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Conjectures for Large Transcendence

Degree

Michel Waldschmidt

Abstract. We state two conjectures, which together would yield strong results of alge-

braic independence related to Schanuel’s Conjecture. Partial results on these conjectures

are also discussed.
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1. Introduction

Connections between algebraic independence and Diophantine approximations
arose recently [19], [20], [9], [10], [11], [14], [17]. Several survey papers have already
been devoted to this subject [7], [24], [25] (see also [26] Chap. 17). The purpose of
the present article is to give heuristics for algebraic independence. More precisely
we state two main conjectures. The first one (Conjecture 1) relates the transcen-
dence degree of a field (finitely generated over Q) with Diophantine approximation
properties of a transcendence basis. The second one (Conjecture 2) is an estimate
from below for the distance between some transcendental numbers and algebraic
numbers. Usually, in such estimates, the main parameter measures the height of
the approximating algebraic numbers, but here the leading role is played by the
degree.

Combining these two conjectures, one deduces strong results of algebraic inde-
pendence related to Schanuel’s Conjecture ([5] Chap. III, Historical Note p. 30–31;
[3] p. 260).

Schanuel’s Conjecture. Let x1, . . . , xn be Q-linearly independent complex num-
bers. Then, among the 2n numbers

x1, . . . , xn, e
x1 , . . . , exn ,

at least n are algebraically independent.

For instance our two main conjectures would solve the following problem of
algebraic independence of logarithms of algebraic numbers.
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Conjecture on Independence of Logarithms of Algebraic Numbers. If
logarithms of algebraic numbers λ1, . . . , λn are linearly independent over Q, then
they are algebraically independent over Q.

Also one would be able to deduce the algebraic independence of numbers like
e, π, eπ, eπ

2

. . .
Our approach enables us to compare the difficulty of different open problems.
Finally we propose further conjectures (which are likely to be easier ones)

related to almost all complex uples.

2. Connections Between Transcendence Degree
and Diophantine Estimates

Our first main conjecture relates the transcendence degree of the field generated
by a m-uple (θ1, . . . , θm) of complex numbers with Diophantine approximation
properties of this m-uple (see [7], Conjectures 5 and 5’; compare with [20], Con-
jecture 1.7; [14], Problems 7 and 8 p. 317, Problem 10 p. 319; [24], Conjecture 2.4;
[25], Conjecture 17 and [18], Conjecture).

For an algebraic number γ of degree d and minimal polynomial

a0X
d + · · · + ad = a0(X − γ(1)) · · · (X − γ(d)) ∈ Z[X],

we define the absolute logarithmic height h(γ) by

h(γ) =
1

d
log M(γ) where M(γ) = a0

d
∏

i=1

max{1, |γ(i)|}.

Estimates relating h with the so-called usual height

H(γ) = max
0≤i≤d

|ai|

can be deduced from

2−dH(γ) ≤ M(γ) ≤ H(γ)
√
d+ 1.

(See for instance Chapter 3 of [26]).
For a m-uple γ = (γ1, . . . , γm) of algebraic numbers, we define

µ(γ) = [Q(γ) : Q] max
1≤j≤m

h(γj),

so that for m = 1 and γ ∈ Q we have simply µ(γ) = log M(γ).

Conjecture 1. Let θ = (θ1, . . . , θm) be a m-uple of complex numbers, not all of
which are algebraic, so that the transcendence degree

t = trdegQQ(θ)
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over Q of the field Q(θ1, . . . , θm) is ≥ 1. There exist positive constants c1 and c2
with the following property. Let (Dν)ν≥0 and (µν)ν≥0 be sequences of real numbers
satisfying

c1 ≤ Dν ≤ µν , Dν ≤ Dν+1 ≤ 2Dν , µν ≤ µν+1 ≤ 2µν (ν ≥ 0).

Assume also that the sequence (µν)ν≥0 is unbounded. Then for infinitely many ν
there exists a m-uple (γ1, . . . , γm) of algebraic numbers satisfying

[Q(γ) : Q] ≤ Dν , µ(γ) ≤ µν

and

max
1≤i≤m

|θi − γi| ≤ exp{−c2D1/t
ν µν}.

Remark 1. Conjecture 1 is known for t = 1 (cf. Proposition 2 in § 5.2 below).

