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Laboratoire MAP5, Université Paris Descartes, Paris, France

annie.raoult@parisdescartes.fr

Abstract We give several examples of modeling in nonlinear elasti-

city where a quasiconvexification procedure is needed. We first re-

call that the three-dimensional Saint Venant-Kirchhoff energy fails

to be quasiconvex and that its quasiconvex envelope can be ob-

tained by means of careful computations. Second, we turn to the

mathematical derivation of slender structure models: an asymptotic

procedure using Γ-convergence tools leads to models whose energy is

quasiconvex by construction. Third, we construct an homogenized

quasiconvex energy for square lattices.

1 The Saint Venant-Kirchhoff stored energy function

1.1 Non quasiconvexity of the Saint Venant-Kirchhoff stored en-

ergy function

This section is based on Raoult (1986) from which it is immediately
derived that the Saint Venant-Kirchhoff stored energy function is not rank-
one convex, and as a consequence not polyconvex, nor quasiconvex.

The internal energy of an elastic material reads J(φ) =
∫
Ω
W (∇φ(x))dx

where Ω ⊂ R
3 is a reference configuration (here assumed to be homoge-

neous), W : M3×3 7→ R is the stored energy function that is most of the
time assumed to be continuous and the deformation φ : Ω 7→ R

3 is suf-
ficiently regular. This is the energy due to the deformation φ. Actually,
the domain of W should be restricted to the set M

+
3×3 of matrices with

positive determinant and φ should satisfy in some sense det∇φ(x) > 0 in
order to express that orientation is preserved by realistic deformations and
to prevent matter interpenetration. This restriction leads to mathematical
difficulties and is quite often left aside. The total energy is the sum of the
internal energy and of the external energy which takes into account the ac-
tion of external loads (body forces such as gravity, surface forces such as
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pressure . . .). The equilibrium problem in an energy form reads:

Find φ ∈ Φ such that I(φ) = min
Φ
I, (1)

where I is the total energy and Φ is a functional space that takes into ac-
count placement conditions. A basic hypothesis for proving the existence of
a minimizer of a given functional is that this functional be lower semicontin-
uous. We are dealing here with functionals defined on infinite dimensional
spaces, namely W 1,p(Ω; R3) spaces (for simple growth conditions on W , J
is well defined on W 1,p(Ω; R3)). Therefore, the appropriate lower semicon-
tinuity is lower semicontinuity with respect to the weak topology. Then, it
is classical (see Morrey (1995) and Dacorogna (2007) for a survey) that J
is weakly lower semicontinuous if and only if W is quasiconvex. Recall that
the quasiconvexity condition reads

∀F ∈ M3×3, ∀φ ∈W 1,∞
0 (Ω; R3), W (F ) ≤ 1

|Ω|

∫

Ω

W (F + ∇φ(x)) dx. (2)

Quasiconvexity is a nonlocal notion which makes it difficult to check or to
contradict. Two pointwise notions make a lower-upper frame for quasicon-
vexity. Indeed, the implications

polyconvexity ⇒ quasiconvexity ⇒ rank-one convexity (3)

are valid. This chain of implications can be easily remembered by noticing
that the three notions are listed in alphabetical order. The convexity notion
can even be added at the left extremity of the chain. But for applications in
nonlinear elasticity, this is not useful since convexity of the energy density
has to be ruled out for modeling reasons. Rank-one convexity is simply
convexity along the straight line generated by two matrices whose difference
is of rank 1. It reads

∀F,G ∈ M3,3 such that rank(F −G) ≤ 1,

∀λ ∈ [0, 1], W (λF + (1 − λ)G) ≤ λW (F ) + (1 − λ)W (G). (4)

Let us mention that rank-one convexity does not imply quasiconvexity as
was proved by Sverak (1992). Polyconvexity is a more complex notion that
was introduced in Ball (1977): an energy is polyconvex if one can find a
convex function w such that

∀F ∈ M3×3, W (F ) = w(F, adjF,detF ). (5)

The function w in the above equation is defined on M3×3×M3×3×R. Note
that this definition may be restricted to matrices with positive determinant
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in which case w is defined on M3×3 ×M3×3 ×R
+∗ which is the convex hull

of {(F, adjF,detF ), detF > 0}. From implications (3), it is obvious that a
way of proving that an energy is quasiconvex – the important notion – is to
prove that it is polyconvex. This is why the possible polyconvexity of the
Saint Venant-Kirchhoff energy was examined two decades ago. In fact, the
proof provided the non rank-one convexity.

Theorem 1.1. The Saint Venant-Kirchhoff energy is not rank-one convex.

The following statements immediately follow.

Corollary 1.2. The Saint Venant-Kirchhoff energy is not polyconvex, nor
quasiconvex.

Proof of Theorem 1.1. - The Saint Venant Kirchhoff energy reads

W (F ) =
µ

4
‖FTF − I‖2 +

λ

8
(‖F‖2 − 3)2, (6)

where ‖F‖2 = trFTF . Letting C(F ) = FTF , we have equivalently

W (F ) =
µ

4
tr(C(F ))2 +

λ

8
‖F‖4 − 3λ+ 2µ

4
‖F‖2 +

9λ+ 6µ

8
. (7)

The first term reads µ
4 (v4

1 + v4
2 + v4

3) where v1, v2, v3 are the singular values
of F . Since g defined by g(v1, v2, v3) = (v4

1 +v4
2 +v4

3) is a convex, symmetric
function that is not decreasing with respect to each of its variable, it is
known that this first term is convex in F . Proofs of such results can be
found in Ball (1977), Ciarlet (1987), Le Dret (1990), Thompson and Freede
(1971). The second term is obviously convex in F . But, the minus sign
in the third term prevents the whole of the expression of being rank-one
convex as shown by the following counter-example which uses the fact that
for ‖F‖ small, this term is greater than the two previous ones. Let F = ε Id

and G = ε diag(1, 1, 3), so that
F +G

2
= ε diag(1, 1, 2). Notice that F −G

is of rank 1. Matrices F and G are such that

adj (
F +G

2
) =

adjF + adjG

2
, det(

F +G

2
) =

detF + detG

2
.

If W were rank-one convex, we would get W (
F +G

2
) ≤ 1

2
(W (F ) +W (G)),

i.e.,

µ tr(C(
F +G

2
))2 +

λ

2
‖F +G

2
‖4 − (3λ+ 2µ)‖F +G

2
‖2

≤ 1

2
[µ tr(C(F ))2 +

λ

2
‖F‖4 − (3λ+ 2µ)‖F‖2]

+
1

2
[µ tr(C(G))2 +

λ

2
‖G‖4 − (3λ+ 2µ)‖G‖2].

3



Since terms tr(C(F ))2, tr(C(G))2, tr(C(F+G
2 ))2 and terms ‖F‖4, ‖G‖4,

‖F+G
2 ‖4 are of order 4 with respect to ε while the remaining ones are of

order 2, this amounts to

− 1

ε2
‖F +G

2
‖2 ≤ − 1

ε2
(
1

2
‖F‖2 +

1

2
‖G‖2).

The contradiction follows from the equalities ‖F‖2 = 3ε2, ‖G‖2 = 11ε2,
‖F+G

2 ‖2 = 6ε2.

1.2 The quasiconvex envelope of the Saint Venant-Kirchhoff stored

energy function

The quasiconvex envelope of the three-dimensional Saint Venant-Kirchhoff
stored energy function was first computed in Le Dret and Raoult (1995b).
Computations were made in a systematic but somewhat tedious way, and
inspired by a preliminary work by the authors in a 2d×3d setting, see Le
Dret and Raoult (1995a). Extending some results by Pipkin allows to sim-
plify the proofs, see Pipkin (1994), Le Dret and Raoult (1995c).

We denote by S
+
m the set of symmetric, positive semidefinite matrices.

Lemma 1.3. Let m ≤ n and Y : Mn×m 7→ R be a left O(n)-invariant, rank-
one convex mapping. Then the mapping Ỹ : S

+
m 7→ R such that Y (F ) =

Ỹ (FTF ) for all F in Mn×m satisfies

Ỹ (C) ≤ Ỹ (C + S) for all C, S ∈ S
+
m. (8)

Remark 1.4. In the case when m < n, this result is due to Pipkin (1994).
However, the argument does not apply to square matrices. In Pipkin’s
terminology, Ỹ is said to be increasing.

Proof - Following Pipkin (1993), we first remark that proving (8) amounts
to proving that

Ỹ (C) ≤ Ỹ (C+µv⊗v) for all C ∈ S
+
m and for all µ ≥ 0, v ∈ R

m \{0}. (9)

Indeed, (8) clearly implies (9). Conversely, any S in S
+
m admits a spectral

decomposition S =
∑

i=1,m

µivi ⊗ vi where µi ≥ 0, and vi, i = 1, · · · ,m are

orthonormal eigenvectors of S. Applying inequality (9) m times, we obtain
(8).

Let us now prove (9). Let C ∈ S
+
m and v ∈ R

m \ {0} be given. Without
loss of generality, we assume ‖v‖2 := vT v = 1.
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We first consider the case when either m < n or m = n and C is
not invertible. In both cases, C can be written as C = FTF where FT

is a noninjective m × n matrix. Therefore, there exists u in kerFT with
‖u‖ = 1. From the rank-one convexity of Y , we know that the function
y : t ∈ R 7→ y(t) = Y (F + t u⊗ v) ∈ R is convex. Moreover, since FTu = 0,
y(t) = Ỹ (C + t2v ⊗ v). Therefore, y is even. It follows that y is monotone
increasing on R

+; in particular, y(0) ≤ y(t) for all t ≥ 0. Choosing t =
√
µ,

we obtain (9).
We now turn to the case when m = n and C is invertible. For all

µ ≥ 0, the matrix Cµ = C + µ v ⊗ v is symmetric, positive definite. Hence,

Fµ = C
1/2
µ is invertible. We define a function h on R by

h : t ∈ R 7→ h(t) = Y (Fµ + t F−1
µ v ⊗ v).

It follows from the rank-one convexity of Y that h is convex. Moreover,

h(t) = Ỹ (C + (µ+ 2 t) v ⊗ v + t2v ⊗ v(C + µv ⊗ v)−1v ⊗ v).

