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Reducibility of quasiperiodic cocycles in linear Lie
groups

C.Chavaudret

Abstract: Let G be a linear Lie group. We define the G-reducibility of a continuous or
discrete cocycle modulo N. We show that a GG-valued continuous or discrete cocycle which
is GL(n,C)-reducible is in fact G-reducible modulo 2 if G = GL(n,R), SL(n,R), Sp(n,R)
or O(n) and modulo 1 if G = U(n).

Introduction

Let G be a Lie subgroup of GL(n,C) and G its Lie algebra. Let T¢ = R4/Z¢ and
NT? =R4/(NZ)? for N € N\ {0}. Let us consider the equation

Vi e R,VO € T, %X(t, 6) = A(6+ tw)X(t,0) (1)

where A : T — G is continuous and w € R? is rationally independant. Let X : (¢,6) — X*(9)
be the associated continuous cocycle, i.e the map from R x T? to G satisfying (1) such
that for all # € T¢, X°(#) = Id. The terminology comes from the fact that X satisfies
the cocycle relation

Vi, s € R,VO € T X'5(0) = X0 + sw) X*(0) (2)
As X is continuous in the variable ¢, X*(#) remains in the connected component of the

identity for all ¢, 0, so we can suppose G is connected.

Definition: Let X be a G-valued continuous cocycle. We say that X is G-reducible
modulo N € N\ {0} if there exists Z : NT¢ — G continuous and B € G such that for all
t € R and 4 € T,

X'0)=Z(0 +tw) P Z(0) (3)
We say X is reducible if it is reducible modulo 1.

Remark: For a continuous cocycle, reducibility implies that for all 6,

0,Z(0) = BZ(0) — Z(0)A(0) (4)
where 0,Z(0) := £7(6 + tw)

lt=0"

We shall prove the following theorems for continuous cocycles before adapting them to
discrete cocycles:



Theorem 1 Let X be a continuous cocycle with values in GL(n,R); if it is GL(n,C)-
reducible, then it is GL(n,R)-reducible modulo 2.

Theorem 2 Let X be a G-valued continuous cocycle, where G 1is either the symplectic
group Sp(n,R)', the group SL(n,R) of matrices with determinant 1, the orthogonal group
O(n), or the unitary group U(n). Suppose X is GL(n,C)-reducible. Then it is G-reducible
modulo 2 if G = Sp(n,R), SL(n,R) or O(n) and modulo 1 if G = U(n).

Definition: Assume (w, 1) is rationally independant. A discrete G-valued cocycle is
amap X : Z x T? — @ such that for all n,m € Z and all § € T?,

X)) = X™(0 + mw) X™(0) (5)

Definition: A discrete cocycle X is G-reducible modulo N if there exists a continuous
Z : NT¢ — G and A € G such that

Vn € Z,¥0 € T, X™(0) = Z(0 + nw) ' A"Z(0)

This is equivalent to the fact that X'(0) = Z(0 +w) 1 AZ(0) for all 6. A discrete cocycle
is reducible if it is reducible modulo 1.

Theorems 1 and 2 also hold for discrete cocycles. Adapting their proofs to the discrete
case, one gets:

Theorem 3 Let X be a G-valued discrete cocycle with G in GL(n,R),SL(n,R), Sp(n,R),O(n)
or U(n), and assume it is GL(n,C)-reducible. Then X is G-reducible modulo xg with

[ 2 if G=GL(n,R),SL(n,R),G = Sp(n,R) or G =0O(n)
X6 =11 if G=U(n)

In [5], H.He and J.You have solved a conjecture from [4] showing that if w is diophan-
tine, if X, is the cocycle which is solution of

%Xt(e, A) = (AN) + F.(0,0) X6, \) (6)

where F, is sufficiently small and A(\) satisfies non-degeneracy conditions on an interval
A C R, then X, is GL(n,C)-reducible for almost all A € A.

Applying theorems 1 and 2 to this result, we get that if X*(0, \) is G-valued, with G
in GL(n,R),SL(n,R), Sp(n,R),0(n),U(n), then for almost all A € A, X*(6, ) is G-
reducible modulo 2 if G = GL(n,R), Sp(n,R), SL(n,R),O(n) and modulo 1 if G = U(n).
This completes R.Krikorian’s result (see [8]): let A(\) be a generic one-parameter family
taking its values in the Lie algebra of a compact semi-simple group G; then the system

(6) is G-reducible for almost every A modulo some integer xg depending only on G, and
X¢ = 1if G =U(n). Now we know that yo = 2 if G = O(n).

Tn this case, n is even



So, when G is real, there is a loss of periodicity. In the periodic case (d = 1), this is a
well-known phenomenon. However, it seems that there exists a large class of real cocycles
that are reducible in a subgroup of GL(n,R) without loss of periodicity. For instance, in
[7] (proposition 2.2.4), R. Krikorian has showed when G is a compact semi-simple group
that if a discrete cocycle X is G-reducible modulo m to a constant cocycle n — "B, then
there exists a subset S C G of Haar measure 1 such that if e® € S, then X is reducible
modulo 1. This tells us that loss of periodicity is quite rare, at least in the compact case.
We shall prove the following:

Proposition 1 If a continuous G-valued cocycle X, with G = GL(n,R), SL(n,R), Sp(n,R)
or O(n), is GL(n,C)-reducible to a cocycle t — e such that no eigenvalue of B is in
R + im(Z, w) \ {0}, then X is G-reducible.

There is a natural question: considering a generic one-parameter family of cocycles which
are solution of (6), where A(\) satisfies non-degeneracy conditions, is it true that for
almost all A such that the cocycle X, is reducible to a constant cocycle t — e'®*| no
eigenvalue of By is in R + im(Z¢,w) \ {0}?

If it were true, the already mentioned result of [5] and proposition 1 would imply G-
reducibility almost everywhere, without loss of periodicity, for generic one-parameter

families of cocycles of type (6).

Remark: All the results which we shall prove also hold in higher regularity classes:
defining "C"-reducibility" in the same way as reducibility, but with Z in C" and not
only continuous, it is easy to check that we get theorems 1, 2, 3 and proposition 1 with
"C"-reducibility" instead of "reducibility".

Sketch of the proof

We shall define notions of invariant subbundle and of Jordan subbundle as families
parametrized by T¢ and with values in the subspaces of C", satisfying a continuity con-
dition and some invariance properties. In order to prove theorem 1, we shall first study
the properties of the decomposition of C™ into Jordan subbundles given by the G L(n, C)-
reducibility of X to a cocycle t — e'; we shall decompose R" into two reducible invariant
subbundles, one of them, say W, modulo 2 and having a basis with real exponents, the
other, say W', modulo 1 and having a basis with no exponent in R + im(Z% w), and such
that the gap between the imaginary parts of two exponents cannot be in 2m(Z% w) (this
is called a non-resonance condition). This gives theorem 1 as a corollary, but it also fa-
cilitates the proof of theorem 2 for the orthogonal and the symplectic group, since it is
then easy to construct real global bases for the cocycle’s invariant subbundles, which are
respectively orthonormal and symplectic.

If in equation (3), no eigenvalue of B has its imaginary part in 7(Z% w) \ {0}, then
the first of these two subbundles, W, is trivial, so we can have real reducibility without
doubling the period, and consequently, we can also have G-reducibility without loss of
periodicity, if G = SL(n,R), Sp(n,R) or O(n), whence proposition 1.



In order to get theorem 2 for SL(n,R), we will just apply theorem 1, then show that
the determinant of Z is constant, so we can assume it equal to 1. Notice that no condition
on the exponents of the subbundles is used.

In the case where G = U(n), we shall start from the decomposition of C" into com-
plex Jordan subbundles with non-resonant exponents, and construct a global complex
orthonormal basis. As U(n) is not a real Lie group, we do not need to double the period.

To prove theorem 3, we can make exactly the same proof as for theorems 1 and 2,
simply adapting the first lemma to the discrete case, i.e considering integer translations
instead of continuous translations in the direction of w. The dynamics are not modified
by the fact that the time is discrete.

