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An explicit formula for the free

exponential modality of linear logic ?

Paul-André Melliès Nicolas Tabareau Christine Tasson

Laboratoire Preuves Programmes Systèmes
CNRS & Université Paris 7 - Denis Diderot

Abstract. The exponential modality of linear logic associates a commutative
comonoid !A to every formula A in order to duplicate it. Here, we explain how
to compute the free commutative comonoid !A as a sequential limit of equalizers
in any symmetric monoidal category where this sequential limit exists and com-
mutes with the tensor product. We then apply this general recipe to two familiar
models of linear logic, based on coherence spaces and on Conway games. This
algebraic approach enables to unify for the �rst time apparently di�erent con-
structions of the exponential modality in spaces and games. It also sheds light
on the subtle duplication policy of linear logic. On the other hand, we explain at
the end of the article why the formula does not work in the case of the �niteness
space model.

1 Introduction

Linear logic is based on the principle that every hypothesis Ai should appear exactly
once in a proof of the sequent

A1, . . . , An ` B. (1)

This logical restriction enables to represent the logic in monoidal categories, along
the idea that every formula denotes an object of the category, and every proof of the
sequent (1) denotes a morphism

A1 ⊗ · · · ⊗An −→ B

where the tensor product is thus seen as a linear kind of conjunction. Note that, for
clarity's sake, we use the same notation for a formula A and for its interpretation (or
denotation) in the monoidal category.

This linearity policy on proofs is far too restrictive in order to re�ect traditional
forms of reasoning, where it is accepted to repeat or to discard an hypothesis in the
course of a logical argument. This di�culty is nicely resolved by providing linear logic
with an exponential modality, whose task is to strengthen every formula A into a for-
mula !A which may be repeated or discarded. From a semantic point of view, the formula
!A is most naturally interpreted as a comonoid of the monoidal category. Recall that a
comonoid (C, d, u) in a monoidal category C is de�ned as an object C equipped with
two morphisms

d : C −→ C ⊗ C u : C −→ 1
? This work has been supported by the ANR Curry-Howard Correspondence and Concurrency
Theory (CHOCO)



where 1 denotes the monoidal unit of the category. The morphism d and u are respec-
tively called the multiplication and the unit of the comonoid. The two morphisms d
and u are supposed to satisfy associativity and unitality properties, neatly formulated
by requiring that the two diagrams

C d

��

d

��
C ⊗ C

C⊗d **

C ⊗ C

d⊗Ctt
C ⊗ C ⊗ C

C
d

��

d

��
id

��

C ⊗ C

u⊗C ,,

C ⊗ C

C⊗urrC

commute. Note that we draw our diagrams as if the category were strictly monoidal,
although the usual models of linear logic are only weakly monoidal.

The comonoidal structure of the formula !A enables to interpret the contraction rule

and the weakening rule of linear logic

π
...

Γ, !A, !A,∆ ` B
Contraction

Γ, !A,∆ ` B

π
...

Γ,∆ ` B
Weakening

Γ, !A,∆ ` B

by pre-composing the interpretation of the proof π with the multiplication d in the case
of contraction

Γ ⊗ !A ⊗ ∆
d−→ Γ ⊗ !A ⊗ !A ⊗ ∆

π−→ B

and with the unit u in the case of weakening

Γ ⊗ !A ⊗ ∆
u−→ Γ ⊗ ∆

π−→ B.

Besides, linear logic is generally interpreted in a symmetric monoidal category, and one
requires that the comonoid !A is commutative, this meaning that the following equality
holds:

A
d // A⊗A

symmetry // A⊗A = A
d // A⊗A .