Remark 2. It is shown in [4] p. 180 that a criterion for algebraic independence of
Philippon ([3] Chap. 6 § 3.2; [24] Th. 2.2; [13]) follows from Conjecture 1.

Remark 3. As shown by D. Roy [18], Conjecture 1 is sharp: a lower bound for
the degree [Q(γ) : Q] cannot be required, and one cannot replace the condition
µ(γ) ≤ µν by the weaker one

max
1≤i≤m

h(γi) ≤
µν
Dν

.

Remark 4. A heuristic motivation is given by M. Laurent in [7] § 4.2 p. 325.

Definition. Let θ1, . . . , θm be complex numbers. A function

ψ : N × R>0 → R>0 ∪ {∞}
is a simultaneous approximation measure for θ1, . . . , θm if there exists a positive
integer D0 such that, for any integer D ≥ D0, any real number µ ≥ D and any
m-uple (γ1, . . . , γm) of algebraic numbers satisfying

[Q(γ) : Q] ≤ D and µ(γ) ≤ µ,

we have

max
1≤i≤m

|θi − γi| ≥ exp
{

−ψ(D,µ)
}

.

Remark 1. A measure is “sharp” if ψ is “small”.

Remark 2. The corresponding definition in [20] is phrased in terms of D and
h = maxhi. Roughly speaking, the function ϕ(D,h) of [20] is related with our
ψ(D,Dh), but there is a discrepancy: if one sets µ = Dh, one should beware that
the conditions

[Q(γ) : Q] ≤ D, µ(γ) ≤ µ
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and

[Q(γ) : Q] ≤ D, max
1≤i≤m

h(γi) ≤ h

do not coincide. Our change of definition is motivated by [18].

A simultaneous approximation measure for θ1, . . . , θm is obviously also a si-
multaneous approximation measure for any larger set, say θ1, . . . , θn with n ≥ m,
but there does not seem to be any converse in general: if we know a simultaneous
approximation measure for θ1, . . . , θm+1, one may construct algebraic approxima-
tions to θm+1 (using for instance the results of [19] Th. 3.2, [20] Th. 1.1, [10]
Th. 2), but these may be lacunary and do not suffice to deduce a simultaneous
approximation measure for θ1, . . . , θm.

Definition. Given two positive valued functions ψ1 and ψ2, let us write

ψ1(D,µ) ≺ ψ2(D,µ)

if, for any c > 0, there exist sequences (Dν)ν≥0 and (µν)ν≥0 satisfying

c ≤ Dν ≤ µν , Dν ≤ Dν+1 ≤ 2Dν , µν ≤ µν+1 ≤ 2µν (ν ≥ 0),

the sequence (µν)ν≥0 is unbounded and

lim
ν→∞

ψ1(Dν , µν)

ψ2(Dν , µν)
= 0.

According to these definitions, Conjecture 1 means that a m-uple (θ1, . . . , θm),
for which a simultaneous approximation measure ψ(D,µ) satisfies

ψ(D,µ) ≺ D1/kµ

generates a field of transcendence degree ≥ [k] + 1.
Conjecture 1 is likely to be the strongest possible result in this direction. We

discuss this matter again in § 5.

3. Simultaneous Diophantine Approximation: a
Conjecture

Here is our second main Conjecture.

Conjecture 2. For each positive integer n there exists a positive constant c(n)
with the following property. Let λ1, . . . , λn be Q-linearly independent logarithms of
algebraic numbers and β1, . . . , βn be algebraic numbers. Define αi = eλi (1 ≤ i ≤
n) and

γ = (α1, . . . , αn, β1, . . . , βn).
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Let D be a positive integer and µ ≥ D a real number satisfying

[Q(γ) : Q] ≤ D, µ(γ) ≤ µ

and

max
1≤i≤n

|λi| ≤ µ.

Then
n

∑

i=1

|λi − βi| ≥ exp
{

−c(n)D1/nµ
}

.

In fact for our purpose here it would be sufficient to get, for n ≥ 2, an estimate
of the form

n
∑

i=1

|λi − βi| ≥ exp
{

−c(n)Dηµ
}

for some η in the range

0 < η <
1

n− 1
.

