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In this draft manuscript, we reduce the coherence theorem for braided monoidal categories

to the resolution of a word problem, and the construction of a category of fractions. The

technique explicates the combinatorial nature of that particular coherence theorem.

1. Introduction

Let � denote the category of braids and � any braided monoidal category. Let ���! "�$#%�'&
denote the category of strong braided monoidal functors from � to � and monoidal nat-

ural transformations between them. All definitions are recalled in section 5. The coher-

ence theorem for braided monoidal categories is usually stated as follows:

Theorem 1. The categories �(�� "�$#%�'& and � are equivalent.

We prove the coherence theorem in four independent steps.

To that purpose, we introduce the category )
— whose objects are binary trees of * , with leaves + and , ,
— whose morphisms are sequences of rewriting steps -. �/(#%0�#21�& , 34 5/(& , 67 5/(& , 89 �/(#%0:& , -:;�<
 �/4#�0:#=1�& ,

37;�<
 �/4& , 6>;�<� �/(& , 8.;�<
 5/(#�0:& , quotiented by the laws of braided monoidal categories.

1.1. First step

Consider a braided monoidal category � , and the category ?��(�� @)A#%�'& of strict braided

monoidal functors and monoidal natural transformations from ) to � . We prove that �
and ?��(�� @)A#%�'& are isomorphic. More precisely, we prove that the functor

B C�DFE ?����! G)A#=�'&IH7JK�
which associates to a strict natural transformation

L E  GMN#=M	O�#%M�P�&RQHFJS 5T$#UTVO!#WTXP�&
the morphism L

<
E M7 �,	&:HFJYTZ �,	&

in � , is reversible.

To every object [ in the category � , we associate a strict braided monoidal functor
B B [ D D

defined as follows:

B B [ D D  @+�&]\_^ B B [ D D  5,	&�\`[ B B [ D D  5/a*b0�&(\ B B [ D D  5/(&7* B B [ D D  "0:&
1



2

and B B [ D D  �-I&�\ - B B [ D D  G3�&]\`3 B B [ D D  �6�&�\_6 B B [ D D  8 &]\ 8
This defines a functor because the image of a commutative diagrams in ) is always com-

mutative in � . The functor is strict braided monoidal by construction.

To every morphism
� E [ HFJ�� in the category � , we associate a family of morphismsB B � D D

indexed by objects of ) , as follows:
B B � D D P \ id � B B � D D

< \
� B B � D D����
	 \ B B � D D�� * B B � D D�	

The family defines a natural transformation
B B � D D�E�B B [ D D HFJ B B � D D because the maps - , 3 , 6 , and

8 are supposed natural in � . The natural transformation
B B � D D

is monoidal by construction.

The map
B B C�D D

is functorial from � to ?��(�� G)A#=�'& and it is easy to see that it defines the

inverse of the evaluation functor
B CVD�E ?��(�� @)A#%�'&:H�JK� . We conclude.

1.2. Second step

We introduce the notion of contractible category. A category 
 is contractible when:

— there exists at most one morphism between two objects of 
 ,

— every morphism of 
 is reversible.

In other words, a category 
 is contractible when it is a preorder category and a groupoid.

Consider a contractible subcategory 
 of a category � , full on objects. Write /����
	��
� 0

for two objects / and 0 of � , when there exists a morphism / HFJ 0 in 
 . Write
� ���

���
� �

for two morphisms
� E / H�J 0 and � E 1AH7J�� when there exists two morphisms / HFJ 1

and 0 HFJ�� in 
 making the following diagram commute:

/ �
//

��

0

��1 �
// �

The relations � �
	!�
� and �"�

���
� are equivalence relations on objects and morphisms of � ,

respectively. We call orbit of an object / or morphism
�

its equivalence class wrt. �#�
	��
� or

� �
�$�

� . The quotient category �&%�
 is defined as follows:

— its objects are the orbits of objects,

— its morphisms 'SH7J�( are the orbits of maps,

— its identities and composition are induced from � .