When linear logic was introduced by Jean-Yves Girard, twenty years ago, it was soon
realized by Robert Seely and others that the multiplicative fragment of the logic should
be interpreted in a ∗-autonomous category, or at least, a symmetric monoidal closed
category C ; and that the category should have �nite products in order to interpret the
additive fragment of the logic, see [10]. A more di�cult question was to understand what
categorical properties of the exponential modality “ ! ” were exactly required, in order
to de�ne a model of propositional linear logic � that is, including the multiplicative,
additive and exponential components of the logic. However, Yves Lafont found in his
PhD thesis [6] a simple way to de�ne a model of linear logic. Recall that a comonoid
morphism between two comonoids (C1, d1, u1) and (C2, d2, u2) is de�ned as a morphism
f : C1 −→ C2 such that the two diagrams



C1
f //

d1

��

C2

d2

��
C1 ⊗ C1

f⊗f // C2 ⊗ C2

C1
f //

u1 --

C2

u2qq1

commute. One says that the commutative comonoid !A is freely generated by an objectA
when there exists a morphism

ε : !A −→ A

such that for every morphism

f : C −→ A

from a commutative comonoid C to the object A, there exists a unique comonoid
morphism

f† : C −→ !A

such that the diagram

!A

ε

��

C

f 00

f† ..

A

(2)

commutes. From a logical point of view, !A is the weakest comonoid that implies A. La-
font noticed that the existence of a free commutative comonoid !A for every object A of
a symmetric monoidal closed category C induces automatically a model of propositional
linear logic. Recall however that this is not the only way to construct a model of linear
logic. A folklore example is the coherence space model, which admits two alternative
interpretations of the exponential modality: the original one, formulated by Girard [3]
where the coherence space !A is de�ned as a space of cliques, and the free construction,
where !A is de�ned as a space of multicliques (cliques with multiplicity) of the original
coherence space A.

In this paper, we explain how to construct the free commutative comonoid in the
symmetric monoidal categories C typically encountered in the semantics of linear logic.
Our starting point is the well-known formula de�ning the symmetric algebra

SA =
⊕
n∈N

A⊗n / ∼n (3)

generated by a vector space A. Recall that the formula (3) computes the free commu-
tative monoid associated to the object A in the category of vector spaces over a given
�eld k. The group Σn of permutations on {1, . . . , n} acts on the vector space A⊗n, and
the vector space A⊗n/ ∼n of equivalence classes (or orbits) modulo the group action is
de�ned as the coequalizer of the n! symmetries

A⊗n
symmetry //
···

symmetry
// A⊗n

coequalizer // A⊗n/ ∼n



in the category of vector spaces. Since a comonoid in the category C is the same thing
as a monoid in the opposite category C op, it is tempting to apply the dual formula
to (3) in order to de�ne the free commutative comonoid !A generated by an object A
in the monoidal category C . Although the idea is extremely naive, it is surprisingly
close to the solution... Indeed, one signi�cant aspect of our work is to establish that the
equalizer An of the n! symmetries

An
equalizer // A⊗n

symmetry //
···

symmetry
// A⊗n (4)

exists in several distinctive models of linear logic, and provides there the n-th layer of the
free commutative comonoid !A generated by the object A. This principle will be nicely
illustrated in Section 3 by the equalizer An in the category of coherence spaces, which
contains the multicliques of cardinality n in the coherence space A ; and in Section 4
by the equalizer An in the category of Conway games, which de�nes the game where
Opponent may open up to n copies of the game A, one after the other, in a sequential
order.

Of course, the construction of the free exponential modality does not stop here: one
still needs to combine the layers An together in order to de�ne !A properly. One obvious
solution is to apply the dual of formula (3) and to de�ne !A as the in�nite cartesian
product

!A =
¯
n∈N

An. (5)

This formula works perfectly well for symmetric monoidal categories C where the in�nite
product commutes with the tensor product, in the sense that the canonical morphism

X ⊗
( ¯

n∈N
An

)
−→

¯
n∈N

( X ⊗ An ) (6)

is an isomorphism. This useful algebraic degeneracy is not entirely uncommon: it typ-
ically happens in the relational model of linear logic, where the free exponential !A is
de�ned according to formula (5) as the set of �nite multisets of A, each equalizer An

describing the set of multisets of cardinality n.
On the other hand, the formula (5) is far too optimistic in general, and does not

work when one considers the familiar models of linear logic based either on coherence
spaces, or on sequential games. It is quite instructive to apply the formula to the cate-
gory of Conway games: it de�nes a game !A where the �rst move by Opponent selects
a component An, and thus decides the number n of copies of the game A played subse-
quently. This departs from the free commutative comonoid !A which we shall examine
in Section 4, where Opponent is allowed to open a new copy of the game A at any point
of the interaction.