We now derive several consequences of Conjectures 1 and 2 together.

3.1. Schanuel’s Conjecture Under a Technical Hypothesis

Assuming Conjectures 1 and 2, one deduces a special case of Schanuel’s Conjecture,
where the numbers x1, . . . , xn satisfy a so-called “technical hypothesis”, which is
the following measure of linear independence:

Definition. A n-uple (x1, . . . , xn) of complex numbers satisfies a linear indepen-
dence measure condition if for any ǫ > 0 there exists S0 > 0 such that, for any
S ≥ S0 and any n-uple (s1, . . . , sn) ∈ Zn satisfying 0 < max1≤j≤n |sj | ≤ S, we
have

|s1x1 + · · · + snxn| ≥ e−S
ǫ

.

Remark. This linear independence measure condition is (a weak form of) the so-
called “Diophantine Condition” which occurs in the theory of dynamical systems.
Such an assumption is not wanted for transcendence or algebraic independence
results, but it cannot be avoided for quantitative statements (measures of tran-
scendence, of approximation or of algebraic independence). In fact the approach
we suggest here should also lead to such quantitative refinements, and from this
point of view the technical condition is not unnatural. One may remark however
that [19] completely avoids any linear independence measure condition. For large
transcendence degree, removing such an assumption is still an open problem ([3],
Chap. 6, § 4.3, p. 298; [24] § 3.2; [13]).

We now prove:
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Proposition 1. Let (x1, . . . , xn) be a n-uple of complex numbers which satisfies
a linear independence measure condition. If Conjecture 2 holds, then there exists
a constant c > 0 such that the function

ψ(D,µ) = cD1/nµ

is a simultaneous approximation measure for the 2n numbers

x1, . . . , xn, e
x1 , . . . , exn .

Proof. Let γ = (α1, . . . , αn, β1, . . . , βn) be a 2n-uple of algebraic numbers in a field
of degree ≤ D, and let µ ≥ D satisfy µ(γ) ≤ µ. We assume that D is sufficiently
large. Assume also

n
∑

i=1

(

|xi − βi| + |exi − αi|
)

≤ exp{−c1D1/nµ}

for some sufficiently large constant c1 (depending only on x1, . . . , xn). For 1 ≤ i ≤
n, we choose the logarithm λi of αi so that

n
∑

i=1

|λi − βi| ≤ exp{−c2D1/nµ}.

From Conjecture 2 we deduce that the numbers λ1, . . . , λn are linearly dependent
over Q. Therefore (see for instance [26]) there is a non trivial linear relation

s1λ1 + · · · + snλn = 0

for some (s1, . . . , sn) ∈ Zn which satisfies

0 < max
1≤i≤n

|si| ≤ µc3 .

We deduce

|s1x1 + · · · + snxn| ≤ exp{−c4D1/nµ},

and this is not compatible with the linear independence measure condition. ⊓⊔

Since the exponent η = 1/n of D in the function ψ of Proposition 1 satisfies
η < 1/(n− 1), we deduce:

Corollary. Let (x1, . . . , xn) be a n-uple of complex numbers which satisfies a linear
independence measure condition. Assume Conjectures 1 and 2 hold. Then the
transcendence degree of the field

Q
(

x1, . . . , xn, e
x1 , . . . , exn

)

is at least n.

We consider some examples.
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3.2. First Example Involving Several Logarithms of

Algebraic Numbers

The Conjecture on algebraic independence of logarithms of algebraic numbers fol-
lows from Conjectures 1 and 2, and so does Lindemann-Weierstraß’ Theorem.
More generally, these two Conjectures 1 and 2 imply the following statement
(which is an open problem):

• (?) Let λ1, . . . , λn be Q-linearly independent logarithms of algebraic num-
bers and β1, . . . , βm be algebraic numbers such that 1, β1, . . . , βm are Q-
linearly independent. Then the (n+ 1)(m+ 1) numbers

e, λi, e
βj , eλiβj (1 ≤ i ≤ n, 1 ≤ j ≤ m)

are algebraically independent.

Indeed, according to the Corollary, it is sufficient to check that the (n+1)(m+1)-
uple

1, λi, βj , λiβj (1 ≤ i ≤ n, 1 ≤ j ≤ m)

satisfies a linear independence measure condition. In fact, thanks to A. Baker,
much stronger measures of linear independence for 1, λ1, . . . , λn over the field of
algebraic numbers are known (see for instance [26]).