The two categories � and �)%!
 are equivalent. Indeed, there exists a “projection” functor

M E � HFJ*�&%�

which maps every morphism

� E 'SH7J+( to its orbit, and an “embedding” functor

T E �)%!
 HFJ*�
depending on the choice, for every orbit wrt. � �

	!�
� , of an object in that class. Clearly, M�T \

id ,�- � , and there exists a natural transformation TVM QHFJ id , .
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1.3. Third step

Consider a braided monoidal category � , and the hom-category �(�� @)A#%�'& of strong

braided monoidal functors and monoidal natural transformations from ) to � . We prove

that the categories �(�� @)A#%�'& and ?��(�� @)A#%�'& are equivalent.

Define 
 as the subcategory of �(�� @)A#%�'& containing all reversible maps
L E  GMN#=M>O�#%M>P�& QH7J

 �T #WT O #UT P & such that
L
< \ id ��� < � . Every identity of ���! G)A#=�'& is element of 
 . The main

observation is that the category 
 is contractible. Indeed, once the equality
L
< \ id ��� < � is

fixed, the component morphisms
L P and

L ���
	
of the natural transformation

L
are uniquely

determined by the commutative diagrams

M7 5/(&7* M7 "0:& ����� ��� 	 �
//

	�
 � 	
�
��

M7 �/ *b0:&
	�
�� �

��
T  5/(&�* T  G0:&

� � � ��� 	 �
// T  5/Z* 0:&

^ ���
// M7 G+�&

	 �
��^

� �
// T  @+�&

Moreover, every identity of �(�� @)A#%�'& is element of 
 . We may therefore consider the cat-

egory �(�� G) #%�'& %!
 , which we know is equivalent to �(�� G) #%�'& .
We prove that the categories �(�� @)A#%�'& %�
 and ?��(�� G)A#=�'& are isomorphic. We need to

prove that for every strong monoidal functor  �T #WT O #WT P & from � to � , there exists a strict

monoidal functor M , and a map
L E M QH7J  5T$#UTVO!#WTXP�& in � . Consider a family of isomor-

phisms
L � E M � H�JYT �

L P9\_TXP L
< \ id � L � �
	 \_TVO� �/(#%0�&��  L � * L 	 &

indexed by objects of ) . Then, associate to every morphism
� E / H7J 0 in ) , the mor-

phism

MF � &4\ L ;�<	 �9T  � &�� L �
in � . A close look at the diagram shows that this defines a strict braided monoidal functor

M E ) HFJK� and a monoidal natural transformation
L E M QH7J T in � . We conclude.

1.4. Fourth step

After steps 1. 2. and 3. the proof of coherence reduces to the comparison of two “free

categories”:

— the “formal” braided monoidal category ) of * -trees and rewriting paths, quotiented

by the commutativities of braided monoidal categories,

— the “geometric” braided monoidal category � of braids.

This is the most interesting and difficult part of the proof, in fact the first and only time

combinatorics plays a role. We prove

1. that the subcategory of ) consisting only of - , 6 and 3 maps, and their inverses, is

contractible,
2. that the quotient category is isomorphic to the braid category � , and equivalent to )

through strong braided monoidal functors.

The first and second assertions are established in sections 3 and 4 respectively.
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1.5. Conclusion

The categories �(�� G) #%�'& and � are equivalent by steps 1. 2. and 3. and the categories

�(�� G)A#=�'& and ���! "�$#%�'& are equivalent by step 4. This proves theorem 1.

2. A word problem

Let � be the category

— whose objects are * -trees with leaves + and , ,
— whose morphisms are sequences of -. 5/(#�0:#21�& , 34 5/(& and 67 �/(& , quotiented by the monoidal

law (1) the commutativity laws (5) (6) and the additional commutativity triangles (2).

/Z*b0
� � 	

//
��� �

��

/��>*b0��� � �
��

/Z*b0��
� � 	��

// /��>*b0��
for

/
�
HFJY/��

0 �HFJ 0�� (1)

^ *_ �/Z*b0�& �
//

�
��

 �^�* /(&�* 0
� �
	

��/Z* 0 /Z*b0

/ *_ "0 * ^�& �
//

����	
��

 �/Z*b0�&F* ^
	

��/Z*b0 / *b0
(2)

Theorem 2. The category � verifies the three following properties:

— the category has pushouts,

— every morphism is epi,

— from every object / , there exists a morphism / HFJ 0 to a normal object 0 .