So, there remains to understand how the various layers An should be combined
together inside !A in order to perform this particular copy policy. One well-inspired
temptation is to ask that every layer An is �glued� inside the next layer An+1 in order to
allow the computation to transit from one layer to the next in the course of interaction.
One simple way to perform this �glueing� is to introduce the notion of (co)pointed (or
a�ne) object. By pointed object in a monoidal category C , one means a pair (A, u)
consisting of an object A and of a morphism u : A −→ 1 to the monoidal unit. So, a
pointed object is the same thing as a comonoid, without a comultiplication. It is folklore



that the category C• of pointed objects and pointed morphisms (de�ned in the expected
way) is symmetric monoidal, and moreover a�ne in the sense that its monoidal unit 1
is terminal.

The main purpose of this paper is to compute (in Section 2) the free commutative
comonoid !A of the category C as a sequential limit of equalizers. The construction is
excessively simple and works every time the sequential limit exists in the category C ,
and commutes with the tensor product. We establish that the category of coherence
spaces (in Section 3) and the category of Conway games (in Section 4) ful�ll these
hypotheses. This establishes that despite their di�erence in style, the free exponential
modalities are de�ned in exactly the same way in the two models. We then clarify (in
Section 5) the topological reasons why neither formula (5) nor the sequential limit of
equalizers formulated below (9) de�ne the free exponential modality in the �niteness
space model of linear logic recently introduced by Thomas Ehrhard [2].

2 The sequential limit construction

Before stating the general proposition, we present the construction in three steps.

First step. We make the mild hypothesis that the object A of the monoidal category C
generates a free pointed object (A•, u) in the a�ne category C•. This typically happens
when the forgetful functor C• −→ C has a right adjoint. Informally speaking, the purpose
of the pointed object A• is to describe one copy of the object A, or none... Note that
this free pointed object is usually quite easy to de�ne: in the case of coherence spaces,
it is the space A• = A& 1 obtained by adding a point to the web of A ; in the case of
Conway games, it is the game A• = A itself, at least when the category is restricted to
Opponent-starting games.

Second step. The object A≤n is then de�ned as the equalizer (A•)n of the diagram

A≤n
equalizer // A⊗n•

symmetry //
···

symmetry
// A⊗n• (7)

in the category C . The purpose of A≤n is to describe all the layers Ak at the same time,
for k ≤ n. Typically, the object A≤n computed in the category of coherence spaces is
the space of all multicliques in A of cardinality less than or equal to n.

Third step. We take advantage of the existence of a canonical morphism

A≤n A≤n+1oo induced by the unit u : A• → 1 of the pointed object A•, and
de�ne the object A∞ as the sequential limit of the sequence

1 A≤1oo A≤2oo · · ·oo A≤noo A≤n+1oo · · ·oo (8)

with limiting cone de�ned by projection maps

A∞
projection // A≤n.

The 2-dimensional study of algebraic theories and PROPs recently performed by Melliès
and Tabareau [8] ensures that this recipe in three steps de�nes the free commutative
comonoid !A as the sequential limit A∞... when the object A satis�es the following limit
properties in the category C .



Proposition 1. Consider an object A in a symmetric monoidal category C . Suppose

that the object A generates a free pointed object (A•, u). Suppose moreover that the

equalizer (7) and the sequential limit (8) exist and commute with the tensor product, in

the sense that

X ⊗A≤n
X⊗ equalizer // A⊗n•

X⊗ symmetry //
···

X⊗ symmetry
// X ⊗A⊗n•

de�nes an equalizer diagram, and the family of maps

X ⊗A∞
X⊗ projection // X ⊗A≤n

de�nes a limiting cone, for every object X of the category C . In that case, the free

commutative comonoid !A coincides with the sequential limit A∞.