For a particular class of discrete cocycles, there is another way of proving G-reducibility:

Definition: A discrete cocycle X is called G-exponential if there exists a continuous
A:T¢ — G such that for all § € T, X'() = 4,

To prove theorem 3 for G-exponential cocycles, we can also construct a suspension of
X on a torus of greater dimension, taking its values in GG, using the function A from the
definition of a G-exponential cocycle. We will obtain a continuous cocycle over (w, 1),
which is possible since (w, 1) is assumed to be rationally independant. We then show that
if X is GL(n,R)-reducible, then so is its suspension. Using theorems 1 and 2, we obtain
G-reducibility for the suspension modulo 1 or 2. Restricting to integer time and to a
subtorus, we finally obtain G-reducibility for X modulo 1 or 2.

Notations

For a vector v € R", denote by Re v and Im v its real and imaginary parts. The
euclidean scalar product is denoted by (,) for a real vector space, and (, )¢ for a complex
vector space (we shall take it semilinear in the second variable); euclidean distance is
denoted by d(,). Also, we shall write M* for the adjoint of a matrix M; if M is real, M*

is simply the transpose of M. Matrix ( ;) _O[" ) is denoted by J. Finally, N* = N\ {0}.

1 GL(n,R)-reducibility

In this section, we shall assume that X is a real cocycle.

1.1 Preliminary lemmas

Lemma 1 1. Let w € R? rationally independant, 3 € R and N € N*. Suppose that
for any real sequence t; — oo,

tiw—0€ NT*=t;8— 0€ 2T (7)

Then there exists k € Z such that 3 = 2n(k, )
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2. Let w € R? such that (w, 1) is rationally independant and N € N*. Suppose that for
any integer sequence t; — 00,

tiw—0€ NT*=t;8— 0€ 2T (8)
Then there exists k € Z¢ such that 3 = 27 {k, %>

Proof: 1. It is enough to prove the assertion for N = 1: if it is true for N = 1 and
that for every sequence ¢;, tjw — 0 € NT? = t;8 — 0 € 27T, then ;5 — 0 € T¢ =
t;8 — 0 € 27T, and applying the case N = 1 with ¥ instead of w, we get 3 = 27 (k, %)
for some k € Z4.

First notice that (%,w) is rationally dependant, since the orbit of the translation in

the direction (2,w) is not dense in T4+ otherwise, there would exist a sequence (t;)
satisfying tj(%,w) — (3,0) € T*", which would contradict the assumption. So there
exists k = (ki,...kq) € Z% p € Z such that (p, k) is primitive (i.e the greatest common

divisor of k; and p is 1) and
k,w)+p—=
(k,w) P3 0 (9)

Notice that this is the only possible resonance (i.e (p, k) is unique up to a scalar). For if
there existed a (p/, k') independant from (p, k) and such that (k',w) +p’% =0, then

pB+ 2w {k,w) =0
{ VB +2m (K w) = 0 (10)

would hold, so pk/—p'k = 0 € R? since w is rationally independant, which would contradict
the assumption that (p, k) and (p', k') are independant.

Now let us show that p = £1. By contraposition, suppose |p| > 2.
Let V the subspace of R*™! generated by (p, k) . Let my,...mg € Z% m; = (miy1, ... mia1)
such that the (d + 1) x (d + 1)-matrix

(p, k)

C = : (11)

has determinant 1. Such a matrix exists, according to [1], corollary 3 p.14. Form the
following commuting diagram:

R+ — o pd+1 (12)

|

Td+1 _C_ Td+1



where II is the canonical projection from R**! onto T4, As C has determinant 1,
B
homeomorphism. So the orbit of TT ( EZJ ) is dense is II(V1) if the orbit of II(C (

is dense in II(C(V1)). Now II(C(V1)) C {0} x T? and

Moreover, assume that

p s
ZCL@(TT%, (%,w)) =0 Z gaimi,jwjl —+ ZCL@TT@ZA% =0 (13)
) i i
then, as the resonance is unique, (3. a;m;1,--->; aimiar1) = »_,a;m; is a multiple
of (p, k), which is impossible since m; are independant from (p,k) by definition. So

((m1, (£,w)), ... (ma, (£,w))) is rationally independant and its orbit is dense in T

5
Therefore, the orbit of II ( 2 ) is dense in IT1(V1).

Let m € Z% such that %fm) is not an integer (it exists, since (p, k) is primitive and |p| >

B
2). Then t(Ug;Tm), —m) e VL As Tl ( EZ; ) dans TI(V1) has a dense orbit, there exists an

unbounded sequence ¢; such that II ( 225 ) — II ( P ) =: ( (g ) # ( 8 ), which

j —'m
contradicts our assumption.

2. Again, we can assume that N = 1. Let ¢; be a real unbounded sequence such that
ti(w,1) — 0 € T4, For all j, let n; € Z and r; € [0,1] such that t; = n; +r;. In
particular, ; — 0 € T, so r; — 0 € T. Since t;w — 0 € T¢ and rjw — 0 € T% then
n;w — 0 € T% By assumption, this implies that n;3 — 0 € 27T. But r; — 0 € 27T, so
t;3 — 0 € 2 T. By 1., this implies that 3 € 27 (Z4, (w,1)). O

Lemma 2 Let W be a subspace of C*. Let (W NR™) @ C be the complex vector space
generated by W NR"™. Then

L. W=W&WnR")eC=W;

2. Let V be a subspace of W such that V &V =W and z,...z, a basis of V, then
Rezi,Imzq, ... Rez,, Imz is a basis of W NR™.

Proof: 1. =: Let wq,...w; be a basis of W; as W = W, then 1wy, ...w; are also in
W. So, for all j € {1,...1}, Rew; = 3(w; + w;) and Imw; = o (w; — w;) are in W NR".

So w; = Rew; +iImw; € (W NR") ®C and so W C (W NR") ® C. The other inclusion
is obvious, therefore W = (W NR") ® C.



<: Let w € (WNR") ®C; then w = Z;Zl a;jv; where a; € C and v; € (W NR"). So

w = 22:1 a;v; = 22:1 av; € WNRY)®@C and so W =W,

2. Rezy,Imzy, ... Rez, Imz;, generate W and are real, so they generate W NR". With
complex coefficients, they generate (W NR™) ® C, and by 1., this is equal to W. As W
has dimension 2k, they form a basis of W NR". [

1.2 Subbundles, invariant subbundles and Jordan subbundles

Definitions:

e A real (resp. complex) subbundle is a family V = {V(),0 € T?} of subspaces of
R™ (resp.C") which is continuous in 6, i.e such that for all 6, € T¢, there exists an
open subset U containing 6, and, for all 6 € U, a basis {z;(0),...x,(0)} of V()
which is continuous in 6 on U.

e The dimension of V() is automatically independant of 8; this number is called the
dimension of the subbundle V' and is denoted by dimV'.

e A real (resp. complex) invariant subbundle for the cocycle X is a real (resp. com-
plex) subbundle such that for all ¢,60, X*(0)V () = V(0 + tw). In what follows, we
shall omit to mention the cocycle X, as no other cocycle is involved.

Remark: A real invariant subbundle does not always have a basis which is continuous
on T

cos 2wl —sin 270 )

Example: Consider the discrete 1-periodic cocycle X!(0) := ( <090 cos 2l

acting on R% Let 2(0) := Z?S;Tg Then Vectg(z1(6)) is an invariant subbundle
for X"(0), since z(0 + 1) = —z(0) for all §. But z; is continuous on 2T and not on

T. Moreover, if z is another function such that for all 0, z(0) generates Vectg(z1(0)),
then there exists a continuous function A bounded away from 0 and such that for all 6,
2(0) = A0)z1(0). So z(0 +1) = A0 + 1)z1(0 + 1) = —=A(0 + 1)z(0), and so z(0) is
continuous on T if and only if for all §, —A(0 + 1) = A(0). But this implies that the
function X\ changes sign, so it takes the value 0 since it is continuous, which is impossible.