An easy computation shows that the function

t ∈ R 7→ 2 t v ⊗ v + t2v ⊗ v(C + µ v ⊗ v)−1v ⊗ v

is symmetric with respect to t̄ = −(vT (C+µ v⊗v)−1 v)−1 < 0. The function
h, in turn, is symmetric with respect to t̄. Therefore, h attains its minimum
at t̄ and is monotone increasing on [t̄,+∞[. Obviously, h(0) = Ỹ (C+µ v⊗v).
If we can find t such that t̄ ≤ t ≤ 0 and

h(t) = Ỹ (C), (10)

then inequality (9) is proved. A sufficient condition for a real number t to
solve (10) is

t2vT (C + µv ⊗ v)−1v + 2 t+ µ = 0. (11)

The discriminant of equation (11) is positive if and only if

µvT (C + µv ⊗ v)−1v ≤ 1. (12)

Let us check that this is indeed the case. Let z = µ1/2C−1/2v. Then we
have

µvT (C + µv ⊗ v)−1v = zT (I + z ⊗ z)−1z =
‖z‖2

1 + ‖z‖2
≤ 1,

hence the roots of equation (11) are real. Moreover, they are nonpositive
and symmetric with respect to t̄. The largest root thus satisfies t̄ ≤ t ≤ 0
and (10), which proves our claim.

With this lemma at hand, we can now state our main result.
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Theorem 1.5. Let m ≤ n and let W : F ∈ Mn×m 7→ R be a left O(n)-
invariant, bounded from below, stored energy function such that the associ-
ated function W̃ : C 7→ W̃ (C) is convex on S

+
m. Then,

QW (F ) = inf
S∈S

+
m

W̃ (FTF + S). (13)

Proof - Since W̃ is bounded from below, we can define, with Pipkin’s
notation, a function W̃r on S

+
m by W̃r(C) = inf

S∈S
+
m

W̃ (C + S). It is easy to

check that W̃r(C) is convex. Indeed, given C1 and C2 ∈ S
+
m and an arbitrary

ε > 0, there exists S1 and S2 in S
+
m such that W̃r(Ci) ≤ W̃ (Ci + Si) and

W̃ (Ci+Si) ≤ W̃r(Ci)+ε for i = 1, 2. Let t ∈ [0, 1] and S = t S1 +(1− t)S2.
Then,

W̃r(t C1 + (1 − t)C2) ≤ W̃ (t C1 + (1 − t)C2 + S)

≤ t W̃ (C1 + S1) + (1 − t) W̃ (C2 + S2)

≤ t W̃r(C1) + (1 − t)W̃r(C2) + ε.

The convexity of W̃r follows at once.
Let us now remark that W̃r obviously satisfies W̃r(C) ≤ W̃r(C + S) for

all C and S in S
+
m. This implies that the function Z := F ∈ Mn×m 7→

W̃r(F
TF ) is convex. Indeed, for all F and G in Mn×m and for all t ∈ [0, 1],

(tF + (1 − t)G)T (tF + (1 − t)G) = t FTF + (1 − t)GTG

− t(1 − t)(F −G)T (F −G).

Therefore, since t(1 − t)(F −G)T (F −G) is positive semidefinite,

Z(t F + (1 − t)G) ≤ W̃r(t F
TF + (1 − t)GTG) ≤ t Z(F ) + (1 − t)Z(G),

by the convexity of W̃r. Consequently, since Z is convex and below W , we
see that Z ≤ QW .

The reverse inequality is obtained as follows. From Le Dret and Raoult
(1995a), we know that QW is also left O(n)-invariant. Applying Lemma 1
to Y = QW , which is rank-one convex, we obtain

QW (F ) = Q̃W (FTF ) ≤ Q̃W (FTF + S) = QW
(
(FTF + S)1/2

)

≤ W̃ (FTF + S)

for all S ∈ S
+
m. Therefore, QW (F ) ≤ Z(F ) and the proof is complete.
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Remark 1.6. i) It follows clearly from the proof that the quasiconvex
envelope is also in this case the convex and rank-one convex envelope of the
stored energy function.

ii) We now proceed to show by means of a simple counterexample that
Pipkin’s formula fails for m > n. Let m = 2, n = 1. Consider the function
W : M1×2 7→ R, W (F ) = ‖FTF −I‖2. We thus let W̃ (C) = ‖C−I‖2. This
function is clearly convex with respect to C. If we denote F = (z1, z2) with
zi ∈ R, then we have

W (F ) = (z2
1 − 1)2 + (z2

2 − 1)2 + 2z2
1z

2
2 =

(
‖F‖2 − 1

)2
+ 1.

Therefore, QW (F ) = CW (F ) and QW (F ) = W (F ) if ‖F‖ ≥ 1, 1 if
‖F‖ ≤ 1, see Dacorogna (2007). Let us now take F = (1,−1) so that

C =

(
1 −1
−1 1

)
and W̃ (C) = 2. With the choice S = 1

2

(
1 1
1 1

)
, we

obtain W̃r(C) ≤ W̃ (C + S) = 1 < 2 = W̃ (C) = W (F ) = QW (F ).

Application to an explicit computation: The Saint Venant-Kirchhoff
stored energy function defined in (6) can equivalently be written under the
form W (F ) = W̃ (FTF ) where

W̃ (C) =
µ

4
‖C − I‖2 +

λ

8
(tr C − 3)2 (14)

for all C in S
+
3 . The mapping W̃ is clearly convex with respect to C.

Therefore, Theorem 1.5 applies. Let us briefly show how computations
can be organized. For any C in S

+
3 , let JC : S ∈ S

+
3 7→ W̃ (C + S) ∈ R.

This is a strictly convex, coercive mapping. Consequently, JC admits one
and only one minimizer on S

+
3 . By (13), we have to evaluate inf

S∈S
+

3

JC(S) =

min
S∈S

+

3

JC(S). Assume first that C is diagonal. We deduce from (14) that

JC(S) ≥ JC(diag (s11, s22, s33)). Minimizing JC(S) among semidefinite pos-
itive matrices thus amounts to minimizing JC(S) among diagonal positive
matrices. Equivalently, we have to minimize on (R+)3 the mapping jC such
that

jC(s1, s2, s3) =
µ

4

3∑

i=1

(cii − 1 + si)
2 +

λ

8
(

3∑

i=1

(cii − 1 + si))
2.

Without loss of generality, we assume that c11 ≤ c22 ≤ c33. The optimality
conditions for jC on (R+)3 read

DjC(s1, s2, s3)(t1, t2, t3) ≥ 0 for all (t1, t2, t3) ∈ (R+)3,

DjC(s1, s2, s3)(s1, s2, s3) = 0, (s1, s2, s3) ∈ (R+)3.
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They are equivalent to

∂ijC(s1, s2, s3) ≥ 0 for i = 1, 2, 3,

∂ijC(s1, s2, s3) si = 0, si ≥ 0 for i = 1, 2, 3,

that is to say

(2µ+ λ)(cii − 1 + si) + λ
∑
k 6=i(ckk − 1 + sk) ≥ 0,

((2µ+ λ)(cii − 1 + si) + λ
∑
k 6=i(ckk − 1 + sk)) si = 0 , si ≥ 0.

We distinguish four different cases:

1) If c33 ≤ 1, then we can choose si = 1 − cii and min
(R+)3

jC = 0.

2) If c33 ≥ 1 and 2 (λ + µ) c22 + λ c33 ≤ 3λ + 2µ, then we can choose

s3 = 0, sj = −cjj −
λ

2(λ+ µ)
c33 +

3λ+ 2µ

2(λ+ µ)
≥ 0, j = 1, 2 and

min
(R+)3

jC =
µ (3λ+ 2µ)

8(λ+ µ)
(c33 − 1)2.

3) If 2(λ+µ) c22+λ c33 ≥ 3λ+2µ and (λ+2µ) c11+λ (c22+c33) ≤ 3λ+2µ,

then s2 = s3 = 0, s1 = −c11 −
λ

(λ+ 2µ)
(c22 + c33) +

3λ+ 2µ

(λ+ 2µ)
≥ 0 and

min
(R+)3

jC =
µ

4
((c22 − 1)2 + (c33 − 1)2) +

λµ

4(λ+ 2µ)
(c22 + c33 − 2)2.

4) If (λ+2µ) c11 +λ (c22 + c33) ≥ 3λ+2µ, then we can choose s1 = s2 =
s3 = 0 and min

(R+)3
jC = W̃ (C).

So far, we have determined QW (F ) when C = FTF is diagonal. To ex-
tend the result to arbitrary matrices C in S

+
3 , we make use of the right

O(3)-invariance of the Saint Venant-Kirchhoff density W which is inherited
by QW . Therefore, QW (F ) only depends on the singular values of F . We
denote by v1(F ) ≤ v2(F ) ≤ v3(F ) the singular values arranged in increasing
order. It suffices to replace cii by vi(F )2 in the above formulas to obtain an
explicit expression for QW (F ).

The expressions thus obtained are the same as those obtained in Le Dret
and Raoult (1995a) that we recall below. First, for making comparisons
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between the energy and its quasiconvex envelop easier, we express the Saint
Venant-Kirchhoff energy in terms of the singular values and we obtain

W (F ) =
E

8(1 + ν)

3∑

i=1

(vi(F )2 − 1)2 +
Eν

8(1 + ν)(1 − 2ν)

( 3∑

i=1

vi(F )2 − 3
)2

,

(15)
where the Young modulus and the Poisson ratio are given by

E =
µ(3λ+ 2µ)

λ+ µ
and ν =

λ

2(λ+ µ)
.

Let T = {v ∈ R
3; 0 ≤ v1 ≤ v2 ≤ v3} be the convex tetrahedral cone of R

3
+

delimited by the planes v1 = 0, v1 = v2 and v2 = v3. We define a mapping
q on T by

q(v) =
E

8
[v2

3 − 1]2+ +
E

8(1 − ν2)
[v2

2 + νv2
3 − (1 + ν)]2+

+
E

8(1 − ν2)(1 − 2ν)
[(1 − ν)v2

1 + ν(v2
2 + v2

3) − (1 + ν)]2+, (16)

where [x]2+ = x2 if x ≥ 0, [x]2+ = 0 if x < 0. Previous computations allow
to write the following theorem.