The proof of Proposition 1 is based on two observations. The �rst observation is that
the category C• coincides with the slice category C ↓ 1, this implying that the for-
getful functor C• → C creates limits. Consequently, the limiting process de�ning the
object A∞ in the category C may be alternatively carried out in the category C•. The
second observation is that the limiting process de�ning A∞ provides a pedestrian way
to compute the end formula

A∞ =
∫
n∈Injop

FinSet(n, 1)⊗ (A•)⊗n =
∫
n∈Injop

(A•)⊗n (9)

in the category C•. As explained in our work on categorical model theory [8], this end
formula provides an explicit computation of the object RanfA•(1), where RanfA• :
FinSetop → C• denotes the right Kan extension of the pointed object A• : Injop → C•
along the change of basis f : Injop → FinSetop going from the theory of pointed
objects to the theory of commutative comonoids. Recall that the category Inj has
�nite ordinals [n] = {0, . . . , n − 1} as objects, and injections [p] → [q] as morphisms,
whereas the category FinSet has functions [p]→ [q] as morphisms. Proposition 1 says
that the end formula de�nes the free commutative comonoid when the end exists and
commutes with the tensor product.

3 Coherence spaces

In this section, we compute the free exponential modality in the category of coherence
spaces de�ned by Jean-Yves Girard [3]. A coherence space E = (|E|, _̂) consists of a
set |E| called its web, and of a binary re�exive and symmetric relation _̂ over E. A
clique of E is a set X of pairwise coherent elements of the web:

∀e1, e2 ∈ X, e1 _̂ e2.

We do not recall here the de�nition of the category Coh of coherence spaces. Just
remember that a morphism R : E → E′ in Coh is a clique of the coherence space
E ( E′, so in particular, R is a relation on the web |E| × |E′|.



It is easy to see that the tensor product does not commute with cartesian products:
simply observe that the canonical morphism

A⊗ (1 & 1) −→ (A⊗ 1) & (A⊗ 1)

is not an isomorphism. This explains why formula (5) does not work, and why the
construction of the free exponential modality requires a sequential limit, along the line
described in the introduction.

First step: compute the free a�ne object. Computing the free pointed (or a�ne)
object on a coherence space E is easy, because the category Coh has cartesian products:
it is simply given by the formula

E• = E & 1.

It is useful to think of E&1 has the space of multicliques of E with at most one element:
the very �rst layer of the construction of the free exponential modality. Indeed, the
unique element of 1 may be seen as the empty clique, while every element e of E may
be seen as the singleton clique {e}. Recall that a multiclique of E is just a multiset
on |E| whose underlying set is a clique of E.

Second step: compute the symmetric tensor power E≤n. It is not di�cult to
see that the equalizer E≤n of the symmetries

(E & 1)⊗n
symmetry //
···

symmetry
// (E & 1)⊗n

is given by the set of multicliques of E with at most n elements, two multicliques being
coherent i� their union is still a multiclique. As explained in the introduction, one also
needs to check that the tensor product commutes with those equalizers. Consider a cone

YR

yy

R′

%%
X ⊗ (E & 1)⊗n

X⊗symmetry //
···

X⊗symmetry
// X ⊗ (E & 1)⊗n

(10)

First, observe that R = R′ because one may choose the identity among the n! symme-
tries. Next, we show that the morphism R factors uniquely through the morphism

X ⊗ E≤n
X⊗ equalizer // X ⊗ (E & 1)⊗n

To that purpose, one de�nes the relation

R≤n : Y −−→ X ⊗ E≤n by y R≤n (x, µ) i� y R (x, u)

where µ is a multiset of |E| of cardinal less than n, and u is any word of length n whose
letters with multiplicity in |E & 1| = |E| t {∗} de�ne the multiset µ. Remark that the
fact that R equalizes the symmetries implies that any u′ de�ning the same multiset µ
will also be in the relation: y R (x, u′). We let the reader check that the de�nition is
correct, that it de�nes a clique R≤n of Y ( (X ⊗E≤n), and that it is the unique way
to factor R through (10).