Proof. The proof appears in (Melliès, 2002). It is motivated by works of rewriters like

Lévy (Lévy, 1978; Huet and Lévy, 1979) and algebraists like Dehornoy (Dehornoy, 1998).

Definition 1. An object / in a category � is called normal when id
�

is the only morphism

outgoing from / .

3. Calculus of fractions

3.1. Definition

For every category � and class � of morphisms in � , there exists a universal solution to the

problem of “reversing” the morphisms in � . More explicitly, there exists a category � B � ;�< D
and a functor


�� E � HFJ � B � ;�< D
such that:

— the functor

��

maps every morphism of � to reversible morphism,

— if a functor M E � H7J � makes every morphism of � reversible, then M factors as

M \_T � 
 , � for a unique functor T E � B �I;�< D H7JK� .
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The class � is a calculus of left fraction in the category � , see (Gabriel and Zisman, 1967),

when

— � contains the identities of � ,

— � is closed under composition,

— each diagram � �� H [
�
H7J �

where ��� � may be completed into a commutative

diagram

[
�

//

�
��

�
�

��� �
// [ �

where ��� �

— each commutative diagram

[ � �
// [

�
//� // � where �	� �

may be completed into a commutative diagram

[
�

//� // � �
// � � where �
� �

The property of left fraction calculus enables an elegant definition of the category � B � ;�< D
and functor


 � E � HFJ*� B � ;�< D . The category � B � ;�< D is defined as follows.

Its objects are the objects of � , and its morphisms [ HFJ�� are the equivalence classes

of pairs  � #��>& of morphisms of �
[
�
HFJ
� �� H�� where �	� �

under the equivalence relation which identifies two pairs [
�
HFJ � �� H � and [ �H7J � � �� H

� when there exists a pair [
�
HFJ � � ���� H � and two morphisms

� � �
H7J � � �

� �� H � � forming

a commutative diagram

�

� �
��[

� 88ppppppppppppp

�
&&NNNNNNNNNNNNN

� // � � � ��
oo

�
ffNNNNNNNNNNNNN

�
xxppppppppppppp

� �

� �
OO where ��� �

3.2. Application

By theorem 2, the class � is a calculus of fraction in the category � . But we can prove a bit

more. A consequence of the pushout property, and definition of a normal object, is that

any two morphisms / HFJS^ and 0 HFJS^ to a normal object ^ are equal in � . So, consider

two morphisms in � B �I;�< D , represented as pairs in �
/
�
H7J'1 �� H`0 / �HFJ � �� H`0
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Any two morphisms 0 HFJ ^ and 1 HFJ ^ to a normal object ^ in � , make the following

diagram commute in � :

0
� �
��/

� 88qqqqqqqqqqqqq

�
&&MMMMMMMMMMMMM

� // ^ 0�
oo

�
ffMMMMMMMMMMMMM

�
xxqqqqqqqqqqqqq

�
� �
OO

We obtain

Theorem 3. The category � B � ;�< D is contractible.

4. From word problem to coherence theorem

In section 3 we have proved that the category � B � ;�< D consisting of -. �/(#%0�#21�& , 34 �/4&�67 �/(&
steps and their inverse, is contractible.

— In step 1. we prove that � B �I;�< D is a subcategory of ) , full on objects.

— In step 2. we prove that the category )�% � B � ;�< D is braided monoidal, and embeds in )
through strong braided monoidal functors,

— in step 3. we prove that the category )�% � B � ;�< D is isomorphic to the usual braid cate-

gory � .

4.1. First step

The two triangles (2) are commutative in ) , as in every monoidal category, see exercise

VII. � 1.1. in (Mac Lane, 1991). This ensures the existence of a functor � H�J ) . By defi-

nition, this functor induces a functor � B �I;�< D H7J ) . This functor is injective on objects.

It is also faithful for the obvious reason that � B �I;:< D is contractible. Thus, � B �I;�< D HFJ )
defines an embedding of the contractible category � B � ;�< D into ) . The embedding is full

on objects. This enables to consider the quotient category ) % � B � ;�< D .

