
HAL Id: hal-00400226
https://hal.science/hal-00400226

Preprint submitted on 30 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Dirichlet boundary control of the heat equation
with a final observation Part I: A space-time mixed

formulation and penalization
Faker Ben Belgacem, Christine Bernardi, Henda El Fekih, Hajer Metoui

To cite this version:
Faker Ben Belgacem, Christine Bernardi, Henda El Fekih, Hajer Metoui. On the Dirichlet boundary
control of the heat equation with a final observation Part I: A space-time mixed formulation and
penalization. 2009. �hal-00400226�

https://hal.science/hal-00400226
https://hal.archives-ouvertes.fr


On the Dirichlet boundary control

of the heat equation with a final observation

Part I: A space-time mixed formulation and penalization

Faker Ben Belgacem1, Christine Bernardi2,

Henda El Fekih3, and Hajer Metoui4

Abstract: We are interested in the optimal control problem of the heat equation where
the quadratic cost functional involves a final observation and the control variable is a
Dirichlet boundary condition. We first prove that this problem is well-posed. Next, we
check its equivalence with a fixed point problem for a space-time mixed system of parabolic
equations. Finally, we introduce a Robin penalization on the Dirichlet boundary control
for the mixed problem and analyze the convergence when the penalty parameter tends to
zero.

Résumé: Nous considérons le problème de contrôle suivant: minimiser une fonctionnelle
quadratique qui fait intervenir la solution de l’équation de la chaleur au temps final en
agissant sur la frontière du domaine. Nous prouvons d’abord que ce problème est bien
posé. Puis nous vérifions son équivalence avec un problème de point fixe pour un système
d’équations paraboliques admettant une formulation mixte. Nous introduisons finalement
une pénalisation du problème mixte et nous analysons la convergence lorsque le paramètre
de pénalisation tend vers zéro.

1 L.M.A.C. (E.A. 2222), Département de Génie Informatique,
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1. Introduction.

Let Ω be a bounded connected domain in R
d, d = 1, 2 or 3, with a Lipschitz-continuous

boundary ∂Ω, and let T be a positive real number. We set:

Q = Ω×]0, T [, Σ = ∂Ω×]0, T [. (1.1)

We are interested in the optimal control problem that consists in minimizing the quadratic
functional J defined by

J (v) =
1

2

∫

Ω

|yv(x, T ) − yT (x)|2 dx +
β

2

∫

Σ

|v(τ , t)|2 dτdt, (1.2)

where, for each v in L2(Σ), yv denotes the solution of the heat equation with a Dirichlet
boundary condition







∂tyv − ∆yv = 0 in Q,
yv = v on Σ,
yv(·, 0) = 0 on Ω.

(1.3)

The datum of the problem is the function yT in L2(Ω) and the parameter β is a positive
constant. The domain of the cost function J is not L2(Σ), since the final observation
yv(·, T ) may not belong to L2(Ω) for some v in L2(Σ) (see [11, Chap. 9]).

The main idea of this paper is to introduce a penalization term on the Dirichlet
condition, namely to replace the second line in (1.3) by a Robin type boundary condition,

ε∂νyε
v + yε

v = v on Σ, (1.4)

where ε is a small positive parameter, aimed to tend to zero.

An immediate advantage of this approach is the possibility to define the final obser-
vation yε

v(·, T ) in L2(Ω) for all v ∈ L2(Σ); we are therefore allowed to consider the optimal
control problem on the whole Lebesgue space L2(Σ). On the other hand, from a numerical
point of view, taking into account the Dirichlet condition is scarcely made exactly; it is
rather approximated by adding a penalization term. The Robin penalization issue has
been considered for elliptic problems for the linear case in [1] and for the non-linear case
in [4]; we also refer to [8] and [9] for the extension to the steady Navier-Stokes system.

The specific difficulty for the optimal control is that a final observation is involved
in the cost function while the convergence of the penalized observation yε

v(·, T ) towards
the observation yv(·, T ) is not guaranteed. Nevertheless, we establish the convergence of
the penalized optimal control towards to the non-penalized one, without any restrictive
assumptions on its solution. The key idea of the proof relies on a mixed space-time varia-
tional formulation of two parabolic equations, one on the state yv and the other on the its
adjoint state (denoted by pv). Thanks to this coupling, the standard saddle-point theory
of [3, Chap. II] may be applied (see also [6, §I.4]) and leads to well-posedness and con-
vergence results. It can also be noted that this penalized mixed problem is the first-order
optimal condition of the penalized control problem.
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An outline of the paper is as follows:
• In Section 2, we prove the well-posedness of problem (1.3), and thus of the minimization
problem.
• In Section 3, we consider a mixed problem consisting of two parabolic equations, the state
equation and its adjoint problem. We prove first its equivalence with the initial problem,
second its well-posedness.
• Section 4 is devoted to the treatment of the mixed problem by penalization, in view of
the discretization. We state a convergence result in the general case, then we exhibit the
convergence rate of the penalization under some additional smoothness assumptions.
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2. The optimal control problem.

Before tackling the optimal control problem we have to address the first difficulty that
consists in giving a mathematical sense to the system







∂tyu − ∆yu = 0 in Q,
yu = u on Σ,
yu(·, 0) = 0 on Ω,

(2.1)

for all functions u in L2(Σ). We follow here the variational approach dealt with in [11, Th.
9.1].