Third step: compute the sequential limit

E≤0 = 1 E≤1 = (E & 1)oo E≤2oo E≤3 · · ·oo

whose arrows are (dualized) inclusions from E≤n into E≤n+1. Again, it is a basic fact
that the limit !E of the diagram is given by the set of all �nite multicliques, two
multicliques being coherent i� their union is a multiclique. At this point, one needs to
check that the sequential limit commutes with the tensor product. Consider a cone

YR0

tt
R1vv

R2 ��

R3

&&
X ⊗ 1 X ⊗ (E & 1)oo X ⊗ E≤2oo X ⊗ E≤3 · · ·oo

and de�ne the relation

R∞ : Y −−→ X⊗!E by y R∞ (x, µ) i� ∃n, y Rn (x, u)

where µ is a multiset of elements of |E| and the element u of the web of E≤n is any word
of length n whose letters with multiplicity in |E & 1| = |E| t {∗} de�ne the multiset µ.
We let the reader check that R∞ is a clique of Y ( (X⊗!E) and de�nes the unique
way to factor the cone. This concludes the proof that the sequential limit !E de�nes the
free commutative comonoid generated by E in the category Coh of coherence spaces.

4 Conway games

In this section, we compute the free exponential modality in the category of Conway
games introduced by André Joyal in [4]. One unifying aspect of our approach is that
the construction works in exactly the same way as for coherence spaces.

Conway games. A Conway game A is an oriented rooted graph (VA, EA, λA) consisting
of (1) a set VA of vertices called the positions of the game; (2) a set EA ⊂ VA × VA
of edges called the moves of the game; (3) a function λA : EA → {−1,+1} indicating
whether a move is played by Opponent (−1) or by Proponent (+1). We write ?A for
the root of the underlying graph. A Conway game is called negative when all the moves
starting from its root are played by Opponent.
A play s = m1 ·m2 · . . . ·mk−1 ·mk of a Conway game A is a path s : ?A � xk starting
from the root ?A

s : ?A
m1−−→ x1

m2−−→ . . .
mk−1−−−→ xk−1

mk−−→ xk

Two paths are parallel when they have the same initial and �nal positions. A play is
alternating when

∀i ∈ {1, . . . , k − 1}, λA(mi+1) = −λA(mi).

We note PlayA the set of plays of a game A.

Dual. Every Conway game A induces a dual game A∗ obtained simply by reversing the
polarity of moves.

Tensor product. The tensor product A⊗B of two Conway games A and B is essentially
the asynchronous product of the two underlying graphs. More formally, it is de�ned as:



� VA⊗B = VA × VB ,
� its moves are of two kinds :

x⊗ y →
{
z ⊗ y if x→ z in the game A
x⊗ z if y → z in the game B,

� the polarity of a move in A⊗B is the same as the polarity of the underlying move
in the component A or the component B.

The unique Conway game 1 with a unique position ? and no move is the neutral element
of the tensor product. As usual in game semantics, every play s of the game A⊗B can
be seen as the interleaving of a play s|A of the game A and a play s|B of the game B.

Strategies. Remark that the de�nition of a Conway game does not imply that all the
plays are alternating. The notion of alternation between Opponent and Proponent only
appears at the level of strategies (i.e. programs) and not at the level of games (i.e.
types). A strategy σ of a Conway game A is de�ned as a non empty set of alternating
plays of even length such that (1) every non empty play starts with an Opponent move;
(2) σ is closed by even length pre�x; (3) σ is deterministic, i.e. for all plays s, and for
all moves m,n, n′,

s ·m · n ∈ σ ∧ s ·m · n′ ∈ σ ⇒ n = n′.

The category of Conway games. The category Conway has Conway games as
objects, and strategies σ of A∗⊗B as morphisms σ : A→ B. The composition is based
on the usual �parallel composition plus hiding� technique and the identity is de�ned
by a copycat strategy. The resulting category Conway is compact-closed in the sense
of [5].

It appears that the category Conway does not have �nite nor in�nite products [9].
For that reason, we compute the free exponential modality in the full subcategory
Conway of negative Conway games, which is symmetric monoidal closed, and has prod-
ucts. We explain in a later stage how the free construction on the subcategory Conway
induces a free construction on the whole category.

First step: compute the free a�ne object. The monoidal unit 1 is terminal in the
category Conway . In other words, every negative Conway game may be seen as an
a�ne object in a unique way, by equipping it with the empty strategy tA : A → 1. In
particular, the free a�ne object A• is simply A itself.