4.2. Second step

The category ) % � B �I;�< D becomes strict monoidal with the following definition. Let
� E

/ HFJ 0 and � E 1 HFJ � be two morphisms of ) % � B �:;:< D represented by two morphisms� P E /FP HFJ 0(P and � P E 1	P H�J �7P in the category ) . Define the tensor product
� * � E

/ * 0 H�J 1 * � as the projection of the tensor product
� PV* � P E /FP�*`1	P H7J 0(PV* �7P and

the unit object ^ as the orbit of the unit in ) . Correctness follows from monoidality of *
in ) . Monoidality of * is not difficult to prove, and diagrams (5) (6) are obvious.

The category ) % � B �:;�< D is braided monoidal. Let / and 0 be two objects of the quotient

category ) % � B �I;�< D represented by two objects / P and 0 P in the category ) . Define the

braiding 89 5/(#�0:& E / * 0 HFJ 0 * / in the quotient category as the orbit of the braiding



7

89 �/�P�#�0(P�& E /FP]* 0�P . Correctness of the definition and naturality of 8 follow from naturality

of 8 in ) . Diagrams (7) (8) (9) follow from the definition of 8 in )�% � B � ;�< D .
Moreover,

— the “projection” functor M E ) H�J )�% � B �I;�< D is strict braided monoidal. Diagrams

(10) (11) are trivial, and diagram (12) follows from the definition of the braiding 8 in

) % � B �:;�< D .
— the “embedding” functor  5T #WT O #WT P & E � %�
 H�JK) is strong braided monoidal, with the

morphisms TXP E ^ HFJ T  �^�� & and TVO� �/(#%0�& E TZ 5/(&4* T  G0:& HFJ TZ �/ * 0:& determined

as morphisms of � . Diagrams (10) (11) hold because every maps are in � B �.;�< D , and

diagram (12) holds because of the definition of the braiding in ) % � B � ;�< D .

4.3. Third step

We prove that )�% � B �I;�< D and � are isomorphic categories. The objects of ) % � B � ;�< D are the

natural numbers. The morphisms of ) % � B �I;�< D are sequences of 67 �� #��X& and 6�;:<> �� #��X&
steps, modulo monoidality, and commutativity of the triangles induced by (8) (9):

� *�� *�� 	 � �
��
 � � �

//

�
� 	 � 
 � � �

��

� *�� *��

� *�� *�� 	 � �
� � � ��


// � *�� *��

� *�� *�� 	 � �
� 
 �)� �

//

	 � �
� 
 � �)�

��

� *�� *
�

� *�� *��

 � 	 � �

� � �
// � *�� *
�

(3)

We construct a strict monoidal functor from � B �I;�< D to � by interpreting each 8  �� #��X& by

the braiding 8��: �� #��X& E ����� HFJ������ in � consisting in permuting � braids over �
braids. The functor is full. The only difficult point to prove is that it is faithfull.

This reduces to proving that the hexagonal diagram generating equality of “braids” in

� commutes (already) in the category ) % � B � ;�< D :
� *�� *��	 � �

� 
 � �)�
wwooooooooooo �

� 	 � 
 � � �
''OOOOOOOOOOO

� *�� *��

 � 	 � �

� � �
��

� *�� *��
	 � �

� � � ��

��� *�� *��

	 � 
 � � � � � ''OOOOOOOOOOO
� *
� *��

� � 	 � �
� 
 �

wwooooooooooo

� *�� *
�

(4)

The diagram is a nice “geometric” consequence of the commutative triangles 3, and monoidal-

ity of ) % � B �:;�< D .
We conclude that ) % � B �:;�< D and the category � of braids are isomorphic.
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5. Appendix: definitions of braided monoidal categories, functors and natural

transformations

5.1. Monoidal category

A monoidal category � is a category with a bifunctor

* E � � � HFJ'�
which is associative up to a natural isomorphism

- E /Z*  G0 * 1�&�HFJS 5/Z* 0:&7* 1
equipped with an element ^ , which is a unit up to natural isomorphisms

3 E ^ * / HFJY/ 6 E /Z* ^ HFJY/
These maps must make Mac Lane’s famous “pentagon” commute

/ *_ "0A*_ @1V* ��&=& �
//

� � �
��

 5/Z* 0:&�*_ @1 * ��&
�

��/ *_ % G0 * 1�&7* ��& �
//  �/Z*_ "0A* 1�&=&7* � � ���

//  = �/Z*b0�&F* 1�&7* �
(5)

as well as the triangle:

/Z*  �^�*b0�& �
//

��� �
��

 5/Z* ^>&F* 0
	 �
	

��/Z* 0 /Z*b0
(6)

A monoidal category is strict when all - , 3 and 6 are identities.