As an example, the algebraic independence of the four numbers e, π, eπ and ei

follows (take n = m = 1, λ1 = iπ, β1 = i).
The (open) problem of Gel’fond-Schneider ([3], p. 259; [7] § 2, Conjecture 4;

[24] Conjecture 1.2; [13]) is the following special case (take n = 1, m = d − 1,
βj = βj):

• (?) Let logα be a non zero logarithm of an algebraic number and β an
algebraic number of degree d. Then the d− 1 numbers

αβ , . . . , αβ
d−1

are algebraically independent.

3.3. Second Example Involving Powers of a Logarithm

Another consequence of Conjectures 1 and 2 is:

• (?) Let λ be a non zero logarithm of an algebraic number and let β1, . . . , βm
be algebraic numbers such that 1, β1, . . . , βm are Q-linearly independent.
Then the numbers

e, λ, eλ
2

, eλ
3

, . . . , eλ
kβj (k ≥ 0, 1 ≤ j ≤ m)

are algebraically independent.
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Indeed, for any n ≥ 1, the (n+ 1)(m+ 1)-uple

λk, λkβj (0 ≤ k ≤ n, 1 ≤ j ≤ m)

of complex numbers satisfies a linear independence measure condition.

For instance the algebraic independence of the numbers e, π, eπ, eπ
2

, . . . , eπ
k

follows (take m = 1, λ = iπ, β1 = i).
Remark. The algebraic independence of 2log 2 and eπ for instance (and more gener-

ally of numbers of the form λi, e
λk

i βj ) does not seem to follow from this approach.
Henceforth it would be worthwhile to enforce Conjecture 1 so that one could deduce
not only a lower bound for a transcendence degree, but also a quantitative refine-
ment of this statement (e.g. a measure of algebraic independence). As pointed
out above, the corresponding refinement of Corollary in § 3.1 would then not be
true without the linear independence measure condition.

4. Simultaneous Diophantine Approximation:
Results

Under the hypotheses of Conjecture 2, only the weaker estimate

n
∑

i=1

|λi − βi| ≥ exp
{

−c(n)µ(µ+D logD)1+(1/n)
}

(where c(n) depends only on n) is known.
This lower bound is not optimal (as far as one expects!), and it does not include

all what is known on this topic.

4.1. Linear Algebraic Groups

So far, all known partial results in direction of Conjecture 2 rest on the following
general setup.

For d0 ≥ 0 and d1 ≥ 1, consider the commutative linear algebraic group G =
Gd0

a × Gd1
m of dimension d = d0 + d1. The group of algebraic points of G is

G(Q) = Q
d0 × (Q

×
)d1 and the exponential map expG of G(C) can be written

Cd −→ G(C) = Cd0 × (C×)d1

(z1, . . . , zd) 7−→ (z1, . . . , zd0 , e
zd0+1 , . . . , ezd)

Let W ⊂ Q
d

be a vector space of dimension m over C and Y = Zy1+. . .+Zyℓ ⊂ Cd

a subgroup of rank ℓ over Z such that expG(Y ) ⊂ G(Q):

yj = (β1j , . . . , βd0j , λ1j , . . . , λd1j) ∈ Q
d0 × Ld1 ,
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where

L = exp−1(Q
×

) =
{

logα ; α ∈ Q
×}

is the Q-vector space of logarithms of algebraic numbers.
Under these circumstances, the main transcendence result is a lower bound for

the dimension of the subspace V spanned by W and Y in Cd. Under suitable
assumptions, one reaches:

dimC V ≥ ℓd+md1

ℓ+ d1
.

What is needed here is an effective version (see [26] for more details).

4.2. Two Estimates

Here are two estimates which include many (but not all) Diophantine approxima-
tion results related to the exponential function (here, we restrict ourself to the one
variable case, that is to one parameter subgroups of linear algebraic groups; see
for instance [26] for further estimates).