Second step: compute the symmetric tensor power. A simple argument shows
that the equalizer An = A≤n of (7) is the following Conway game:

� the positions of the game An are the �nite words w = x1 · · ·xn of length n, whose
letters are positions xi of the game A, and such that xi+1 = ?A is the root of A
whenever xi = ?A is the root of A, for every 1 ≤ i < n. The intuition is that the
letter xk in the position w = x1 · · ·xn of the game An describes the position of the
k-th copy of A, and that the i + 1-th copy of A cannot be opened by Opponent
unless all the i-th copy of A has been already opened.

� its root is the word ?An = ?A · · · ?A where the n the positions xk are at the root ?A
of the game A,



� a move w → w′ is a move played in one copy:

w1 x w2 → w1 y w2

where x → y is a move of the game A. Note that the condition on the positions
implies that when a new copy of A is opened (that is, when x = ?A) no position in
w1 is at the root, and all the positions in w2 are at the root.

� the polarities of moves are inherited from the game A in the obvious way.

Note that An may be also seen as the subgame of A⊗n where the i+ 1-th copy of A is
always opened after the i-th copy of A.

Third step: compute the sequential limit. We now consider Diagram (8)

A0 = 1 A1 = Aoo A2oo A3oo · · ·oo

whose morphisms are the partial copycat strategies An ← An+1 identifying An as the
subgame of An+1 where only the �rst n copies of A are played. The limit of this diagram
in the category Conway is the game A∞ de�ned in the same way as A≤n except that
its positions w = x1 · x2 · · · are in�nite sequences of positions of A, all of them at the
root except for a �nite pre�x x1 · · ·xk. It is possible to show that A∞ is indeed the limit
of this diagram, and that the tensor product commutes with this limit. From this, we
deduce that the sequential limit A∞ describes the free commutative comonoid in the
category Conway .

It is nice to observe that the free construction extends to the whole categoryConway
of Conway games. Indeed, one shows easily that every commutative comonoid in the
category of Conway games is in fact a negative game. Moreover, the inclusion functor
from Conway to Conway has a right adjoint, which associates to every Conway
game A, the negative Conway game A obtained by removing all the Proponent moves
from the root ?A. By combining these two observations, we obtain that (A )∞ is the
free commutative comonoid generated by a Conway game A in the category Conway.

5 Finiteness spaces � an inviting counter-example

In Sections 3 and 4 we have seen how to re�ne Formula (5) into Formula (9) in order
to compute the free exponential modality in the coherence space and the Conway game
models. We conclude the paper by explaining why the two formulas do not work in the
�niteness space model. Recall that there are two levels of �niteness spaces. On the one
hand, relational �niteness spaces constitute a re�nement of the relational model, while
on the other hand linear �niteness spaces are linearly topologized vector spaces [7] built
on the relational layer. We explain the failure of our two formulas at both levels. We
refer the reader to [2] for an introduction to �niteness spaces.

Relational �niteness spaces. Two subsets u, u′ of a countable set E are called or-
thogonal, denoted by u ⊥ u′, whenever their intersection u∩u′ is �nite. The orthogonal
of G ⊆ P(E) is then de�ned by G⊥ = {u′ ⊆ E |∀u ∈ G, u ⊥ u′}.

A relational �niteness space E = (|E|,F(E)) is given by its web (a countable set
|E|) and by a set F(E) ⊆ P(|E|) orthogonally closed, i.e. such that F(E)⊥⊥ = F(E).



The elements of F(E) (resp. F(E)⊥) are called �nitary (resp. anti�nitary). A �nitary
relation R between two �niteness spaces E1 and E2 is a subset of |E1| × |E2| such that

∀u ∈ F(E1), R · u :=
{
b ∈ |E2|

∣∣ ∃a ∈ u, (a, b) ∈ R
}
∈ F(E2),

∀v′ ∈ F(E2)⊥, tR · v′ :=
{
a ∈ |E1|

∣∣ ∃b ∈ v′, (a, b) ∈ R
}
∈ F(E1)⊥.

The category RelFin of relational �niteness spaces and �nitary relations is
∗-autonomous. As such, it provides a model of multiplicative linear logic (MLL).