Theorem 1.7. The quasiconvex envelope of the Saint Venant-Kirchhoff
stored energy function W is given by

∀F ∈ M3, QW (F ) = q (v1(F ), v2(F ), v3(F )) . (17)

Let us examine more deeply the values taken by QW . We introduce
three subsets of T :

H = {v ∈ T ; v3 ≤ 1},
C = {v ∈ T ; v2

2 + νv2
3 − (1 + ν) ≤ 0},

E = {v ∈ T ; (1 − ν)v2
1 + ν(v2

2 + v2
3) − (1 + ν) ≤ 0},

which correspond to the various positive parts that appear in formula (16).
It is easily checked that H ⊂ C ⊂ E and that

i) if v ∈ H, then q(v) = 0,
ii) if v ∈ C \ H, then q(v) = E

8 (v2
3 − 1)2,

iii) if v ∈ E \ C, then

q(v) =
E

8(1 + ν)

3∑

i=2

(v2
i − 1)2 +

Eν

8(1 − ν2)

( 3∑

i=2

v2
i − 2

)2

,

9



iv) if v 6∈ E , then

q(v) =
E

8(1 + ν)

3∑

i=1

(v2
i − 1)2 +

Eν

8(1 + ν)(1 − 2ν)

( 3∑

i=1

v2
i − 3

)2

.

For singular values outside of E , the energy and its quasiconvex envelope
coincide. At the other end of the scale, for sufficiently small singular values,
the quasiconvex energy is equal to 0. It is indeed a general fact that the qua-
siconvex envelope of a material indifferent and isotropic material vanishes
on the set of singular values less than 1, see Le Dret and Raoult (1994).

2 Quasiconvexity in the derivation of slender

structure models

In this section, we turn to the rigorous derivation of models for bidimen-
sional structures from three-dimensional models. The idea of deriving sim-
plified models from complete models goes back at least to the 50s with the
works by R.D. Mindlin and by E.Reissner among others. In the linear case,
correct bidimensional models can be obtained by quick, but mathematically
frightening ways: assuming for instance that the 33 component of the lin-
earized strain tensor is equal to 0 in some equations of the three-dimensional
model, but not in other ones. Later on, came the idea of considering a se-
quence of structures with thickness 2ε, of writing elasticity models for each
of these structures and of studying the asymptotic behavior of the solutions
of the models. Many researchers in applied mathematics worked on this sub-
ject and most of them consider that this procedure was first formalized by
Ciarlet and Destuynder (1979).

The first result obtained by this method was of no surprise: the usual
linear plate model is recovered. In the linear case, this line of work was
pursued by identifying more precise models (i.e. not only identifying the
limit of the three-dimensional solutions, but identifying a higher-order term
as well), studying dynamical cases, or considering more general materials
such that piezo-electric materials, visco-elastic materials. Things get trick-
ier when dealing with nonlinear models: existence results are not always
available and convergence proofs are much harder when products of terms
have to be considered. Identifying limit models was first obtained by formal
asymptotic methods on the system of partial differential equations describ-
ing finite elasticity written under variational form. Then came the realm of
rigorous Γ-convergence arguments and their escort of quasiconvexification
tools. The work we present here is taken from Le Dret and Raoult (1995a).
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We mention that a previous work by Acerbi et al. (1991) existed and, al-
though in a one-dimesional setting that only requires convexity arguments,
gave a path to follow.

2.1 The three-dimensional and rescaled problems

For all ε > 0, let Ωε = {x ∈ R
3; (x1, x2) ∈ ω, |x3| < ε}, where ω is

an open, bounded subset of R
2 with Lipschitz boundary. For all zi ∈ R

3,
i = 1, 2, 3, we note (z1|z2|z3) the 3 × 3 matrix whose i-th column is zi. Let
W : M3×3 7→ R be a continuous function that satisfies the following growth
and coercivity hypotheses:

∃C > 0,∃p ∈ ]1,+∞[,∀F ∈ M3×3, |W (F )| ≤ C(1 + ‖F‖p), (18)

∃α > 0,∃β ≥ 0,∀F ∈ M3×3,W (F ) ≥ α‖F‖p − β. (19)

We assume that Ωε is the reference configuration of a hyperelastic ho-
mogeneous three-dimensional body whose stored energy function is W . We
assume for simplicity that the bodies are submitted to the action of dead
loading body force densities fε ∈ Lq(Ωε; R

3) and surface traction densities
gε ∈ Lr(Sε; R

3) on Sε = ω × {±ε}, the top and bottom surfaces of Ωε.
For the sake of definiteness, we assume that q = r and 1/p + 1/q = 1, but
other choices are indeed possible at no extra cost. Let Γε = ∂ω× ]−ε, ε[ be
the lateral surface of Ωε. We assume that the deformations of the bodies
satisfy a boundary condition of place on Γε. The equilibrium problem may
be formulated as a minimization problem:

Find φε ∈ Φε such that Iε(φ
ε) = inf

ψ∈Φε

Iε(ψ), (20)

where the total energy Iε is

Iε(ψ) =

∫

Ωε

W (∇ψ) dx−
∫

Ωε

fε · ψ dx−
∫

Sε

gε · ψ dσ, (21)

and the set of admissible deformations is

Φε = {ψ ∈W 1,p(Ωε; R
3);ψ(x) = x on Γε}. (22)

We do not assume that W is quasiconvex and problem (20) may well not
possess any solutions. Naturally, if it does have solutions which are thus
actual equilibrium deformations of the bodies, our results apply to these
deformations.

Let us thus be given a diagonal minimizing sequence φε for the sequence
of energies Iε over the sets Φε. More specifically, we assume that

φε ∈ Φε, Iε(φ
ε) ≤ inf

ψ∈Φε

Iε(ψ) + εs(ε), (23)
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where s is a positive function such that s(ε) → 0 when ε → 0. Such a
sequence always exists and if the minimization problems have solutions, φε

may be chosen to be such a solution.
In order to obtain a membrane model in the limit, it is of crucial impor-

tance to specify the order of magnitude of the applied loads. In effect, it is
always possible to stretch all thin cylinders Ωε into the same block, say Ω1,
by applying sufficiently large forces. For such forces, the limit behavior is
obviously not that of a membrane.

It turns out that the right order of magnitude is given by ‖fε‖Lq(Ωε;R3) ≤
Cε1/q and ‖gε‖Lq(Sε;R3) ≤ Cε where the constant C does not depend on ε.
For example, the weight of the material, fε(x) = (0, 0,−ρg)T , is allowed.

In order to rescale the problem, we let Ω = Ω1, Γ = Γ1 and S = S1 and
define a rescaling operator Θε by (Θεψ)(x1, x2, x3) = ψ(x1, x2, εx3). Let
φ(ε) = Θεφ

ε and φ0(ε)(x) = (x1, x2, εx3)
T . Note that all components are

treated in the same way: we only transport φε on the fixed domain Ω. This
is the same rescaling as that used in Fox et al. (1993). The rescaled dis-
placement u(ε) = φ(ε)−φ0(ε) belongs to V = W 1,p

Γ (Ω; R3). We accordingly
rescale the energies by setting I(ε)(ψ) = ε−1Iε(Θ

−1
ε ψ), i.e.,

I(ε)(ψ) =

∫

Ω

W
((
∂1ψ

∣∣∣∂2ψ
∣∣∣∂3ψ

ε

))
dx−

∫

Ω

f(ε) · ψ dx−
∫

S

ε−1g(ε) · ψ dσ,
(24)

or in terms of the rescaled displacements

J(ε)(v) =

∫

Ω

W
((
e1 + ∂1v

∣∣∣e2 + ∂2v
∣∣∣e3 +

∂3v

ε

))
dx

−
∫

Ω

f(ε) · (φ0(ε) + v) dx−
∫

S

ε−1g(ε) · (φ0(ε) + v) dσ,

where f(ε) = Θεf
ε and g(ε) = Θεg

ε. It is immediate that

J(ε)(u(ε)) ≤ inf
v∈V

J(ε)(v) + s(ε). (25)

For simplicity, we assume that f(ε) = f and ε−1g(ε) = g are independent
of ε.

2.2 Computation of the Γ-limit of the rescaled energies

We use Γ-convergence theory to determine the asymptotic behavior of
the rescaled displacements u(ε) when ε → 0. In the sequel, the thickness
parameter ε will take its values in a sequence εn → 0. Since the results

12



do not depend on the sequence in question, and for notational brevity, we
will simply use the notation ε. Let us recall that a sequence of functions
Gε from a metric space X into R̄ is said to Γ-converge toward G0 for the
topology of X if the following two conditions are satisfied for all x ∈ X:

∀xε → x, lim inf Gε(xε) ≥ G0(x),

∃yε → x,Gε(yε) → G0(x).

If the sequence Gε Γ-converges, its Γ-limit is lower semicontinuous and is
alternatively given by

G0(x) = min{lim inf Gε(xε);xε → x}.

In addition, the set of functions from X into R̄ has a sequential compact-
ness property with respect to Γ-convergence in the sense that any sequence
Gε : X → R̄ admits a Γ-convergent subsequence. The main interest of
Γ-convergence is that if the minimizers of Gε stay in a compact set of X
for all ε, then their limit points are minimizers of G0, see De Giorgi and
Franzoni (1975), Attouch (1984), Dal Maso (1993).

We do not use J(ε) directly, since this would imply working with the
weak topology of W 1,p(Ω; R3), which is non metrizable. Instead, we extend
the energies to Lp(Ω; R3) by setting

∀v ∈ Lp(Ω; R3), J̃(ε)(v) = J(ε)(v) if v ∈ V, +∞ otherwise. (26)

This is a classical trick used in the applications of Γ-convergence: obviously,
this does not change the minimization problem. It has the additional virtue
of incorporating the boundary conditions in the energy functional.

Let us now proceed to compute the Γ-limit of the sequence J̃(ε) for
the strong topology of Lp(Ω; R3). Let M3×2 be the space of 3 × 2 real

matrices endowed with the usual Euclidean norm ‖F̄‖ =
√

tr (F̄T F̄ ). We
note (z1|z2) the matrix of M3×2 whose α-th column is zα ∈ R

3. For all
F̄ = (z1|z2) ∈ M3×2 and z ∈ R

3, we also note (F̄ |z) the matrix whose first
two columns are z1 and z2 and whose third column is z.

As in Acerbi et al. (1991) for elastic strings, we define W0 : M3×2 → R

by

W0(F̄ ) = inf
z∈R3

W ((F̄ |z)). (27)

Due to the coercivity assumption on W , it is clear that this function is well
defined. Besides, since W is continuous, the infimum is attained.