We denote by m and n two positive integers and by αij (1 ≤ i ≤ m, 0 ≤ j ≤ n)
non zero algebraic numbers in a number field K of degree ≤ D. For 1 ≤ i ≤ m
and 0 ≤ j ≤ n, let λij be any complex logarithm of αij : this means eλij = αij .
Let A and E be positive real numbers satisfying

h(αij) ≤ logA, |λij | ≤
D

E
logA and 1 ≤ logE ≤ D logA.

For 1 ≤ i ≤ m we write αi and λi in place of αi0 and λi0 respectively (these
numbers occur only in Theorem 1, not in Theorem 2). Also we use the absolute
logarithmic height h on the projective spaces Pn (see for instance [26] Chap. 3).

We need some independence condition on these λij . We introduce the following
definition: given a positive real number U , we shall say that the m × n matrix
(

λij
)

1≤i≤m

1≤j≤n

satisfies the linear independence condition for U if, for any t ∈ Zm\{0}
and any s ∈ Zn \ {0} with max1≤i≤m |ti| ≤ U and max1≤j≤n |sj | ≤ U ,

m
∑

i=1

n
∑

j=1

tisjλij 6= 0.

Theorem 1. Define

c1 = 232m4n2(2m)m/n.

Let β1, . . . , βn be algebraic numbers in the number field K and let B be a positive
real number satisfying

B ≥ e, B ≥ D, B ≥ D logA and h(1 : β1 : · · · : βn) ≤ logB.
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Define

Umn1 = D(m+1)(n+1)(logB)n+1(logA)m(n+1)(logE)−m−n−1

and assume that the m×(n+1) matrix
(

λij
)

1≤i≤m

0≤j≤n

satisfies the linear independence

condition for (c1U1)
2. Assume further

logE ≤ D logB ≤ U1.

Then
m

∑

i=1

n
∑

j=1

∣

∣λij − βjλi
∣

∣ ≥ e−c1U1 .

Theorem 2. Define

c2 = 223m3n2(2m)m/n.

Let β1, . . . , βn, β
′
1, . . . , β

′
m be algebraic numbers in K. Let B be a positive real

number satisfying the following conditions:

B ≥ e, B ≥ D logD, B ≥ D logA,

h(1 : β1 : · · · : βn) ≤ logB and h(1 : β′
1 : · · · : β′

m) ≤ logB.

Define

Umn2 = Dmn+m+n(logB)n+m(logA)mn(logE)−m−n

and assume that the m × n matrix
(

λij
)

1≤i≤m

1≤j≤n

satisfies the linear independence

condition for (c2U2)
2. Assume further

logE ≤ D logB ≤ U2.

Then
m

∑

i=1

n
∑

j=1

∣

∣λij − βjβ
′
i

∣

∣ ≥ e−c2U2 .

We now give several examples of these estimates. Further slightly sharper
estimates can be found in [20] and [26].

4.3. Consequences of Theorem 2

The above mentioned estimate
n

∑

i=1

|λi − βi| ≥ exp
{

−c(n)µ(µ+D logD)1+(1/n)
}

(under the hypotheses of Conjecture 2) follows from Theorem 2 by taking m = 1,
β′

1 = 1, B = nD2eµ/D, A = eeµ/D, E = e.
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Refinements are available in special cases. Here is a small sample.

4.3.1. On Schanuel’s Conjecture

• Let (x1, . . . , xn) be a n-uple of complex numbers which satisfies a linear inde-
pendence measure condition. Then a simultaneous approximation measure
for the 2n numbers

x1, . . . , xn, e
x1 , . . . , exn

is

ψ(D,µ) = cµ(µ+D logD)1+(1/n)(logµ)−1−(1/n),

where c depends only on x1, . . . , xn.

One deduces this estimate from Theorem 2 by taking m = 1, B = (Deµ/D)c,
A = eµ/D, E = c′µ with suitable constants c and c′.

4.3.2. Logarithms of Algebraic Numbers

• Let λ1, . . . , λn be Q-linearly independent logarithms of algebraic numbers.
There exists a positive number c depending only on λ1, . . . , λn such that a
simultaneous approximation measure for the n-uple (λ1, . . . , λn) is

cD(µ+D logD)1+(1/n)(logD)−1−(1/n).

