and U‘h‘vi+1""l}j71

are Lévy equivalent. Here comes the contradiction. By Lemma 8sérvation of
drag), the pathu - h - v;1 ---v;_1 drags the redex; to the redexu. This may be
decomposed in two steps: first, the pattv; ., - - - v;_; drags the redey; to a redex,
then the redex. drags the redex to the redex:. This very last point means that there
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exists a permutation of the form- v > u - h’. This contradicts the Axiorshape We
thus conclude that the indéxs unique for a given.

We may suppose without loss of generality that there exists a unique standardiza-
tion step from the rewriting patfi to the rewriting patly. The remainder of the lemma
follows then from Axiomgeversibility andcubewhen the standardization step frgin
to g is reversible, and from Axiomisreversibility , ancestorandcube when the stan-
dardization step is irreversible. O

Remark: the uniqueness of the inddnr the proof of Lemma 12 is not really necessary
to establish the property, but it is a safeguard, since after all, we have not supposed
anything like the optional hypothesiescendanformulated in Section 7.1.

2.6 Axiom 9: termination

Axiom termination mirrors in our theory thdinite developmenproperty of the\-
calculus, which states that every development of a set-oddexes terminates. Jan
Willem Klop uses the property in his PhD thesis to deduce that it is not possible to
extract infinitely many times @-redex from a fixed3-rewriting path, see [20] as well

as Section 6.

Axiom 9 (Termination) There exists no infinite sequence

fl \rul f2 \NUQ \(uk_l fk \(uk

wheref; are paths and.; are redexes.

3 A Direct Characterization of the Standard Paths

In this section, we establish a key preliminary step in our proof of the standardization
theorem, performed in Section 4, by characterizing standard rewriting path in a more
direct and explicit way. In Section 3.1, we introduce the notionstafts and stops

of a rewriting path, and analyze their properties. From this, we deduce in Section 3.2
that every path is epi (left cancellable) with relation to the Reversible permutation rela-
tion ~. In Section 3.3, we introduce the notionaniti-standardpath and establish that

a rewriting path is standard if and only if it does not contain any occurrence of such
anti-standard path.

3.1 The structure of starts and stops

Definition 13 (starts and stops)A redexu : M — P startsapathf : M —» N
when there exists a path: P —» N such thatf ~ u-g. Aredexv : Q — N stopsa
pathf : M —» N withremainder : M —» Q whenf ~ g-v. Aredexv : Q — N
stopsa pathf : M —» N when the redex stops the pattf with some remainder
g: M —» Q.

Definition 14 (reversible permutation of path and redex) A pathf : M —» N fol-
lowed by a redex : N — @ permutes reversiblio a redexu : M — P followed
by a pathg : P —» @, when
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Fig.4. The pathf = u;---u, : M —» N followed by the redew : N — @ permutes
reversibly to the redex : M — P followed by the pathy = vy ---v, : P —» Q. Alter-
natively, the redex. : M — P followed by the patty = v;---v, : P —» Q permutes
reversibly to the pattf = u; - - - u,, : M —» N followed by the redex : N — Q.

— f=idyandg =idpandv=u: M — P,
—orf =wu - -u, andg = vy ---v, and there exists a series of+ 1 redexes
w1, ..., Wn 11 SUch that
o wy =uandwy,+1 = v,
e the two paths; -w;11 andw;-v; form a reversible permutatiom; - w;+1 ¢ w; -
v; for every indext <i < n.

In that case, we say also that the redexM — P followed by the patly : P —» @
permutes reversiblio the pathf : M —» N followed by the redex : N — . See
Figure 4.

Remark: in Definition 14, the redexand the rewriting patl are uniquely determined
by the rewriting pathy and the redex — and conversely, the rewriting pafhand the
redexv are uniquely determined by the redeand the rewriting path. The one-to-one
relationship follows from Axionreversibility .

Lemma 15 (structure of stops) A redexv : ) — N stops a pathf = uy ---u, :
M —» N with remainderg : M —» ( iff there exists an indek < i < n and a path
V11 - - Un SUCH that

— the redex; followed by the path;, - - - u,, permutes reversibly to the pathy ; - - - v,
followed by the redex,
— the rewriting path(uq - - - u;—1) - (vi41 - - - v,) IS €quivalent to the path modulo~.

Proof. We declare that a redex : @ — N super-stops pathf = uy---u, :
M —» N at positionl < i < n with remainderg : M —» @ when there exists a
pathv;. - - - v, such that

— the redex; followed by the pathi; 1, - - - u,, permutes reversibly to the path; - - - v,
followed by the redex,
— the rewriting pati(uy - - - u;—1) - (Vi1 - - - vy,) IS €quivalent to the pathhmodulo~.

We declare that a redexsuper-stops pathf with remaindely when it super-stops the
path f with remaindery at some position.

The lemma states that a redestops a patlf with remainder a path iff the redexv
super-stopg’ with remaindery. Right-to-left implication(<) is immediate. The other
direction &) reduces to showing that whenever the two assertions below holds:
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— aredexw : Q — N super-stops a path= uy - - - u,, with remaindery, and
— the pathf’ is equivalent to the pat}i modulo reversible permutations,

then the redex super-stops the patfi with remainder the same rewriting pathThis
elementary but fundamental preservation property is established in the following way.
We may suppose without loss of generality that the two rewriting pAthsu; - - - u,,

andf’ = uj - - -u}, are related by a unique reversible permutation

1=y

occurring at a positioft < j < n — 1 in the rewriting pathf. We thus have:

— uj, = uy, for every indext < k < n different toj andj + 1, and
— Uy upr QUG UG

Now, calli any position (there exists in fact only one of these positians, i < n,
but nobody cares about that here) such that the redex) — N super-stops the
path f = u; ---u, at position; with remainderg. We show by case analysis on the
indicesi andj that there exists an index< k < n such that the redex: ) — N
super-stops the path

Fr=ul ol el
at positionk with remainderg. To that purpose, we define a rewriting pafh , - - - v;,
consisting ofn — k redexes, such that:

a. the redex;, followed by the path; _ , - - - u;, permutes reversibly to the patf, ; - - - v;
followed by the redex,
b. the rewriting pattiu; - - - uj_,)-(vy,, - - - v,,) is equivalent to the pathmodulo~.

o The construction is immediate whgnt 1 < i: simply takek = i andv; ---v], =
V- Up.

o The construction is also nearly immediate whies i: simply takek = i + 1 and
Vjo Uy, = Uigo -+ Uy, then apply Axionreversibility to establish the two proper-
ties a. and b.

o The difficult case is the remaining case when i. In that case, let the redexdenote
the unique redex such that the redgxollowed by the pathu; - - - u;_1 permutes re-
versibly to the path;, - - - v;_; followed by the redex. Consider the diagram below,
which describes in two perspectives how the reddwllowed by the pathu; - w;iq
permutes reversibly to the path - v;4, followed by the redex:

\1\ ’/
! uJ
% « /
_— >
vi % JJ' <& \L“Ijﬂ or ”J‘l & J]- S R
Uj 41— y' —
y// <> \x Vi1 Uj+1
/ \
Vi1 z
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By Axiom reversible-stability, the diagram may be completed in the following way

v} y
N Ve
\\ o v/ g 8 u;
, s N\ /
u].*>‘ J T—

vl o Ji ¢ Wi & Vi Vipn | € J < J O R
Ujp1— y' —>
TN AR

/ N\
Vi+1 =

wherey andv’; andv;_; denote three redexes involved in the three reversible permuta-
tions:

! 1 ! ! ! !
zouyQuioy,  and v Qg and  y-ul Qv -z

The completed diagram shows (in two perspectives again) that the rddéawed by
the pathuj - u};, , permutes reversibly to the path- v}, followed by the redex. So,
by takingk = i and by definingy; = v; for every indexi + 1 < I < n different toj
andj + 1, one obtains that:

a. the redex; followed by the pathu; , - - - u;, permutes reversibly to the path- - - v;,
followed by the redexw,
b. the rewriting pathfu, - - - u;—1) - (vj,; - - vy,) is equivalent to the pathmodulo~.
This very last point follows from the series of equivalence
g~ (ur--ui 1) (Vg1 -ve)  aANd Wiy v XV ).
O

Unfortunately, the characterization sffartsis not as simple as the characterization of
stops The main reason is that the following 2-dimensional transition system

U2 U2

V12 vi12
where
u-v; O v-up veowy O w- v W + U2 B UL+ W12
U2'012<>U2'U12 u-lew-uQ wy - Vi2 B V1 - W12
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satisfies the nine properties required of an axiomatic rewriting system in Section 2. The
series of equivalence

U-W1 V12 ZW U V12 ZW- Vg -Ui2 =V -W3 - U2

illustrates then that a redexmay start the path-ws -u12 even if the path-w- followed

by the redexu;> does not permute reversibly. However, the situation is not entirely
hopeless: observe that the pathw- is ~-equivalent to the patty - v which followed

by the redex:;» permutes reversibly to the redexXollowed by the pathu; - vi5. Next
lemma shows that the property charactergastsin any axiomatic rewriting system.

Lemma 16 (structure of starts) A redexu : M — P starts a pathu; ---u, :
M —» N if and only there exists an index < ¢ < n and two pathsv; ---v;_1
andw; - --w;_1 such that

— the pathv, - --v;_1 is equivalent to the path, - - - u; ; modulo~,
— the pathv; - --v;_; followed by the redex,; permutes reversibly to the redex
followed by the pathw; - - - w; 1.

Proof. We declare that a redex: M — P super-startsa pathu;, - - -u, : M —» N
when there exists an index< i < n and two path®; - --v; _{ andw; ---w;_; such
that

— Uy Ui = ULV,
— the pathv; - --v;_; followed by the redex:; permutes reversibly to the redex
followed by the pathwy - - - w; 1.

We prove that a redex starts a pathf iff the redex« super-startsf. Right-to-left
implication (<) is immediate: the redex super-starts the pathimplies the redex
starts the pattf. The converse implicatiof=-) reduces to the following preservation
property: when a redex super-starts a patfi, and when the path is obtained from
the pathf by applying a reversible permutation, then the redesuper-starts also the
pathg.

So, consider aredex: M — P and a pattf = u; ---u,, : M —» N such that
the redexu super-starts the path By definition, there exists an indax< i < n and
two pathsv; - - - v;_; andw; - - -w;_1 such that

— Uy Ui ULV,
— the redex: followed by the pathw; - - - w; _, permutes reversibly to the path- - - v;
followed by the redex;.

Consider any reversible standardization step

REYV
f=gy9

or equivalently, any index < j < n — 1 and reversible permutatiary - u; 1 $ u -
u} . We claim that the redex super-starts the path

9= (e ujmn) - () - (o)
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We proceed by case analysis.
o The two first cases, when< ¢ — 2 or whenj > 4, are immediate.
o The remaining case, when= i — 1, is the only difficult case. The equivalence

Up -- - Uj—1 =V~ Vi1

shows that the redey; ; stops the pathy ---v;_; with remainderu; - - - u;_o. By
Lemma 15, there exists an indéx< k < i — 1 and a pathy_, ---v;_; such that

— the redexv;, followed by the pathvgy; ---v;_1 permutes reversibly to the path
Uy -+ v;_, followed by the redex; 1,

— the path(vy - - vg—1) - (v - -v;_,) is equivalent to the path; - - - u;_» mod-
ulo~.

We are also in a situation where

— there exists a reversible permutation ; - u; ¢ u}_; - u}

— the pathuy 4 - - - v;_; followed by the redex:; permutes reversibly to a redex
followed by the pathug,q -+ - w;_1.

All put together, we deduce by applying Axioraversible-stability i — & — 1 times,
and Axiomreversibility once, that there exists a redexand pathw;, , - --w;_; such
that

a. the redex followed by the pathw;, - - - w;_; permutes reversibly to the path- - - v,
followed by the redex,

b. the redex: followed by the redexv, permutes reversibly to the redex followed
by the redey,

c. theredey followed by the pathuy; - - - w; 1 permutes reversibly to the path,; - -v; 1
followed by the redex;,

d. the redexc followed by the pathw;_ , ---w; , permutes reversibly to the path
vy -+ v;_, followed by the redex; |,

e. the redexv, followed by the pathwy,,; - - - w;_; permutes reversibly to the paif |, ---w;
followed by the redex;.

Points a—d. are summarized in the diagram below.

P Wi Wh—1 Wiy Wi
U /
x oty \\ e o
_ /
Uy, Uy >
M T ‘ k417 Vi1 ‘
7
Wk & Vg O Ui—1 < Uj
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Point e. completes the diagram above by providing the front face of the cuboid gener-
ated by the redexesandv,, and the path;  , ---v;_ ;.

7

! i
W1 Wi

Weg1 W1
It appears now that the redaxsuper-starts the path

9= (ur---uig) - (uhy ) - (uips - un).
because

— the pathu; - - - u; » is equivalent to the patfw, - - v 1) - (v -+ -v;_y) Mod-
ulo ~,

— the path(v; - -vr_1) - (v}, ---v;_,) followed by the redex:; , permutes re-
versibly to the redex followed by the pathw; - - - wy_1) - (wyq - wi_4).

This establishes the equivalence between starting and super-starting a path. Since this
is precisely what our lemma asserts, we conclude. O

3.2 Application: every rewriting path is epi wrt. ~
We illustrate the previous section with an application of Lemma 15.
Lemma 17 (epiwrt.~) If f- g1 ~ f - g2 theng; ~ go.

Proof. We may suppose without loss of generality that the rewriting pasa redexu.
We prove thats - g1 ~ u - go impliesg; ~ g by induction on the length of; (and
of g2). The property is immediate when (and thereforgy,) is empty. Otherwise, the
pathg, factors asy; = h; - v for some pathh; and redexs. By Lemma 15, because
the redexv stops the path - g» with remaindern - hq, one of the two following cases
occurs:

— either there exists a path such thaly, ~ hy - v andu - by ~ u - ho,
— or there exists a paths such that the redex followed by the pattys permutes
reversibly to the path; followed by the redex, and such thats ~ u - h;.

In the first case, we deduce that ~ hs by induction hypothesis on - hy ~ u - hs,
and conclude thaj; ~ g- by the series of equivalence:

glzhl-vzhg-v:gg
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Fig. 5. The definition of an anti-standard path- u; - - - u,, - y: the redexu followed by the
pathu; - - - u, permutes reversibly to the path - - - v,, followed by the redex which permutes
irreversibly with the redey, as follows:w - y » « - h.

Now, we prove that the second case does not occur. Obviously, thé paliags the
redexv to the redex.. By Lemma 10 preservation of drag) and equivalencgs ~ u-hq,
the pathu - hy drags the redex to the redex:. In particular, there exists a redexand
a pathh such that: - w > w - h. This contradicts Axionshape and we conclude. O

Remark: in Section 7.2 an additional hypothesiswskrsible-shapes required to com-
plete the property to an epi-mono property vert.
3.3 Characterization lemma

We introduce below the fundamental notionastti-standardpath. These anti-standard
paths are calledonflictsin [13, 27]. We change the terminology here because the word
conflictis generally understood a®n determinismnand because the notion ahti-
standard pattspecializes to the notion @inti-standard pairintroduced by J. W. Klop

in the particular case of the-calculus equipped with the left-ordef.s, — see [20]

and Section 1.9.