Remark: The intersection of two (real or complex) subbundles is not necessarily a

subbundle. For instance, in R2, for all § € T, let V(6) = ( (1] ) et W(0) = ( ‘;’5 ;Z:g )

then V(0) NW(0) = V(#) if @ = 0 or 3 mod 1 and {0} otherwise, so the dimension of the
intersection is not independant of . However, the following proposition holds:

Proposition 2 The intersection of two real or complex invariant subbundles is an in-
variant subbundle.



Proof: Let U,V be two invariant subbundles, then for all ¢, 0,

XHONU(0) NV (0)) = XHO)U(0) N X O)V(0) = U0 + tw) N V(0 + tw)

so the intersection is invariant.

Let us show that it has constant dimension. Let U be an open subset of the torus such
that there exists (uy,...uy) and (vy,...v;) continuous on U and such that for all 8 € U,
(u1(0), ... uk()) is a basis of U(#) and (v1(8),...v;(0)) a basis of V(6). For all § € U, let

M) == [ ui(0) ...ue(0) vi(0) ... v(0) ]
the n x (k+()-matrix whose columns are the vectors from the two bases. Let r be the rank
of M(60y) for a fixed 0y in U. Then there exists a r X r-submatrix of M (6y) with non-zero
determinant. This determinant is continuous in 6, so it is non-zero on a neighbourhood

V of 6y, so, on this neighbourhood, the rank of M(0) is greater than, or equal to r.
Therefore, if d(0) is the dimension of U(0) NV (0), then d(0) < d(6) for all 6 € V.

Let 0y, ¢o € T¢. As we have just seen, there exists a neighbourood U, of 6, and a
neighbourhood Vy of ¢y such that d(0) < d(6y) for all & € Uy and d(¢p) < d(¢g) for all
¢ € Vy. As the orbits of t — 6y + tw and t — ¢y + tw are dense on the torus, there exists
t,t" € R such that 0y + tw € Vy and ¢g + t'w € Uy. Invariance and invertibility of X*(6,)
imply that d(6y+tw) = dim(UNV) (6 +tw) = dimX*(6y)(UNV)(0y) = dim(UNV)(6y) =
d(f0y), and analogously d(¢g) = d(¢o + t'w). Moreover, as Oy +tw € Vy, d(0y+tw) < d(¢py),
and analogously d(¢g + t'w) < d(0y). Therefore, d(6y) = d(¢g). As Oy et ¢y are arbitrarily
chosen, the dimension of U NV is constant on T<.

Let us now define a local basis of U N'V. Let U be a sufficiently small neighbourhood
of Oy in T¢ and (uy,...us) and (vq,...v;) two bases for U and V which are continuous
on U. In the neighbourhood of 6y, up to a permutation of the bases, there exists I’ <[
such that uy(0),...ux(0),v1(0),...vy(0) is a basis of U(#) + V(#). the integer ' does
not depend on 6 since the dimension of U(#) N V() is independant of §. So, for all ",
I' < 1" <, there exists aq,...ag, by,...by Wthh are continuous on a neignbourhood of
0 such that v () = SF  a;(0)ui(0) + S0 b(0)vi(0). Let 5 (0) := 3% a;(0)us;(0),
then uy/(0) € U(0) NV (#), vy is continuous on a neighbourhood of 6,. The vectors
(Uy41(00), ... 11(6p)) form a basis of U(6y) NV (6y), therefore vy y1(0),...v,(0) form a basis
of U(0) NV (0) in a neighbourhood of 6,. O

Definition: A Jordan subbundle of rank £ modulo /V is a complex invariant subbundle
having a basis (21, . . . z;) which is continuous on NT¢ and such that there exists a+i3 € C
satisfying for all 0,1,

X40)2(0) = ! @F B 21 (0 + tw)
X40)20(0) = T 250 + tw) + tet @) 21 (0 + tw)

X4(0) 2 (0) = X

2 (0 + tw)



A Jordan subbundle is a Jordan subbundle modulo 1. The family of functions (z1, ... zx)
is called a Jordan basis, it is not unique. If it is real for all @, it is called a real Jordan
basis (for a complex Jordan subbundle). The number «a + i3 is called an exponent of the
Jordan subbundle, and also the exponent of the Jordan basis (z1, ... z2x).

Remark: An exponent of a Jordan subbundle is not unique, but the exponent of a
Jordan basis is.
If unnecessary, we shall omit to mention the rank of a Jordan subbundle. Notice that the
rank is not supposed to be maximal: if & > 2, a Jordan subbundle of rank k& contains
another Jordan subbundle of rank k£ — 1.

Definition: An invariant subbundle W of dimension £ is reducible modulo N if there
exists a basis (z1,...2,) of W which is continuous on NT? and a constant matrix A of
dimension k x k such that X*(0)[z1(0) ... 2:(0)] = [21(0 +tw) ... 2.(0 + tw)]e! for all ¢, 6.

Remark: A Jordan subbundle is a particular type of reducible invariant subbundle
and GL(n,R)-reducibility is equivalent to the existence of a decomposition of R™ into
invariant reducible subbundles.

Proposition 3 Let V' be a Jordan subbundle modulo N.

i) If a+if3 is an exponent for V, then for allm € 7%, a+ifB+2im{w, %) is an exponent
for V.

it) If a+148 and o/ +if" are two exponents for V, then a = o and f— ' € 2n(Z%, %),

Proof: i) Suppose (z1,...2;) is a Jordan basis of V' with exponent « + if3.
Let m € Z%. For all 1 < j < k and all & € NT?, let 2/(0) = e (%™ 2;(¢). Then the
vectors 2}(6) form a global basis of V' which is continuous on N T? and for all §,¢ and all
J <k,

Xt (9)2;; (6) _ ptlatiB+2im(m, §))

' (jt]__mz;(e +tw) (15)

(2

so a4 i + 2im(m, %) is also an exponent of V.

ii) Let (vq,...vg) and (v}, ...v}) be Jordan bases of V' with respective exponents a+i(3
and o +if'.
For all § € NT, let v}(0) = Zle 7;(0)v;(0) where v, are continuous on NT?. Then for
all ¢,

<.

k .
N tji/[/ ! Yl
> (O) T D 0+ ) =
. Jj—1

J=1

i=1 ) J

M-

Il
—

75 (0 + tw)v; (0 + tw)

As the v;(# + tw) are linearly independant, in particular

%(e)et(aﬂﬂ) = et(a/%/)%(e + tw)

Suppose (0) # 0 for some § € NT? As 5, is bounded, then a = «'. Let t,, be an
unbounded real sequence such that t,, — 0 € NT¢. Then as m — oo, since v(#) # 0,

9



tm(B—B') — 0 € 27T. By lemma 1, there exists K € Z? such that 8 — 3 = 27 (K, )
If ~; is identically zero, then

Vi1 ()"0 = M)y (6 4 tw)

and we deduce in the same way that 8 — 3’ = 2r(K, %) for some K € Z*. Otherwise,
we repeat the argument until we find a non zero v;(#) and deduce that for some K € Z¢,
f—p =2m(K, %) O

Remark: e Thus, the exponent of a Jordan subbundle modulo N is well defined
modulo 2i7(Z4, %) In particular, if 3 € 2m(Z4, %), then we can assume that 3 = 0.

e The term "Jordan subbundle" comes from the fact that if (3) holds for some B in
Jordan normal form, then the columns of Z(#)~! whose indices are the same as those of
the first columns of a Jordan block of B with eigenvalue a + ¢3 form a Jordan basis with
exponent « + /3.

Lemma 3 GL(n,C)-reducibility modulo N is equivalent to the ezistence of a decmposi-
tion of C" into Jordan subbundles modulo N. The existence of a decomposition of R"
into Jordan subbundles modulo N with a real Jordan basis implies G L(n,R)-reducibility
modulo N.

Proof: By definition, GL(n,C)-reducibility of X is the existence of a matrix B =
B 0 0
0 By 0 |, where each Bj is a Jordan block with exponent o; + 73;, and of a
0 0

continuous function Z : T¢ — GL(n, C) such that for all 6, ¢,

X'0)=Z(0+tw) e Z(0) (16)

If 21(0),...2,(0) are the columns of Z(#)~', then (16) is equivalent to the fact that for
all 0,1, 7, if Iy, .. .l), are the indices of the columns containing Bj,

X40)z,(0) = bz (0 + tw)
X402, (0) = Bz (0 + tw) + tell @Bz (0 + tw)
(17)
k; fhj—i

X 7 .