The exponential modality ! is then de�ned as follows [2]: given a �niteness space E,
the �niteness space !E has its web |!E| =Mfin(|E|) de�ned as the set of �nite multisets
µ : |E| → N and its �niteness structure de�ned as

F(!E) = {M ∈Mfin(|E|) | ΠE(M) ∈ F(E)},

where for every M ∈Mfin(|E|), ΠE(M) def= {x ∈ |E| | ∃µ ∈M, µ(x) 6= 0}.
Given a �niteness space E, let us compute the �niteness space E∞ de�ned by For-

mula (9). The free pointed space generated by E exists, and is de�ned as

E•
def= E & 1.

The equalizer E≤n of the n! symmetries exists in RelFin and provides the n-th layer
of !E. Its web |E≤n| =M≤nfin (|E|) consists of the multisets of cardinality at most n and
its �niteness structure is de�ned as

F(E≤n) = { Mn ⊆M≤nfin (|E|) | ΠE(Mn) ∈ F(E) }.

Finally, the limit de�ned by Formula (9) is given by the �niteness space E∞ whose web
is |E∞| =Mfin(|E|) and whose �niteness structure is

F (E∞) =
{

M ∈Mfin(|E|)
∣∣∣ ∀n ∈ N, Mn = M ∩M≤nfin (|E|),

ΠE(Mn) ∈ F(E).

}
.

Note that the webs of !E and of E∞ are equal, and coincide in fact with the free
exponential in the relational model. However, it is obvious that the �niteness structures
of !E and E∞ do not coincide in general:

F(!E) ( F (E∞) .

In fact, Formula (9) does not work here because the sequential limit (8) does not com-
mute with the tensor product. This phenomenon comes from the fact that an in�nite
directed union of �nitary sets is not necessarily �nitary in the �niteness space model �
whereas an in�nite directed union of cliques is a clique in the coherence space model,
this explaining the success of Formula (9) in this model. The interested reader will check
that Formula (5) computes the same �niteness space E∞ as Formula (9) because E≤n

coincides with the cartesian product of Ek for k ≤ n. We now turn to the topological
version of �niteness spaces to understand the topological di�erence between !E and E∞.

Linear �niteness spaces. Let k be an in�nite �eld endowed with the discrete topology.
Every relational �niteness space E generates a vector space, the linear �niteness space

k〈E〉 =
{
x ∈ k|E|

∣∣ |x| ∈ F(E)
}
,



where for any sequence x ∈ k
|E|, |x| = {a ∈ |E| | xa 6= 0}. Endowed with a topology

de�ned with respect to the anti�nitary parts, k〈E〉 is a linearly topologized space [7].
The category LinFin, with linear �niteness spaces as objects and linear continuous
functions as morphisms, is ∗-autonomous and provides a model of MLL.

We now consider k〈E∞〉 and k〈!E〉, or more precisely their duals since the functional
de�nition is more intuitive. In LinFin, the dual space k〈E〉⊥ = (k〈E〉 ( k) consists
of continuous linear forms and is endowed with the topology of uniform convergence on
linearly compact subspaces, i.e. subspaces K ⊆ k〈E〉 that are closed and have a �nitary

support |K| def= ∪x∈K |x|.
It appears that k〈E∞〉⊥ is the space of polynomials1. However, thanks to the Tay-

lor formula shown in [2], the functions in k〈!E〉⊥ are analytic, i.e. they coincide with
the limits of converging sequences of polynomials. Moreover, the topology of k〈E∞〉⊥
is generated by the subspaces whose restrictions to polynomials of degree at most n
are opens. This topology di�ers from the linearly compact open topology. Therefore,
k〈E∞〉⊥ is topologically di�erent from k〈!E〉⊥, which is the completion of the space of
polynomials, endowed with the linearly compact open topology as shown in [1].

In a word, the dual of k〈E∞〉 gives rise to a simple space of computation, the
polynomials. Its topology is related to the local information given at each degree. On
the contrary, the dual of the exponential modality k〈!E〉 gives rise to the richer space
of analytic functions, where the Taylor formula makes sense. Its topology is related
to a global information which is not reduced to its �nite approximations. One main
open question in the future is to understand the algebraic nature of this exponential
construction, as was achieved here for the coherence space and the Conway game model.
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