Definition 18 A path isanti-standardsee Figure 5) when it factors as
MSp Ly N
whereu andy are redexes and is a rewriting path, and

— the redex: followed by the patlf permutes reversibly to the paitfollowed by the
redexv,

— the redexv and the redey induce an irreversible permutation- y » x - h, for
some redex and rewriting pathh.

The gB-rewriting path taken earlier as illustration
Aq K A
Ka(AA) — Ka(AA) — (Az.a)(AA) = a

is a typical example of anti-standard path in the axiomatic rewriting sy&fam> . c. ).
Compare indeed Diagrams (9) and (13) to Figure 5.

This leads us to the main result of the section.
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Lemma 19 (characterization) A pathu; - - - u, is standard if and only if there exists
no pair of indicesl <i < j < n such that; - - - u; defines an anti-standard path.

Proof. Left-to-Right implication(=-) is immediate. Proving the converse direct{an)
reduces to showing that:

— when two rewriting pathg andg are equivalent modulo reversible permutations
and
— when the patly contains an anti-standard path,

then the patly contains also an anti-standard path.
So, consider two rewriting paths= u; - - - u,, andg = uj - - - u.,, and suppose that
the pathy is obtained after a unique reversible standardization step on th¢ path

REY
=g (19)
Let1 < k < n — 1 denote the index where the reversible permutation occurs in the
pathf. Obviously,

! ! ! ! ! !
wycup g =y up—y and ug-ug g O upugg and g o - Uy, = Upyo o Uy,

Now, suppose that the pafhcontains an anti-standard path, in the sense that there exist
two indicesl < ¢ < j < n such that the path; - - - u; is anti-standard. Laj denote the
redexu;. By definition of an anti-standard path, there exists a path - --v;_; and
redexw such that:

— the redexu; followed by the pathu;; ---u;—1 permutes reversibly to the path
viy1 -+ - v followed by the redexv,

— the redexew andy form an irreversible permutatian-y » - h for some redex
and pathh.

We establish now that there exist two indides I < J < n such that the patt} - - - v/;
is anti-standard. This will show in particular that the patbontains an anti-standard
path.
o The property is immediate wheén> j: simply take(I, J) = (i, j).
o The property follows from Lemma 15 whérn+ 1 < j:
— take(I,J) = (i —1,j) whenk =i —1,
— take(1,J) = (i +1,j) whenk =i,
— take(I, J) = (i,j) otherwise.

There remain only two difficult cases to treat: wher- j — 1 and whenk = j.

o We treat the first case, whén= j — 1. The situation is summarized by the diagram:

Vji-1 /
_— >
vl & ) A h
/ Uj—1—>
u;‘71 &1 \y
s N\




where the reversible permutatiody ; relates the rewriting pathg andg in Equa-
tion (19) and where the irreversible permutation y » 2z - h between the redew
and the redexy witnesses the fact that the path---u;_; - y (or equivalently the
pathu; - - -u;_1 - u;) is anti-standard.

The diagram may be completed by Axiatability in the following way:

Iy

N, /
vy =
N Y
j—1—>
hvl 1 iﬁ & A h
/ Uj—1—
u;—1 & \y
¥ N\

wherev;_, is aredex, wheré’ andh, are two rewriting paths, forming permutations
V-G D>V By and v -z D> R

We proceed by case analysis on the permutation; ; > vj_; - hy::

— Either the permutation is irreversible. In that case, the paty; - - - u; - -u;-_l is
anti-standard, and we may thus conclude wWithJ) = (i, 5 — 1).

— Or the permutation is reversible. In that case, the path, is a redex; we write

it v’ for clarity’s sake. We claim that the path - - -u;_» - u}_l . u; is anti-standard.
Indeed, the redex; followed by the pathu;q - -u;_» - u;-_l permutes reversibly to
the pathv; 41 - v - v;_, followed by the redex’, and we establish now that the
redexes’ andu’; are involved in an irreversible permutatioh- u; » v} - b for some
redexv; and rewriting patth”. First of all, the rewriting path -, drags the redex;

to the redex;_;. So, by Lemma 10greservation of drag), the pathw;_, - v which is
Lévy equivalent to the path - u;_,, drags the redex’; to the redex; ,. From this
follows that there exists a permutation of the farhru; > v’ -1 for some redex’; and
rewriting pathh”. There remains to show that this permutation is irreversible in order
to establish our claim. We proceed by contradiction and suppose that the permutation
v'-uj > vj - h" is reversible. Then, it follows from Axiomreversible-stability applied

around the permutation- u;_; $ v%_; - o' that:

— there exists a reversible permutation starting from the rewriting path;_, ; this
permutation is necessarily the permutation; _, $ v;_1 -w by Axiomreversibil-
ity
— there exists a reversible permutation starting from the rewriting pati.
By Axiom reversibility , this last assertion contradicts the fact that there exists an irre-
versible permutation starting from the rewriting pathy. From this, we conclude that
the permutation’ - u; > v - " starting from the rewriting path’ - u’; is irreversible,
and thus that the rewriting path - - - u; » - uj_, - v} is anti-standard. We may thus
take(I,.J) = (i,7).
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o We treat the second case, when= j, and thus, the two redexes andu;; are
permuted reversibly in the path to obtain the patly. Again, we lety denote the
redexu;. So, the redex; followed by the pathu;. ---u;_{ permutes reversibly to
the pathv, ; - - - v;_4 followed by the redexv; and the redex induces the irreversible
permutationw-y » x-h with the redexy, witnessing the fact that the path- - - u; -y
(or equivalently the path; - - - u;_1 - u;) is anti-standard.

The situation is summarized in the diagram below:

wi A lh
RN
N
Ui

where the reversible permutatio® ; relates the rewriting pathg andg in Equa-
tion (19).
Here, we apply Axiormenclaveand complete the diagram in the following way:

Iy

\v; <~ /vj+1
N o
Ryt | 1 % A Jl N Y
Yy 1
/ N
w; & U/JJ\1A
y4
wj g

with two redexv’; and two rewriting pathé,, andh’ inducing permutations:
w-u}bv;-hw/ and x-vj+1>v;-h'.

Note moreover that the pathgrabs the redex;; to aredew;;, and that the redex
grabs the redey;, to the redex;;.
We proceed by case analysis on the permutation; > v’ - h

— Either the permutation is irreversible. In that case, the rewriting path - - - u;_; -
u} is anti-standard, and we may thus conclude WithJ) = (4, 5).

— Or the permutation is reversible. In that case, the path, is a redex; we thus
write it w' for clarity's sake. We claim that the rewriting patf - - - u; 1 - uj - u},,

is anti-standard. Indeed, the redexfollowed by the pathu; 1 ---u;_1 - u; permutes
reversibly to the pathv; -+ v;_q - v§ followed by the redexw’, and we establish
now that the redexes andw/_, induce together an irreversible permutation starting
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from the pathw’ - u}_,. The pathw - v/ grabs the redex; ., to the redexz. By
Lemma 10 preservation of drag), the pathv - w' which is Levy equivalent to the
pathw - u’;, drags the redex’ ., to the redexz. This ensures that the two redexe’s
andu} ; induce together a permutation starting from the rewriting péth’; ;. There
remains to show that this permutation is irreversible. We proceed by contradiction and
suppose that the permutatieh - u; > v} - h" is reversible. Then, it follows from
Axiom reversible-stability applied around the permutatian- v $ v} - w' that there
exists a reversible permutation starting from the rewriting patly. This together with
Axiom reversibility contradicts the existence of the irreversible permutatiory »

x - h which starts also from the rewriting path- . We conclude that, as claimed, the
two redexesv’ andu,, are involved in an irreversible permutation starting from the
rewriting pathw’ - u’;. ;. Thus, the rewriting path; - - - u;— - u’; - u} , is anti-standard.

This concludes the proof, witftY, J) = (i, + 1).

Conclusion: we have just established that when a jabntains an anti-standard path,
then every patly equivalent to the patlf modulo reversible permutations contains
also an anti-standard path. Lemma 19 follows immediately. O

Lemma 20 (interface) Suppose that two paths: M —» P andg : P —» N are
standard. Then, the composite pgthg : M —» N is standard if and only if the path
u - g is standard, for every redaxwhich stopsf.

Proof. Follows immediately from Lemma 19. O

4 The Standardization Theorem

All along this section, we suppose that the 2-dimensional transition system) de-

fines an axiomatic rewriting system — equivalenly, that it satisfies the nine axioms
formulated in Section 2. From this assumption, we deduce the diagrammatic standard-
ization theorem (Theorem 2) evocated in the Introduction — in Section 1.8.

4.1 The outermost redex

For every nonempty patlfi : M —» N, we define a redexutm(f) : M — P
extractible from the patlf, in these sense of Definition 11. This redex is called the
outermostredex of the rewriting pattf. We will see at the later stage of the proof that
the redexoutm(f) is the first redex of a particular standard pathssociated to the
pathf. The definition of the redexutm(f) is by induction on the length of the path

Definition 21 (outermost redex) For every non-empty patli : M —» N, the re-
dexoutm(f) is defined as follows:

outm(v) =v  foraredexv,
(o - f) = u when the redex drags the redexutm(f) to the redex:,
outmiv ~ | v when there is no permutation of the fotmoutm(f) > h.
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Lemma 22 (preservation of outermost)Let f : M —» N be a path. Suppose that
u: M — P is aredex extractible fronf, and thatg is a projection off by extraction
of u. Then,

— eitheroutm(f) = u,
— or the pathg is nonempty, andutm(g) <— outm(f).

Proof. By induction on the length of the path The property is immediate when the
path f is a redex. Otherwise, suppose that the pafhctors asf = v - f' wherev is
a redex and wherg’ is a nonempty path satisfying the property stated in the lemma.
Suppose moreover that the redeis extractible from the patlf, and thatf ., g (see
Definition 11 for a definition of the notation,,,.)

We proceed by case analysis, depending whether the two redexek coincide.
o Suppose that = v, and thus, that the redexis the first redex rewritten in the pagh
Then, by definition of the redewutm(—), eitheru = outm(f) or outm(f') +—
outm(f). We conclude because the equalfty= g holds.
o Suppose now that # v. By definition of f N\, g, there exists a redex and two
pathsh,. andg' such that (1) the path factors ag; = h, - ¢’, and (2)f' N\ ¢’ and
(3)v - u > u- hy. The situation is summarized in the diagram below:

M N
N
P ™ g, N

Since the proof is finished whewmitm (f) = u, we suppose from now on thattm (f) #
u. From this follows thabutm(f') # ' by definition of outm(—) and by Axiom
ancestor Here, we apply our induction hypothesis on the pAthand deduce that

outm(f") & outm(g"). The diagram below describes the situation:

outm(f")

M—

/4
i = g
N

_— >
P Ry

v

outm(g")

From now on, we proceed by case analysis on the permutati@aht> w - b, .

— Either the permutation v-u' > u-h, is irreversible. In that case, we apply Axiom
enclave and deduce that

1. the redew drags the redexutm(f') to the redexutm(g), and
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2. the pathh,. drags the redesutm(g') to the redexutm/(g), and
3. the redex: drags the redexutm/(g) to the redexoutm(f).

The third assertion concludes the proof.

— Or the permutation v - ' > u - hy is reversible. In that case, the path, is a
redex. We write i’ for clarity’s sake. Again, we proceed by case analysis, depending
on whether the redex coincides with the redexutm(f).

1. Suppose that the redexioes not coincide withutm( f). By definition ofoutm(—),
the redex drags the redexutm(f') to the redexoutm(f). From this follows that
the pathv - v’ drags the redexutm(g') to the redexoutm(f). By Lemma 10
(preservation of drag), the pathu - v which is Levy equivalent to the path- u', the
pathu - v’ drags the redesutm(g’) to the redexoutm(f). From this follows that
the redexy’ drags the redexutm(g') to the redeoutm(g), and that the redex
drags the redexutm(g) to the redexoutm(f). This concludes the proof.

2. Suppose that the redexis equal to the rederutm/(f). In that case, we claim
that the redex’ coincides with the redexsutm(g). We proceed by contradiction
and suppose that # outm(g). By definition of outm(—), the redexv’ drags
the redexoutm(g’) to the redexoutm(g). It follows from Axiom stability ap-
plied around the reversible permutation v’ { u - v', that the redex drags the
redexoutm(f') to a redexw. This contradicts the equality= outm(f). We con-
clude thaty’ = outm(g), and thus, that the redexdrags the redex’ = outm(g)
to the redexy = outm/(f). We conclude.

All this concludes our proof by induction on the length of the pAth O

Lemma 23 Let f : M —» N be a path. The redesutmn(f) is extractible from any
pathu, ---u, : M —» N obtained as follows:

f \>m1 f2 \uz fn \(un idN-

Proof. Immediate consequence of Lemma 22. O

4.2 Uniqueness
Lemma 24 Suppose thatM; —% My ~2 --- = M, 2% M,.,) is a standard
path. Suppose moreover that, for every index i < n, the pathu; - --u, is more
standard than every path in it€ly equivalence class:

V1i<i<n, Yh:M; —» M,.1, h=u;-- u, impliesh = u;---u,.
Then, for every patlf; : My —» M, ., Lévy equivalent to the patly - - - u,,, there

exists a series of rewriting pathg : M; —» M, indexed byl < i < n and a
sequence of extractions:

fl \(u1 f2 \(uz fn \lu71 idMn+1-
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Proof. We proceed by induction on the lengtlof the rewriting pathu, - - - u,,. Suppose
thatf : M —» N is a rewriting path Evy equivalent to the patly, - - - u,,. Note that
the redexu, is extractible from the path;, - - - u,, with resulting projection the path
us - - - u,. NOW, by hypothesis, the path - - - u,, is more standard than the pathFrom
this and Lemma 12pfeservation of extraction) follows that the redex:; is extractible
from the pathf; = f with projection a patly; Lévy equivalent to the patis - - - u,,.
We know by induction that there exists a sequence of extractions

f2 \(uz f3 \(ug fn \lun idMn+1-

We have thus established that there exists a sequence of extractions

fl \{ul f2 \ug fn \(un idMn_)_y

This concludes our proof by induction. O

Lemma 25 (uniqueness)A standard path is more standard than every path in és\.
equivalence class.

Proof. We proceed by induction on the length of the standard path. Suppose from now
on that the property is satisfied for every path of length 1, and suppose that

f= (M5 My =2 - 55 M, = M)

is a standard path of length We establish that the pathis more standard than every
path in its Levy equivalence class.

Step 1. First of all, we claim that in order to establish that property of the fative
only need to show that the redex is extractible from every pathévy equivalent to
the pathf. Suppose indeed that this is the case, and consider g patty equivalent

to the standard patfi. By definition of LEvy equivalence, there exists a sequence of

permutations
1

f=hH=F

of standardization stepf N fit1 Or f; &= fit1, for everyl < i < m. For
each such index, the rewriting pathf; is Lévy equivalent to the patlf. We have
just assumed that the redex is thus extractible from each patf;. Now, we may
apply Lemma 12 ffreservation of extraction) as many times as there are permutation
steps from the patlf to the pathg to deduce that the two pathsand g have the
same projections (modulogvy equivalence) after extraction of the redex Now, the
pathus - - - u,, is the unique projection of the paghby extraction of the redex,. We
conclude that any projectiogi of the rewriting pathy obtained by extraction of the
redexu; is Lévy equivalent to the path, - - - u,,. By applying our induction hypothesis
on the pathus - - - u,,, we know that the path, - - - u,, is more standard than the path

It follows that the pathf = w4 - - - u,, is more standard than the path - ¢', which is,

by construction, more standard than the patfihis establishes that the paftis more
standard than every path in it&ly equivalence class.