13



Proposition 2.1. The function W0 is continuous and satisfies the growth
and coercivity estimates:

∃C ′ > 0,∀F̄ ∈ M3×2, |W0(F̄ )| ≤ C ′(1 + ‖F̄‖p), (28)

∀F̄ ∈ M3×2,W0(F̄ ) ≥ α‖F̄‖p − β. (29)

Proof - Since W0 is an infimum of continuous functions, it is upper
semicontinuous. Let F̄ ∈ M3×2 and consider a sequence F̄n ∈ M3×2 such
that F̄n → F̄ as n → +∞. Because of the coercivity assumption on W ,
there exists a compact set K such that for all F̄n the infimum in definition
(27) is attained at a point zn ∈ K. Consider a subsequence, still denoted
n, such that W0(F̄

n) converges when n → +∞. We extract a further
subsequence such that zn → z ∈ K. By continuity of W , W0(F̄

n) =
W ((F̄n|zn)) → W ((F̄ |z)) ≥ W0(F̄ ). As this is true for all subsequences
such that W0(F̄

n) converges, it follows that lim infW0(F̄
n) ≥W0(F̄ ), hence

W0 is lower semicontinuous.

For all F̄ ∈ M3×2, let z0 be a point where the infimum in definition (27)
is attained. Thus, W0(F̄ ) = W ((F̄ |z0)) ≥ α‖(F̄ |z0)‖p − β ≥ α‖F̄‖p − β.
Hence W0 is coercive. Therefore, W0 is nonnegative outside of a compact
set K ′. Since |W0| is continuous, it is bounded on K ′ and for F̄ 6∈ K ′,
|W0(F̄ )| = W0(F̄ ) ≤ W ((F̄ |0)) ≤ C(1 + ‖(F̄ |0)‖p) = C(1 + ‖F̄‖p), which
proves the growth estimate.

Let QW0 = sup{Z : M3×2 → R, Z quasiconvex, Z ≤ W0} be the quasi-
convex envelope of W0. Let us introduce the space

VM = {v ∈ V ; ∂3v = 0}, (30)

which we call the space of membrane displacements. It is canonically iso-
morphic to W 1,p

0 (ω; R3) and we let v̄ denote the element of W 1,p
0 (ω; R3) that

is associated with v ∈ VM through this isomorphism. The expression of the
Γ-limit of the sequence J̃(ε) is given in the following theorem.

Theorem 2.2. The sequence J̃(ε) Γ-converges for the strong topology of
Lp(Ω; R3) when ε→ 0. Let J̃(0) be its Γ-limit. For all v ∈ Lp(Ω; R3)∩VM ,

J̃(0)(v) = 2

∫

ω

QW0((e1+∂1v̄|e2+∂2v̄)) dx1dx2 −
∫

ω

F · (φ0(0)+v̄) dx1dx2

(31)

where F(x1, x2) =
∫ 1

−1
f(x1, x2, x3) dx3 + g(x1, x2, 1) + g(x1, x2,−1), and

J̃(0)(v) = +∞ if v ∈ Lp(Ω; R3) \ VM .
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For clarity, we break the proof of Theorem 2.2 into a series of lemmas
and propositions.

We begin by extracting a Γ-convergent subsequence and call J̃(0) its Γ-
limit. The uniqueness of J̃(0) will make the extraction of this subsequence
superfluous a posteriori .

Lemma 2.3. Let v(ε) ∈ Lp(Ω; R3) be a sequence such that J̃(ε)(v(ε)) ≤
C < +∞ where C does not depend on ε. Then v(ε) is uniformly bounded
in V and its limit points for the weak topology of V belong to VM .

Proof- Let v(ε) ∈ Lp(Ω; R3) be such that J̃(ε)(v(ε)) ≤ C < +∞. Then,
the definition (26) of the function J̃(ε) implies first of all that v(ε) ∈ V
for all ε > 0. Let us call ψ(ε) = v(ε) + φ0(ε) the deformation that is
associated with the displacement v(ε). The coercivity of the function W
and the assumed uniform bound for the energies imply that

α

∫

Ω

∥∥(∂1ψ(ε)|∂2ψ(ε)|ε−1∂3ψ(ε))
∥∥p dx ≤ C ′(1 + ‖ψ(ε)‖W 1,p(Ω;R3)

)
(32)

where C ′ does not depend on ε. It is clear that for all ε ≤ 1, ‖(z1|z2|ε−1z3)‖ ≥
‖(z1|z2|z3)‖. Therefore, (32) implies that

α‖∇ψ(ε)‖pLp(Ω;R3) ≤ C ′(1 + ‖ψ(ε)‖W 1,p(Ω;R3)

)
, (33)

which, together with the boundary condition of place ψ(ε) = φ0(ε) on Γ,
yields the desired uniform bound for ψ(ε) in W 1,p(Ω; R3) by Poincaré’s
inequality. Since φ0(ε) is obviously uniformly bounded in W 1,p(Ω; R3), the
same holds true for v(ε).

On the other hand, since ‖(z1|z2|ε−1z3)‖ ≥ ε−1|z3|, where | · | denotes
the Euclidean norm into R

3, upon using the bound just established above in
inequality (33) we obtain that ‖∂3ψ(ε)‖Lp(Ω;R3) ≤ C ′′ε, so that ∂3ψ(ε) → 0
strongly in Lp(Ω; R3). If we let ψ denote any limit point of the sequence
ψ(ε) for the weak topology of W 1,p(Ω; R3), it follows at once that ∂3ψ = 0.
If v denotes the corresponding limit point of the sequence v(ε), since v =
ψ − φ0(0) and ∂3φ0(0) = 0, we obtain that v belongs to VM .

Corollary 2.4. If v ∈ Lp(Ω; R3) but v 6∈ VM , then J̃(0)(v) = +∞.

Proof - Indeed, if J̃(0)(v) < +∞, there exists a sequence v(ε) that
converges strongly to v in Lp(Ω; R3) and such that J̃(ε)(v(ε)) → J̃(0)(v).
Therefore, by Lemma 2.3, v ∈ VM .

We thus only have to compute the value of the Γ-limit for displacements
in VM .
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Proposition 2.5. For all v ∈ VM , we have that

J̃(0)(v) ≥ 2

∫

ω

QW0((e1+∂1v̄|e2+∂2v̄)) dx1dx2 −
∫

ω

F · (φ0(0)+v̄) dx1dx2.

(34)

Proof - Consider any v ∈ VM . Since J(ε)(v) is obviously bounded from
above independently of ε, it follows that J̃(0)(v) < +∞. By the definition
of Γ-convergence, there exists a sequence v(ε) ∈ V such that v(ε) → v
strongly in Lp(Ω; R3) and J̃(ε)(v(ε)) → J̃(0)(v). Then, by Lemma 2.3,
v(ε) ⇀ v weakly in V .

First of all, it is clear that, when ε→ 0,
∫

Ω

f · (φ0(ε)+ v(ε)) dx+

∫

S

g · (φ0(ε)+ v(ε)) dσ →
∫

ω

F · (φ0(0)+v̄) dx1dx2.

(35)
For the elastic energy, we have that (with ψ(ε) = v(ε) + φ0(ε) as usual)

∫

Ω

W
((
∂1ψ(ε)

∣∣∣∂2ψ(ε)
∣∣∣∂3ψ(ε)

ε

))
dx ≥

∫

Ω

W0((∂1ψ(ε)|∂2ψ(ε))) dx

≥
∫

Ω

QW0((∂1ψ(ε)|∂2ψ(ε))) dx.

Let G : W 1,p(Ω; R3) 7→ R be defined by

G(ψ) =

∫

Ω

QW0((∂1ψ|∂2ψ)) dx. (36)

Let us define a function Z : M3 7→ R by Z((z1|z2|z3)) = QW0((z1|z2)).
Since QW0 is quasiconvex, Z is also quasiconvex. Indeed, let d be the unit
square in R

2 and D = d× ]0, 1[. Consider any function φ ∈ D(D; R3). For
all y ∈ ]0, 1[, the function φy defined by φy(x1, x2) = φ(x1, x2, y) belongs to
D(d; R3). Hence, for all F ∈ M3,

∫

D

Z(F + ∇φ) dx =

∫

D

QW0((z1 + ∂1φ|z2 + ∂2φ)) dx

=

∫ 1

0

(∫

d

QW0((z1 + ∂1φy|z2 + ∂2φy)) dx1dx2

)
dy

≥
∫ 1

0

QW0((z1|z2)) dy = Z(F ).

This implies that Z is quasiconvex.
We now remark that Z is quasiconvex, bounded below by −β and sat-

isfies the growth condition (18) since QW0 satisfies (28). Therefore, the
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function G is sequentially weakly lower semicontinuous on W 1,p(Ω; R3),
Acerbi and Fusco (1984). Consequently, since ψ(ε) ⇀ ψ = v + φ0(0) in
W 1,p(Ω; R3),

lim inf
ε→0

∫

Ω

W
((
∂1ψ(ε)

∣∣∣∂2ψ(ε)
∣∣∣∂3ψ(ε)

ε

))
dx ≥ lim inf

ε→0
G(ψ(ε))

≥ G(ψ) = 2

∫

ω

QW0((e1 + ∂1v̄|e2 + ∂2v̄)) dx, (37)

and the proof is complete.

Let us now turn to proving the reverse inequality.

Proposition 2.6. For all v ∈ VM , we have that

J̃(0)(v) ≤ 2

∫

ω

QW0((e1+∂1v̄|e2+∂2v̄)) dx1dx2 −
∫

ω

F · (φ0(0)+v̄) dx1dx2.

(38)

Proof - Let us consider v ∈ VM . For all w ∈ W 1,p
0 (ω; R3), we define a

displacement
v(ε)(x) = v̄(x1, x2) + εx3w(x). (39)

Obviously, v(ε) → v strongly in W 1,p(Ω; R3). Let us examine the limit
behavior of the sequence J̃(ε)(v(ε)). By the dominated convergence theorem
and the growth estimate, it is clear that

∫

Ω

W ((∂1(ψ̄+εx3w)|∂2(ψ̄+εx3w)|e3+w)) dx→
∫

Ω

W ((∂1ψ̄|∂2ψ̄|e3+w)) dx

when ε→ 0. Consequently,

J̃(ε)(v(ε)) →
∫

Ω

W ((∂1ψ̄|∂2ψ̄|e3 + w)) dx−
∫

ω

F · (φ0(0)+v̄) dx1dx2.

As this is true for all w ∈ W 1,p
0 (ω; R3), it follows from the definition of

Γ-convergence that

J̃(0)(v) ≤ inf
w∈W 1,p

0
(ω;R3)

∫

Ω

W ((∂1ψ̄|∂2ψ̄|e3+w)) dx−
∫

ω

F·(φ0(0)+v̄) dx1dx2.