We introduce some notation: For any separable Banach space X provided with the
norm ‖ · ‖X , we denote by L2(0, t;X) the space of measurable functions v from (0, t) in X

such that

‖v‖L2(0,t;X) =
(

∫ t

0

‖v(·, s)‖2
X ds

)
1

2

< +∞. (2.2)

For any positive integer m, we introduce the space Hm(0, t;X) of functions in L2(0, t;X)
such that all their time derivatives up to the order m belong to L2(0, t;X). We also use
the space C (0, t;X) of continuous functions v from [0, t] in X. Finally, on Ω we consider
the full scale of Sobolev spaces Hs(Ω), s ∈ R, and also the analogous spaces Hs(∂Ω) on
its boundary. We denote by H1

0 (Ω) the closure in H1(Ω) of the space D(Ω) of infinitely
differentiable functions with a compact support in Ω, and by H−1(Ω) its dual space.

We associate with any function f in L2(Q) the solution r(f) of the heat equation







−∂tr(f) − ∆r(f) = f in Q,
r(f) = 0 on Σ,
r(f)(·, T ) = 0 on Ω.

(2.3)

It is readily checked, see [12, Chap. 4, Th. 1.1], that this problem admits a unique solution
in L2(0, T ;H1

0 (Ω)) ∩ C 0(0, T ;L2(Ω)). Moreover, by multiplying the previous equation by
−∆r(f), we easily derive that this solution is such that ∆r(f) belongs to L2(Q) and
satisfies

‖∆r(f)‖L2(Q) ≤ ‖f‖L2(Q). (2.4)

We also have the following result. Let ν denote the unit normal vector to ∂Ω which is
outward to Ω.

Lemma 2.1. Assume that the domain Ω has a boundary of class C 1,1 or is a polygon
(d = 2) or a polyhedron (d = 3). Then, for any data f in L2(Q), the normal derivative
∂νr(f) belongs to L2(Σ) and there exists a constant c only depending on the geometry of
Ω such that

‖∂νr(f)‖L2(Σ) ≤ c ‖f‖L2(Q). (2.5)

Proof: This result is a consequence of the regularity properties of the solution of the
Laplace equation (i.e., the fact that ∆r(f) belongs to L2(Q)) with homogeneous Dirichlet
boundary conditions, see [7, §2.2.2] or [5]: For a.e. t in [0, T ],
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1) if Ω is of class C 1,1, r(f)(·, t) belongs to H2(Ω); thus, ∂νr(f)(·, t) belongs to H
1

2 (∂Ω);
2) if Ω is a polygon or a polyhedron, there exists an s > 0 such that r(f)(·, t) belongs to

H
3

2
+s(Ω); thus, ∂νr(f)(·, t) belongs to Hs(γ) for each edge (d = 2) or face (d = 3) γ of Ω,

hence to L2(∂Ω).
In both cases, we have

‖∂νr(f)(·, t)‖L2(∂Ω) ≤ c ‖∆r(f)(·, t)‖L2(Ω).

By integrating the square of the previous estimate on ]0, T [ and using (2.4), we obtain the
desired estimate.

The results of the previous lemma are still valid for much more general domains (for
instance, curved polygons or polyhedra). From now on, we work with a domain Ω which
satisfies one of the assumptions of Lemma 2.1. We now consider the following variational
problem, for any datum u in L2(Σ) (here, τ stands for the coordinate on ∂Ω):

Find yu in L2(Q) such that

∀f ∈ L2(Q),

∫

Q

yu(x, t)f(x, t) dx dt = −

∫

Σ

u(τ , t)
(

∂νr(f)
)

(τ , t) dτ dt. (2.6)

The reason for this is stated in the next proposition.

Proposition 2.2. Assume that the domain Ω has a boundary of class C 1,1 or is a polygon
(d = 2) or a polyhedron (d = 3). Problems (2.1) and (2.6) are equivalent, in the sense that
a function yu in L2(Q) is a solution of (2.1) in the distribution sense if and only if it is a
solution of (2.6).

Proof: Let yu be a solution of problem (2.6), and let z be any function in D(Ω×]0, T [).
Setting f = −∂tz − ∆z, we observe from (2.6) that

0 =

∫

Q

(−∂tz − ∆z)(x, t)yu(x, t) dx dt,

which means that yu satisfies the first line of (2.1) in the distribution sense. Using this
property yields that, for any z in D(Ω × [0, T [) (i.e. satisfying z(·, T ) = 0),

0 =

∫

Q

(−∂tz − ∆z)(x, t)yu(x, t) dx dt =

∫

Ω

z(x, 0)yu(x, 0) dx,

whence the initial condition in (2.1). Finally, we have, for any z in D(Ω×]0, T [) vanishing
on ∂Ω,

−

∫

Σ

u(τ , t)(∂νz)(τ , t) dτ dt =

∫

Q

(−∂tz − ∆z)(x, t)yu(x, t) dx dt

= −

∫

Σ

yu(τ , t)(∂νz)(τ , t) dτ dt.