Step 2. We have just shown in Step 1. that we only need to prove here that theugdex
is extractible from every pathévy equivalent to the patf = u; - - - u,,. We introduce

1 1 1
E"'Efmzferl:g
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the necessary notation to that purpose. The proof proceeds by contradiction. We suppose
that the redex is not extractible from a particular path in thé\y equivalence class
of the pathf. By definition of Levy equivalence, there exists a sequence

of standardization step$ SN fix10or f; = fi+1, for everyl < i < m, such that:

- fl = f!
— the redexu, is extractible from the patli;, for every indexl < j < m,
— the redexu, is not extractible from the patfy,,+1.

For each indeX < i < m, we define the path; as any projection of the patf by
extraction of the redex; . So,

VISZSmJ fz \(u1 gi-

Note that Lemma 12pfeservation of extraction) implies that all the pathg, = us - - - u,,,
andgs, ..., g, are Levy equivalent.

Step 3. Here, we will be slightly more explicit than in Step 2. Letlenote the length
of the pathf,,. Thus, the patlf,, factors as

fm =010

where eachy; denotes a redex, far < i < p. We know by construction that,,
fma1- It follows from Lemma 12 greservation of extraction) that in fact
1
fm = fm+1
because the redey is extractible from the patlf,,, but not from the patty,,,+1. By
definition of =, the pathsf,,, and f,,+ factor as:
fm = Ul .. 'kal'(vk'vk+1)'vk+2 .. ./Up fm+1 fd /Ul .. '/kal.(wk.h)'vk—l-Q - .’Up

for some indext < k < p — 1, wherewy, is a redex and: is a path involved in a
permutatiorvy, - vgy1 > wg - h. Now, it follows from Lemma 10greservation of drag)
and Axiomancestorthat:

— the permutationy, - vi+1 » wy - his irreversible,
— the pathv; - - - v, drags the redey; to the redexu; .

The situation is summarized in the diagram below:

V1 Vk—1 Wk
M,
ull e 'UkJ/ A J{h
M- M
2 hi-hi—1 Vkt1 Vg2 Up ntl

Step 4. We establish the equalityutm(f,,,) = outm(f.,+1). We proceed by case anal-
ysis, depending whether the redgx.; coincides with the redexutm (vi+1 - - - vp).
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— Suppose that the redex. ; is not equal to the redexutm (vj+1 - - - v,). By Lemma 22,
the pathyyyo - - - v, iS NOnempty, and the redex,.; drags the redexutm(vi4s - - - vp)
to the redexutm(vg11 - - - vp). By Axiom enclaveapplied around the irreversible
permutationuvy, - vgy1 » wy - h, the two pathsyy, - vi1 andwy - h drag the
redexoutm(viy2 - - - vp) 10 the same redexutm (v ---vp) = outm(wy - h -
Ug42 - - - Up). The inductive definition obutm(—) ensures then thawtm(f,,) =
outm( fm+1). We conclude.

— Suppose now that the redey; coincides with the redexutm (viy1 ---vp). IN
that caseputm(vy - --v,) = wy because the redex, drags the redexy; =
outm(vg41 - - - vp) to the redexw,,. Now, we claim thabutm (wg-h-vgta - - - vp) =
wy,. First of all, it follows from Axiomsancestorandirreversibility and fromuy, -
vgt1 P wg-hthat the redexvy, is the only redex extractible from the pati - h. So,
there only remains to prove that the redexm (wy, - b - vi42 - - - vp) iS extractible
from the pathw;, - h. Suppose that it is not. In that case, the path- h drags
the redexoutm(vg4s - - - vp) to the redexutm(wy - h- vg4o - - - vp). By Lemma 10
(preservation of drag) the pathuy - vi41 Which is Lévy equivalent to the pathy, - i,
drags the redexutm (vgy2 - - - vp) to the same redexutm(vy, - - - v,) = outm(wy,-

h - vgya - - -vp). This contradicts the equality, = outm(vy ---vp) = vp11. We
conclude thabutm(vy - - - vp) = wy, = outm(wy - h - vy42 - - -v,) and thus that
outm(f) = outm(fm+1).

Step 5. We deduce from Step 4 that the redex drags the redexutm(g,,) to the
redexoutm(f,,). We have just proved thatitm(f,,) = outm(f,,+1). From this fol-
lows that the redexutm/( f,,,) is extractible from the patlfi,,. 1. Since by construction
of the pathf,, .1, the redexu; is not extractible from that path, the two redexas
andoutm/(f,,) are necessarily different. We may thus apply Lemma 22 on the extrac-
tion £, \wu, gm- This establishes our claim: the redex drags the rederutm(g,,)
to the redexutm(f,,).

Step 6. We prove that the redexutm(g.,,) is extractible from the patly = us - - - u,,.
By induction hypothesis, each path- - - u,, is more standard than any of it&ly
equivalent paths, fo2 < i < n. We may thus apply Lemma 24 to the paths
andus, - - - u,,, and deduce that there exists a series of extractions

91 \(uz T \mn idMn+1'

By Lemma 23, the series implies that the redexm/(g,,) is extractible from the path
Us U

Step 7. We deduce from Step 6 that the redexm(g,,) is extractible from all the
pathsg, ..., 9. We have already noted at the end of Step 2 that all the paths
us -+ - Un, go, - - - gm are Levy equivalent. By induction hypothesis, the standard path
g1 = us---u, iS more standard than every pajh for every indexl < i < m.
We also know that the redexitm(g,,) is extractible from the path,. By Lemma 12
(preservation of extraction), the redexoutm(g,,) is thus extractible from the paif,
for every indext < i < m.

Step 8. We deduce from Steps 4, 5 and 7 that the redexn(f,,) is extractible
from the pathsfi, ..., fin, fm+1. By Step 4, the redewutm(f,,) is extractible from
the pathf,,+1. So, there remains to show that the redexm( f,,) is extractible from

42



the pathsfi, ..., f.. By Step 5, the redex, drags the redexutm(g,,) to the re-
dexoutm(f,,). By Step 7, the redewutm(g,,) is extractible from all the pathg,
..., gm. From this follows that the redey,, is extractible from the paths,; - ¢1, ...,

u1 - gm- NOW, for every index < i < m, the pathu; - g; is more standard than the path
fi becausef; N\, g;. We conclude by Lemma 1feservation of extraction) that the
redexoutm( f,,) is extractible from the pathf, ..., fi.-

Step 9. By Step 8, we may define for every indéx< i < m + 1 the pathf;

as an (arbitrary) projection of the pafh by extraction ofoutm(f,,). We thus have
fi Noutm(s,,) [fi- By Lemma 12 preservation of extraction) appliedm times, the
rewriting pathsfi ,..., f,,, are Levy equivalent.

Step 10. In order to reach a contradiction with our hypothesis, we prove that the re-
dexu, is extractible from the rewriting patffi,, ;. We have already noted in Step 9
that the pathg, ..., f,,,, are Levy equivalent. The patfj is standard of length — 1
since it is defined as the projection of the standard pats u; - - - u,, by extraction of
the redexoutm(f,,). By induction hypothesis, the paff is more standard than all the
pathsfi, ..., f,, .. Besides, the rewriting patf{ is not empty. We have proved indeed
in Step 5 that the redexes andoutm(f,,) are different redexes, and more precisely,
that the redex;, drags the redexutm/(g,,) to the redexutm/(f,,). From this follows
that the extraction of the redextm(f,,) from the standard patfy = u; - - u, in-
duces a reversible permutation-outm(g,,) ¢ outm(f,)-u}. The redex: is the first
redex of the patty], and the patly| is more standard than all the patfis ..., f;, ..

By Lemma 12 preservation of extraction), the redex) is extractible from all the paths

fis s frny1- The diagram below summarizes the situation:
fi

Mn+1

Vm(fm)

fi
Ml Mn+1
ull <& U1l

My 7 M1

;Atm(gm)

All this has the remarkable consequence that the refiéxextractible from the rewrit-

ing path f; .. From this follows that the redex; is extractible from the rewriting
pathoutm(f,,) - f},41.- Now, the pattoutm(f,,) - f;,. is more standard than the path
fm+1 by definition of f, 11 Noutm(f) fins1- We conclude by Lemma 12feserva-

tion of extraction) that the redex; is extractible from the rewriting patfy,,1 1.

Step 11. This is the concluding step. We deduce from the contradiction reached in
Step 10 that the redex is extractible from every pathédvy equivalent to the rewriting
path f. By the preliminary discussion of Step 1, this concludes our proof by induction
of Lemma 25. O
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4.3 Existence

Lemma 26 (towards existence)Suppose thaf : M; —» M, 1 iS a non-empty path
whose projection by extraction of the redextm(f) : M; — M, is Lévy equivalent
to a standard path

Up — n
My =2 My 22 - 25 M, 2% M.

Then, the rewriting path

My ") a2 g st g, s M
is standard.

Proof. By induction onn. The lemma is immediate when = 1 because the path
outm(f) is standard, like every path of length 1. Suppose that the property is estab-
lished for every standard path of length- 2, and consider a standard path

Un — n
My 2y Ms 22 - 25 M, 2% M,y

of lengthn — 1. Consider moreover a nonempty pgth M, —» M,, 1, and suppose
that (one of) its projectiog by extraction of the redexutm(f) : My — M is Lévy
equivalent to the standard path- - - u,,. We writeu; for the redexoutm(f).

We want to prove that the path - us - - - u,, is standard. We proceed by contradic-
tion, and suppose that the path- u - - - u,, is notstandard. By Lemma 1%Karacteri-
zation lemma) there exists an anti-standard path inside the rewriting path - - - u,,.
Since the pathus - - - u,, is standard, this anti-standard path is necessarily of the form
uy -+ -ug+1 forsome indext < k <n —1.

By definition of an anti-standard path, and whatever the value of the indivere
exists a redex;, and a patth,, forming a permutation; - us > uy - ;. The situation
is summarized in the the diagram below:

MnJrl MnJrl

M,y u—s My
L« 13‘/ v (20)
v h > M3
Uz ln
MnJrl

We show in Steps 2, 3, 4, 5 and 6 that the permutationus > u - b is reversible,
or equivalently, thak > 2.

Step 2. We show that the redey, is extractible from the patli. By Lemma 25 @nique-
ness), the pathus, - - - u,, is more standard than evergly equivalent path. In particular,
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the pathus - - - u,, is more standard than the patht follows from Lemma 12 greserva-
tion of extraction) that the redex, which is extractible from the path, - - - u,, is also
extractible from the path. This and the existence of the permutatian uy > us - by
implies that the redext, is extractible from the path, - g. The pathy; - g is more stan-
dard than the patlfi by definition of extractiory \,,, g. Thus, by applying Lemma 12
(preservation of extraction) again, the redex/, is extractible from the patlf.

Step 3. Let the pathf’ denote an arbitrary projection of the paftby extraction of
the redexul,. By construction, and Axiorshape the redex:); does not coincide with
the redexoutm(f) = u;. By Lemma 22, the patlf’ is non-empty and the redex,
drags the redexutm(f') (denotedu; from now) to the redex; = outm(f). More
explicitly, the two redexes] andul, are involved in a permutatios, - u} > ug - h,, for
some pathh,, . Let the patly’ denote an arbitrary projection of the pathby extraction
of the redexu] . The situation is summarized in the diagram below:

Mn+1
\f
AN
My u1—> Mo
v L - (21)
w) ——>
f,/ ' \g,
=
yd N
Mn+1 Mn+1

In the next Steps 4-7, we analyze the relationship between the two Diagrams (20)
and (21). We establish in Steps 4-6 that the patpsandh,, coincide respectively
with the redexes| andus, and thus, that the permutatien - u, > ul, - hy s re-
versible. We establish in Step 7 that the pgltis Lévy equivalent to the paity - - - u,,.
This enables to combine the two Diagrams (20) and (21) in a larger diagram.
Step 4. Here, we deduce from Lemma 2&nfqueness) that the redex:; is extractible
from the pathh,, - ¢’. By construction, the patt, - h,, - g’ is more standard than the
path f. The paths,, - ¢’ andg are the projections of the paths - 4, - ¢’ and f by
extraction of the redex, , respectively. By Lemma 1feservation of extraction), the
two pathsh,,, - ¢’ andg are Levy equivalent. Now, the pathis also Levy equivalent
to the standard patia, - - - u,,. From this and Lemma 25ifiiqueness) follows that the
pathus - - - u,, is more standard than the pdil, - ¢'. By Lemma 12 fpreservation of
extraction), we conclude that the redes is extractible from the path,, - ¢'.

Step 5. We deduce from Step 4 that the redexis extractible from the path,,,. We
proceed by contradiction, and suppose that it is not. The regés extractible from
the pathh,,, - ¢'. By definition of extraction, there exists a rederxtractible from the
pathg' such that the path,,, drags the redex to the redexu». From this follows that
the pathu, - h,, drags the redex to the redexu),. Now, the pathu; - h,, is Lévy
equivalent to the path), - u{. By Lemma 10 freservation of drag), the pathu), - u}
drags the redex to the redex:},. More explicitly, there exists a redex such that: (a)
the redexu drags the redex to the redexvw; and (b) the redex/, drags the redew to
the redexu),. This very last statement (b) contradicts the Axishapesince it implies
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that there exists a pathand permutatiom), - w > 4 - h. We conclude that the reden
is extractible from the path,,, .

Step 6. We deduce from Step 5 that the paths andh,, coincide respectively with
the redexes; andus, and that the permutatiom, - us > u - b is reversible. By
definition of extraction, there exists a pdtlsuch that,,, = u- - h. From this follows
thatus - u} > uy - by, anduy - by, = uy - by, - h. Diagrammatically,

Suppose that the permutatiofy - v} > u, - hy, is irreversible. In that case, it follows
from Axiom irreversibility thatu, - uj > ui, - by, - h. This last statement contradicts
Axiom shape and we thus conclude that the permutatignu; > uy - h,, is reversible.
From this follows that the path,,, is a redex. The equality,, = u» follows immedi-
ately from the fact that the redex is extractible from the path,,,. We conclude that
ub - uj > ug - us. At this point, there only remains to apply Axioraversibility on the
permutations, - uf > uy - uy. ug - us > ul + hy,, from which we deduce thét,, = u)
and that the permutatiom - uz > uj - by, IS reversible.

Step 7. We have just established that the permutation us ¢ u), - u} is reversible.
In Step 4, we have also proved that: - - u,, is more standard than the pdih, - ¢'.
We know now that the path,,, - ¢' is equal to the path, - ¢’. The two pathss - - - u,,
andg’ are respectively the projections of the paths- - u,, andus, - g’ by extraction of
the redexuz. By Lemma 12 preservation of extraction), the pathy’ is Lévy equivalent
to the pathusg - - - uy,.