5.2. Braided monoidal category

A braiding for a monoidal category � consists of a family of isomorphisms

8 � � 	 E /Z*b0 H7J'0 * /
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natural in / and 0 , which satisfy the commutativity

/Z* ^ 	
//

	
��

^ * /
�

��/ /
(7)

and makes both following hexagons commute:

/Z*  G0 * 1�& �
//

��� 	
��

 �/Z*b0�&F* 1 	
// 1�*  5/ * 0:&

�
��/Z*  1�*b0:& �

//  �/Z* 1�&F*b0 	 �
	
//  @1V* /(&�*b0

(8)

 �/Z*b0�&F* 1 ��� �
//

	 � �
��

/Z*  G0 * 1�& 	
//  "0 * 1�&F* /

��� �
��

 "0 * /(&F* 1 ��� �
// 0 *_ �/ * 1�&

	 � 	
// 0 *_ @1V* /(&

(9)

5.3. Monoidal functor

A monoidal functor  @MN#%M
O�#=M>P�& E � HFJK� � between monoidal categories � and � � :
— an ordinary functor M E � HFJK� � ,
— for objects /(#%0 in � morphisms in � � :

M
O7 �/(#%0:& E M7 �/4&7*bMF "0:&:H7JKM7 5/ * 0:&
which are natural in / and 0 ,

— for the units ^ and ^�� , a morphism in � � :
M P E ^ HFJY^ �

making the diagrams commute:

M7 �/(&F*  @M7 "0:&F* M7 1�&%& � �
//

��� � � � � � � 	 � � �
��

 @M7 �/4&7*bMF "0:&%&�*bM7 1�&
� � � ��� 	 � � ��� � �

��M7 �/4&7*bMF "0A* 1�&
� ��� ��� 	!� � �

��

MF �/ *b0�&�* M7 1�&
��� � ��� 	�� � �

��M7 �/ *_ "0A* 1�&%& ��� � �
// M7 % 5/ * 0:&�* 1�&

(10)

MF "0:&F* ^��
	

//

��� 	 � � ���
��

M7 "0:&

M7 G0�&F*bM7 �^>& ��� � 	 � � �
// MF "0A* ^>&

��� 	 �
OO

^ ��*bMF "0:& �
//

��� � ��� 	 �
��

M7 "0:&

M7 �^>&F* M7 "0:& � ��� � � 	 �
// MF ^�*b0:&

��� � �
OO

(11)
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A monoidal functor
�

is said to be strong when M�P and all M	OF �/(#%0�& are isomorphisms, strict

when M P and all M O  �/4#�0:& are identities.

5.4. Braided monoidal functors

If � and � � are braided monoidal categories, a braided monoidal functor is a monoidal

functor  GMN#%M
O�#=M>P�& E � H7JK� � which commutes with the braidings 8 and 8 � in the follow-

ing sense:

M7 5/(&7* M7 "0:& 	 �
//

����� ��� 	 �
��

MF "0:&7* M7 �/(&
����� 	 � � �

��
M7 �/ *b0:& ��� 	 �

// M7 G0 * /(&

(12)

5.5. Monoidal natural transformations

A monoidal natural transformation
L E  GMN#%M O #%M P & QHFJ  �T #UT O #UT P & E � H�J � � between

two monoidal functors is a natural transformation between the underlying ordinary func-

tors
L E MaHFJ T making the diagrams

M7 5/(&7* M7 "0:& ����� ��� 	 �
//

	�
 � 	
�
��

M7 5/ * 0:&
	 
�� �

��TZ �/(&�* TZ "0:&
� ��� ��� 	 �

// TZ �/Z* 0:&

^�� �
�
// M�^

	��
��^��

� �
// T ^

(13)

commute in � � .