By density, this formula holds for any z in D(]0, T [;H2(Ω) ∩ H1
0 (Ω)). When Ω has a

boundary of class C 1,1, the trace operator: z 7→ ∂νz maps H2(Ω) ∩ H1
0 (Ω) onto H

1

2 (∂Ω),
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which yields the boundary condition in (2.1). Similarly, when Ω is a polygon (d = 2) or a
polyhedron (d = 3), the range of the trace operator: z 7→ ∂νz is dense in L2(γ) for each
edge (d = 2) or face (d = 3) γ of Ω, whence the boundary condition in (2.1).
Conversely, the fact that any solution of (2.1) is a solution of (2.6) follows from the same
arguments, together with the density of D(Ω× [0, T ]) in L2(0, T ;Hs(Ω))∩H1(0, T ;L2(Ω)),
3
2 < s ≤ 2 (see [12, §4.2] for instance).

Owing to the Lax–Milgram lemma, the next corollary is a direct consequence of
Lemma 2.1.

Corollary 2.3. For any datum u in L2(Σ), problem (2.6) has a unique solution yu in
L2(Q).

In view of the next sections, we prove a technical result. Let B be the operator defined
from a subspace D(B) of L2(Σ) into L2(Ω) by: Bu = yu(·, T ), where yu is the solution
of problem (2.6). Obviously, the domain D(B) of B is the space of functions u in L2(Σ)
such that yu(·, T ) belongs to L2(Ω), and it is readily checked that the operator B is closed.
Similarly, we introduce the operator B∗ defined from a subspace D(B∗) of L2(Ω) into
L2(Σ) by: B∗ϕ = −∂νqϕ, where qϕ is the solution of







−∂tqϕ − ∆qϕ = 0 in Q,
qϕ = 0 on Σ,
qϕ(·, T ) = ϕ on Ω.

(2.7)

The domain D(B∗) of B∗ is the space of functions ϕ in L2(Ω) such that ∂νqϕ belongs to
L2(Σ).

Lemma 2.4. The following Green’s formula holds for any u in D(B) and ϕ in D(B∗)
∫

Ω

ϕ(x)yu(x, T ) dx +

∫

Σ

u(τ , t)(∂νqϕ)(τ , t)dτdt = 0. (2.8)

Proof: First, for any smooth enough function u and any ϕ in D(B∗), multiplying the first
line of problem (2.7) by yu and integrating by parts yield the formula. Next, we observe
that, for any function u in D(B), there exists a sequence (un)n in D(Σ) for instance which
converges to u in L2(Σ). It is readily checked that the corresponding sequence (yun

)n

converges to yu in L2(Q) and that the sequence
(

yun
(·, T )

)

n
converges to yu(·, T ) in L2(Ω)

(indeed, we recall from [10, Chap. 3] that yu belongs to C 0(0, T ;H−1(Ω)), see also [13]).
Thus, applying formula (2.8) for each un and ϕ and passing to the limit leads to this
formula for u and ϕ.

Formula (2.8) can be written equivalently as
∫

Ω

ϕ(x)Bu(x) dx =

∫

Σ

u(τ , t)B∗ϕ(τ , t)dτdt,

so that B∗ is the adjoint operator of B. For the sake of completeness, we now state the
full Green’s formula, associated with the problem







−∂tqϕ(f) − ∆qϕ(f) = f in Q,
qϕ(f) = 0 on Σ,
qϕ(f)(·, T ) = ϕ on Ω.

(2.9)
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We skip its proof since it is a direct consequence of Lemma 2.4 and problem (2.6).

Corollary 2.5. The following Green’s formula holds for any f in L2(Q), for any u in
D(B) and ϕ in D(B∗)

∫

Q

f(x, t)yu(x, t) dxdt +

∫

Ω

ϕ(x)yu(x, T ) dx +

∫

Σ

u(τ , t)
(

∂νqϕ(f)
)

(τ , t)dτdt = 0. (2.10)

To go further, we observe from Corollary 2.3 that, for any v in L2(Σ), problem (1.3)
has a unique solution yv in L2(Q). Moreover, it is checked in [12, Chap. 4, §15] that, when

Ω has a boundary of class C 1,1, this solution belongs L2(0, T ;H
1

2 (Ω)) and in [10, Chap.
3] (see also [13]) that it belongs to C 0(0, T ;H−1(Ω)). However, these regularity properties
are not sufficient for handling the minimization problem. So we introduce the space

V =
{

v ∈ L2(Σ); yv(·, T ) ∈ L2(Ω)
}

, (2.11)

equipped with the norm

‖v‖V =
(

‖v‖2
L2(Σ) + ‖yv(·, T )‖2

L2(Ω)

)
1

2

. (2.12)

It is readily checked that V is a Hilbert space for the scalar product associated with this
norm. Note also that it coincides with the domain D(B) introduced above.

We now consider the optimal control problem:

Find u in V such that
J (u) = min

v∈V

J (v), (2.13)

where the functional J is defined in (1.2). Writing the first-order optimality condition
yields that this problem admits the equivalent variational formulation:

Find u in V such that

∀v ∈ V,

∫

Ω

yu(x, T )yv(x, T ) dx + β

∫

Σ

u(τ , t)v(τ , t) dτ dt

=

∫

Ω

yT (x)yv(x, T ) dx.

(2.14)

It follows from the definition (2.12) of the norm ‖·‖V that the bilinear form in the left-hand
side of this equation is continuous on V × V and elliptic on V (with ellipticity constant
equal to min{1, β}). We have thus the following result.