We remark that

inf
W 1,p

0
(ω;R3)

∫

Ω

W ((∂1ψ̄|∂2ψ̄|e3+w)) dx = inf
Lp(ω;R3)

∫

Ω

W ((∂1ψ̄|∂2ψ̄|e3+w)) dx,
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by the density of W 1,p
0 (ω; R3) in Lp(ω; R3) and by the dominated con-

vergence theorem. The function g : ω × R
3 → R defined by g(x, z) =

W ((∂1ψ̄(x)|∂2ψ̄(x)|e3 + z)) is a Carathéodory function. Hence, the measur-
able selection lemma, Ekeland and Temam (1974), shows that there exists
a measurable function w0 such that

W0((∂1ψ̄(x)|∂2ψ̄(x))) = W ((∂1ψ̄(x)|∂2ψ̄(x)|e3 + w0(x)))

for almost all x ∈ ω. Due to the coercivity estimate, w0 ∈ Lp(ω; R3) and
thus

inf
w∈Lp(ω;R3)

∫

Ω

W ((∂1ψ̄|∂2ψ̄|e3 + w)) dx ≤
∫

Ω

W0((∂1ψ̄|∂2ψ̄)) dx. (40)

Let G : W 1,p
0 (ω; R3) → R be defined by

G(v̄) = 2

∫

ω

W0((∂1ψ̄|∂2ψ̄)) dx1dx2 −
∫

ω

F · (φ0(0)+v̄) dx1dx2.

It follows from (40) that for all v ∈ VM

J̃(0)(v) ≤ G(v̄). (41)

Since J̃(0) is lower semicontinuous on Lp(Ω; R3), its restriction to VM is se-
quentially weakly lower semicontinuous on VM equipped with theW 1,p(ω; R3)
topology. Therefore,

J̃(0)|VM
≤ Γ-G

where Γ-G is the sequential weak lower semicontinuous envelope of G on
W 1,p

0 (ω; R3). It is known, see Acerbi and Fusco (1984), that Γ-G is given
by

Γ-G(v̄) = 2

∫

ω

QW0((∂1ψ̄|∂2ψ̄)) dx1dx2 −
∫

ω

F · (φ0(0)+v̄) dx1dx2.

which proves proposition 2.6.

Theorem 2.2 is proved by gathering all previous results.

2.3 Convergence of the rescaled deformations and the nonlinear

membrane model

We now use Theorem 2.2 to characterize the asymptotic behavior of diag-
onal minimizing sequences of rescaled deformations φ(ε) for the sequence of
rescaled energies I(ε), which are such that I(ε)(φ(ε)) ≤ inf

ψ∈Φ(ε)
I(ε)(ψ)+h(ε)
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where h is a positive function such that h(ε) → 0 when ε→ 0 and the sets
of admissible deformations are

Φ(ε) = {ψ ∈W 1,p(Ω; R3);ψ(x) = φ0(ε)(x) on Γ}.

We introduce the space of membrane deformations as ΦM = {ψ ∈
W 1,p(Ω; R3), ∂3ψ = 0, ψ(x) = (x1, x2, 0)T on Γ}, which is isomorphic to
Φ̄M = {ψ̄ ∈W 1,p(ω; R3), ψ̄(x1, x2) = (x1, x2, 0)T on ∂ω}.

Theorem 2.7. The sequence φ(ε) is relatively weakly compact in W 1,p(Ω; R3).
Its limit points φ belong to ΦM and are identified with elements φ̄ of Φ̄M ,
solutions of the minimization problem Ī(0)(φ̄) = inf

ψ̄∈Φ̄M

Ī(0)(ψ̄), where the

membrane energy Ī(0) is given by

Ī(0)(ψ̄) = 2

∫

ω

QW0(∇ψ̄) dx1dx2 −
∫

ω

F · ψ̄ dx1dx2. (42)

Proof - We follow an argument due to De Giorgi. With the rescaled
deformation φ(ε), we associate a rescaled displacement u(ε) ∈ V by u(ε) =
φ(ε) − φ0(ε). Obviously, J(ε)(u(ε)) ≤ infv∈V J(ε)(v) + h(ε). In particular,
J(ε)(u(ε)) is uniformly bounded and Lemma 2.3 shows that the sequence
u(ε) is relatively weakly compact in V and that its limit points belong to
VM . This implies in particular that u(ε) is relatively compact in Lp(Ω; R3).

On the other hand, it is clear that J̃(ε)(u(ε)) ≤ infv∈Lp(Ω;R3)J̃(ε)(v) +
h(ε). Let u be a limit point of u(ε) for the strong topology of Lp(Ω; R3) (such
a u is also a limit point of u(ε) for the weak topology of V ). Without loss
of generality, we may assume that u(ε) → u strongly in Lp(Ω; R3). Let v be
an arbitrary element of Lp(Ω; R3) and consider a sequence v(ε) ∈ Lp(Ω; R3)
such that

v(ε) → v, J̃(ε)(v(ε)) → J̃(0)(v).

Such a sequence exists by the very definition of Γ-convergence. Since
J̃(ε)(u(ε)) ≤ J̃(ε)(v(ε)) + h(ε), it follows that

J̃(0)(u) ≤ lim inf J̃(ε)(u(ε)) ≤ lim inf(J̃(ε)(v(ε)) + h(ε)) = J̃(0)(v).

Therefore, u is a minimizer of J̃(0). Rewriting this statement in terms of
φ̄, we obtain Theorem 2.7.

Remark 2.8. i) It is classical in Γ-convergence theory that the energies
converge as well, in the sense that I(ε)(φ(ε)) → Ī(0)(φ̄).

ii) If the three-dimensional elasticity problem has solutions that mini-
mize the elastic energy, Theorem 2.7 applies to these minimizers. Such is
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the case for the polyconvex stored energy functions. Examples of realistic
stored energy functions that satisfy the above hypotheses include Ogden’s
stored energy functions with appropriate exponents. For a derivation of the
membrane model under the constraint det(∇φ) 6= 0, see Anza Hafsa and
Mandallena (2006).

iii) The weak limits φ of weakly convergent subsequences of φ(ε) do not
depend on x3, in which sense the problem becomes two-dimensional in the
limit. If regular enough, the associated function φ̄ describes a deforma-
tion of ω into a surface of R

3. The elastic energy of such a deformation,
2

∫
ω
QW0(∇φ̄) dx1dx2, only depends on its first derivatives. There are thus

no bending effects associated with curvature, in which sense the resulting
model is a nonlinear membrane model.

iv) If the function QW0 is smooth enough, the Euler-Lagrange equations
for the membrane problem assume the form

−∂β
( ∂

∂F̄
QW0(∇φ̄)

)
iβ

=
1

2
Fi in ω, φ̄(x1, x2) = (x1, x2, 0)T on ∂ω, (43)

where Greek indices take their values in the set {1, 2}, Latin indices in
the set {1, 2, 3} and the summation convention is understood. System (43)
is a system of three quasilinear partial differential equations in the three
unknowns φ̄i. If the applied load is the weight, assuming the membrane
is horizontal in its reference configuration, the limit load is of the form
1/2F = (0, 0,−ρg)T . The function F̄ 7→ T̄R(F̄ ) = ∂

∂F̄
QW0(F̄ ) appears as

the constitutive law for the analogue of the first Piola-Kirchoff stress tensor
in the membrane. It gives the Lagrangian description of the tensile stresses
in the membrane. It appears that the limit membrane problem retains the
full quasilinear structure of three-dimensional elasticity, in contrast with
such nonlinear plate models as the von Kármán equations that are only
semilinear.

v) The explicit computation of QW0 when W is the three-dimensional
Saint Venant Kirchhoff energy is given in Le Dret and Raoult (1995a).

vi) The formal derivation of two-dimensional bending models was ob-
tained in Fox et al. (1993) by asymptotic expansions. The bending model
was there shown to be part of a hierarchy of models starting with the mem-
brane model and ending with the linear plate model. Preliminary results
for a rigorous derivation of the bending model by Γ-convergence arguments
were given in Pantz (2001). The issue was completely settled in Friesecke
et al. (2002) where an important rigidity lemma is proved. See also Friesecke
et al. (2006).

vii) The previous method can be adapted to the study of the consistency
of director models (Cosserat theory). In such models, the deformation is
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assumed to have a specific form. Namely, the deformation of each point
(x1, x2, x3) of the three-dimensional body is assumed to be the sum of the
deformation of point (x1, x2) and of a term colinear to a vector depending
on (x1, x2) only, called the director vector. Some models assume the direc-
tor to be of norm 1, or to remain normal to the deformed configuration.
We proved in Le Dret and Raoult (2000) that the inextensibility constraint
is inadequate in the membrane regime. On the contrary, the unconstrained
Cosserat hypothesis provides a correct framework to account for the nonlin-
ear membrane behavior. In order to obtain information on the asymptotic
behavior of the director field, we had to study the weak lower semicontinuity
of integral functionals of the form

I(ψ, δ) =

∫

ω

W (∇ψ, δ) dx

where ψ : ω ⊂ R
2 7→ R

3, δ : ω 7→ R
3. This led us to introduce the notion of

cross-quasiconvexity which is related to A-convexity, see Fonseca and Müller
(1999).

3 Quasiconvexity in the derivation of lattice

homogenized models

This section deals with lattices. For the sake of definiteness, we study bidi-
mensional lattices that can deform into R

3. Given a lattice made of bars
and nodes, or given an atom lattice, we aim at deriving a continuous model
whose macroscopic behavior is similar to the discrete lattice behavior. The
discrete model we start from takes into account the changes of lengths as
well as the changes of angles under deformation. Formal results in this set-
ting were first given in Caillerie et al. (2003) and in Mourad (2003) and
they are valid for any lattice. They were detailed later on in Caillerie et al.
(2006) for graphene sheets whose carbon atoms make hexagonal networks.
The rigorous results we present here are valid for a restricted class of lat-
tices, square lattices are a good example of. An extended version will be
published in a joint work with Nicolas Meunier and Olivier Pantz.