Step 8. We have just established in Step 7 that the projecgionf the pathf’ by
extraction of the redex| = outm/(f’) is Lévy equivalent to the patla; - - - u,,. This
enables to apply our induction hypothesis on the standardwath u,,. We deduce
that the pathu} - us - - - u, is standard. In particular, the pattj - us - - - ugy; IS not
anti-standard. From this follows that the path- us - - - u;1 iS notanti-standard. This
contradicts our original hypothesis. The path- us - - - u,, is thus standard. This con-
cludes the reasoning by induction, and the proof of Lemma 4.3. O

Lemma 27 (existence)For every pathf : M —» N there exists a standard path
g: M —» N such thatf = g.
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Proof. First, we show that every rewriting path - - - u,, : M —» N is standard when
it is obtained as a sequence of extractions from a path\/ —» N:

fl \{ul f2 \(ug f3 fn \{un id—N (22)

whereu; = outm(f;) for every indexl < k < n. The proof is nearly immediate, by
induction on the lengt. Suppose that the property is established for every path of
lengthn — 1, and consider a patl, - - - u,, obtained as a series of extractions (22). By
induction hypothesis, the path

f2 \luz f3 \mg f4fn \{un 1dN

is standard. By Lemma 26, the path- us - - - u,, = outm(f1) - us - - - uy, is also stan-
dard. We conclude.

Now, suppose thaf : M —» N is an arbitrary rewriting path. By Axiortermi-
nation, every sequence of extractions

f=h \outm(fl) fo \(outm(fg) fso fn \(outm(fn) e

is finite. Thus, there exists an indexsuch that

fl \lul f2 \mz fon \{un 1dN

whereu; = outm(f;), for all 1 < i < n. By construction, the patla, - - - u,, : M —»
N is more standard than the pathand it is standard by the previous argument. We
conclude. O

4.4 Standardization theorem

Theorem 2 (standardization) Suppose thatG, t>) is an axiomatic rewriting system
and thatf : M —» N is a path in the transition syste¢h Then:

— there exists a standard pagh: M —» N more standard tharf,
— every standard pathé&vy equivalent tgf is equal tog modulo reversible permuta-
tion equivalence~.

The standard path of any path: M —» N may be computed by extracting recur-
sively the outermost redexutm( f;) in a sequence of rewriting paths

f=h \toutm(fl) f2 \toutm(fg) I3 \toutm(fg) o fa \loutm(fn) idy-

We call this algorithnSTD as in [13]. Note that the algorithm is non deterministic
because it depends at each sfepn the choice of the next rewriting pafh, ;.

Corollary 28 The relation—> on paths is confluent modute. The=—>--normal form
of a path is computed by the algoritf&TD.
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5 Standardization from the 2-Categorical Point of View

In Sections 1—4. we interpret standardization as a 2-dimensional rewriting procedure
on 1-dimensional paths, and establish a confluence and normalization property for that
procedure. However, we say nothing there about the 2-dimensional reduttiensg
themselves. Intuitively, each such reductjor=- g describes a possible way to tile the
2-dimensionaburfacelying between the two rewriting pathsandg. In this section is

to show that all tilingsf = ¢ from a pathf to its standard path, are equivalent in

an intuitive sense. We refer the reader to the last chapter of [25] (second edition) for a
nice and motivated introduction to 2-categories.

5.1 Tiling graph, tiling paths, and partial injections

To every 2-dimensional transition systég, I>) we associate #ling graphin the fol-
lowing way:

Definition 29 (tiling graph, path, step) The graphtiling-graph(G, ) has the paths
of G as vertices, and the standardization stépsf > g,h) as edges - f - h =
e-g-h. The paths intiling-graph(G, ©) are calledtiling pathsto avoid confusion with the
rewriting pathsof the transition syster§. According to that spirit, we often cdiling
stepa standardization step. In the grapting-graph(G, ), we writeid” : f = f
for the identity off, anda x 3 : f = h for the composite of two paths: f — ¢
andg: g = h.

Definition 30 (canonical equivalence on tiling path) To every tiling path : f —
g, We associate a partial injectioja] : [g] — [f] as follows.

— to every vertex dfiling-graph(G, i>) we associate the finite sgf] = {1, ...,n} of
cardinal n the length off as 1-dimensional path,

— to every edger = (e, f > g, h) of tiling-graph(G, ) wheree, f, g and h decom-
pose as:

€=Ul " Umn f:v.ul g="v1--"VUp h:wl...wp

we associate the partial injectida] : [e- g - h] — [e - f - h] defined as

e whenf<{g:
k — k foreveryl <k <m
m+1 —» m+2
m+2 = m+1
m+2+k—m+2+k foreveryl <k<p
e whenf » g:

m+1 = m+2

k > k foreveryl <k <m
m+n+k—»m+2+k foreveryl <k <p
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The partial injectiona] : {1,...,n} — {1,...,m} associated to a tiling path
QUL Uy = VLU,
is defined by composing the partial injectidns]'s:
[a] = [an]o---ofai]

Intuitively, the functiorja] traces every redex, back to its unique “ancestori,
in the 1-dimensional path; - - - u,,, when this redex exists.

The main result of the section states that

Theorem 3 Suppose thag is a standard rewriting path in an axiomatic rewriting sys-
tem(g,>). Then, every two tiling paths, 8 : f = ¢ from a rewriting pathf to the
rewriting pathg define the same partial injectidn] = [5].

Reformulated 2-categorically, the theorem states that in the 2-category
2-cat(g,>) defined at the beginning of Section 5.3, the standard patil/ —» N

is terminal in its connected component in the hom-cate@acat(G,>)(M, N). The
standard patly is in fact strongly terminal, in the sense that in every gel= h, the
pathh is also standard, and thus terminal.

We proceed methodologically, and prove the theorem in two steps. In Section 5.2,
we give a series of conditions on an equivalence relaiom the paths dfiling-graph (G, )
to ensure that every two tiling paths 5 : f = ¢ from a pathf to a standard path
g, are equal modulé=. In Section 5.3, we prove that the equivalence relatiog
induced by the equalityy] = [3] of partial injections, satisfies the formal conditions of
Section 5.2.

Remark: Theorem 3 repeats in dimension 2 the observation by &vy. ib the \-
calculus, or in any conflict-free (term) rewriting system, that there exists a unique path
from a term to its normal form, modulo permutation. Here, objects are 1-dimensional,
paths are 2-dimensional, permutations are 3-dimensional — and the concept of a conflict-
free 2-dimensional system remains to be clarified.

5.2 Standard=strong terminal

Definition 31 (horizontal composition) The horizontal composite- h of a tiling step
(=standardization step)

a=(e,f>g,h):e-f-h=¢e-g-h: M —» N
and of a 1-dimensional pattf : N —» P is defined as the tiling step:
a-h=(e,f>g,h-W):e-f-h-h'=e-g-h: M —»P
The horizontal composite - h of a tiling path

a=arx-kay: f=>g: M —» N
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and a 1-dimensional path : N —» P is defined as the tiling path
a-h=(ar -h)*--%(ap-h): M —» P

The horizontal composite- « of a 1-dimensional path : L —» M and a tiling path
a:f-g: M —» N is defined symmetrically.

From now on, we consider an equivalence relatitdmetween the tiling paths ¢ifing-graph (G, ),
satisfying the four properties below:

1. for all tiling pathse : f = f'andf : g = ¢/,
a2 = f=gandf =4
2. for all tiling pathsa, o’ : f = gandg,s' : g = h,
adandf 2 p = axf=a xf

3. for all tiling pathsa, 8 : ¢ = ¢ : M —» N and all 1-dimensional paths
f:L—» Mandh: N —» P,

a=p = f-a-h=f-B-h
4, foralloftiingpathsa: f = f': M —» Nandf:g—¢': N —» P,
(a-g) = (f-B)=(f-B)*(a-g)
Lemma 32 The equivalence relatio® defines a 2-categorg-cat- (G, >).

Proof. The 2-category-cat-(G,>) has vertices and paths gfas objects and mor-
phisms, and equivalence classes modtlof tiling paths as cells. Conditions 1-3.
ensure the necessary compositionality propertie2-cét~ (G, ), while condition 4.
ensures the so-called interchange law of 2-categories, see [25]. O

Suppose moreover that:

5. for every pathf = u - v whereu drags the redex to a redexvy, and for every
standard path,

Vo, B, B f=9 = a=f

6. for every pathf = u - v - w where the redex drags the redex to a redexv, and
where the path - v drags the redew to a redexwg, and for every standard pagh

Va, B8, af:f=9 = a=p
These two additional conditions 5 and 6 regulate the potectiitital pairs occurring

during the 2-dimensional transitions implementing standardization. The lemma below
establishes that the two assumptions are sufficient to the purpose.
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Lemma 33 Suppose that the equivalence relatiansatisfies Conditions 1-6. Then,
every standard path : M —» N is strongly terminal in its connected component in
the hom-categor@-cat- (G, >)(M, N).

Proof. By induction on the length ok : M —» N. Suppose that the property is
established for every standard path of lengttand that the path - h is standard of
length1 + n. Suppose thaf is a path levy equivalent ta, - h. We claim that for every
tiling pathy : f = u - g resulting of an extractiorf ~\, g, and for every tiling path
a: f = f' starting fromf, there exists a tiling path’ : f' = u - ¢’ resulting of an
extractionf’ N\, ¢', such that

yx(u-6g) =2 axy x(u-0y) :f=u-h (23)

whered, : ¢ = h andd, : g¢¢ = h are arbitrary tiling paths to the terminal
objecth. To prove the claim, it is sufficient to consider the case whés a tiling step

(f1, f2 > f5, f3). The general case follows by a straightforward induction on the length
of a. So, we want to establish that the diagram below commutes médido a tiling
stepa = (f1, fo > f4, f3) : f = f' and atiling pathy : f = u - g resulting of an
extractionf N\, g.

[e]

[

u‘g u.gl
u-h

By definition ofa, the pathsf and f’ factor as

f=h-f2-fs f'=rHff
The redexu is extractible from the patlf = f; - fo - f3. One of the three following
situations occurs. We say that the redeis

1. extractible from the componefit when the redex is extractible from the patffi

2. extractible from the componefif when the redex is extractible from the patffy -
f2 but not from the pattfy,

3. extractible from the componefif when the redex is extractible from the patff -
f2 - f3 but not from the patlf; - f5.

By definition of y as the tiling path produced by the extractipn\,, g, the rewriting
pathsg and the tiling pathy factor as

g=491:92-93
Y= forys)x(fr-r2-93) % (7192 93)

where the definitions of;, g2, g3 andvy;, 2, v3 depend on the componefitor f5 or f5
from which the redex is extractible:
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1. The redex: is extractible from the componelfi: in that casegs = f3 andys; =
idg,, go = fo andy, =idy,, andy; : fi = u - g1 is the result of an extraction
fl \(u g1,

2. The redex: is extractible from the componerfi: in that casegs = f3 and~y; =
idg,, 72 1 fo = o' - g is the result of an extractiofy \../ g», the pathf, drags
v touandy; : f1 - u' = u - g1 is the result of the extractiofy - v’ \., g1,

3. The redex is extractible from the componey: in that caseys : f3 = u’ - g3 is
the result of an extractiofy \.. g3, the pathfs dragsu” tou' andy, : fo-u" =
u' - g5 is the result of the extractiofy, - u” . g2, the pathf; dragsu’ to v and
v : f1-u = u- g is the result of the extractiofy - v’ N\ g1-

The tiling pathy' is defined as
Y =(fr-fo-v3)x(fr-rs-93) % (7195 93)

where the definition of the tiling patfl, is by case analysis.

1. The redex: is extractible from the componerf: in that caseg), = f and~; :
f2 = g5 is defined asdy,. Equivalence (23) follows from induction hypothesis
on h, as well as conditions 2, 3 and 4 on the equivalence relation

2. The redexu is extractible from the componerft: in that case, the patlf, and

v+ fy => u' - g} are the result of an arbitrary extractigh N\, ¢g5. Equivalence
(23) follows from the series of equivalence:

v * (u- 69) " )
Y#(u-gr- (92 =>95)g3) * (u-dg,.gy.g5) by ind. hyp.
1 (2% m2) - g3) * (195 g3) ¢ (- O 00g5) by cond. 2, 3, 4.

1 ((fz > fé) * 'Yé * 77/2) : 93) * (71 gIZI . g3) * (u : 691-9'2'-93) by cond. 5.
1 (fa> fo) fa)* (fr- (7o % m5) - g3) * (71 - g5 - g3) * (u - Oy, g1r.g5)

by cond. 2, 3, 4.
Zax(fi-va-g3)*(v1-92-93)* (u-g1-m-gs)* (u- 0y, gn.g;) bycond. 2,3, 4.
axy x(u-0 by ind. hyp.

1R IR 1R

A~~~
N~

91-9’2-93)
Saxqy x(u-dy)

whereg! is a standard pathévy equivalent to the pathgs andg), and where

miu-go=u-gy and mhiuegh = u- gl
égl'g’2~gg g gé c g3 — h and 591'!]5"93 t g1 gél - g3 = h

are arbitrary tiling paths.

3. The redex: is extractible from the componerft: in that third caseg, and~; :
f4-u" = u'-gh are the result of an arbitrary extractigfru’ .+ g5. EQuivalence
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(23) follows from the series of equivalence:

v * (u- dg) .
Zyx(u-gr- (92 =>95) 93) % (u- 0y gy.g5) by ind. hyp.
= (fi-f2oys) % (fr- (2% m2) - g3) * (1 g5 - g3) * (u-dy,.g1.4;) bycond. 2,3, 4.
=2 (fr- farvs)x (fr- ((f2 > f2) ") % y5 %) - gs) * (71 g5 - g3)* (- Ogy.61/.95)
by cond 6.
= (fr-(fo> fo) - fa) x (fr- fo-ya) = (fr- (Yo *m3) - ga) * (195 - g3) * (u- 0y, g1 .g,)
by cond. 2, 3, 4.
Zax(fi-foys)x (fr-r2-9s)* (1192 93) * (w-g1-m2 - gs) * (u- Iy, .05.45)
by cond. 2, 3, 4.
Zaxy x(u- g g0 .9,) by ind. hyp.

Saxy x(u-dy)
whereg} is a standard pathédvy equivalent tg, andg}, and where

N:U-gs = u-gy and 7h:iu-gh = u-gYy
691'g’2~93 :g1-95-93=h and 591,%,.93 cg1-94 g3 = h

are arbitrary tiling paths.

This proves our introductory claim. Now, we prove the lemma as followsyLet =
u - g be the result of an arbitrary extractign\,,, g. Consider any tiling path from f
tow - h. By property (23) proved above, there exists a tiling pgthuch that:

v (u-dy) =2 axy x(u-6p) :f=u-h

In that particular case, as the result of the “empty” extractioh \,, h, the tiling path
' is the identityid*” : u- h = u - h. Moreover, the tiling patld,, is the identity
id" : h = h by induction hypothesis. It follows that

a = yx(u-dy)

This concludes the proof. O

5.3 The 2-category 2-caiG, >)

Definition 34 (2-caG,>)) The 2-category 2-cafG,>) is the 2-category
2-cak (G, >) associated to the following equivalence relation on tiling paths:

az=f < [of=1[f]
The main goal of the section is to prove Theorem 4.

Lemma 35 Suppose thatr : f = g : M —» N is a tiling path between the 1-
dimensional pathg = vy - - - u,,, andg = vy - - - v,. Suppose that is a redex outgoing
from M. The two following assertions are equivalent:

1. the pathv, - - -v;_; drags the redex; to the redexw,
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2. the indeXa](i) = j is defined and the patly - - - u;_, drags the redex; to the
redexw.