Theorem 2.6. For any datum yT in L2(Ω), problem (2.14) has a unique solution u in V.
Moreover, this solution satisfies

min{1,
√

2β} ‖u‖V ≤ ‖yT ‖L2(Ω). (2.15)
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3. A space-time mixed formulation.

Currently, the control u is expressed by means of the adjoint state. We are led to
study the adjoint problem: For any u in V, we consider the solution pu of







−∂tpu − ∆pu = 0 in Q,
pu = 0 on Σ,
pu(·, T ) = yu(·, T ) − yT on Ω.

(3.1)

This problem has a unique solution pu in L2(0, T ;H1
0 (Ω))∩C 0(0, T ;L2(Ω)), see [12, Chap.

4, Th. 1.1]. Let us introduce the space

X =
{

q ∈ L2(0, T ;H1
0 (Ω)) ∩ C 0(0, T ;L2(Ω));

∂νq ∈ L2(Σ) and ∂tq + ∆q ∈ L2(Q)
}

.
(3.2)

The following statement holds.

Proposition 3.1. A function u in V is a solution of problem (2.14) if and only if the
solution pu of the adjoint problem (3.1) belongs to X and satisfies

u = β−1 ∂νpu on Σ. (3.3)

Proof: It is performed in two steps.
1) Let u be any solution of (2.14) and v belong to V. When multiplying yv by −∂tpu−∆pu,
we easily derive that

0 = −

∫

Q

(∂tpu)(x, t)yv(x, t) dx dt −

∫

Q

(∆pu)(x, t)yv(x, t) dx dt

= −

∫

Ω

(

yu(x, T ) − yT (x)
)

yv(x, T ) dx −

∫

Σ

(∂νpu)(τ , t)v(τ , t) dτ dt.

When comparing with (2.14), we obtain

∫

Σ

(∂νpu)(τ , t)v(τ , t) dτdt = β

∫

Σ

u(τ , t)v(τ , t) dτ .

Thus, ∂νpu is equal to β u in the distribution sense, hence belongs to L2(Σ) (so that pu

belongs to X) and satisfies (3.3).
2) Conversely, let pu be any solution of (3.3) in X. Problem (3.1) yields that u belongs to
V. Then formula (2.8) combined with (3.3) gives, for all v in V,

0 =

∫

Ω

(

yu(x, T ) − yT (x)
)

yv(x, T ) dx +

∫

Σ

(∂νpu)(τ , t)v(τ , t) dτ dt

=

∫

Ω

(

yu(x, T ) − yT (x)
)

yv(x, T ) dx + β

∫

Σ

u(τ , t)v(τ , t) dτ dt,
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whence (2.14).

Thanks to the equivalence property proved in Proposition 3.1, from now on we work
with problem (3.3). In what follows, we consider the coupled system where the control u

is eliminated






−∂tp − ∆p = 0 in Q,
p = 0 on Σ,
p(·, T ) = y(·, T ) − yT on Ω,







∂ty − ∆y = 0 in Q,
y = β−1 ∂νp on Σ,
y(·, 0) = 0 on Ω.

(3.4)

Indeed, we have the next property.

Proposition 3.2. Problem (3.1) has a solution pu in X which satisfies (3.3) if and only if
problem (3.4) has a solution (p, y) in X × L2(Q) such that p coincides with pu.

Proof: As previously, it is performed in two steps.
1) Let pu in X satisfy (3.3). Then, if yu denotes the function associated with u by (2.1),
equation (3.3) implies that (pu, yu) belongs to X × L2(Q) and satisfies (3.4).
2) Conversely, let (p, y) be a solution of (3.4) in X×L2(Q). Setting ũ = β−1 ∂νp, we derive
from Corollary 2.3 that y coincides with the solution yũ. Thus, p is equal to the solution
pũ in X of problem (3.1). All this yields that (3.3) is satisfied.

We are now interested in proving the well-posedness of problem (3.4). We first state
a preliminary lemma.

Lemma 3.3. The quantity ‖ · ‖X defined by

‖q‖X =
(

‖∂νq‖2
L2(Σ) + ‖q(·, T )‖2

L2(Ω) + ‖∂tq + ∆q‖2
L2(Q)

)
1

2

, (3.5)

is a norm on X. Moreover the space X equipped with the scalar product associated with
this norm is a Hilbert space.

Proof: Let q be any function in X such that ‖q‖X is zero. Thus, q is a solution of the
system







−∂tq − ∆q = 0 in Q,
q = 0 on Σ,
q(·, T ) = 0 on Ω,

hence it is zero on Q. Thus, ‖ · ‖X is a norm. Let now (qn)n be a Cauchy sequence in
X. Since L2(Σ), L2(Ω) and L2(Q) are Banach spaces, there exists a triple (k, qT , f) in
L2(Σ) × L2(Ω) × L2(Q) such that (∂νqn)n converges to k in L2(Σ), qn(·, T ) converges to
qT in L2(Ω) and −∂tqn − ∆qn converges to f in L2(Q). Thus, by noting that the system







−∂tq − ∆q = f in Q,
∂νq = k on Σ,
q(·, T ) = qT on Ω,

admits a unique solution q in L2(0, T ;H1(Ω)) ∩ H1(0, T ;H−1(Ω)), we observe that the
sequence (qn)n converges to q in X. Then, X is a Banach space. Since L2(Σ), L2(Ω) and
L2(Q) are Hilbert spaces, it is also a Hilbert space.
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Problem (3.4) which couples two parabolic equations can be put under a mixed vari-
ational form

Find (p, y) in X × L2(Q) such that

∀q ∈ X, a(p, q) + b(q, y) = −

∫

Ω

yT (x)q(x, T ) dx.