3.1 The lattice energy

We consider a discrete two-dimensional lattice. Let Ω =]0, 1[2, N ∈ N,
r = 1

N and let | · | denote the Euclidean norm into R
3. We assume that the

lattice nodes coincide at rest with the points Mi,j = (ir, jr) ∈ Ω̄, (i, j) ∈
{0, 1, . . . , N}2. For the sake of simplicity, we assume that the lattice is fixed
at points located on the boundary. All arguments below extend easily to
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other cases, for instance a lattice whose left edge nodes are fixed. Under a
loading G acting on the internal nodes, the lattice undergoes a deformation
ψ from {Mi,j , (i, j) ∈ {0, 1, . . . , N}2} into R

3 that minimizes, under the
placement constraint, the energy

k1

2

∑

0≤i≤N−1,1≤j≤N−1

(|ψ(Mi+1,j) − ψ(Mi,j)| − r)2

+
k1

2

∑

1≤i≤N−1,0≤j≤N−1

(|ψ(Mi,j+1) − ψ(Mi,j)| − r)2

+
k2

2

∑

0≤i,j≤N

∑

((k,l),(k′,l′))∈Cij

(
ψ(Mk′,l′) − ψ(Mi,j)

|ψ(Mk′,l′) − ψ(Mi,j)|
· ψ(Mk,l) − ψ(Mi,j)

|ψ(Mk,l) − ψ(Mi,j)|

)2

−
N−1∑

i,j=1

G(Mi,j) · ψ(Mi,j) (44)

where k1 and k2 are stiffness coefficients and where Cij allows to number the
pairs of bars sharing one end identified by (i, j): for (i, j) ∈ {0, 1, . . . , N −
1}2, Cij contains four elements; otherwise it contains two elements. Obvi-
ously, in such a model segments between nodes remain straight under any
deformation. Therefore, when the deformation of nodes in known, the lat-
tice deformation is known. This is the simplest example of an energy taking
into account the length changes and the angle changes due to the deforma-
tion. The internal energy is equal to 0 when all segments are of length r
and when all angles are equal to π/2. Such an energy applies to mechanical
networks and to atom lattices as well, in which case segments are atomic
bonds. Adjacent nodes cannot be set on a single point because bar lengths
cannot be equal to 0. We do not assume ψ to be globally one-to-one thus
allowing for folding along the bars. In other words, ψ must satisfy the con-
straint ψ(Mk,l) 6= ψ(Mi,j) for adjacent pairs of indices. As a consequence,
denominators in (44) are not equal to 0 and the energy is well defined.

We emphasize the fact that the geometry of the lattice we study here is
extremely simple: at rest, translating a reference pattern made of one node
and two segments along two orthogonal directions generate the whole of
the structure. The derivation of a continous model has been performed by
formal asymptotic methods in a more general setting. Namely, the reference
pattern contains several nodes and an arbitrary number of bars, see Mourad
(2003) and Caillerie et al. (2003), and Caillerie et al. (2006) for results specifc
to hexagonal networks. Here, we aim at obtaining rigorous convergence
proofs and our reasonings are in the spirit of those by Braides and Gelli
(2002), Alicandro and Cicalese (2004).
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Figure 1. Left: triangulation T 1
h , right: triangulation T 2

h

We consider that the square lattice behavior is close to the limit behav-
ior of a sequence of lattices whose grid step εr goes to 0. Data for these
lattices are given by assuming that kε1 = k1, k

ε
2 = ε2k2 and that there ex-

ists a continuous function g defined on Ω̄ such that for all i, j = 1, . . . , 1
εr ,

Gε(i εr, j εr) = ε2r2g(i εr, j εr).
In order to write convergence results, we need the minimization prob-

lems associated with all lattices in this sequence to be defined on a single
functional space. To this aim, we first subdivide squares with edge length
h = εr into triangles. In other words, we construct a triangulation denoted
by T 1

h in a way reminiscent of finite element subdivisions (hence the choice
of the notation h), see Fig. 1. With each mapping ψ defined on the nodes
(ih, jh) we can associate a mapping defined on Ω̄ that is affine on each tri-
angle, globally continuous and coincides with ψ at each node. This new
mapping can still be denoted by ψ. Obviously,

∀x1 ∈]ih, (i+ 1)h[, ψ((i+ 1)h, jh) − ψ(ih, jh) = h ∂1ψ(x1, jh),

∀x2 ∈]jh, (j + 1)h[, ψ(ih, (j + 1)h) − ψ(ih, jh) = h ∂2ψ(ih, x2),

and ∂1ψ, ∂2ψ are R
3-valued functions that remain constant over each tri-

angle. This typically allows to write terms due to the length changes in
the energy (44) corresponding to the h-lattice as integrals of functions de-
pending on the gradient of ψ only. Inner products in the third line that
correspond to two segments belonging to a single triangle of T 1

h can be
written as integrals of functions depending on the gradient of ψ, as well.
This trick does not work for inner products corresponding to pairs of bars
that are not the edges of a single triangle in T 1

h . Therefore we introduce a
second triangulation denoted by T 2

h that is orthogonal to T 1
h , see Fig. 1, and

with each mapping ψ defined on the nodes (ih, jh) we associate a mapping
ψ⊥ defined on Ω̄ that is affine on each triangle of T 2

h , globally continuous
and coincides with ψ at each node. Upon some computation and dividing
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by the first stiffness coefficient, we arrive at the family of scaled energies

Ih(ψ) =

∫

Ω

(
(|∂1ψ| − 1)2 + (|∂2ψ| − 1)2 +K

( ∂1ψ

|∂1ψ|
· ∂2ψ

|∂2ψ|
)2

)
dx

+

∫

Ω

(
(|∂1ψ

⊥| − 1)2 + (|∂2ψ
⊥| − 1)2 +K

( ∂1ψ
⊥

|∂1ψ⊥| ·
∂2ψ

⊥

|∂2ψ⊥|
)2

)
dx

−Lh(ψ) (45)

where

K =
4

r2
kp
kl
, Lh(ψ) = h2

1
h∑

i,j=1

f(ih, jh) · ψ(ih, jh) with f =
4

kl
g.

defined on the sets

A∗
h = {ψ ∈ C0(Ω̄; R3),∀T ∈ T 1

h , ψ|T ∈ P1(T ), ψ|∂Ω = id,

∀(k, l), (k′, l′)s.t.|k′ − k| + |l′ − l| = 1, ψ(k′h, l′h) 6= ψ(kh, lh)}.(46)

Functions satisfying the final assertion in (46) will be said to be pairwise
one-to-one. In the sequel, we will also use the set Ah which does not require
the deformations to be pairwise one-to-one:

Ah = {ψ ∈ C0(Ω̄; R3),∀T ∈ T 1
h , ψ|T ∈ P1(T ), ψ|∂Ω = id}. (47)

3.2 Convergence results

Minimizing Ih on A∗
h amounts to minimize a functional that is defined

on a subset of a finite-dimensional space. Nevertheless, the existence of a
minimizer is not obvious since A∗

h is not closed. Therefore, we concentrate
on the limit behavior of almost minimizers. More specifically, we consider
functions φh such that

φh ∈ A∗
h, ∀ψ ∈ A∗

h, Ih(φh) ≤ Ih(ψ) + s(h), (48)

where s(h) ≥ 0, s(h) → 0 when h → 0. Our arguments follow the lines
of reasoning that were described in Section 2. Let us first introduce some
notation: let id : (x1, x2) ∈ Ω̄ 7→ (x1, x2, 0) ∈ R

3 and let W1 : M3×2 7→ R be
defined by

∀F = [z1|z2] ∈ M3×2, W1(F ) = (|z1| − 1)2 + (|z2| − 1)2. (49)

This function satisfies the coerciveness inequality

∀F = [z1|z2] ∈ M3×2, W1(F ) ≥ 1

2
||F ||2 − 1. (50)
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Lemma 3.1. Let φh a sequence in A∗
h satisfying (48). Then, there exists

C > 0 such that for all h, Ih(φh) ≤ C. Let ψh ∈ A∗
h be a sequence such

that Ih(ψh) ≤ C < +∞ for all h. Then ψh is bounded in H1(Ω; R3).

Proof- Choosing ψ = id in (48), we have ψ⊥ = id and we immediately
obtain that Ih(φh) ≤ Ih(id)+s(h) = −Lh(id)+s(h). Since for any h, Lh(id)
is a Riemann sum associated with f · id, the sequence Lh(id) converges and
we know by construction that s(h) goes to 0. Therefore, the first point in
Lemma 3.1 is proved. Let us turn to the second point. We first establish
that

∃C > 0, ∀h, ∀ψh ∈ Ah, (
∑

h

h2|ψh(ih, jh)|2)1/2 ≤ ||ψh||L2(Ω;R3). (51)

This is obtained by sendind the restrictions of functions ψh to all tri-
angles in T 1

h onto a single triangle, say the unit rectangular triangle T̂ , as
is customary in the finite element theory, and by using the fact that all
norms are equivalent on P1(T̂ ). Now let ψh ∈ A∗

h be a sequence such that
Ih(ψh) ≤ C < +∞. Then, by (51),

∀h,
∫

Ω

W1(∇ψh(x)) dx ≤ C + Lh(ψh) ≤ C(1 + ||ψh||L2(Ω;R3)).

We conclude by (50) and by Poincaré inequality.

As a consequence, the following corollary holds true.

Corollary 3.2. For any sequence φh satisfying (48), there exists a sub-
sequence that we still label by h and there exists φ ∈ H1(Ω; R3) such that
φh → φ in L2(Ω; R3) and φh ⇀ φ in H1(Ω; R3).

In order to identify a problem whose φ is a minimizer, we use Γ-convergen-
ce tools. To this end, we extend energies Ih to L2(Ω; R3) in the classical
way seen in Section 2. Namely, we set

∀ψ ∈ A∗
h, Ĩh(ψ) = Ih(ψ), ∀ψ ∈ L2(Ω; R3) \ A∗

h, Ĩh(ψ) = +∞. (52)

Obviously, φh solves (48) if and only if φh satisfies

φh ∈ L2(Ω; R3), ∀ψ ∈ L2(Ω; R3), Ĩh(φh) ≤ Ĩh(ψ) + hs(h). (53)

Moreover, we need to work on vector spaces rather than on affine spaces.
Therefore, we define the sets

V∗
h = A∗

h − id = {v ∈ C0(Ω̄; R3),∀T ∈ T 1
h , v|T ∈ P1(T ), v|∂Ω = 0,

id+ v pairwise one-to-one}, (54)
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with the associated functionals J̃h given by

∀v ∈ V∗
h, J̃h(v) = Jh(v) := Ih(id+ v), ∀v ∈ L2(Ω; R3) \ V∗

h, J̃h(v) = +∞
(55)

or equivalently

∀v ∈ L2(Ω; R3), J̃h(v) = Ĩh(id+ v). (56)

Finally, we extract a Γ-convergent subsequence for the L2(Ω; R3)-topology
and call J̃0 its Γ-limit. As usual, the uniqueness of J̃0 will make the extrac-
tion of this subsequence superfluous a posteriori .