Proof. By induction on the length af. O

Theorem 4 In the 2-categor®-caiG, ), every standard path is strongly terminal in
its Lévy equivalence class.

Proof. By Lemma 33, we only need to check conditions 5 and 6 on the equivalence
relation= on tiling pathsa, 5 : f => g induced by the equalitir] = [5]. Consider

— apathf =« - v’ such thatu dragsv’ to a redex
— orapathf = u-v' - w" such that dragsv’ to a redexv, andu - v’ dragsw” to a
redexw.

Consider two tiling paths, 5 : f = ¢ standardizingf into a standard path =

vy - - - v,. Suppose thdle](i) = j for somei € [n]. By Lemma 35( = 2), the path
vy - -+ v;_1 drags the redey; to the redex = u whenj = 1, toredex = v whenj = 2,

or to the redex = w whenj = 3. Thus, by Lemma 33(= 2), the index|5](i) = k is
defined and such that the path- - - u;_, drags the redeux;, to the redex. This implies
thatj = k. Applying the argument to evenye [n], and by symmetry, we deduce that
[a] = [#]. This proves conditions 5 and 6, and we conclude. O

Remark. In the case of thecalculus, and more generally in any axiomatic rewriting
system derived from an axiomatic nesting system, see Section 6, the partial injection
[a] : [g] — [f] may be replaced by ®tal function[a] : [¢g] —» [f] without breaking
Theorem 4. The idea is to replace the partial funcfi@hassociated to an irreversible
standardization step in Definition 30 by the following total functiofu]:

k — k foreveryl <k <m
[a] m+1 = m+2
) m+1+k— m+1 foreveryl<k<n-1

m+n+k—m+2+k foreveryl <k<p

It is not difficult to show that conditions 5 and 6 of Section 5.2 still hold with the new

definition — in the case of th&-calculus or any axiomatic nesting systems. Theorem 4

follows. However, Theorem 4 does not generally hold with the alternative definition.
The axiomatic rewriting system

id
\\ « w/ u' o= v
— s / vou O u-v
‘ ‘ u' - w' > wo - u
id A x & "A u'! o w e wy -0
/ v’ > \ u-w; » w
/01 | w”\\ v-wy P w
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and tiling paths

! n_1 ! no_1 n_1 "
ap:u-v v =v-u-w=vw v =w-u

aiuv w = uewy v = w0 = w

illustrate this point, since both; andas transform the path - v’ - w” to the standard
pathw - v = w - v”, but do not define the santetal functions[a;] and[as], since
[01](2) = 1 and[a2](2) = 2.

6 An Alternative Axiomatics Based on Residuals and Nesting

The 2-dimensional axiomatics formulated in Section 2 is particularly adapted to reason
and prove diagrammatically... but it is also far away from common practice, and may

be difficult to understand for someone simply interested in checking that the axioms are
satisfied by his or her favorite rewriting system. For that reason, we step back (in this
section only) to the axiomatics developed in [13] and [27] and based on the trinity of

residuals critical pairs andnesting order Since the formulation is nearly independent

of the remainder of the article, the reader may very well jump this section at a first

reading.

The section is organised as follows. Axiomatic nesting system are defined in Sec-
tion 6.1, and their axioms are formulated in Sections 6.2—-6.5. We establish in Sec-
tion 6.6 that every axiomatic nesting systéf [—], <, 1) defines an axiomatic rewrit-
ing system, that is, a 2-dimensional transition systéir>) which satisfies the axioms
of Section 2.

Remark: we provide two examples in Section 8

— the argument-nesting-calculus,
— the graph of sequentializations of an orderedXet

which demonstrate that the axiomatics presented in this section is at the same time
strictly more generathan the axiomatics of [13] which inspired it, asttictly less
generalthan the 2-dimensional axiomatics formulated in Section 2.

6.1 Axiomatic Nesting Systems
The main definition of the section follows.

Definition 36 An Axiomatic Nesting Systemis a quadruple (G,[-], =,
1) consisting of:

1. a transition system (or oriented grapij = (terms,redexes,source,
target),

2. for every redex. : M — N, a binary relation[u] relating the redexes outgoing
from M to the redexes outgoing fror,

3. for every vertexV/ of G, a transitive reflexive antisymmetric relatioty, between
the redexes outgoing froi,
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4. for every vertexi of G, a reflexive relationf,,; between the redexes outgoing
from M.

Every nesting system is supposed to satisfy a series of ten (4+2+4) axioms. The first
four Axioms Finite, Compat, Ancestor, Self state elementary properties of residuals
and compatibility. The two next AxiomisinDev, Perm enforce the well-known prop-

erty of finite developments, appearing for instance in [32, 18, 20, 3, 27]. The four last
Axiomsl, I, Il | IV regulate the properties of the nesting relation vs. the compatibility
and residual relations. The ten axioms are caNedxioms(N stands for nesting) to
distinguish them from the 2-dimensional axioms of Section 2.

6.2 The first N-axioms: Finite, Compat, Ancestor, Self

N-axiom Finite (finite residuals). We ask that a redex : M — (@ has at most a
finite number of residuals after a coinitial redex M — P.

Yu,v € redexes, the set {v' | v[u]v’} is finite.
N-axiom Compat (forth compatibility). We ask that two compatible redexes:
M — P andv : M — () have compatible residuais and+’ after a coinitial
redexw : M — N.

Vu,v,w,u’,v’" € redexes, ufw]u’ and v[w]y' and utv = w1
N-axiom Ancestor (unique ancestor). We ask that two different coinitial redexes
u: M — Pandv: M — @ do not have any residual in common after a coinitial
redexw : M — N.

Vu,v,w,u’ ;v € redexes, wuJw]u’ and v[w]y’ and ' =o' = w=v
N-axiom Self (self-destruction). We ask that a redex : M — @ has no residual

after itself, or after an incompatible coinitial redex M — P.

Vu,v € redexes, (w=wvor =(utv) = {v]|vfu'}=0

6.3 A few preliminary definitions: multi-redex, development
We need a few preliminary definitions to formulate the N-axidfimDev andPerm.

Definition 37 (residual through path) Given a pathf : M —» N, the relation[ f]
between the redexes outgoing frathand the redexes outgoing from, is defined as
follows:
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— [f] is the identity relation wheyf = iday,
— [f] is the composite relatiofv1] - - - [v,] whenf = vy - - - v,.

Explicitly, for every two redexes andu’,
ufidyu <= uw=1
Jus, ..., un—1 € redexes,
uviJuava]us - - un—2[vn—1]tn—1 v, ]u’

Definition 38 (multi-redex) A multi-redexin (G,[—], =,1) is a pair (M, U) consist-
ing of a termAM/ and a finite setU of pairwise compatible redexes of sourte

uvy - vpJu’ =

Remark: every redex : M — N may be identified to the multi-red€x/, {u}).

Definition 39 (multi-residual) Suppose that)M, U) is a multi-redex and that is a
redex compatible with every redexlih Themulti-residualof (A, U) afterv, notation
(M,U)[v], is the multi-redeXN, W) whereW = {w | uJv]w}.

Remark: Definition 39 defines a multi-redé¥’, W) thanks to the N-axiom§inite
andCompat.

Definition 40 (development) A  complete  development of a  multi-redex
(M,U) is a pathf such that:
— f =1idas whenU is empty,
—f =wu-gwhenu : M — N is a redex inU, and the pathy is a complete
development of the multi-redéX/, U)[u].

A developmenbf (M,U) is a pathf : M —» P which is prefix of a complete devel-
opmenty : M —» N of (M, U). Here, we callf a prefix ofg when there exists a path
h: P —» N suchthaty = f - h.

We define two notions mentioned informally in Sections 1 and 2, and which appear in
the N-axiomdll andlV.

Definition 41 (created redex) A redexu : M —» P creates aredex : P — N,
when there does not exist any redexutgoing froml/, such thaw is a residual ofw
afteru.

Definition 42 (disjoint) Two redexes andwv are disjoint when-(u < v) and—(v <

w).

6.4 The N-axioms related to finite developement: FinDev and Perm

N-axiom FinDev (finite developments). Let (M,U) be a multi-redex. Then, there
does not exist any infinite sequence of redexes

My 85 My 22 . 25 M, M, 2
such that, for every index, the pathu; - - - u,, is a development ofM, U).
N-axiom Perm (compatible permutation). For every two coinitial, compatible and
different redexes, : M — P andv : M — @, there exists a complete development
h,, of uv], and a complete developmént of v[u], such that:
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1. the pathg, andh, are cofinal,
2. the residual relationf: - h,] and[v - h,] are equal.

6.5 The fundamental N-axioms: |, II, lll, IV

N-axiom | (unigue residual). We ask that
utv and =(v <u) = A, ufv]u’

whenu andv are coinitial redexes.
N-axiom Il (context-free). Suppose that, v, w are pairwise compatible redexes, that
the redex:’ is residual ofu afterw, and the redex’ residual ofv afterw. We ask that,

a (u=v=>u =) o (w=uandw =< v)
b. (v 2v'=>u=<v)orw=wv

N-axiom Il (enclave). Suppose that andv are two compatible redexes, and that
u < v. Callu' the residual of: afterv. We ask that for every redex created by,

u <o or —(u 1)

N-axiom IV (stability). Suppose that. andv are two compatible disjoint redexes.
Call v’ the residual of, afterv, andv’ the residual ot afteru. We ask that there exists
no triple of redexegw; , w2, w) such thatw, is a redex created by, w- is a redex
created by, and

wiv'Jw and  wyu'lw

6.6 Every axiomatic nesting system defines an axiomatic rewriting system

Definition 43 Every axiomatic nesting systef@, [—], <,1) defines a 2-dimensional
transition systeniG, t>) as follows:

> is the least relation between paths@®such thaw - h,, > u - h,, when
— the paths: - h, andv - h,, are cofinal, and satisffu - h,] = [v - hy],
—u andwv are two coinitial redexes outgoing from a terh,

—u tvand—(v X u),

— the pathh,, is a complete development(@¥/, {u})[v],

— the pathh, is a complete development(@i/, {v})[u].

Observe that the 2-dimensional transition systém >...) of Section 1.9 is the result
of applying Definition 43 to the axiomatic nesting syst&i, [—]x, <tree, Tx) below:

— [—]x is the usual residual relation betwegtredexes in the\-calculus, as defined
in [10, 24, 20, 3],
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— 1, is the compatibility relation betweefrredexes, in that case the total relation,
indicating that every two coinitigf-redexes are compatible,
— =<iree IS the tree-nesting relation betwegnedexes, defined in Section 1.9.

The main result of the section (Theorem 5) states that the 2-dimensional transition sys-
tem (G, i) of Definition 43 satisfies the standardization axiomatics of Section 2. Before
proving that theorem, we start with five preliminary lemmas.

Lemma 44 The 2-dimensional transition systém, >) of Definition 43 satisfies Axiom
shape

Proof. Suppose thaf > g is a permutation ifG, ). By definition, the two first steps
of f andg are different. By the N-axiomksandSelf, the length of the rewriting patfi
is 2. Axiom shapefollows. O

Definition 43 exports from axiomatic rewriting systems to axiomatic nesting systems
the definitions of standardization preordes and Levy equivalence relatios in Sec-

tion 1.5, as well as (thanks to Lemma 44) the definitions of extraction and projection in
Section 2.5. We prove

Lemma 45 (cube lemma)Suppose that/, U) is a multi-redex in an axiomatic nest-
ing system G, [—], =%, 1). Then, every two complete developmehtmnd g of (M, U)
are Lévy equivalent.

Proof. By the N-axiomsFinite and Compat, the complete developments Q¥/,U)
ordered by prefix, define a finitely branching tree. The tree is thus finite dnigs
lemma and N-axiontinDev. We proceed by induction on the length of the longest
path of that tree, called the “depth” M, U). Suppose that the lemma is established
for every multi-redex of depth less than and let(M, U) be a multi-redex of depth
n + 1. Let f andg be two complete developments(@#/, U). If one of the two pathg

or g is empty, then the sdf’ is empty, and thus the two complete developmehts
andg are empty: it follows thatf = g. Otherwise, the two pathg and g factor as

f =u-f andg = v - ¢ where the redexes andv are elements of the multi-
redex(M,U), the pathf’ is a complete development ¢/, U)[u], and the patly’

is a complete development 0§/, U)[v]. We proceed by case analysis. Either v or

u # v. In the first case, both path® andg’ are complete developments of the multi-
redex(M,U)[u] = (M,U)[v]; the equivalencg’ = ¢' follows from our induction
hypothesis applied to the multi-redéx/, U)[«], and we conclude that = g. In the
second case, when# v, it follows from N-axiomPerm that there exist two complete
developments,, of u[v] andh, of v[u], such that the paths - b, andu - h, are
coinitial and cofinal, and induce the same residual reldtionh,] = [v - h,]. Leth

be any complete development of the multi-red@X, U)[u - h,] = (M, U)[v - hy,].
By definition of a complete development, the path- 4 is a complete development
of (M,U)[u], and the patth,, - h is a complete development 61/, U)[v]. The two
equivalence relations, - h = f' andh,, - h = ¢’ follow from our induction hypothesis
applied to the multi-redexds\/, U)[u] and(M, U)[v]. We conclude thaf = g by the
series of equivalence:

f=u-f'=u-hy-h=v-hy,-h=v-g =y



O

Lemma 46 Suppose that the pathis a complete development of a multi-redéx, U)
in an axiomatic nesting systef@, [-], <,1). Suppose that a redexis element ol
and satisfies-(v < u) for every redex in the setU — {u}. Then, the redex is
extractible from the patlf.

Proof. By induction on the length of the complete developmgnThe pathf is not
empty. It thus factors ag = w - g, wherew : M — P is a redex ofU/, andg is a
complete development ¢/, U)[w]. The lemma is obvious whein = w. Otherwise,
by hypothesisy 1 w and—(w < u). By N-axioml, the redex: has a unique residual
residual after reduction of the redex Let us call this redex’. Letv’ denote any redex
in (N,U’') = (M,U)[w] different from the redex.’. We prove that-(v' < u'). By
definition of the redex’, there exists a redexin U, such thatv[w]v'. Obviously, the
redexv is different from the redex because:’ is the unique residual of the redex
afterw. It follows from hypothesis o that—(v < u). We apply the N-axioml b.
to =(v = u) and—=(w =< wu) to deduce that:(v' < «'). We have just proved that
(v < ') for any redexy’ in U’ — {u'}. Our induction hypothesis implies then that
the redex:’ is extractible from the complete developmerdf (N, U’).

To summarize, we know that 1 w, that—(w < u), and that the unique residual
of u afterw, denotedu’, is extractible from the path. We claim that it follows from
this that the redex: is extractible from the pathv - g. Indeed, by N-axionPerm,
there exists a complete developmenptof the multi-redex M, {u})[v] and a complete
development,, of the multi-redex M, {w})[«], such that the paths h,, andv-h,, are
coinitial, cofinal, and induce the same residual relafienh,,] = [v - h,]. Moreover,
h, = u' by N-axiomsl andSelf. By definition,w - v’ > u - hy,. It follows that the
redexu is extractible from the patli = w - ¢g. This concludes our proof by induction.

|

Lemma 47 Supposethaf : M —» N is a complete development of a multi-redéx, U)
in an axiomatic nesting systetg, [-], <, 7). Then, every path more standard thin
is a complete development(@¥’, U).