∀z ∈ L2(Q), b(p, z) = 0,

(3.6)

where the bilinear forms a(·, ·) and b(·, ·) are defined by

a(p, q) = β−1

∫

Σ

(∂νp)(τ , t)(∂νq)(τ , t) dτ dt +

∫

Ω

p(x, T )q(x, T ) dx,

b(q, z) = −

∫

Q

(∂tq + ∆q)(x, t) z(x, t) dx.

(3.7)

We have the following result.

Proposition 3.4. Assume that the domain Ω has a boundary of class C 1,1 or is a polygon
(d = 2) or a polyhedron (d = 3). Problems (3.4) and (3.6) are equivalent, in the sense that
a pair (p, y) in X × L2(Q) is a solution of (3.4) in the distribution sense if and only it is a
solution of (3.6).

Proof: Let (p, y) be a solution of problem (3.4) in X × L2(Q). We easily derive from this
problem that it satisfies, for all (q, z) in X × L2(Q),

a(p, q) = β−1

∫

Σ

(∂νp)(τ , t)(∂νq)(τ , t) dτdt+

∫

Ω

(

y(x, T )−yT (x)
)

q(x, T ) dx, b(p, z) = 0,

and also, by integrating by parts (this relies on the same arguments as for Proposition 2.2)

b(q, y) = −

∫

Ω

y(x, T )q(x, T ) dx − β−1

∫

Σ

(∂νp)(τ , t)(∂νq)(τ , t) dτdt.

These two equations yield that (p, y) is a solution of problem (3.6). Conversely, if (p, y) is
a solution of problem (3.6), the second equation in (3.6) yields the first line on the system
for p in (3.4) while the first equation applied with z in D(Ω×]0, T [) leads to the first line
on the system for y. Next, appropriate choices of z give the boundary and initial or final
conditions, owing to the same arguments as for Proposition 2.2.

The study of problem (3.6) relies on the properties of the forms a(·, ·) and b(·, ·) that
we now establish.

Lemma 3.5. The form b(·, ·) is continuous on X×L2(Q), with norm equal to 1. Moreover,
it satisfies the inf-sup condition, for a constant α > 0 only depending on the geometry of
Ω,

∀z ∈ L2(Q), sup
q∈X

b(q, z)

‖q‖X

≥ α ‖z‖L2(Q). (3.8)
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Proof: The continuity of b(·, ·) follows from the definition (3.5) of ‖ · ‖X. On the other
hand, for any z in L2(Q), we observe from Lemma 2.1 that the problem







−∂tq − ∆q = z in Q,
q = 0 on Σ,
q(·, T ) = 0 on Ω,

has a unique solution q in X, which satisfies

‖q‖X ≤ c ‖z‖L2(Q).

We also have
b(q, z) = ‖z‖2

L2(Q),

which leads to the desired inf-sup condition.

It remains to check the ellipticity of the form a(·, ·) on the kernel of the form b(·, ·),
namely on the space

K =
{

q ∈ X; ∀z ∈ L2(Q), b(q, z) = 0
}

. (3.9)

The following characterization of K is readily checked

K =
{

q ∈ X; −∂tq − ∆q = 0 a.e. inQ
}

. (3.10)

Furthermore, it follows from Lemma 3.5 that it is a closed subspace of X, hence a Hilbert
space.

Lemma 3.6. The form a(·, ·) is continuous on X × X, with norm equal to max{1, β−1}.
Moreover, it satisfies the ellipticity property

∀q ∈ K, a(q, q) ≥ min{1, β−1} ‖q‖2
X
. (3.11)

Proof: There also, the continuity of a(·, ·) follows from the definition (3.5) of ‖ · ‖X.
Similarly, the ellipticity property is a direct consequence of this definition, combined with
(3.10).

We are now in a position to prove the main result of this section.

Theorem 3.7. For any datum yT in L2(Ω), problem (3.6) has a unique solution (p, y) in
X × L2(Q). Moreover, this solution satisfies

‖p‖X + ‖y‖L2(Q) ≤ c ‖yT ‖L2(Ω), (3.12)

and a function u in V is a solution of problem (3.3) if and only if it coincides with β−1∂νp

on Σ.

Proof: Lemmas 3.5 and 3.6 yield the well-posedness of problem (3.6) together with esti-
mate (3.12), see [6, Chap. I, Thm 4.1]. The last part of the statement thus follows from
Propositions 3.2 and 3.4.
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4. The penalized problem.

The part y of the solution of problem (3.4) is not smooth and the variational formula-
tion (2.6) does not seem appropriate for any type of discretization. So, in view of the finite
element discretization, the Dirichlet conditions in both systems of (3.4) can be penalized
by Robin type conditions.