J
=1

which is also equivalent to the fact that if for all j, V;(0) = Vectc(z;, (0), . 2, (0)), then

Vj is a Jordan subbundle with exponent «; +i3;. Moreover, V;(#) are in direct sum since
Z(0)~! is invertible.

In the preceding argument, it is clear that X is in fact GL(n,R)-reducible if all V;
have a real global basis. [
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Remark: e Decomposition into Jordan subbundles is not always unique. For instance,
if for all 0,t, Xt(0) = Z(0 + tw) *e!*4Z(0), then for any invertible matrix P, X!(f) =
Z(0+tw) tPe4P=17(0), so C" decomposes into Jordan subbundles of rank 1 generated
by the columns of Z(0)~!P, where P is arbitrarily chosen.

e If a Jordan subbundle has a real Jordan basis with exponent a + i3 (mod2im(Z<, w)),
then 3 = 0 (mod2m(Z¢ w)). But there exists Jordan subbundles with real exponent
(mod2im(Z*, w)) but without a real Jordan basis. A trivial example is the constant Jordan

subbundle generated by ( 1 ) with exponent 0 (mod2im(Z?, w)) for the identity cocycle.

However, the following lemma holds:

Lemma 4 Let W be a Jordan subbundle modulo N without a real Jordan basis, z1, ...z
a Jordan basis of W with real exponent o, and for all j < k, u; the real part of z; and
v; its imaginary part. Then U := Vectg(uy,...uy) and V := Vectg(vy,...vs) are Jordan
subbundles modulo N with exponent o and there exists [,m < k such that u;, ... u is a

Jordan basis of U and v,,,...vx a Jordan basis of V.. Moreover, either I or m is equal to
1.

Proof: For all j,t € R, 0 € NT%, as X*(f) is real, then

-/

=i

X' (O)u;(0) = €'y wji (0 + tw)

,Qo—w

Suppose there exists j > 1,00 and Ay,...\j—1 € C such that u;(6h) = >, | Aui(f).
Then for all ¢, -

O—Xteo uj(% Z)\Uzeo

i<j—1
i=d’ (18)

zetaz . - 90+tw Z)\Z 90+tW)

3'<j (‘7_‘7) 1<j—1 3'<i Z_j

so, dividing by e!#/~L, for all t # 0,
t*_] "+1 tz J’ j+1

0=> ———uy(fo+tw) — ZAZ (0 + tw)

=t et

Let 0 be any point of NT?. Let t; be an unbounded real sequence satisfying t,w — 6 — 6,
in NT?. Then, as s tends to infinity,

Assume by induction that w;~ is identically 0 for all j” strictly inferior to some J < j.
Then, dividing equation (18) by e!t/=7, for all t # 0,

11



-/

t/—i t‘] Jj+i—y’

0=¢e" Z ——u;/ (O + tw) — Z Ai Z (0o + tw)) (19)

J<j'<j (7 _j) i<j—1 J<]’<z

so, with the sequence t, above defined, if ¢ = ¢, and taking the limit as s — oo,

1

and so u,;() = 0 for all . Therefore, for all § and all j' < j, u;() = 0.

Thus, we have shown that there exists [ < k so that the functions uq,...u;_; are
identically 0 if [ > 2 and (uwy,...u;) form a global basis of U, which is then a Jordan
basis. We proceed exactly in the same way to show that there exists m < k such that
V1, ... Uy_1 are identically 0 if m > 2 and (v,,, ... vx) form a Jordan basis of V. Moreover,
as u; and vy cannot be 0 at the same time, then either [ or m is equal to 1. [

1.3 Properties of Jordan subbundles with a real Jordan basis

Let {u;,1 < j <k} be a real Jordan basis of a Jordan subbundle U modulo N of rank k
and real exponent «.

Sublemma 1 FEvery invariant subbundle contained in U is a Jordan subbundle modulo
N generated by (uq,...u;) for some j < k.

Proof: Let W be a non zero invariant subbundle contained in U and wuq,...u; as
above. For some 6y, let j be the maximal integer lower than k such that there exists
> i< apug(bo) in Wi(b) with a; # 0.

As W is invariant, for all t € R, X*(0) >_ i ; ajruj(6o) € W (0 + tw). Now this vector is
equal to e’ Z <3 9 S (ff; ui(0p + tw). Dividing by e'#/~1 for all ¢ # 0, the vector
PR S e A u;(0p + tw) is in W(fy + tw). Let § € NT¢ and (#;) an unbounded

G
real sequence such that tw — 0 — 0y in NT?. Then, taking the limit as k£ — oo,

7’ t] f—j+1—i
Zaﬂ Z § =)l ui(fo + tyw) —

1
— 1)!
/<] =1 (j 1)

So for all 0, uy(8) € W(6). Suppose that for all 1 < j” < j', u;»(0) € W(0) for all 6.

ajul(e) c W(@)

Then 37_ i1 @iui(0o) € W(6o) so by invariance of W, for all k,
tro " ‘9
Z ZCLZZ_] (0+tkw)€W(90+tkw)
i=7'+1 =1
and so

j 1 i—J
t
Z ot § : aimuﬂ’(eo + trw) € W(0y + txw)

Z:]/+1 j//:j/+1

12



Dividing by etko‘t{;j/*l, we get

‘ z 3" +5 =541
Z a; Z ‘//(90 + tk(x)) S W(QO + tku})

i=7'+1 3"=5'4+1

and taking the limit as k goes to infinity, as a; # 0, u;y4+1(0) € W(6). Eventually,
Vecte(uy, . .. u; ) is contained in W; therefore, since we assumed j is maximal, Vectc(uy, . . . u; )
is equal to W. [J

Sublemma 2 Let W' be an invariant subbundle such that for all 6 € T¢, W'(0) =
B, Wi (0) where each W' is a Jordan subbundle modulo N with a real Jordan basis

(wi,...w}) with exponent o and suppose u;(6p) = > 7" Zﬁ L Awi(6y) for some 6y, then
for all € NT? and all j' < j, up(0) = S0 S cimcmmiri—joy M o 2 whi(0). In
particular, uy(0) = 3" Mwi(6).

Proof: For all ¢,

m l;
0= X*(6) (u;(00) — > ) Muwj(by))
=1 =1
=3’ m b - (20)
= e ——ujr (0 + tw) — Aet® wiy (B + tw
i U =) () ;lzl zlea_l/)! or )

Dividing by e, we get for all ¢

= Z MCESHED IR mw;(eo + tw) (21)

i<j i=1 1=1 =1

Let L be the greatest power of ¢ in this expression. Let 6 be any point of NT¢. Take a
sequence t; — oo such that t,w — 0 — 6y € NT? as k — oo. Suppose first that L > j.
Then, dividing (21) by ¢, and making k go to infinity,

m l;

> S0 N, 0) =0 (22)

Since w! ;(0) are linearly independant, A\l = 0 if [ > L + 1. Consequently, (21) can be
rewritten

m /

= Z (0o + tw) Z Z A Z wl, (6o + tw) (23)

/<] =1 1=1 I'=1

But this contradicts the definition of L, so the assumption under which L > j is false.
Therefore, (21) can be rewritten

13



g m min(j,l;)

0= Z h /(0o + tw) z; Z Z wl/ (6 + tw) (24)

§'<i r=t

Dividing (24) by /71, .. .t, replacing ¢ by ¢, and making k go to oo, we see that for all
1<j <jandall § € NT?,

m  min(j,l;)

=3 N 0) =" > N, (0)
i=1 [—l'=j—j i=1 l=j5—5'+1 (25)

m  min(j’,l;i—j+j5")

=" > AP O
i=1 =1

Remark: Coefficients )x{fjurj" do not depend on 6.

Lemma 5 Let W' be an invariant subbundle such that for all§ € T¢, W'(0) = @, W (0)
where W* are Jordan subbundles modulo N with a real basis (wi,...w} ) with ezponent
a. Then W'+ U is a direct sum of Jordan subbundles modulo N with a real basis.