Proof. Suppose that a complete development/af, U) factors as
MLy p Ly By N

and thatf > g¢. We show that the patlf; - g - f> is also a complete development
of (M, U). By definition of a complete development, we may suppose without loss of
generality that the patfy is empty. By definition of>, the pathg’ andg are two cofinal
complete development of a multi-redeX, {u,v}), and factor ag = v-u' andg = u-

h, where—(v < u), the redex:’ is the unique residual of afterv andh,, is a complete
development of the residuals ofafterw. By definition of a complete development of
(M,U), one ancestor of’ beforeu is element ofU. By the N-axiomAncestor, this
ancestor is unique, and we already have one candidate: the #edéx conclude that
the redexv is element ofU. By definition of>, the rewriting pathg andg induce the
same residual relatidfy] = [¢]. We conclude thaf; - g - f» is a complete development
of the multi-redex M, U). O
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Lemma 48 Suppose that the rewriting path: M —» N is a complete development
of a multi-redex M, U) in the axiomatic nesting syste@, [—], <, 1). Then,

— every redex extractible from the patlf is element ot/
— every projection of the patfi by extraction of a redex is a complete development
of the multi-redexX M, U)[u].

Proof. Immediate consequence of Lemma 47. O

Theorem 5 By Definition 43, every axiomatic nesting systgm[—], <, 1) defines an
axiomatic rewriting syster(g, ).

Proof. We establish that the 2-dimensional transition systém>) satisgies the nine
axioms of Section 2.

Axiom 1. Axiom shapeis established in Lemma 44,

Axiom 2. Axiom ancestorfollows from N-axiomAncestorand Lemma 45,

Axiom 3. We prove Axiomreversibility . Suppose thaf > g > h. By definition oft>,
there exists five redexes v, w,u’,v’ and a patth’ such thatf = - v’ andg = v - v’
andh = w - k', andu 1 v andv t w and—(u < v) and—(v < w). By definition of
f > g, the redexu’ is the complete development of the residuals: @ffter v, thus a
fortiori a residual ofu afterv. By definition ofg > h, the redex.’ is a residual ofw
afterv. The equalityu = w follows from N-axiomAncestor. Thus,h' is a complete de-
velopment of the residuals ofafteru = w. But, by definition off > g and N-axiom,
the redexy’ is the unique residual af afteru. Thus,h’ = v' and we conclude Axiom
reversibility with the equalityh = u - h' =u-v' = f.

Axiom 4. We prove Axiomirreversibility . Suppose thaf » g andg — h. By defini-
tion of f > g, the pathg andg are complete developments of a multi-redéx, {u,v})
with, say, the pathg andg starting by reducing andu respectively. The nesting rela-
tion u < v follows easily fromf » g. By Lemma 47, and our hypothesis that> h,
the pathh is a complete development 0¥/, {u, v}). We prove thah starts by reducing
the redexu. By definition ofg = h, there exists a sequence

g=hy = hy = - by = hpe1 = h

of complete development ¢/, {u,v}) and an indext < i < n such thath; starts
by reducing the redex, andh;,, starts by reducing the redex This means thak;
and h;yq factor ash; = w-w - h' andh;y1 = v - hy - b/, whereu - w > v - hy.
This contradicts: < v. We conclude that the pathstarts by reducing. Obviously,
the complete developmenfsandh are cofinal and induce the same residual relation
[f] = [R]. The relationf » h follows from that andu < w». This proves Axiom
irreversibility .
Axiom 5. We prove Axiomcube Among its hypothesis, we have that v’ > u -
vy - - - v, and that the redew,,; is residual of the redew after the path: - vy - - - v,,.
By definition ofv - v’ > w - vy -- - v, the redexw,,4 is also residual ofv after the
pathv - u'. By N-axiomSelf, the redexes, v, w are pairwise compatible and different.
Thus, the paif M, {u,v,w}) defines a multi-redex.

We prove that-(u < w) and—(v < w). The first relation follows from the hypoth-
esis that: - wy > w - h,. The second relation is established by case analysis, depending
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on whetheru < v or =(u < v). In the first case, the relation(v < w) holds by
transitivity of <, because~(u < w). In the second case, observe that the permutation
v-u' > wu- v -, IS reversible. We write it - ' > w - v. The relation—(v; < wy)
follows from the hypothesis that, - wy > w; - hy. By =(u < v) and—(uv < w), and
N-axiomll a. the relation-(v < w) follows from—(v; < wy).

We have just proved thai(u < w) and—(v < w). By Lemma 46, the redex is
extractible from the two complete developments)’ - w,, 1 andu - vy - - - vy, - Wy 1 Of
(M, {u,v,w}). In particular, there exists a redex and two path$,, andh,, forming
permutations: - wy,4+1 > w' - hy andv-w' > w - h,. This proves half of Axiontube

There remains to prove that the pafhs- h,, andh, - hy - - - h,, are Levy equiv-
alent. The two paths are projections by extractiomadf the complete developments
v-u' - wpypq @andu - vy - vy s wpg of (M, {u,v,w}). The Levy equivalence follows
from Lemma 48. This concludes the proof of Axiauabe
Axiom 6. We prove Axiomenclave We recall its hypothesis: the irreversible permu-
tationv - u' » w - vy ---v, and the permutation’ - w,4; > w' - h, . The relations
u 1 vandu < v andu’ T w' and—(u' < w') follow from this. By N-axiomlll , the
redexu : M — N does not create the redex. Thus, there exists a redex outgoing
from M with residualw’ afteru. This redex is unique by N-axiomincestor. We call
it w.

By definition ofv - w' > u - vy - - - vy, the residual relatiow[v - u'Jwy,+1 implies
thatw[v - vy - - - v, Jw,q. It follows from N-axiomSelfthat the three redexes v, w
are pairwise different and compatible, thus define a multi-rédéx{u, v, w}).

We prove that-(u < w) and—=(v < w). The first relation follows from N-
axiom Il a. applied to the relations(v < u) and—(u’ < w'). The second relation
follows from transitivity of< and—(u < w) andu < v.

By Lemma 486, it follows that the redex is extractible from the complete develop-
mentsv-u'-wp41 andu-vy - - - vy -wp4q Of the multi-redex M, {u, v, w}). Equivalently,
both paths - v’ andw - vy - - - v,, drag the redexv,, 1 to the redexv. This concludes
the proof of Axiomenclave
Axiom 7. We prove Axiomstability. By definition ofu - v' > v - u' > u - v/, the two
redexes, : M — P andv : M — @ are compatible, and disjoint. By N-axioi ,
either the redexv; is not created by, or the redexv; is not created by.

Suppose for instance that is not created by. In that case, there exists a redex
such thatw[v]ws. Consequently, the redeix - is residual ofw after the path - «'. By
definition ofu - v’ > v - 4/, the redexw;, is also residual ofv afteru - v'. Thus, there
exists a residuab) of w afteru, such thatw} [v'Jw;2. The equalityw; = w} follows
from w; [v'|w;2 and N-axiomAncestor. We conclude thaw, is not created by, and
residual ofw afteru. The case whem, is not created by, is symmetric.

By N-axiomll a. andv[uv’, w[u]w;, the relation-(v < w) follows from —(v" <
wy) and—(u < v). The relation-(u < w) holds for symmetric reasons. Axiostabil-
ity follows easily.

Axiom 8. We prove Axiomreversible-stability. By Axiom stability, which was es-
tablished above, applied to the hypothesis of Axi@wversible-stability, there exists a
redexw such that

— u 1w, ~(u < w), andw, is the unique residual ab afterv,
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— v 1w, =(v X w), andws is the unique residual ab afteru.

We prove that-(w < u) and—(w =< wv). Suppose for instance that < u. By
N-axiom Il a. andu[v]u; andw]v]ws, the relationw, < wuy follows from this and
—(v <X w). This contradicts definition of2 - w12 > u; - wi2. Thus,—(w =< u), and
symmetrically—(w < v). Axiom reversible-stability follows from Lemma 46 applied
alternatively to extract the redexfrom the complete developmeat: v; - u15, and the
redexv from the complete developmeat: us - vis.

Axiom 9. We prove Axiomtermination using an argument found in [20]. Suppose
thath, is a complete development of a multi-redgi, U). By N-axiomFinDev and
Lemma 48, there does not exist any infinite sequence of extraction:

Py Ny Pz Naws - Nz b N higr

where, for every > 1, the pathh;, ; is a projection of the path; by extraction of the
redexu;. Now, we prove that there does not exist any infinite sequence

fl \(u1 f2 \nm \lui71 fz \tuz fi+1--- (24)

starting from a patty; : M; —» N. We proceed by induction on the length fif
Clearly, the property holds whefi = id s, . From now on, we suppose that the pgth
factors asf; = u - g1 composed of a redex and a patly; i of length strictly smaller
than the length off;. Consider any infinite sequence of the form (24). We prove that,
for every index > 1, the pathf; factors asf; = h; - g4(;) where

— h; is a complete development of the multi-rede{;, U;) defined as:
(M;,U;) = (M, ufur - - -ui—a]) = (My, {up)[ua] - - [ui—]
— ¢(1) isan indexl < ¢(7) < 7 defining a sequence of extraction starting frgm

gl \Wl 92 \IUZ st \qu(i)_z g(ﬁ(l)*l \”Jd)(i)—l g¢(l)
for a series of redexas, ..., vy(i)—1-

Suppose that the property holds for a given index 1, and let us prove it for the next
indexi + 1. Consider the patlf; = h; - g4(;) and the redex;. Either the redex; is
extractible fromh;, or there exists a redey; ;) extractible fromg; and dragged ta;
by the pathh;. In the first case, we defing(s + 1) as¢(i), and conclude that the path
fir1 factors asfiy1 = hiy1 - gs(i+1), Whereh,y is a projection ofh; by extraction
of u;; here, by Lemma 48, the path,; is a complete development 08/;, U;)[u;] =
(M;41,U;4+1) becausé, is a complete development @8/;, U;). In the second case, we
defineg(i+1) as¢(i)+1, and observe that the path,, factors asfi 1 = hit1-gg@i+1),
whereh; - vy N, hit1 andgg) Newgciy 9o(i+1); here, by Lemma 48, the path,

is a complete development of the multi-reded;, {u;} U U;)[u;] = (M;y1,Uit1)
becausé:; - vy(;) is a complete development of the multi-reded;, {u;} U U;). We
conclude that the factorization property holds, for every index1.
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The end of the proof follows easily. By induction hypothesis applied,tthere
exists an indexi > 1 such thatp(j + i) = ¢(j), for every indexi < j. Thus, the
infinite sequence (24) induces an infinite sequence

h’j \lui hj+1 \tuj+1 s \(uJ'Jrifl h’j+i \(Uj+i hj+i+1 s
from the complete developmeny of (A4;,U;). This contradicts a preliminary result
deduced from N-axionfrinDev. It follows that there exists no infinite sequence of the

form (24) starting fromf. This concludes our reasoning by induction, and establishes
Axiom termination. O

7 Optional Hypothesis on Standardization

7.1 Epimorphisms wrt. =

In Lemma 17 of Section 3.1, we establish that every path is epi (=left-cancellable) in the
quotient categor@-cat(G, t>)/ ~. The same epiness property modeddnstead of~
has been established in [24, 18, 6] for thealculus and any (left-linear) term rewriting
system. Quite interestingly, the redexand Levy equivalence

M-53N%P = M-S N3P

in the axiomatic rewriting system

u P U1
<
v-uy »u

M v——> N

V-Uus U
<
u P u2

illustrate that the epiness property modal@oes not generalize to axiomatic rewriting
systems. However, an additional hypothesis may be addéd,arn) to ensure epiness
of morphisms in the catego@cat(G, >)/=.

Optional hypothesis (descendant)Two redexes:’ andu” are equal when they are
involved in permutations - v’ > « - f andv - u” > u - g, whereu, v are redexes and
f, g are paths.

Diagrammatically,

M M
w u

v v

Q = P and Q' = P = o' =u"
¥ g

N N’
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Obviously, hypothesislescendantholds in every axiomatic rewriting system derived
from an axiomatic nesting system, see Definition 43. Thus, Lemma 49 generalizes the
property of epiness modulz established in [24, 18, 6] for th&-calculus and term
rewriting systems.

Lemma 49 (epi wrt. =) Suppose thaf : M —» P andg;,g» : P —» N are
three paths in an axiomatic rewriting systég t>) and that(g, ) satisfies hypothesis
descendantThen,

f-o=f92 = g=9

Proof. By induction on the length of the standard pattof f - g; (and of f - ¢5.)
Let u be the first redex computed in We conclude by induction hypothesis when
u is extractible fromf. Otherwise, there exist a redex extractible fromg,; and a
redexv, extractible fromy., such thatf dragsv; andwv, to the redex:. By hypothesis
descendant the two redexes; andwv, are the same redex We write f/, hy andh,
for arbitrary results of the extractions- v N\, f' andg; N\ h1 andgs N\ ho.
Equivalencef’ - hy = f’ - hy follows from Lemma 12 greservation of extraction), and
definition of u as the first redex of a standard pathfof g, and f - go. Equivalence
h1 = he follows from this equivalence and our induction hypothesis. The series of
equivalence

g1 Ev'hlEU'thgg

concludes the proof by induction. O

7.2 Monomorphisms wrt. ~

A well-known example in [24] shows that-rewriting paths are not necessarily mono
(=right-cancellable) modulo&vy equivalence=. The example is thg-redexw in the
Lévy permutation equivalence

I(Ia) = Ia % a = I(Ia) % Ia % a

The example may be adapted to show thaewriting paths are not necessarily mono
modulo~-equivalence in tha-calculus equipped with thergument-ordeon 3-redexes,
in the following way:

Az.(My.y)z)a - (M\y.y)a —= a O Az.(My.y)z)a —= (A\z.2)a - a

In contrast, we show that rewriting paths are mono moduio every axiomatic rewrit-
ing system satisfying the additional propergyersible-shape It follows that monoic-
ity modulo ~ holds in almost every rewriting system, in particular in thealculus
equipped with theéree-orderor theleft-orderon 3-redexes, as well as on Petri nets and
term rewriting systems.

Optional hypothesis (reversible shape)Two redexes andv’ are different when they
are involved in a reversible permutatian v  u' - v'.
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Lemma 50 (epi-mono wrt.~) Suppose thaf : M —» P andg;,¢9 : P —» @
andh : Q —» N are four paths in an axiomatic rewriting systeig, ) satisfying
hypothesiseversible-shapeThen,

froo-h=f-g2-h = g1 ~g

Proof. Immediate consequence of Lemma 15 for right-cancellation and Lemma 17 for
left-cancellation. O

7.3 A simpler structure of starts

The structure of startglescribed in Lemma 16 (Section 3.1) appears to be surprisingly
more complicated than theructure of stopslescribed in Lemma 15. However, a much
simpler characterization of starts is possible in any axiomatic rewriting sy&fem)
satisfying the additional hypothesisversible-cubeformulated below. The new char-
acterization of starts appears in Lemma 51. Note that the property is satisfied by the
A-calculus and more generally by any axiomatic rewriting system derived from an ax-
iomatic nesting system. On the other hand, it is not satisfied by the axiomatic rewriting
system defined on order sequentializations, and defined at the endof Section 8.