Let ε be a real parameter, 0 < ε < 1. We consider the penalized optimal control
problem: Find uε in L2(Σ) such that

J ε(uε) = min
v∈L2(Σ)

J ε(v), (4.1)

where the quadratic functional J ε is now defined by

J ε(v) =
1

2

∫

Ω

|yε
v(x, T ) − yT (x)|2 dx +

β

2

∫

Σ

|v(τ , t)|2 dτdt, (4.2)

and, for each v in L2(Σ), yε
v denotes the solution of the penalized heat equation







∂ty
ε
v − ∆yε

v = 0 in Q,
ε ∂νyε

v + yε
v = v on Σ,

yvε(·, 0) = 0 on Ω.
(4.3)

It is readily checked that, for any datum yT in L2(Ω), problem (4.1) has a unique solution.

In a first step and in view of the equivalence properties stated in Section 3, we introduce
the penalized coupled system







−∂tp
ε − ∆pε = 0 in Q,

ε ∂νpε + pε = 0 on Σ,
pε(·, T ) = yε(·, T ) − yT on Ω,







∂ty
ε − ∆yε = 0 in Q,

ε ∂νyε + yε = β−1 ∂νpε on Σ,
yε(·, 0) = 0 on Ω.

(4.4)

Studying this new system requires the introduction of the space

Xε =
{

q ∈ L2(0, T ;H1(Ω)) ∩ C 0(0, T ;L2(Ω));

ε ∂νq + q = 0 on Σ and ∂tq + ∆q ∈ L2(Q)
}

.
(4.5)

Standard arguments yield that, for any yε(·, T ) in L2(Ω), the equation for pε has a unique
solution in Xε and that, for any pε in Xε, the equation for yε has a unique solution in
L2(0, T ;H1(Ω)) ∩ C 0(0, T ;L2(Ω)). We must now prove the existence of a solution for the
full system (4.4).

The variational problem corresponding to system (4.4) reads in the same terms as
(3.6) and consists therefore in

Finding (pε, yε) in Xε × L2(Q) such that

∀q ∈ Xε, a(pε, q) + b(q, yε) = −

∫

Ω

yT (x)q(x, T ) dx.

∀z ∈ L2(Q), b(pε, z) = 0.

(4.6)
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The following result holds.

Proposition 4.1. Problems (4.4) and (4.6) are equivalent, in the sense that a pair (pε, yε)
in Xε × L2(Q) is a solution of (4.4) in the distribution sense if and only it is a solution of
(4.6).

Proof: We prove successively the two parts of the equivalence.
1) Let (pε, yε) in Xε × L2(Q) be a solution of problem (4.4). It is readily checked that
b(pε, z) is zero for all z in L2(Q). On the other hand, as already noted, the function yε

belongs to L2(0, T ;H1(Ω)) ∩ C 0(0, T ;L2(Ω)). Using this regularity, we see by integration
by parts that

b(q, yε) = −

∫

Ω

q(x, T )yε(x, T ) dx −

∫

Σ

(∂νq)(τ , t)yε(τ , t) dτdt

+

∫

Σ

q(τ , t)(∂νyε)(τ , t) dτdt

= −

∫

Ω

q(x, T )yε(x, T ) dx − β−1

∫

Σ

(∂νq)(τ , t)(∂νpε)(τ , t) dτdt

+

∫

Σ

(ε∂νq + q)(τ , t)(∂νyε)(τ , t) dτdt.

By using the fact that, since q belongs to Xε, ε∂νq + q vanishes on Σ and adding a(pε, q),
we obtain the first line of (4.6).
2) Conversely, let (pε, yε) be a solution of problem (4.6). Letting q and z run through D(Q)
yields the first lines of the two systems (4.4) (in the distribution sense) . The boundary
condition on pε follows from the fact that it belongs to Xε and the boundary condition
on yε are obtained by letting z run though D(Ω×]0, T [). Similarly, the initial and final
conditions are obtained by letting z run though D(Ω × [0, T ]). This concludes the proof.

When equipped with the norm ‖·‖X, the space Xε is clearly a Hilbert space. Moreover,
owing to very similar arguments as in the proof of Lemmas 3.5 and 3.6, we check that:
1) The form b(·, ·) is continuous on Xε × L2(Q), with norm equal to 1 and satisfies the
inf-sup condition (3.8) on these new spaces;
2) The form a(·, ·) is continuous on Xε ×Xε, with norm equal to max{1, β−1} and satisfies
the ellipticity property (3.11) on the kernal

Kε =
{

q ∈ Xε; ∀z ∈ L2(Q), b(q, z) = 0
}

. (4.7)

As a consequence, we have the following result.

Theorem 4.2. For any datum yT in L2(Ω), problem (4.6) has a unique solution (pε, yε)
in Xε × L2(Q). Moreover, this solution satisfies, for a constant c independent of ε,

‖pε‖X + ‖yε‖L2(Q) ≤ c ‖yT ‖L2(Ω). (4.8)

The aim is to prove the convergence of the penalized solution (pε, yε) toward (p, y)
without any further assumption on the regularity of this solution. Let us observe first that

12



the definition (3.5) of the norm ‖ · ‖X yields that it is still a norm on the more general
space

X =
{

q ∈ L2(0, T ;H1(Ω)) ∩ C 0(0, T ;L2(Ω));

∂νq ∈ L2(Σ) and ∂tq + ∆q ∈ L2(Q)
}

.
(4.9)

Proposition 4.3. Assume that the domain Ω has a boundary of class C 1,1 or is a polygon
(d = 2) or a polyhedron (d = 3). Let (p, y) be a solution of problem (3.6). The family of
solutions (pε, yε) of problem (4.6) for 0 < ε < 1 tends to (p, y) weakly in X × L2(Q) when
ε tends to zero.