Proof: If U(#) N W'(0) = {0} for all 4, this is trivial.
Let us now suppose that this intersection is non trivial. It is then equal to some non
trivial invariant subbundle. By sublemma 1, it is generated by w4, ...u; for some j < k.

Assume first that dimU < dimW; for all 1.
By sublemma 2, there exists Aq,. ..\, such that for all § € NT?,

ur(0) = Awi(6)
i=1
Let uf = ug — Y 10  Nwh,thy_y = uy — Yoy Nwh. I, .. ul,_, are a basis, since for all
j<n-—1
XU O)u(0) = X*(0) (w1 (6 Z Aw! 1 (0
=7
== ﬁ(u] (0 + tw) — ZAw,9+tw (26)
y<r Y Y
ti—3' .
- Z muj,(ﬁ + tw)

J'<y

this means that they are a Jordan basis.

If u} is in the space generated by ub,...u!, _,, then we carry out the same construction.

After finitely many steps, we have defined a Jordan basis for U + @, W;.

Let now U be of any dimension. We shall proceed by induction.

14



e If U has dimension 1, it is included in W’ so the conclusion immediatly follows.

e Suppose now that the conclusion holds for any U of dimension < n—1. If now U has
dimension n, write W’/ = W, @ W, ou W, = @dimw,-m W; and Wy = @dimw,->n W;.
By the above, W, + U is the direct sum of Jordan subbundles modulo N with a
real basis. Then, we add one by one the W; with dimension < n, and by induction
hypothesis we still get a direct sum of Jordan subbundles modulo N with a real
basis. [

1.4 Decomposition into invariant subbundles

Suppose X is GL(n,C)-reducible. Then by lemma 3,
Vo eT? C"=Wi(0)®--- @ W,.(0)
where each W is the sum of all the Jordan subbundles with exponent a; + i3; (mod2im(Z?, w)).

Lemm:a 6 For all 1 < j <, there exists 1 < j' < r such that Wj = Wj.. Moreover,
Wj = Wj Zﬁﬁ] € 7T<Zd,u)>.

Proof: Let v(0) € W;(0) generating a complex invariant subbundle of dimension 1,
then for all # € T, ¢t € R,

X4 )v(8) = el ti8i)y (0 + tw)
and

X10)5(0) = ! ~8)5(0 4 tw)

Write 9(0) = >, (0)w,(0) with (w;(0))=1..» a Jordan basis of C" and 7, continuous
and C-valued. Then there exist polynomials {P(¢),l = 1,...7} such that for all ¢,

Zw T Py t)un(0 + )

So

el —iBj)t Z'yl wy (0 + tw) Zm (O”J”ﬁl tPl( Jw (6 + tw)

=1

Since w;(0 + tw) are linearly independant, for all [,

e(%—iﬁﬂt%(e)wl(e +tw) = 71(9)6(a1+i6l)tﬂ(t)wl(9 + tw)
so if v(0) # 0, then for all ¢

wy(0 + tw) = el EHB P (1) (0 + tw)

This 1rnphes that ay = v, B is constant equal to 1 and ; = —£,.
Let j' be such that w;(0) € W;(0) for all § € T? then W; = W,

15



Suppose now that W; = Wj. Let Vi,... Vg, be the Jordan subbundles contained in
W;, and for each V;, uf + 7, ... uj_+ivj_a global basis with exponent o +43. Write for
all  the decomposition ui(0) —ii(6) = >, <, <, as' (0)(us (0) + ivs (6)), then let X'(6)
act on each side; then for all ¢,

XH0)(u3(0) — ivi(9)) = (a=if) (u (0 + tw) — i (0 + tw))

= et Z ajl( tw)(uj (0 + tw) + v} (0 + tw))

s'<rj<k
= D @ OX O (0) + v (6)) (27)

s'<r,j<ky

_ Z s oz—l—zﬁ) Z

s'<rj<kgy ’<J

5 9+tw)+w,(9+tw))

as uy_(0 + tw) + vy (0 + tw) is linearly independant from the rest, then

etle=f)g 3 (04 tw) = ay, (0)etletid)
whence, by lemma 1, the fact that 23 = 27 (m,w) for some m € Z<.

Conversely, if 28 = 2w (m, w) for some m € Z%, then W; is it own complex conjugate.
O

1.5 Main result
We get to the proof of theorem 1.

Proposition 4 Assume that the continuous cocycle X is GL(n,C)-reducible. Then there
exists a decomposition of R™ into two invariant subbundles W and W' such that:

o W is a reducible subbundle modulo 2, generated by a basis (21, ...zs) such that for
all (0,t) € 2T x R, X4 (0)[21(0) ... 2z4(0)] = [21(0 + tw) ... 2,(0 + tw)]e*r* where A,
has a real spectrum;

o W' is a reducible subbundle modulo 1 with a basis (zsi1,...2,) Such that for all
(0,t) € T? x R,
XU 0)[2651(0) . .. 20(0)] = [2o41(0 4+ tw) . . . 2, (0 + tw)]e?

with o(As) N(R+im(Z%,w) \ {0}) = 0 and if oy +iB1, s +iBs € 0(As), then 51— 3
is not in 2m(Z% w) \ {0}.

Proof: From lemma 3, we get a decomposition of C" into complex Jordan subbundles.
Let us keep the notations introduced in section 1.4.

By lemma 6, there exists a decomposition C*" = W @ W’ where W is the direct sum
of all W; which are their own complex conjugate, W = @;:1 W;, and W’ the direct sum
of all the others: W' = €@’ W;.

Jj=r'4+1
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1. e By lemma 6, W contains exactly the Jordan subbundles whose exponent is
in R + i7(Z%,w). Decompose again W into Wr and W where Wg is the sum of the
Jordan subbundles having exponent 0 mod 2im(Z¢, w), and W¢ is the sum of the Jordan
subbundles whose exponent is in im(Z%, w) \ 2in(Z% w).

For W, we can find real Jordan bases with real exponent which are continuous on T¢.

Proposition 3 implies that we can find real exponents for W¢, but for bases which are
continuous on 2T¢ and not on T¢ anymore.

e We will show by induction that there is a decomposition of each W; C W into
Jordan subbundles with a real Jordan basis.
Let Vi,... Vg, be the Jordan subbundles included in Wj. According to lemmas 4 and 5,
(V1 +V1)NR" is the direct sum of two Jordan subbundles modulo 2 with a real basis, since
it is the sum of the Jordan subbundle modulo 2 generated by the real parts of the vectors
in the basis of V4, and of the Jordan subbundle modulo 2 generated by their imaginary
parts.

Let W and W’ be invariant subbundles such that there exists & > 2 with W =
(Vi + Vi) NR™ and that W' is a direct sum of Jordan subbundles modulo 2 with a real
basis.

By lemma 5, W is the direct sum of two Jordan subbundles modulo 2, U and V.

Using lemma 5 again, U 4+ W’ is the direct sum of Jordan subbundles modulo 2 with a
real Jordan basis.

Finally, by lemma 5, W + W’ = V + U + W is the direct sum of Jordan subbundles
modulo 2 with a real basis, which ends the induction.

2. In W, choose for all " +1 < j < r and for each Jordan subbundle Vsj, s < R;
contained in some W; C W', a Jordan basis with exponent «; 4 i3; such that for all j, 5,
B; — B; is not in 2m(Z4, w) \ {0}. We have already showed that for all j, 3; is not in
(7% w).

Let W” be a sum of Jordan subbundles such that W/ = W”@W". If (u; +ivy, . . us +z’v§)

is the global basis of W” which is the union of all those Jordan bases, then lemma 2 implies
that (u1(0),v1(6), .. .ug(ﬁ), vs (0)) form a basis of W/(0) NR" for all §. Moreover,

X'(0) [ur(0) v1(6) u%(ﬁ) vg(ﬁ)] = [u1(0+tw) v1(0 +tw) ...u;(@—i—tw) vs (0+tw)]e*

where 0(Az) = {o; +if;,7" +1 <5 <r}.