Optional hypothesis (reversible cube)We ask that every diagram

v12

whereu, v, uy,v; andw, wy, w2, us, v are redexes forming the reversible permuta-
tions

veup $uug u-wy O w - us v1 - wia O Wi - V12

may be completed as a diagram

v2 v2
\r\ & wz/
/
.
U2 & <& ur < u12 U2 & U12
{ “Hg
wi & 2
v N
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wherews, vs, u12 are three redexes forming reversible permutations

U'w2<>w'U2 U1'1U12<>1U2'U12 U2'U12<>U2'U12

Lemma 51 (simpler structure of starts) Suppose that; - - - u,, : M —» N isapath
in an axiomatic rewriting systert;, t>) satisfying hypothesisversible-cubeThen, a
redexu : M — P starts the pathu; - - -u,, : M —» N if and only there exists an
index1 < i < n and a pathv; - - -v;_1 such that the path - - - u;_; followed by the
redexu; permutes reversibly to the redeXollowed by the pathy; - - - v;_1.

Proof. Suppose that a path followed by a redex permutes reversibly to a redeix
followed by a pathy. Hypothesigeversible-cubeimplies that for every patlf’ ~ f,
there exists a path’ ~ ¢ such that the patlf’ followed by the redex permutes
reversibly to the redex followed by the pathy’. The lemma follows immediately from
this, and Lemma 16. O

8 Examples and Open Problems

ASYNCHRONOUS TRANSITION SYSTEMS Asynchronous transition systems extend
both non-deterministic transition systems, and Mazurkiewicz trace languages. They
were introduced independently in [4] and [39], see also [33].

An asynchronous transition systéfnis a quintuplel’ = (S, i, E, I, Tran) where

— S is a set ofstateswith initial state1,

— FEis a set ofevents

— Tran C S x L x S is thetransition relation

— I C E x Eis an irreflexive, symmetric relation called tirelependence relation

Every asynchronous transition system is supposed to satisfy four axioms:
1. parsimony¥e € E, 3(s,s') € S x S, (s,e, s') € Tran,
2. determinacy: V(s,e,s'),(s,e,s") € Tran, s’ =s",
3. independence: V(s, e1, s1), (s, ez, s2) € Tran,
erles = 3s',(s1,es,s’) € Tran and(sz, e1,s’) € Tran
4. together: V(s,es,s2),(s2,€1,s’) € Tran,

erles = s, (s,er,s;) € Tran and(sy,es, s') € Tran

Every asynchronous transition syst@hdefines an axiomatic rewriting systégiy, >
), as follows:

— the graphgr has states as vertices and transitiong, s') as arrows,
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— two pathsf andg are related ag > g, precisely when there exist four transitions
(s,e1,81), (s,€2,82), (s1,€2,58"), (s2,€e1,s") in Tran, such that
° f = (87627 82) ) (827 61,81),
® g=(s,er,s1) (s1,€2,5"),
¢ the two eventg; ande, are independent; Ie,.

We check that the standardization axioms hol{Jg, 7). Axiom shapefollows from
anti-reflexivity of the independence relation. Observe that every permutation g

is reversible: it coexists with a permutatign>r f. The three Axiomsrreversibility ,
enclaveandtermination follow from this, as well as the equivalence between Axiom
stability and Axiomreversible-stability. We establish now the four Axionancestor,
reversibility , cube andreversible-stability. The property (2) ofleterminacy has two
remarkable consequences in every asynchronous transition system

fOrg and fOrh = g=h.
fOrgdrh = f=h

The two Axiomsancestorandreversibility follow from the first and second assertions,
respectively. By definition of the permutation relatist, the three events, , e-, e3 are
pairwise independent:

61[62 62]63 61]63.

in every diagram

€2 e
—_—> 5 2
T 52 s —— > 8o
e1 o T— o lel or ﬁl ST eL O el
51 2 > 512 S ea—> S12

513 ez 5123 513 ™ 5123

So, it follows from the properties (2) and (4) déterminacy togetherwith the prop-
erties of the asynchronous transition syst€nthat the two diagrams above may be
completed as:

53 523 €2

53 523
T [£:1
\ e
S eo—> S9
e1 Or e¢1 ST eil ST er e Sr e1
S1 e2—> 519
/S
e or \6\
513 5123
513 5123 €2
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Axioms cube andreversible-stability follow immediately. It is also nearly immedi-
ate that(Gr, >r) enjoys the additional hypothesi#escendant reversible-shapeand
reversible-cubeformulated in Section 7.

Remark: we have just proved the axiomatics (and the additional hypothesis) without
ever using properties (1) and (3) of the asynchronous transition system

Remark: the standardization theorem is not really informati&in >r) because ev-

ery permutation being reversible, all paths are standard. However, the axiomatics itself
ensures that every asynchronous system satisfies the stability theorem stated in [30]
which describes the structure of its successful runs.

PETRI NETS. The theory of Petri nets illustrates nicely the notion of asynchronous
transition system. A Petri net is a quintugée= (C, j, F, pre, posh where

— C'is a set oftonditions

— j is a particular marking oV, called thenitial marking, where amarkingof NV is
defined as a multi-set of conditions,

— F'is a set offirings,

— pre, postare two functions associating to every firing F' the nonempty markings
pre(e) andposte), called respectively thpre-conditionandpost-conditiorof e.

An asynchronous transition systéfn = (S, i, E, I, Tran) is associated to every Petri
netN in the following way, see [33]:

— S'is the set of markings a¥,

— i isthe markingj € S,

— Eis the setF’ of firings,

— Tran is the set of triplegp, e, ¢) such thap = py W pre(e) andq = py W poste)
for a markingpy, whered is the multi-set addition.

— I relates two firings:1, es € F precisely wherpre(e;) N pre(ez) andposte;) N
poste;) are empty multi-sets.

The axiomatic rewriting systerfGy, > ) associated to the asynchronous transition
systeml’y may be described directly, as follows. Its transition sysfayrhas the mark-
ings of N as vertices, and the triples

(pO & pl’e(e), €, Do W pos(e)) = (p7 €, q)

as edgep — ¢. The permutation relation  relates two paths-v' > v-u’ precisely
when:

1. wandv are edges = (p, e1,p1) andv = (p, e2,p2),
2. v/ andv’ are edges’ = (p2,e1,p’) andv’ = (p1,e2,p"),
3. pre(er) N pre(es) andposte; ) N pos{es) are empty multi-sets.

BuBBLE SORT. The standardization procedure may be viewed as a generalization of
the bubble sort algorithm, in which the order is not giggobally butlocally. DefineG
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as the graph with a unique vert@X and, for every natural numbérc N, an edgdi] :
M — M. Let> be the least relation on paths such that

i1 - [é > [a] - [7]

wheni < j. All the standardization axioms introduced in Section 2 are immediate on
(G, >) — except Axiomenclavewhich follows from the transitivity of the order on
natural numbers. The standardization theorenigof>) states that every sequence of
natural numbergji | - - - [jx] may be reordered by local permutations into an increasing
sequencéi] - - - [i,] — and that this reordering is unique, since all the permutations of
(G, >) are irreversible.

HIERARCHICAL TRANSITION SYSTEMS Here, we subsume the two previous examples
of asynchronous transition systems, and of bubble sort on natural numbers, into what
we call ahierarchical transition systenThe idea is to order events in an asynchronous
transition system (typically firings in a Petri net) with a precedence relatisatisfying
aweak transitivitycondition.

A hierarchical transition systens a quintuplel’ = (S, i, E, <, Tran) where

— Sis a set ofstateswith initial statez,

— FEis a set ofevents

— Tran C S x L x S is atransition relation

— < C E x Eis areflexive relation called th@ecedence relatian

The independence relatidnis defined as
ele’ < -(e=<e')and-(e <e) (25)
The strict precedence relatienis defined as
e<e < exeand-(e <e)
Every hierarchical transition system is supposed to satisfy three axioms:

1. determinacy: V(s, e, s'), (s,e,s"”) € Tran, s' =s",
2. independence:V(s, ea, s2), (s2,€1,s’) € Tran,

—(es <e1) = sy, (s,er,s1) € Tran and(sy, ez, s') € Tran
3. weak transitivity: V(e,e’,e") € E x E x E,
e<e <e = e<xe.

Hierarchical transition systems extend usual asynchronous transition systems, since ev-
ery asynchronous transition systéim= (S, i, E, I, Tran) may be seen as the hierarchi-
cal transition systenv (T') = (S, i, E, 2y (r), Tran) with precedence relatiogy ()
defined as:
V(e,e') € E x E, e <y e = -(ele)

Here, weak transitivity oKy (1 follows from symmetricity. Now, we associate to every
hierarchical transition systeffi = (5,4, E, <, Tran) the following AXRS(Gr, >7):
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— whose transition systefiy has states as vertices and transitiong, s’) as arrows,
— whose permutation relatios relates two pathg andg asf >r g, precisely
whenf = (s,es, s2) - (s2,€1,5'), g = (s,e1,51) - (51, ez, s") and the two events;

ande, satisfy—(es < ey1).

In particular: the permutatiofi > g is reversible iffe; Ie; and irreversible iffe; <
e2. We claim that(Gr, >7) is an axiomatic rewriting system. All the standardization
axioms hold in(Gr, > ) for the same reasons as in the case of asynchronous transition
systems — except for Axioranclave which follows from the weak transitivity of the
precedence relatiof.

This enables to state a standardization theorem for every hierarchical transition sys-
temT'. A particularly interesting case is when the precedence relatina partial or-
der. In that case, the standard path$&f, >) may be characterized as the sequences
of transition:

€1

en €n—1
51 52 T,

in which there exists no pair of indicds< i < j < n such thate; < e; (Hint: use
the characterization lemma, Lemma 19). Thus, the standardization theorem states that
every sequence of transitionsih

el €9 €n—1
81— s T 8y

may be reorganised, after a series of permutatispsinto such an ordered sequence,
and that this sequence is unique, modulo permutation of independent events.

We illustrate our point that weak transitivity ef is necessary to establish standard-
ization. Consider the pseudo hierarchical transition systemith one states, three
eventsa, b, ¢, and the following precedence relatieh

a =<b b <e¢ c R a

The relation= is not weakly transitive, and consequently, the uniqueness property fails:
the sequence

c b a
S§—S—> S8 —> S
may be standardized as any of the two transition paths
b c a c a b
§—r 8§ —8— 8 and §—rS8—>85—> 8
which are not equal modulo permutation of independent events (the independence rela-
tion is empty inT'.)

ERASING TRANSITION SYSTEMS We mention only briefly that it is possible to enrich
hierarchical transition systems with a notionevhsurebetween events. Start from a
hierarchical transition syste($, i, £, <, Tran) and equip it with a binary relatioR” on
events, called therasingrelation, chosen among the subrelations<ofThen, replace
property (2) of hierarchical transition systems, by the two axioms:

1. K-erasure: V(s, ez, s2), (s2,€e1,s') € Tran,

e1Kes and—(ex < e1) = (s,er,s’) € Tran
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2. K-permutation: V(s, es, $2), (82, €1,s’) € Tran,
—(e;Kes) and—(es < e;) = 3s1, (s,e1,s1) € Tran and(sy,es,s’) € Tran

This defines what we call agrasing transition systeffi = (5,1, E, <, K, Tran). The
definition of the AXxRS G, >7) associated t@" proceeds as in the case of hierarchical
transition system, except that permutations of the form

€2
D———D

are considered when Ke,. The standardization axioms hold(iér, ) for the same
reasons as in the hierarchical case.

TERM REWRITING SYSTEMS. The reader interested in term rewriting systems will find
an introduction to the subject in [21, 19, 2, 11] and a comprehensive study of standard-
ization in [35]. Here, we recall only that

1. aterm rewriting system is a pa¥ = (F, {p1, ..., pn}) WhereF is thesignature
of an algebra and evepy is a rewriting rule on this algebra.

2. arewriting rule p : L — R is a pair of open terms of the algebra such that every
variable inR also occurs i,

3. aredexin X' is a quadruplg M, o, p,o) where M is a term,o is an occurrence
of M, p is a rewriting ruleL. — R of the system and is a valuation of the
variables appearing ifi, such the terml/ decomposes a¥/ = C[Lo], for some
contextC[—], with unique holg—] at occurrence. Notation: we writeu : M —
N for N = C[Rol],.

4. If the variabler occursk > 1 times inL, every redew in a termo(z) corresponds
to k redexes, ..., vy, in the termM = C[Lo],. We say that. = (M, o, p, o) nests
each of the redexas; and that ineststhe redex linearly whenk = 1,

5. We say that two redexes: M — P andv : M — ( aredisjoint when their
occurrences i/ are non comparable w.r.t the prefix order.

6. arewriting ruleL. — R is left-linear when L does not contain two occurrences of
the same variable. In that case, the only possibility for a redex to nest another redex,
is to nest it linearly.

The transition syster@iy; of the rewriting systent’ has the term3/ of the algebra as
vertices and the redexas: M — N induced by the system as edges. The relation
on path inGs; is the least relation such that:

1.v-4 >x u-v' when the redexes = (M,01,p1,01) : M — P andv =
(M, 09, p2,09) : M — @ aredisjointand’ = (Q, 01, p1,01) andv’ = (P, 09, p2, 02),
2. v-u' >y u-fwhenu = (M,01,p1,01) : M — P nestv = (M, 01;0,p2,02) :
M — Q@ linearly, v’ = (Q,01,p1,01) : @ — N andf : P — N is the
complete developmeaot the copies of throughu (see [21, 18, 27, 22] for a formal
definition of complete developments and copies).
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In order to prove thatGs;, > »;) satisfies the standardization axioms, we mediate through
an axiomatic nesting systet@x, [-]x, <s,1Tx) and the ten N-axioms of Section 6.
Our diagrammatic standardization theorem 2 will generalize the results of [18, 6] to
possibly non-left-linear term rewriting systems.

The main point to clarify is: how shall the usual compatibility, nesting and residual
relations be extended from left-linear to general term rewriting systems? There is a
constraint: that the resulting axiomatic nesting systém, [—]x, <5, 1x) generates
the axiomatic rewriting systerfGy;, >5;) defined hereabove. The definition follows
immediately. Two coinitial redexes andv are compatible what we writeu 15 v,
when

— the redexes andwv are disjoint,
— or when the redex nests the redex linearly,
— or when the redex nests the redex linearly.

We define the relatiofi-] »,. Whenu andv are not compatible, the redexhas simply
no residual aftep (in particular,ufu] s is empty). When: andv are compatible, the
definition of the residuals af afterv proceeds as in left-linear rewriting systems:

— when the redexes andv : M — N are disjoint, or whem nestsv linearly, then
u= (M,o0q,p1,01) has the redex’ = (N, 01, p1, 01) with same occurrence iV
as residual.

— when the redex = (M, 0y,p2 = L — R,02) nests the redex linearly, then
the redexu has a residual’ afterv for each occurrence of the variabtdn R —
wherez is the variable substituted ib by the termos(x) containing the redex.