Proof: It follows from estimate (4.8) that there exists a sequence (εn)n tending to zero
such that the sequence (pεn , yεn)n converges weakly in X×L2(Q). So we must now check
that any weak limit (ϕ, η) of a sequence (pεn , yεn)n is the solution of problem (3.6) since
the desired result is a consequence of Theorem 3.7. This is performed in two steps.
1) We recall that y is the solution of problem (2.6), where r(f) is the solution of problem
(2.3). It is readily checked that each yε is the solution in L2(Q) of

∀f ∈ L2(Q),

∫

Q

yε(x, t)f(x, t) dxdt = −β−1

∫

Σ

(∂νpε)(τ , t)
(

∂νrε(f)
)

(τ , t) dτdt, (4.10)

where rε(f) is now the solution of the problem







−∂tr
ε(f) − ∆rε(f) = f in Q,

ε ∂νrε(f) + rε(f) = 0 on Σ,
rε(f)(·, T ) = 0 on Ω.

(4.11)

By subtracting this equation from (2.3) and combining [2, Thm 5.1] with a more precise
version of Lemma 2.1 (using the further regularity property that ∂νr(f) belongs to Hs(∂Ω)
for some s, 0 < s ≤ 1

2 ), we obtain

‖∂ν

(

r(f) − rε(f)
)

‖L2(Σ) ≤ c εs ‖f‖L2(Q). (4.12)

Next, passing to the limit in (4.10) yields that η is a solution of







∂tη − ∆η = 0 in Q,
η = β−1 ∂νϕ on Σ,
η(·, 0) = 0 on Ω,

which is the second system in (3.4).
2) We derive from (4.8) that

‖pε‖L2(Σ) = ε ‖∂νpε‖L2(Σ) ≤ ε ‖pε‖X ≤ c ε ‖yT ‖L2(Ω),

so that ϕ vanishes on Σ, hence belongs to X. Passing to the limit in the first line of (4.4) is
easy. Finally, it can be checked that all yε belong to C 0(0, T ;L2(Ω)) and that the norms
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‖yε(·, T )‖L2(Ω) are thus bounded independently of ε. As a consequence, there exists a
subsequence (yε

n
′ (·, T ))n′ which converges to η(·, T ) weakly in L2(Ω). We also have

‖pε(·, T )‖L2(Ω) ≤ c ‖pε‖X,

which yields the weak convergence of a subsequence (pε
n
′′ (·, T ))n′′ in L2(Ω). By combining

these two weak convergences, we pass to the limit in the third line of (4.4). We thus derive
that ϕ is the solution of the first system in (3.4).

This last result can be strengthened according to the following argument.

Lemma 4.4. The following property holds

lim
ε→0

‖pε‖X = ‖p‖X, lim
ε→0

‖yε‖L2(Q) = ‖y‖L2(Q). (4.13)

Proof: By taking q equal to p in (3.6) and q equal to pε in (4,3) we obtain

‖p‖2
X

= a(p, p) = −

∫

Ω

yT (x)p(x, T ) dx, ‖pε‖2
X

= a(pε, pε) = −

∫

Ω

yT (x)pε(x, T ) dx. .

Thus, passing to the limit and using Proposition 4.3 yields the first convergence property.
On the other hand, taking f equal to y in (2.6) and f equal to yε in (4.10) gives

‖y‖2
L2(Q) = −β−1

∫

Σ

(∂νp)(τ , t)
(

∂νr(y)
)

(τ , t) dτdt,

‖yε‖2
L2(Q) = −β−1

∫

Σ

(∂νpε)(τ , t)
(

∂νrε(yε)
)

(τ , t) dτdt,

where r(y) and rε(yε) are defined in (2.3) and (4.11), respectively. The strong convergence
of ∂νr(yε) to ∂νr(y) is easily derived from Lemma 2.1 together with a compactness argu-
ment, while the strong convergence of ∂νrε(yε) to ∂νr(yε) follows from (4.12) and (4.8).
All this gives the second convergence property.

By combining Lemma 4.4 with Proposition 4.3, we obtain the following result.

Corollary 4.5. Assume that the domain Ω has a boundary of class C 1,1 or is a polygon
(d = 2) or a polyhedron (d = 3). Let (p, y) be a solution of problem (3.6). The family
of solutions (pε, yε) of problem (4.6) for 0 < ε < 1 tends to (p, y) strongly in X × L2(Q)
when ε tends to zero.

Combining this last property with Theorem 3.7, we also obtain the following result.

Corollary 4.6. Assume that the domain Ω has a boundary of class C 1,1 or is a polygon
(d = 2) or a polyhedron (d = 3). The family of solutions uε of problem (4.1) for 0 < ε < 1
tends to the solution u of problem (2.1) strongly in L2(Σ) when ε tends to zero.