Let W =WcNR" and W = Wr NR™ ® W NR™. We have shown the existence of
the required bases (z1,...zs) for W and (2511, ...2,) for W. O

Corollary 1 With the notations of the proposition 4, let Z(0) = (z1(0) ...z,()). Then
for all 0,1,

(% 4)
XH0) = Z(0 +tw)e \ O A2 ) Zig)1
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This proves theorem 1.

2 Reducibility in other Lie groups

We now give the proof of the reducibility theorem for the groups SL(n,R), Sp(n,R), O(n)
and U(n).

2.1 SL(n,R)-reducibility
Proposition 5 Let X be a continuous SL(n, R)-valued cocycle which is GL(n, R)-reducible
modulo N to a cocycle t — e'B. Then B € sl(n,R) and there exists Z : NT¢ — SL(n,R)
such that for all t,0,

X'0) = Z(0 + tw) P Z(0) (28)
so X'(0) is SL(n,R)-reducible modulo N.

Proof: Let Z(0) := #Zw)Z(H). By construction, Z € CO(NT%, SL(n,R)) and for all
07 t?
e'? = Z(0+tw) X 0)Z2(0) " (29)
SO
detZ(0) 5 _ AT
—————e" =7 XN0)zZ
1ot Z(0 1 1) e (0 +tw)X"(0)Z(0) (30)

Thus the left-hand side has determinant 1. So

detZ(0)

Vt, tr(ln ————~—~1+tB) =0 31
’ r(ndetZ(ﬁ—l—tw) +1B) (31)
As In Fiezt(ifgw) is bounded, then tr(B) = 0 and detZ is constant. Therefore, for all 0, ,
tigy ~1 mZ0) - ~1_tB 7
X'(0) = Z(0 + tw) "detZe otz Z(0+tw) e Z(0) (32)
e

Corollary 2 Let X be a GL(n,C)-reducible cocycle. If it is SL(n,R)-valued then it is
SL(n,R)-reducible modulo 2.

Proof: Apply proposition 4, then proposition 5. []

This proves theorem 2 when G = SL(n,R).

18



2.2 Symplectic reducibility

Proposition 6 If X is Sp(2n,R)-valued and GL(2n,C)-reducible, then it is Sp(2n,R)-
reducible modulo 2.

Proof: Let R" = W @ W' as in proposition 4 and Z as in corollary 1: for all 6,
Z(0) = [z1(0) ...z(0)].
Write X*(0) = Z(0 + tw)CeBC~1Z(#)~" with B in Jordan normal form.
Let Y(0) = C*Z(0)*JZ(0)C. Then the coefficients y,x(0) of Y () satisfy y;.(0) =
(z;(0), Jzx(0))c where z;() is the j-th column of Z(6)C. Since X'(0)*JX'(0) = J,
then for all 0,1,

Yi(0) = (X'(0)z;(0), JX"(0)2(0))c (33)
Three cases are to be considered:
1. y,x is continuous on TY
2. z; is continuous on 2T and 2, is continuous on T%;

3. z; and z; are only continuous on 2T

Case 1: z; and z; are in WW. Then for some r;, 1},
J 7 )

J j—1i kfi
L -
ijc(e) _ <6t(ag+zﬁy) Z (j — Z) (9 + tw) Jet(an+iBk) Z ) (9 + tw)>(c
1=rp
— et(aj‘f'ak'f'lﬁj Zﬁk Z Z ) <zl(9 + tu}) JZZ-/ (9 —|— tw))C (34)
1=r; i'=ry j Z
et +iBj+ar—ify) thrk -
Q511 A —10k
J J ZZ j—z )'y“(ﬁ—l—tw)
1=rji=ry
In particular, if j = r; and k = ry,
yiu(0) = et(O‘j'i‘iﬁj‘f'ak_iﬁk)yj’k(e + tw) (35)

Developing into Fourier series, since y; . is continuous on T%, for all m € Z,

Qj,k (m) — et(aj+iﬁj+ak7iﬁk)@j,k (m)€2i7r(m,tw) (36)

Thus, either §; ,(m) = 0, or el +fi+a—ifi+2inimw)) = 1 for all ¢, and then a;+i3; +ay —
iB+2im(m,w) = 0. But if m # 0, this is impossible since 3; — 3, is not in 27(Z¢, w)\ {0}.
Therefore, y; 5 is constant.

For any j, k, it is possible to show, using equations (34) in the appropriate order, that y; s
is constant: equation (34), once developed in Fourier series, gives for all m € Z%,
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t]+k i—i’

gjk( )_ et(aj—l—zﬁj-i-ozk iBk) Z Z

1=rj i’ =r}

j — Z )'y” ( ) 2w (m,tw) (37)

Assume y; ; is constant for all (¢,4") such that ¢ < j or i = j,i' < k. Then, if m # 0,

:gj,k (m) — et(aj+iﬁj+ak7iﬁk)ﬁj,k (m)e2i7r(m,tw) (38)

which again implies that y; is constant.

Case 2: z; is in W and z;, in W'. Then for some r;, 7,

t]-‘,—k i—1

ol = oS3

i=rji'=ry

o O+ ) (39)

In particular, if z;(#) and z;(#) generate Jordan subbundles of rank 1, for all 6, ¢,

y(0) = elrter=ibly (0 + tw) (40)

Developing this into Fourier series, since y;x is continuous on 2T¢, for all m € Z¢,

'gj,k(m) —e t(oj+oy— zﬁk)y] k( ) 227r<m,t%) (41)
So, either gj,k(m) =0, or etlajtop—ifp+im(mw)) — 1 for all t, which implies that a; + o —
ik + im(m,w) = 0. Since G is not in 7(Z% w) \ {0}, this is impossible if m # 0, so y; .
is constant.
For other j, k, (39) implies that y; ; is constant.

Case 3: z; and z; are in WW. Thus they are in a Jordan basis with real exponent,
continuous on 2T¢,
If z,, . .. z; generate a Jordan subbundle with exponent o; and z,,, ... 2, generate a Jordan
subbundle with exponent «y, then for all 6, ¢, (39) holds, but with 5, = 0.
In particular, if z; and z; generate Jordan subbundles of rank 1, for all 8, ¢,

Y (0) = e'rterly. (0 + tw) (42)

Developing into Fourier series again, since y; . is continuous on 2T,

gjp(m) = et g (m)emmie) (43)

Thus y;;, is constant.
More generally, for arbitrary j, k, for all m € Z? and all ¢,

i/

:gj,k:( _ et(aj-i—ak) Z Z )'yl P ( ) 2im(m,tw) (44)

1= z’—rk
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and we can use these equations in the appropriate order to show that all the coefficients
of Y are constant, so Y is constant. This implies that Z(6)*.JZ(6) does not depend on 6.

o Let Z(0) = Z(0)Z(0)~". Then

Z(0)"JZ(0) = (Z(0)) Z(0)" JZ(0)(Z(0)") = J (45)

since Z*JZ is constant. Moreover, Z is real, so it is Sp(2n, R)-valued. It is continuous
on 2T%. Finally, for all 6, t,

X'0) =20 +tw)eZ(0)7!

(A O
where A = ( 0 A, ) thus

X(0) = Z(0 + tw)e 204207 Z(p) (46)
and therefore, X is Sp(2n, R)-reducible modulo 2. [

This proves theorem 2 when G = Sp(2n,R).

2.3 Orthogonal group

Proposition 7 Let X be a GL(n,C)-reducible cocycle. If it is O(n)-valued, then it is
O(n)-reducible modulo 2.

Proof: It is possible to carry out exactly the same proof as for proposition 6, but
defining Y (6) as C*Z(0)*Z(0)C and not as C*Z(0)*JZ(0)C anymore. This way, its
coefficients are y; x(0) = (2;(0), z1(0))c = (X"(0)2;(6), X*(0)z,(6))c; since X is bounded,
all the Jordan subbundles have rank 1, thus the coefficients y; x, satisfy equations (35), (40)
and (42) with a; = a = 0. We show in exactly the same way that they are constant,
then define a function Z which is continuous on 2T¢ and O(n)-valued and such that
XH0) = Z(0 + tw)e* Z(0)~* for some constant matrix A and for all ¢,6. [

This proves theorem 2 when G = O(n).