Finally, we writeu <5 v when the redex: nests the redex linearly. Obviously, the
axiomatic rewriting systeniGs;, I>5;) derives from the resulting axiomatic rewriting
system, by Definition 43. Moreover, each of the ten N-axioms are nearly immediate:
N-axiomsFinite, Compat, Ancestor, Self are obvious, while N-axiomBinDev and
Perm generalize the well-known finite development lemma for left-linear term rewrit-
ing systems, established in [18, 20, 3, 27]. The four remaining N-axlohs 11l and

IV are also immediate.

Remark: consider the teri( A, A) in the non left-linear rewriting systerh’:
F(z,z) — G(x) A— B
Intuitively, thereshouldbe a permutation:

A1 A2

F(A, A) F(B, A) F(B, B)
Fl lp (26)
G(A) 4 G(B)

oriented as followsA4, - A5 - FF =—> F'- A. However, in our presentation, we replace the
permutation by a critical pair (= a hole) between the two redéxgs, A) — G(A)
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andF(A,A) — F(B, A). This is one limit of our current axiomatic theory: we do
not know how to integrate permutations like (26) in our standardization framework.
The 2-categorical approach of Section 5 is likely to provide a solution, at least because
it replaces the Axionshapeby the more flexible notion of partial injectidn].

A-CALCULUS [TREE-NESTING ORDEHR. We have already established in Section 2, at
least informally, that the nine standardization axioms hold for Yagzlculus, and its
associated 2-dimensional transition Syst@m, I>i.e.). It is worth observing that the
axiomatic nesting systeti@, [—]x, <tree, T») Satisfies moreover the ten N-axioms of
Section 6. This follows on one part from traditional resultsferedexes and residuals
appearing in [24, 3], and on the other part, from elementary arguments on the dynamics
of B-reduction which establish together the N-axiomB , [l andlV . By Theorem 5,

this provides another way to prove th{gt,, >>+rec) satisfies the 2-dimensional axiomat-

ics of Section 2.

A-CALCULUS [LEFT ORDER. It is interesting to examine the reasons why the ax-
iomatic nesting system associated to Mealculus and its left-order . satisfies the
N-axioms formulated in Section 6. Six of the ten N-axioms do not mention the nesting
order, and were thus already discussed in the previous paragraph. The four remaining
axioms are N-axioms, Il , Il andlV. The two N-axioml andlV are easy to check.
N-axiom IV for instance follows from the fact that the order.s; is total, and thus,

that there exists no reversible permutations in the system. The two remaining N-axioms
Il andlll are less obvious to establish. However, both of them hold inherently for the
reason that in a-term P@Q, no computation irf) may induce (by creation or residual)
af-redex above tha-term P. This fundamental property of thecalculus is precisely

the reason for thieft-orientationof this calculus, discussed at length in the introduction

of this article.

In that specific case, the diagrammatic standardization theorem repeats the tradi-
tional leftmost-outermostandardization theorem established in [24, 20, 3]. Since there
exists no reversible permutation, the equivalence relationodulo reversible permu-
tation coincides with the equality. This explains why the standard gafia pathf is
uniquein that case — and not just uniqusodulo

A-CALCULUS [ARGUMENT ORDER]. In contrast to the two orders e, and=<er, this
particular order or3-redexes does not fall into the scope of our previous axiomatic
presented in [13] for the following reason. An axiom requires that wheneveptwo
redexesu and v have respective residualé andv’ after 3-reduction of a coinitial
B-redexw, then:

(U Zarg V' = U Zarg v) OF (W Sarg uwaNdw <o v). 27)

The axiom states that a redexmay only alter the relative positions of redexeandv
when the two redexes are under the redeX he argument-ordex,., does not satisfy
this property in general, typically when thferedexw : (Az.M)P substitutes its ar-
gumentP containing the3-redexv inside the argument of @-redexu in the function
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(Ax.M). This is illustrated by the three coinitiglredexes:, v andw:

()\w.w)(T(/\v.v)a) (/\vTv)a
()\w.(/\u.u)lu)((/\v.v)a) = (/\u.u)(j)\v.v)a)
(Aw.(Au.u)w)a (Au.u)a

It is not difficult to see that Property (27) is not satisfied, since:

— theg-redexes is not in the argument of the-redexw: thus,~(w <arg u).

— theg-redexw is not in the argument of the-redexu: thus,—(u <. v),

— afterB-contraction of the3-redexw, the residual’ of the 3-redexv appears in the
argument of the residual of the f-redexu: thus,u’ <., v'.

It took us a lot of time to realize after [13] that Property (27) can be weakened and
replaced by the N-axiorfl b. formulated in Section 6, without breaking the standard-
ization theorem. We recall that the N-axidhi. states that in the earlier situation:

(U Zarg V' = U Zarg V) OF W <ppp V.

In other words, it is possible for a redexabove a redex to position one of its residu-

alsv' under a redex not nested by the redex. This is precisely what happens in our
example. So, this weaker property and the nine other N-axioms are satisfied by the ax-
iomatic nesting systerntx, <are, [—]a, T2). Thus, contrary to what happened in [13],

our axiomatics does not discriminate between the three different partial ofgders

=<ieft and <4,z ON the f-redexes inA-terms. Consequently, the argument-ordgr,
induces a well-behaved standardization theorem ontb&lculus — just like the tree-
order=;,c and the left-order e .

A-CALCULUS [CALL-BY-VALUE]. A valueof the A-calculus is defined either as a vari-
able or as a\-term of the formAz.M . G. Plotkin introduces in [38] the call-by-value
A-calculus, whose uniqug,-reduction(Az.M)V — M[V/z] is the S-rule restricted

to value argument¥’. It is not difficult to show that the\,-calculus — interpreted as

an axiomatic nesting system — satisfies the ten N-axioms formulated in Section 6. The
resulting standardization theorem, which is non-trivial to prove directly on the syntax,
leads to Plotkin’s formalization of Landin’'s SECD machine, see [12] for instance.

EXPLICIT SUBSTITUTIONS. The usual3-reduction(Az.M)P — M[P/x] copies its
argumentP as many times as the variableoccurs inM. This is fine theoretically,

but inefficient if one wants to implemernit-reduction in a computer. Thus, in most
implementations of the\-calculus, the argumen® is not substituted, but stored in

a closureand applied only when necessary. Unfortunately, the alternative evaluation
mechanism complicates the task of checkingdtwectnes®f the implementation, by
translating it back to th&-calculus.
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Beta (Aa)b — a[b - id]

App (ab)[s] — a[s]b[s] Varld 1[id] - 1
Abs  (Aa)[s] = Aa[1-(so1)]) VarCons 1a.s] = a
Clos a[s][t] = a[s o] IdL idos—s
Map (a-s)ot —aft]- (sot) Shiftld toid—1

Ass (s1082)083 — s10(s2083) ShiftConsto(a-s)— s

Fig. 6. The 11 rules of the.o-calculus

So, theho-calculus was introduced in [1] to bridge thecalculus and its implemen-
tations. In the\o-calculus, substitutions aexplicit, they can be delayed and stored just
like closures. This enables to factorize many translations from abstract machines to the
A-calculus, see [15].

translation interpretation

Abstract Machine————— \o-calculus——— \-calculus

Formally, the Ao-calculus contains two classes of objects: terms and substitutions.
Terms are written in the de Bruijn notation.

terms a:= 1]|ab|a|als]
substitutions s ::= id |t|a-s|sot

Ten rules (called the-rules) describe how substitutions should be delayed, propagated,
composed and performed. An eleventh rule of the calculusitie rule, mimicks the
B-rule of theA-calculus, see Figure 6.

This makes the\o-calculus afiberedrewriting system with underlyinfgpasisthe
A-calculus. Ther-calculus is strongly normalizing and confluent. Thus, every (closed)
Ao-term may be interpreted as thetermo(a) obtained byr-normalization. The fiber
Fs indexed by the\-term M contains all\o-termsa interpreted ag(a) = M. Itis
possible to extend the interpretation from terms to computations, and to project every
Ao-rewriting patha — b to ag-rewriting patho (a) — o(b) (modulo equivalence:
though). Properties of the interpretation are studied thoroughly in [14, 9, 40, 28].

The A\o-calculus is kind of hybrid between deterministic and non-deterministic
rewriting systems. As a fibered system over fealculus, it satisfies many proper-
ties of conflict-free rewriting systems, like confluence. At the same time, with eleven
rules and eleven critical pairs (see Figure 7) Meecalculus is an elaborate instance
of a calculus with conflicts. Besides, to add some spice, its evaluation mechanism may
behave counter-intuitively, as witnessed by the author’s non-termination example of a
simply-typedAo-term, presented in [26].

For all these reasons, the-calculus has been our training partner since the early
days of the axiomatic theory. Many fundamental ideas of the theory (e.g. factorization,
stability) originate from the meticulous analysis of its evaluation mechanism. Of course,
like every term rewriting system, ther-calculus defines an axiomatic rewriting system.

As such, it satisfies the standardization theorem established in the article, as well as the
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App + Beta (Aa)[s](b[s]) er ((Ma)b)[s] Betg alb - id][s]
Clos + App (ab)lsot] = (ab)[s][H] 28 (als|Gs)IY
Clos + Abs Ma)sot] & (\a)[s][Y 2% (A1 so )
Clos + Varld 1[id o 5] s 1[id][s] Var{d 1[s]

Clos +VarCons 1[(a-s)ot] R 1[a - s][t] Vardgns alt]

Clos + Clos alslitot’] 9 als|[t] log als o t][t']
Ass + Map (a-s)o(tot’) & ((a-s)ot)ot’ Y% (a[t] - sot)ot
Ass + IdL ido(sot) 4 (idos)ot R sot

Ass + Shiftld to(idos) 4 (toid)jos M4 tos

Ass + ShiftCons to((a-s)ot) 4 (to(a-s))ot ShiftQons sot

Ass + Ass (sos)o(tot) 2 ((sos)ot)ot 23  (so(sot)) ot

Fig. 7. The 11 critical pairs of the.o-calculus

factorization and stability theorems established in later articles [29, 30]. We believe that
this series of structure theorems play the same regulating role fawtlvalculus as the
Church-Rosser property plays traditionnaly for thealculus. For instance, we were
able to formulate and establish in this way a normalization theorem for the needed
strategies of thao-calculus, see [28].

DAGs. The definition of a rewriting syster® on directed acyclic graphs (dags) may
be found in [8]. We interpret any dag rewriting systérnas the following axiomatic
rewriting system Gy, > 5,). The graphGs, has dags and redexes bfas vertices and
edges. Two pathg andg are related ag > x g in two cases only:

— the reversible casg: = v -u’' andg = u - v, whenu andv are different compatible
redexesy’ is the unique residual af afterv, andv’ is the unique residual af after
u.

— the irreversible casgf = v - v/ andg = u, whenu andv are different compatible
redexesy’ is the unique residual of afterv, andv does not have any residual after
v, Or equivalentlyyp is erased by:.

The nine standardization axioms are not too difficult to establistden ) in the
same way as for erasing transition systems, considered a few paragraphs above.

Remark: in the case of a non-erasing dag rewriting systeravery rewriting path is
standard. This indicates that our current axiomatic description of dag rewriting systems
is not really satisfactory. Obviously, standardization should consider redex occurrence
instead of simply redex erasure. We still do not know how to integrate such considera-
tions in our standardization theory, see the discussion [27]. One solution may be to relax
the notion of 2-dimensional normal form (=standard path) in a way similar to B. Hilken
when he relaxes the definition of 1-dimensional normal form, in order to characterize
the gn-long normal forms of simply-typed-calculus, see [16, 28] and the paragraph
below.
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A-CALCULUS [ETA-EXPANSION]. B. Hilken considers the following permutation in
simply-typedA-calculus withg-reduction andy-expansion, see [16]:

()\acA.fA_’B:UA)yA (28)

fA*)ByA fAHByA

In this way, B. Hilken characterizes ti##-long normal forms as tha-termsM such

that, for every rewriting pattf : M —» N, there exists a path : N —» M such
thatf-g: M —» M is equivalent tddys : M —» M modulo permutation. This is
one of the most interesting open problems of our Axiomatic Rewriting Theory: despite
much effort, we do not know yet how permutations like (28) should be integrated in our
diagrammatic theory.

ORDER SEQUENTIALIZATION. Here, we illustrate the fact that axiomatic rewriting sys-
temsstrictly generalize axiomatic nesting systems. We fix a’setand construct the
transition systeng x as follows:

— its vertices are the partial orders on the Xet

— its edges<; — <, are the quadruple&<y, a, b, <o) where(a, b) is a pair of in-
comparable elements in the partial ordéf, <), and the partial ordex is de-
fined as:

< = < U {(2E,y)€XXX | mglaandbgly}

The 2-dimensional transition systef@x,>x) is then defined as follows. Itsre-
versiblepermutationsf »x g relate two paths

(a,b)

<1 <o
(c,d)i > x l(c,d)
G=—————<3

id

whene <; a andb <, d. Thereversiblepermutation relatior x relates two paths

,b
<1 BN <2

(Cad)i <>X l(cad)

<g——mm =<
3 (e.d) >4

when neithec <; a andb <; d) nor (d <; a andb < ¢).
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It is easy to prove that the 2-dimensional transition systém, >y ) defines an
axiomatic rewriting system, for every s&t. The normal forms of this system are the
total orders onX . The interesting point is that the axiomatic rewriting systém, > x )
associated toX = {a,b,c} does not satisfy Axionreversible-cubeformulated in
Section 7.3 — and thus, cannot be expressed as an axiomatic nesting system. Indeed,
(Gx,>x) contains the diagram

b<e

)
\b,c\
() ——(wt—=(a < b)

(a,c) X (a,c) Ox (a,c)
¢ ! §
(a<e) (a,p)—> (a < b, ¢)
™~
/b,c/ ox (b,c)\
(a,b<c) (a:b) (a<b<c)

By Lemma 45 and 46 any such diagram may be completed as a reversible cube in an
axiomatic rewriting system associated to an axiomatic nesting system. However, this
diagram cannot be completed(iix, > x ).

9 Conclusion

Axiomatic Rewriting Theory is the latest attempt since Abstract Rewriting Theory [32,
17, 21] to describeniformlyall existing rewriting systems — from Petri nets to higher-
order rewriting systems. The theory uncovers a series of diagrammatic principles un-
derlying the syntactic mechanisms of computation, and reduces in this way the endemic
variety of syntax to a uniform geometry of causality. In about a decade, the theory has
bridged the gap with category theory and denotational semantics, and solved several
difficult problems of Rewriting Theory:

— a normalization theorem for needed strategies ilthealculus, a\-calculus with
explicit substitutions, has been formulated and established in [28],

— a factorization theorem separating functorially the useful part of a rewriting path
from the junk has been established in [29],

— an algebraic characterization of head-reductions in rewriting systems with critical
pairs has been formulated in [30]. A syntactic characterization of head-reductions
has been also formulated in the case ofXhecalculus [28].

This series of results demonstrates that a purely diagrammatic approach to Rewriting
Theory is possible and fruitful. It also opens a series of interesting research directions,
at the frontier of Rewriting Theory and Higher-Dimensional Categories, see for in-
stance [23] and [31]. More specifically, we would like to captpreperly the causal
principles underlying Rewriting Systems like thecalculus withj-reduction and;-
expansion, the non left-linear term rewriting systems, or the directed acyclic graph
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rewriting systems. We are inclined to think that the diagrammatic language has some-
thing singular and innovative to articulate on these traditional topics of Rewriting The-
ory.
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