We now evaluate the error due to the penalty method. Indeed, it is readily checked
from the same arguments as in the proof of Proposition 4.3 that the error between the
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solutions (p, y) of problem (3.6) and (pε, yε) of problem (4.6) satisfy, at least when y is
smooth enough,

∀q ∈ Xε, a(p − pε, q) + b(q, y − yε) = −ε

∫

Σ

(∂νq)(τ , T )(∂νy)(τ , T ) dx.

∀z ∈ L2(Q), b(p − pε, z) = 0.

(4.14)

By inserting a qε in this equation and using the elllipticity property of the form a(·, ·) on
Kε, we easily derive from a triangle inequality that, when y is smooth enough,

‖p − pε‖X ≤ 2 inf
qε∈Kε

‖p − qε‖X + c ε ‖∂νy‖L2(Σ).

By applying [6, Chap. II, Thm 1.1] (see also [3, Chap. II]), it follows from the inf-sup
condition satisfied by the form b(·, ·) on Xε × L2(Q) that

‖p − pε‖X + ‖y − yε‖L2(Q) ≤ c
(

inf
qε∈Xε

‖p − qε‖X + ε ‖∂νy‖L2(Σ)

)

. (4.15)

So it remains to evaluate the distance of p to Xε.

Lemma 4.7. Assume that the domain Ω has a boundary of class C 1,1. Let p be any
function in X such that ∂νp belongs to H1(Σ). Then, the following estimate holds

inf
qε∈Xε

‖p − qε‖X ≤ c ε ‖∂νp‖H1(Σ). (4.16)

Proof: With the function p, we associate the element qε = p+ε eε, where eε is the solution
in X of the equation







−∂te
ε − ∆eε = 0 in Q,

ε ∂νeε + eε = −∂νp on Σ,
eε(·, T ) = 0 on Ω.

It is readily checked that qε belongs to Xε. Moreover, we have

‖p − qε‖X = ε ‖∂νeε‖L2(Σ).

Since ∂Ω is of class of class C 1,1, it follows from [2, Lemma 4.6] (see also the proof of this
lemma) that

‖∂νeε‖L2(Σ) ≤ c ‖∂νp‖H1(Σ),

which concludes the proof.

Inserting (4.16) into (4.15) leads to the following statement.

Proposition 4.8. Assume that the domain Ω has a boundary of class C 1,1 and that the
solution (p, y) of problem (3.6) is such that (∂νp, ∂νy) belongs to H1(Σ) × L2(Σ). The
following a priori error estimate holds between this solution and the solution (pε, yε) of
problem (4.6)

‖p − pε‖X + ‖y − yε‖L2(Q) ≤ c ε
(

‖∂νp‖H1(Σ) + ‖∂νy‖L2(Σ)

)

. (4.17)
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Remark 4.9. A closer look at [2, §4] yields that the result of Lemma 4.7, hence of Propo-
sition 4.8, still holds with a weaker assumption on ∂νp (this assumption involves spaces
of different regularity with respect to space and time, so that we have rather skip their
definitions). Moreover at least part of this regularity can be deduced from the regularity
assumption on ∂νy.

Owing to Proposition 3.1 and its analogue for the penalized control problem, we also
derive from Proposition 4.8 the following result (indeed, it is readily checked that, when u

is in H1(Σ), (∂νp, ∂νy) belongs to H1(Σ) × L2(Σ)).

Corollary 4.10. Assume that the domain Ω has a boundary of class C 1,1 and that the
solution u of problem (2.1) belongs to H1(Σ). The following a priori error estimate holds
between this solution and the solution uε of problem (4.1)

‖u − uε‖L2(Σ) ≤ c ε ‖u‖H1(Σ). (4.18)

In view of the discretization, we must write another formulation of system (4.4). We
have already observed that the part yε of the solution of problem (4.4) is more regular
than expected. Thus, setting

Z = L2(0, T ;H1(Ω)) ∩ C 0(0, T ;L2(Ω)), (4.19)

we observe that system (4.4) admits the equivalent variational formulation

Find (pε, yε) in Z × Z such that

pε(·, T ) = yε(·, T ) − yT and yε(·, 0) = 0, (4.20)

and that, for a.e. t in [0,T],

∀q ∈ H1(Ω), −

∫

Ω

(∂tp
ε)(x)q(x) dx +

∫

Ω

(grad pε)(x) · (grad q)(x) dx

+ ε−1

∫

∂Ω

pε(τ )q(τ ) dτ = 0,

∀z ∈ H1(Ω),

∫

Ω

(∂ty
ε)(x)z(x) dx +

∫

Ω

(grad yε)(x) · (grad z)(x) dx

+ ε−1

∫

∂Ω

yε(τ )z(τ ) dτ = −ε−2β−1

∫

∂Ω

pε(τ )z(τ ) dτ .

(4.21)

The modification of the right-hand side of the last equation is due to the fact that now we
wish to work on the space Z instead of X and thus not to make any assumption on the
regularity of ∂νpε.

As a conclusion, we successfully studied the convergence of the Robin penalization of
the optimal control problem with a final observation when acting on the Dirichlet boundary
condition The forthcoming work is twofold: First, to conduct a numerical analysis of a time
scheme/finite element discretization of the mixed system (4.4) by using formulation (4.20)−
(4.21); second, to validate our convergence results by some computational experiments.
These are the subject of Part II of the current work.
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