2.4 U(n)-reducibility

Proposition 8 Assume that the continuous cocycle X is U(n)-valued and GL(n,C)-
reducible. Then X is U(n)-reducible.

Proof: By lemma 3, there is a decomposition of C" into Jordan subbundles. Since
the cocycle X is U(n)-valued, it is bounded, so all Jordan subbundles have rank 1 and
a purely imaginary exponent. Let zi,...z, be continuous on T¢, each one generating a
Jordan subbundle, chosen in such a way that the difference of two exponents cannot be
in 2im(Z%, w) \ {0}. Let Z(#) be the matrix whose columns are z;(f), ... z,(); then there
is a diagonal matrix D with coefficients i3, .. .73, such that for all 0, ¢,
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X)) =Z(0 +tw)ePZ(9)*
Let Y(0) = Z(6)*Z(0), then the coefficients y;; of Y satisfy

Yje(0) = PPy (60 + tw) (47)

Developing into Fourier series, for all n € Z,

§(n)je = P PgG(n); (48)

By construction, §; — By is either 0 or is not in 2m(7Z%,w), so Y is constant equal to
Z(0)*Z(0). Thus, if Z(0) := Z(0)Z(0)~!, then Z(#) € U(n) and

X'(0) = Z(0 + tw)eZOPZO Z(9) (49)
Therefore X is U(n)-reducible. [J

This completes the proof of theorem 2.

3 Discrete cocycles

We now want to adapt these results to discrete cocycles. In all this section, we shall
assume that (w, 1) is rationally independant.

Definition: Let @ € R”; X is a continuous (resp. discrete) cocycle over @ if it
is defined on T” x R (resp. T” x Z) and for all # € T", t,s € R (resp. t,s € Z),
X5(0) = X0 + sw)X3(6).

Remark: The cocycles we studied in the previous sections are all over w. But to
talk about a discrete cocycle over w, it is necessary to assume that (w,1) is rationally
independant. Notice that if a continuous cocycle X over (w, 1) is G-reducible, then its
restriction to integer time and to the d-dimensional subtorus 7 := {(6,0),0 € T¢} is a
discrete cocycle over w which is G-reducible. Indeed, let Z : T — G and B € G such
that

XHO) = Z(0 + t(w, 1)) P Z(0) (50)

It is enough to restrict this expression to integer time and to the subtorus 7 to get
G-reducibility for the discrete cocycle (n,0) — X"(0,0).

3.1 G-exponential discrete cocycles

Given a discrete G-valued cocycle X, we want to define a suspension of X, i.e a continuous
G-valued cocycle whose restriction to integer times and possibly to a subtorus coincides
with the initial cocycle. But this cannot be done if X takes its values in two different
connected components of G, nor if  — X'(6) is not homotopic to the identity in G (since
the suspension would be a homotopy). However, if there is a G-valued function A which
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is continuous on T? such that for all §, X*(0) = ¢4, then we can define a continuous
G-valued cocycle whose restriction to integer time and to a subtorus coincides with X:
this will be done in the following proposition. Recall the definition:

Definition: A discrete cocycle X is called G-exponential if there exists a G-valued
function A, continuous on T¢, such that X' () = e4® for all 6.

Proposition 9 Let X be a discrete G-exponential cocycle over w. Then there exists a
continuous cocycle X : Rx T x T — G, (¢,0,0') — X'(0,0") over (w,1) whose restriction
tot € Z and {§' =0} coincides with X.

Proof: By assumption, there exists a G-valued function A, continuous on T¢, such
that for all 6, X'(0) = 4@,
For all (6,04,1) € T x [0,1], let B(0,0411) = ¢(0,0441)A(0 — 04,1w) where ¢ is a real

function continuous on T¢ x [0, 1] with support contained in T¢ x [{, 3] such that

1
/ (]5(9 + Ssw, 9d+1 + S)dS =1
0

and for all n € Z, B(0,04.1 +n) = B(0,04:1). So defined, B is continuous on T¢ x R and
periodic in f4,1. Let B be the continuous function on T4! which we obtain by taking
the quotient.

Let (t,6,04:1) — X*(6,60441) be the continuous cocycle satisfying

d ~ _ ~
EXt(H, Oas1) = B(0 + tw, Oap1 + £) X (6, 0411)

This cocycle is G-valued. Since fg B(0+ sw, 04,1+ s)ds commutes with B(0+tw, 0,1 +1)
for all 6, ¢, we can compute X*(6, 64,1):

t
Vt, 0,041, X'0,001) = exp(/ d(0 + sw, 0411 + s)dsA(0 — 0g1w))
0

Thus, for all § € T,

and forn € N,n > 1,

X"(60,0) = X0+ (n—Dw,n—1)...X40,0) = X' (0 + (n — Dw)... X (0) = X"(0)

and forn € Z,n < —1,

X"0,0) = X0 +nw,n)"t = X0+ nw,0) = X (0 +nw)"! = X(H)
whence the proposition. [J

Remark: It is possible to show that if § — X1(6) is homotopic to the identity, which
is weaker than supposing that X is G-exponential, then there exists a continuous cocycle
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whose restriction to integer time coincides with X. However, this cocycle is not G-valued
anymore.

Definition: The continuous cocycle X defined this way is called a suspension of X.

We shall show that GL(N, C)-reducibility of a discrete G-exponential cocycle implies
GL(N, C)-reducibility of its suspension.

Proposition 10 Let X be the suspension of a discrete cocycle X which is GL(N,C)-
reducible. Then X is GL(N,C)-reducible.

Proof: Let Z € C°(T? GL(N,C)) and A € GL(N,C) such that

X"(0) = Z(0 +nw) A" Z(0)
for all 0, n. There exists B € gl(N, C) such that

X"0) = Z(0 4 nw) " e"BZ(0)
Let us define, for all € T?, Z(6,0) := Z(#), and for all t € R,

2((6,0) + t(w, 1)) = P 2(6,0)X(9,0)""
Thus, for all (0, 04.,) € T,

Z(0,0411) = Z((6 — 051w, 0) + Ogiq (w, 1)) = P18 Z(0 — Oy w,0) X%+ (0 — B4, 1w, 0) 7

The map (6, 0441) — Z(6,0441) is periodic in 6 and for all 8, 6,1,

20,0401 + 1) = el UB 79 — (041 + 1w, 0) X 19 — (A1 + 1)w, 0) 7!
= P BeB 700 — (1 + 1w, 0) X0 — (04s1 + Dw, 0) 1 X%441(0 — 4 1w,1) 7"

~ ol
= e(’d“BZ(H — 9d+1w, 1)X€d+1 (‘9 — €d+1w, 1)71 ( )
= P B 70 — 04,10,0)X%1(0 — 041w0,0) 7 = Z(6,0441)
so Z is periodic in 04.1. Moreover, for all 6,6,,1,1,
X0, 0441) = XH0+1(0 — 041w, 0)X4+1(0 — O441w,0) 7
= Z((0 = 2010, 0) + (t + Oa41) (w, 1)) e 4B Z(0 — 64,10, 0) (52)

Z(0 — 0401w,0) e b1 B Z((0 — 04,10,0) + 0401 (w, 1))
= Z(<07 9d+1) + t<w7 1))7162&32(97 9d+1)

whence the GL(N, C)-reducibility of X. OJ

Now we can form the analogue, for discrete time, if X is a G-exponential cocycle, of
propositions 4, 5, 6, 7 and 8. They come as corollaries of the above.
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Proposition 11 Let X a discrete G-exponential cocycle where G is within GL(N,R),
SL(N,R), Sp(N,R),SO(N),SU(N) and GL(N,C)-reducible. Then X is G-reducible
modulo x¢, with

[ 2 if G=GL(N,R),SL(N,R), Sp(N,R) or G = SO(N)
X6=11 if G = SU(N)

Proof: Let X be a suspension of X. By proposition 10, X is GL(N, C)- reducible.
Moreover, X is G-valued, so by propositions 4, 5, 6, 7 and 8, X is G-reducible modulo Xa
with x¢ =21if G = GL(N, R), SL(N, R),Sp(N, R) or SO(N) and xg =1if G = SU(N).
Thus, X is G-reducible modulo yg. U

3.2 General case

It is possible to extend theorems 1 and 2 to all discrete cocycles, without even assuming
that their values are in a connected Lie group, because the proof of the theorems 1 and
2 does not essentially use the fact that time is continuous.