Proposition 3.3. u := φ− id minimizes J̃0 on L2(Ω; R3).

Proof- We recall the argument that was already given in Proposition 2.7.
From Corollary 3.2, we know that uh := φh−id converges to u in L2(Ω; R3).
Therefore, on the one hand, J̃0(u) ≤ lim inf J̃h(uh). On the other hand, for
any v in L2(Ω; R3), there exists vh in L2(Ω; R3) such that J̃h(vh) converges
to J̃0(v). Therefore, for any v ∈ L2(Ω; R3),

J̃0(u) ≤ lim inf J̃h(uh) ≤ lim inf(J̃h(vh) + hs(h)) = J̃0(v) (57)

Let us now proceed to the identification of J̃0(v) for any v in L2(Ω; R3).
The case when v does not belong to H1

0 (Ω; R3) is immediate.

Proposition 3.4. For all v in L2(Ω,R3) \H1
0 (Ω,R3), J̃0(v) = +∞.

Proof- We proceed by contradiction. Suppose J̃0(v) < +∞. Since J̃h
Γ-converges to J̃0 for the L2(Ω; R3)-topology, there exists a sequence vh
in L2(Ω; R3) such that vh → v in L2(Ω; R3) and J̃h(vh) → J̃0(v) < +∞.
Obviously J̃h(vh) is bounded from above. Therefore, vh belongs to V∗

h and
from Lemma 3.1, we deduce that vh converges weakly to v in H1(Ω; R3)
which states in particular that v belongs to H1

0 (Ω; R3).

This result implies that u := φ− id belongs to H1
0 (Ω; R3) and minimizes

J̃0 on H1
0 (Ω; R3). Before looking for a precise expression of J̃0(v) when v

in H1
0 (Ω; R3), let us check that it is a finite number. This step was obvious

in the framework of Section 2. Here, it requires some work. Actually, the
result will not be obtained by simply defining a constant sequence vh = v
and saying that J̃0(v) ≤ lim inf J̃h(vh) = lim inf Jh(vh) < +∞. Indeed, v
is not necessarily affine not to mention not necessarily such that id + v is
pairwise one-to-one. What we need to do is finding a sequence vh in V∗

h such
that vh converges to v in L2(Ω; R3). The following lemma gives stronger
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results. In the first assertion, we ignore the injectivity condition and we
make use of the notation

Vh = Ah − id = {v ∈ C0(Ω̄; R3),∀T ∈ T 1
h , v|T ∈ P1(T ), v|∂Ω = 0}. (58)

In the second assertion, we take the injectivity condition into account.

Lemma 3.5. For any v in H1
0 (Ω; R3), there exists a sequence vh such that

vh ∈ Vh and vh → v in H1(Ω; R3). Moreover elements vh can be taken in
V∗
h.

Proof- Let Πh be the P1-interpolation operator associated with T 1
h . Stan-

dard results show that, for any w in H2(Ω; R3), Πh(w) converges to w. If
w belongs to (H2 ∩ H1

0 )(Ω; R3), then Πhw is equal to 0 on the boundary.
In other words, Πhw belongs to Ah. Therefore, any w in (H2 ∩H1

0 )(Ω; R3)
is the limit of a sequence wh, h → 0 with wh in Ah. Now, well known
density results state that any v in H1

0 (Ω; R3) is the limit of a sequence wn,
n → +∞ such that wn belongs to (H2 ∩ H1

0 )(Ω; R3). Upon extracting a
diagonal sequence (recall that h is the inverse of an integer), we prove the
first assertion of Lemma 3.5.

For obtaining the second assertion, we show that functions vh that were
just obtained can be slightly modified into functions v∗h such that the func-
tions ψ∗

h := (id+ v∗h) are pairwise one-to-one. We actually prove a stronger
result, since we obtain functions ψ∗

h whose restrictions to the set of nodes
are one-to-one. Define ψh = id+ vh and

Nh = {
(
(k, l), (k′, l′)

)
, k, l, k′, l′ ∈ {0, . . . , 1

h
}2;ψh(kh, lh) 6= ψh(k

′h, l′h)}.

This set is nonempty since ψh = id on the boundary. Therefore, Ch :=
minNh

|(ψh(k′h, l′h) − ψ(kh, lh)| is strictly positive. Finally, let λh = Ch

2
√

2
.

We define v∗h as follows:

∀(x1, x2) s.t. h ≤ x1, x2 ≤ 1 − h, v∗h = vh + λhid, v
∗
h|∂Ω = 0

and v∗h is globally continuous and affine on each triangle in T 1
h . Note that

since vh and id are affine per triangle, there is no contradiction in the
previous requirements. Let us check that the restriction of ψ∗

h = id+ v∗h to
the set of nodes is one-to-one. Suppose that ψ∗

h(kh, lh) = ψ∗
h(k

′h, l′h) with
(k, l), (k′, l′) ∈ {0, . . . , 1

h}2. Let us show that (k, l) = (k′, l′). We distinguish
several cases:
- Case 1: (kh, lh) and (k′h, l′h) belong to ∂Ω. Since ψh coincides with id
on ∂Ω, obviously (k, l) = (k′, l′).
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- Case 2: (kh, lh) and (k′h, l′h) belong to Ω. Then
- either ψh(kh, lh) = ψh(k

′h, l′h) and the assumption on ψ∗
h implies that

λh(kh, lh, 0) = λh(k
′h, l′h, 0), whence (k, l) = (k′, l′) because λh 6= 0,

- or ψh(kh, lh) 6= ψh(k
′h, l′h) and the assumption on ψ∗

h implies that
ψh(kh, lh)−ψh(k′h, l′h) = λh((k

′−k)h, (l′−l)h, 0). Therefore, |ψh(kh, lh)−
ψh(k

′h, l′h)| ≤ λh
√

2 < Ch

2 which is contradictory with the definition of Ch.
- Case 3: (kh, lh) ∈ ∂Ω and (k′h, l′h) ∈ Ω. Similar to case 2.
We still have to prove that v∗h converges to v in H1(Ω; R3). Clearly, Ch ≤ h
and λh ≤ h

2
√

2
. Therefore, vh+λhid converges to v in H1(Ω; R3). The result

remains true for v∗h which differs from vh + λhid on bands of width h: L∞

bounds for v∗h and its partial derivatives on these bands are easily obtained.

Corollary 3.6. J̃0 is finite on H1
0 (Ω; R3).

Proof- For any v in H1
0 (Ω; R3), there exists vh in V∗

h such that vh → v
in L2(Ω; R3). Therefore,

J̃0(v) ≤ lim inf J̃h(vh) = lim inf Jh(vh) < +∞.

Finding an expression for J̃0(v), v in H1
0 (Ω; R3) is now divided into two

steps. First, we exhibit a functional that is smaller than J̃0; then, we prove
that it is greater as well. Let us recall the definition of Jh. For any vh in
V∗
h and ψh = id+ vh,

Jh(vh) = Ih(ψh) =

∫

Ω

(W1+W2)(∇ψh(x))+(W1+W2)(∇ψ⊥
h (x)) dx−Lh(ψh),

(59)
where

∀F = [z1|z2] ∈ M3×2 s.t. z1 6= 0 and z2 6= 0, W2(F ) = K
( z1
|z1|

· z2|z2|
)2
. (60)

Let v in H1
0 (Ω; R3). By the definition of Γ-convergence, there exists vh

in L2(Ω; R3) such that vh → v in L2(Ω; R3) and J̃h(vh) → J̃0(v) < +∞.
Equivalently, ψh = id+ vh converges to ψ = id+ v in L2(Ω; R3) and Ĩh(ψh)
converges to Ĩ0(ψ) < +∞. From Lemma 3.1, we derive that ψh belongs to
A∗
h and converges weakly to ψ in H1(Ω; R3). Let us show that ψ⊥

h exhibits
similar properties.

Lemma 3.7. For any sequence ψh in Ah such that ψh converges to ψ
strongly in L2(Ω; R3) and weakly in H1(Ω; R3), the sequence ψ⊥

h converges
to ψ strongly in L2(Ω; R3) and weakly in H1(Ω; R3) as well. Moreover,
‖∇ψ⊥

h ‖L2(Ω;M3×2) = ‖∇ψh‖L2(Ω;M3×2).
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Proof- Let Q be the square with vertices (ih, jh), ((i + 1)h, jh), ((i +
1)h, (j+1)h), (ih, (j+1)h). We divide Q into two triangles T1 and T3 where
the vertices of T1 (resp. T3) are (ih, jh), ((i + 1)h, jh), (ih, (j + 1)h) (resp.
((i+1)h, jh), ((i+1)h, (j+1)h), (ih, (j+1)h). We divide Q into two triangles
T2 and T4 as well where the vertices of T2 (resp. T4) are (ih, jh), ((i +
1)h, jh), ((i+1)h, (j+1)h) (resp. (ih, jh), ((i+1)h, (j+1)h), (ih, (j+1)h).
Restricted to T1 (resp. T3), ∂1ψh is a constant vector that is equal to ∂1ψ

⊥
h

restricted to T2 (resp. T4). Therefore,
∫

Q

|∂1ψh|2 dx =

∫

T1∪T3

|∂1ψh|2 dx =

∫

T2∪T4

|∂1ψ
⊥
h |2 dx =

∫

Q

|∂1ψ
⊥
h |2 dx.

Similar equalities hold for the derivatives with respect to x2. Upon adding
the equalities for all squares Q, we obtain

‖∇ψ⊥
h ‖L2(Ω;M3×2) = ‖∇ψh‖L2(Ω;M3×2).

Hence, ‖∇ψ⊥
h ‖L2(Ω;M3×2) is bounded. As ψ⊥

h coincides with the identity on

∂Ω, Poincaré inequality proves that ψ⊥
h is bounded in H1(Ω; R3). Therefore

ψ⊥
h converges weakly to some function in H1

0 (Ω; R3). Let us now prove that
χh := ψ⊥

h − ψh converges to 0 in L2(Ω; R3). Since ψh and ψ⊥
h coincide on

the vertices on any Q defined above, they coincide on the edges of Q. In
other words, χh is equal to 0 on ∂Q, and rewriting the classical proof of
Poincaré inequality reads

χh(x1, x2) =

∫ x1

ih

∂1χh(ξ1, x2) dξ1,

which provides by Cauchy-Schwarz inequality,

|χh(x1, x2)|2 ≤ h

∫ (i+1)h

ih

(∂1χh)
2(ξ1, x2) dξ1,

and upon integrating with respect to x2

∫ (j+1)h

jh

|χh(x1, x2)|2 dx2 ≤ h

∫

Q

|∂1χh(x)|2 dx.

Finally
∫

Q

|χh(x)|2 dx ≤ h2

∫

Q

|∂1χh(x)|2 dx,
∫

Ω

|χh(x)|2 dx ≤ h2

∫

Ω

|∂1χh(x)|2 dx,

which implies that ‖χh‖L2(Ω;R3 ≤ h‖∇χh‖L2(Ω;M3×2). Using the first part of

the proof, we obtain that ψ⊥
h − ψh converges to 0 in L2(Ω; R3) from which

Lemma 3.7 follows.
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Let us now proceed to study the limit behavior of Ih(ψh). To this aim,
we extend W2 to the whole of M3×2 by letting: for all F = [z1|z2] in M3×2,

W e
2 (F ) = W2(F ) if z1 6= 0 and z2 6= 0, W e

2 (F ) = K if not. (61)

This new function W e
2 is not continuous on M3×2, but it is Borel measurable

and bounded by K. As a consequence, Z defined by

Z : M3×2 7→ R, Z = W1 +W e
2 (62)

is Borel measurable and satisfies the coerciveness and growth inequalities

∀F ∈ M3×2, α||F ||2 − β ≤ Z(F ) ≤ α′||F ||2 + β′, α, α′, β, β′ > 0. (63)

Since W e
2 extends W2, we can write, see (59),

Ih(ψh) =

∫

Ω

(
Z(∇ψh(x)) + Z(∇ψ⊥

h (x))
)
dx− Lh(ψh). (64)

Let QZ be the quasiconvex envelope of Z which is classically defined, see
Dacorogna (2007), by

QZ(F ) = sup{g(F ); g : M3×2 7→ R, g quasiconvex, g ≤ Z}. (65)

Since Z takes finite values only, all functions g in (65) are continuous:
indeed, rank-one convex functions that are finite valued are continuous.
Therefore, QZ is upper semicontinuous, hence Borel measurable and quasi-
convex. Let us note finally that

∀F ∈ M3×2, 0 ≤ QZ(F ) ≤ α′||F ||2 + β′, (66)

and let us define W on M3×2 by

W = 2Z = 2(W1 +W e
2 ). (67)

Proposition 3.8. For all ψ in (id+H1
0 (Ω; R3)), Ĩ0(ψ) ≥

∫
Ω
QW (∇ψ(x)) dx−∫

Ω
f(x) · ψ(x) dx.

Proving this proposition requires to deal in particular with the term due
to the external loadings. As this is not central to our analysis, we do not
detail the proof of the following lemma although it is not a totally trivial
exercise in approximation theory.

Lemma 3.9. For any sequence ψh in Ah such that ψh converges weakly to
ψ in H1(Ω,R3), Lh(ψh) converges to

∫
Ω
f(x) · ψ(x) dx.
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Proof of Proposition 3.8 - Obviously,

Ih(ψh) ≥
∫

Ω

(
QZ(∇ψh(x)) +QZ(∇ψ⊥

h (x))
)
dx− Lh(ψh),

where both integrands are in L1(Ω; R) since QZ is continuous and satisfies
(66). For the same reasons, the functional

H : ψ ∈ H1(Ω; R3) 7→ H(ψ) =

∫

Ω

QZ(∇ψ(x)) dx ∈ R

is well defined. It has been proved by Acerbi and Fusco (1984), see also
Dacorogna (2007), that under properties (66), H is sequentially weakly
lower semicontinuous on H1(Ω; R3). Therefore,

Ĩ0(ψ) = lim Ih(ψh) ≥ lim inf(H(ψh) +H(ψ⊥
h )) − limLh(ψh)

≥ lim infH(ψh) + lim infH(ψ⊥
h ) −

∫

Ω

f(x) · ψ(x) dx

≥ 2H(ψ) −
∫

Ω

f(x) · ψ(x) dx,

since by Lemma 3.7 both sequences ψh and ψ⊥
h converge weakly to ψ.

The remaining part of this section is devoted to showing that the in-
equality in Proposition 3.8 is actually an identity.

Proposition 3.10. For all ψ in (id+H1
0 (Ω; R3)), Ĩ0(ψ) ≤

∫
Ω
QW (∇ψ(x)) dx−∫

Ω
f(x)ψ(x) dx.

Proof - By the definition of Γ-convergence, Ĩ0(ψ) = J̃0(v) ≤ lim inf Ih(ψh)
for any sequence ψh ∈ A∗

h that converges to ψ in L2(Ω; R3). From Lemma
3.5, we can choose a sequence ψh ∈ A∗

h that converges to ψ in H1(Ω; R3).
Let us check that ψ⊥

h converges to ψ in H1(Ω; R3) as well. From Lemma 3.7,
we already know that ψ⊥

h converges to ψ strongly in L2(Ω; R3) and weakly in
H1(Ω; R3). Therefore, it suffices to show that ‖ψ⊥

h ‖H1(Ω;R3) → ‖ψ‖H1(Ω;R3).
Actually, from Lemma 3.5 again,

‖ψ⊥
h ‖H1(Ω;R3) = ‖ψ⊥

h ‖L2(Ω;R3) + ‖∇ψ⊥
h ‖L2(Ω;M3×2)

= ‖ψ⊥
h ‖L2(Ω;R3) + ‖∇ψh‖L2(Ω;M3×2).

Hence,

‖ψ⊥
h ‖H1(Ω;R3) → ‖ψ‖L2(Ω;R3) + ‖∇ψ‖L2(Ω;M3×2) = ‖ψ‖H1(Ω;R3).
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Let us examine the limit behavior of

Ih(ψh) =

∫

Ω

(
Z(∇ψh(x)) + Z(∇ψ⊥

h (x))
)
dx− Lh(ψh)

where we know that ψh → ψ, ψ⊥
h → ψ in H1(Ω; R3), and where we recall

that Z is not continuous on the set of matrices whose a column is equal to
0. We separate Ih(ψh) in two parts by writing Ih(ψh) = Xh + Yh, with

Xh =

∫

Ω

(
W1(∇ψh(x)) +W1(∇ψ⊥

h (x))
)
dx− Lh(ψh),

Yh =

∫

Ω

(
W2(∇ψh(x)) +W2(∇ψ⊥

h (x))
)
dx.

Since W1 is continuous on M3×2, by the dominated convergence theorem
and by Lemma 3.9,

Xh →
∫

Ω

2W1(∇ψ(x)) dx−
∫

Ω

f(x) · ψ(x) dx.

In order to deal with Yh, we choose an element δ1 (resp. δ2) in the L2 class
of ∂1ψ (resp. ∂2ψ) and we decompose Ω in two measurable subsets defined
by

Ω1 = {x ∈ Ω; δ1(x) 6= 0and δ2(x) 6= 0}, Ω2 = Ω \ Ω1.

Clearly,

Yh =

∫

Ω1

(
W2(∇ψh(x)) +W2(∇ψ⊥

h (x)
)
dx

+

∫

Ω2

(
W2(∇ψh(x)) +W2(∇ψ⊥

h (x)
)
dx.

The dominated convergence theorem allows to deal with the first term and
we get

∫

Ω1

(
W2(∇ψh(x)) +W2(∇ψ⊥

h (x)
)
dx→ 2

∫

Ω1

W2(∇ψ(x)) dx

= 2

∫

Ω1

W e
2 (∇ψ(x)) dx.

For the second term we simply remark that

∫

Ω2

(
W2(∇ψh(x))+W2(∇ψ⊥

h (x)
)
dx ≤ 2Kmeas(Ω2) = 2

∫

Ω2

W e
2 (∇ψ(x)) dx.
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Therefore,

lim inf Yh ≤ 2

∫

Ω

W e
2 (∇ψ(x)) dx.

At this point, we can say that

∀ψ ∈ (id+H1
0 (Ω; R3)), Ĩ0(ψ) ≤

∫

Ω

2Z(∇ψ(x)) dx−
∫

Ω

f(x) · ψ(x) dx,

or equivalently
∀v ∈ H1

0 (Ω; R3), J̃0(v) ≤ G(v),

where G(v) = 2
∫
Ω
Z(∇ψ(x)) dx−

∫
Ω
f(x) ·ψ(x) dx. Since J̃0 is sequentially

weakly lower semicontinuous on H1
0 (Ω; R3), it follows that J̃0 ≤ Γ − G

where Γ − G is the sequential weak lower semicontinuous envelope of G
on H1

0 (Ω; R3). We made use several times in this manuscript of the fact
for Z : M3×2 7→ R continuous, positive and satisfying coerciveness and
growth hypotheses (63), the sequential weak lower semicontinuous envelope
Γ − F of F defined by F (v) =

∫
Ω
Z(∇v(x)) dx is given by Γ − F (v) =∫

Ω
QZ(∇v(x)) dx. Although less known, the result remains true when Z

is no longer continuous, but Borel measurable, see the relaxation theorems
proved in Dacorogna (2007). This ends the proof of Proposition 3.10.

To conclude this section, we can state our final theorem.

Theorem 3.11. For all ψ in (id+H1
0 (Ω; R3)), Ĩ0(ψ) =

∫
Ω
QW (∇ψ(x)) dx−∫

Ω
f(x) · ψ(x) dx.

Comments. The homogenized lattice energy QW inherits the invariance
properties of W . On the one hand, W is obviously frame indifferent and it
is immediate that QW is frame indifferent as well. Therefore, QW can be
expressed as a function of C = FTF ; in other words, with obvious notation,
there exists a function w : {(c11, c22, c12) ∈ R

3; c11 ≥ 0, c212 ≤ c11c22} such
that for all F in M3×2, W (F ) = w(c11, c22, c12). On the other hand, the
planar rotation of angle π/2 belongs to the symmetry group of W and
this remains true for QW . As a consequence, it is easily shown that w is
symmetric with respect to its first two variables. For more general results
on the invariance of envelopes, see Bousselsal and Le Dret (2002). Finally,
let us mention that QW (F ) = 0 for matrices F such that c11 ≤ 1, c22 ≤ 1,
c212 ≤ (1 − c11)(1 − c22). Therefore, QW does not coincide with W .
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