The definition of a subbundle is the same as in section 1.2. If X is a discrete cocycle,
an invariant subbundle is a subbundle such that for all n € Z and all § € T, X"(0)V (0) =
V(6 + nw). We define a Jordan subbundle of rank & modulo N, a Jordan subbundle and
its exponents in the same way as in section 1.2, but now ¢ varies in Z and not in R
anymore. We show in the same way, using part 2. of lemma 1, that the exponent of a
Jordan subbundle modulo N is well-defined modulo 2im(Z+1, (°jvl)> Lemmas 3, 5 and 6
still hold in the discrete case, but lemma 6 will be reformulated as follows:

Lemma 7 Forall1 < j < there exists 1 < j' < r such that Wj = Wj.. Moreover,
7d
1

T’
W, = W, iff B, € ©(Z7, (w0, 1)).
Proposition 4 can be reformulated in an analogous way:

Proposition 12 If X is a real discrete cocycle which is GL(n, C)-reducible, then there is
a decomposition R = W @© W' where

o W is reducible subbundle modulo 2 with a basis zi, ...z, such that for all (0,t) €
T x Z, X1{(0)[21(0) ...2.(0)] = [21(0 +tw) ...2.(0 +tw)]e!™ where A, is a matriz
with real spectrum,;

o W' is a reducible subbundle modulo 1 with a basis z.,1, ...z, such that for all 0,1,
XU O)[zr41(0) ... 20(0)] = [2051(0 + tw) ... 2,(0 + tw)]et? where o(As) N R +
it (Z ) (w, 1)) \ {0} = 0 and if aq + if1, a0 + iy € 0(As), then By — [Ba is not
in 2m(Z+1 (w, 1))\ {0}.

The proof is exactly the same as in proposition 4.

Proposition 13 If X is a discrete SL(n,R)-valued cocycle which is GL(n,R)-reducible,
then it is SL(n,R)-reducible modulo 2.
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Again, the proof is the same as in proposition 5, except that ¢ varies in Z and not in R
anymore.

Proposition 14 If X is a discrete Sp(n,R)-valued (resp. O(n)-valued) cocycle which is
GL(n,C)-reducible (resp. GL(n,C)-reducible), then it is Sp(n,R)-reducible (resp. O(n)-
reducible) modulo 2.

The proof is exactly as in propositions 6 and 7, because the fact that ¢ varies in Z and
not in R does not change the conclusions (we use the second part of lemma 1).

Proposition 15 If X is a discrete U(n)-valued cocycle which is GL(n,C)-reducible, then
X is U(n)-reducible.

The proof is essentially the same as in the continuous case.

Propositions 12, 13, 14 and 15 together give theorem 3.

4 Applications

The preceding sections enable us to complete some other results on the full-measure
reducibility of a generic one-parameter family of cocycles.

Definition: w € R? is diophantine with constant x and exponent 7, denoted by
w € DCO(k,T), if for all n € Z4, |(n,w)| > i
Definition: Let A be an interval of R and A € C*°(A, gl(n, C)) a one-parameter family
of matrices; we say A satisfies the non-degeneracy condition ND(r, x) on an interval A if
. g M\u
there exists r € Z* and x > 0 such that for all A € A, for all u € R, sup;, | ga(/\l )| >y
where

9\ u) = II (i(A) = a;(A) — i)

ai(A),a; (A)ea(A(N),i#]

Definition: Let A an interval of R, denote for h,9 > 0 by F the set of the functions
defined on {z € C,|Imz| < h} x {x € R,d(z,A) < d§}, holomorphic in the first variable
and periodic on the real axis.

Let

Cis(T'x A) ={f € F [ |flns:=_ sup  |f(z,2)| < +oo}

[Imx|<h,d(z,A)<d

Finally, let C,“L’,(;(’]I‘d x A, G) the set of G-valued maps each component of whom is in
W s(T% x A).
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4.1 Full-measure reducibility in the symplectic case

In [5], H.He and J.You claim the following:

Theorem 4 Suppose w € DC(k, 7). Let A € C*(A,gl(n,C)) a one-parameter family
of matrices satisfying the non-degeneracy condition ND(r,x) on an interval A. There
exists €g > 0 depending on k and 7, and there exists h,d, such that if F' € C,f,(;(Td X
A, gl(n,C)), |F|ns < €0, then for almost every X\ € A, the cocycle satisfying

0,X(0) = (AN + F(0,))X ()
is GL(n, C)-reducible.

Let us also assume that A(\) € sp(2n,R) forall X € A and F € C} 5(T?x A, sp(2n, R)).
Then, as a corollary of proposition 6 and of H.He and J.You’s result, we can reformulate
the above in the symplectic case:

Corollary 3 Suppose w € DC(k, 7). Let A(N\) be a one-parameter family of matrices
in sp(2n,R) satisfying the non-degeneracy condition ND(r,x) on an interval A. There
exists ¢ > 0 depending on k,T, and there exists h,0, such that if F € C’ﬁé(']l'd X
A, sp(2n,R)), |Flpns < €, then for almost all X\ € A, the cocycle satisfying

0. X (0) = (A(X) + F(0,1))X(0)
is Sp(2n, R)-reducible modulo 2.

4.2 Full-measure reducibility in a compact semi-simple group

In [8], R.Krikorian proved the following theorem:

Suppose w € DC(k, 7). Let A be a generic element of a compact semi-simple group
G, r > 0 and A an interval of R. There exists ¢g > 0 depending on x,7, A, A, w,r such
that if F € C¥(T¢, G) and |F|, < €y, then for almost all A € A, the cocycle satisfying

0,X(0) = (ANA+ F(0))X(0)
is G-reducible modulo an integer xg depending only on G. If G = U(n), then yg = 1.
As a corollary of H.He and J.You’s result and of proposition 7, we know as well that

if G = O(n), then xyg = 2.

4.3 Does one have full-measure reducibility modulo 1 in any Lie
group?

We first point out the following:

Proposition 16 If X is a continuous G-valued cocycle which is GL(n,C)-reducible to
a cocycle t — e'B such that the eigenvalues of B are not in R + in(Z% W), then X is
G-reducible.
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Proof: In the notations of section 1, there is a decomposition of R™ into invariant
subbundles W, @ - - -®W,, each W;, j < r being the sum of all Jordan subbundles with the
same exponent. By assumption on the eigenvalues of B, none of the subbundles W is its
own complex conjugate. For all j, let (uj+ivy, ... uz +ivy ) be a global basis of ;. Then
(u), vl .. .uij,vﬁj) is a glob@l basis of (W; + W;) NR™. For all 6, let Z(0) be the matrix
whose columns are (u1(0),vi(0), ... u; (0), vy (#),1 < j <), then Z is continuous on T¢
and GL(n, R)-valued and for all 6, ¢, there exists B such that X*(0) = Z(0+tw)eBZ(9) 7,
so X is GL(n,R)-reducible modulo 1.

If G = GL(n,R), the proof is finished. If G = SL(n,R), Sp(n,R) or O(n), we do
exactly as in the proof of 5, 6 and 7, but since, by assumption, only the case 1 can
happen, one gets G-reducibility modulo 1. [J

Question: Let A()\) be a G-valued one-parameter family satisfying a non-degeneracy
condition for all A € A and F € O} 5(T? x A) sufficiently small. Theorem 4 tells that the
cocycle X, satisfying

X4(t,6) = (A(N) + F(6, ) X, (1,9)

is GL(n, C)-reducible for almost all A to ¢ — e'Pr. TIs it true that for almost all )\, the
eigenvalues of By are not in R + im(Z4 w)? If it were the case, X, would be G-reducible
modulo 1 for almost every .
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