One applies again Theorem 2 with m = 1, B = (Deµ/D)c1 , A = c2, E = c3D.
One should note here that another estimate (which is better when µ/(D logD)

is large) is due to N.I. Feldman [3], Chap. 3, Th. 3.34, namely

cD1+(1/n)(µ+D logD)(logD)−1.

However this is not yet sufficient to prove that the transcendence degree is ≥ 2.
For further results on this topic, see [20].

4.3.3. Lindemann-Weierstraß’ Theorem

• Let β1, . . . , βn be Q-linearly independent algebraic numbers. Then a simul-
taneous approximation measure for the n-uple (eβ1 , . . . , eβn) is

cD1/nµ(logµ+D logD)(logµ)−1.

The idea is to take A = ecµ/D, B = (Dµ1/D)c, E = µ/c. However such a choice
does not satisfy the assumption B ≥ D logA of Theorem 2. Fortunately it is
possible to remove this condition in the present special case; we refer once more
to [20], § 8 for further details.

Assuming Conjecture 1, this estimate implies the algebraic independence of
these n numbers eβ1 , . . . , eβn (Lindemann-Weierstraß’ Theorem).
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4.4. Consequences of Theorem 1

Here is a partial result related with Gel’fond-Schneider’s Problem.

• Let logα be a non zero logarithm of an algebraic number and let β be an
algebraic number of degree d ≥ 2. Then a simultaneous approximation

measure for the (d− 1)-uple (αβ , . . . , αβ
d−1

) is

c

(

Dµd

logµ

)1/(d−1)

,

for some c > 0 depending only on logα and β.

In case µ = D the exponent of D is

d+ 1

d− 1
= 1 +

2

d− 1
.

Assuming Conjecture 1, it follows that the transcendence degree t of the field

Q
(

αβ , . . . , αβ
d−1)

satisfies

t ≥
[

d+ 1

2

]

.

This result of algebraic independence has been proved and is in fact the sharpest
known one on this topic so far. It is due to G. Diaz and includes previous results
of A.O. Gel’fond, W.D. Brownawell, A. Smelev, G.V. Chudnovsky, P. Philippon
and others (see [3] Chap. 6, Cor. 6.3; [13]; [24] Th. 3.4; [26]).

The proof of this estimate uses the special case n = d − 1, m = d, βj = βj

(1 ≤ j ≤ d− 1) of Theorem 1, with A = eµ/D, B = dDµ, E = µ. More precisely,

assume γi is an algebraic approximation of αβ
i

for 1 ≤ i ≤ d − 1. We define
γ0 = α, and by induction we define γd, γd+1, . . . , γ2d−2 so that γi is an algebraic

approximation of αβ
i

for 0 ≤ i ≤ 2d−2. For 0 ≤ i ≤ 2d−2 we select the logarithm
λi of γi which is close to βi logα, and we put

λij = λi+j−1 for 1 ≤ i ≤ d, 1 ≤ j ≤ d− 1.

4.5. Further Estimates

Here are a few examples of further simultaneous approximation measures which
follow from certain refinements of Theorems 1 and 2 (see [26]).
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4.5.1. On π and eπ From Theorem 2 with m = n = 2, one deduces that there
exists an absolute constant c > 0 such that

c(µ+D logD)2(logµ)−1

is a simultaneous approximation measure for the two numbers π and eπ. This
estimate can be slightly refined, and the best known such measure is

cD1/2µ(µ+D logD)1/2(logµ)−1/2.

This is not strong enough to imply the algebraic independence of these two num-
bers! In fact for any quadratic number β (in place of i) and any non zero logarithm
of an algebraic number λ (in place of iπ) there exists a positive constant c > 0
(depending on β and λ) such that the same function

cD1/2µ(µ+D logD)1/2(logµ)−1/2.

is a simultaneous approximation measure for the two numbers λ and eβλ ([20]
Th. 2.7). In general it is not yet proved that these two numbers λ and eβλ are
algebraically independent.

A simultaneous approximation measure for the three numbers π, eπ and Γ(1/4)
is

c(µ+D logD)4/3(logµ)

for some absolute constant c > 0. See [14] p. 328, [12], Th. 4, [15] Th. 3 and [16]
Corollaire 5. The exponent 4/3 is less than 3/2; according to Conjecture 1, one
deduces Nesterenko’s Theorem:

• The three numbers π, eπ and Γ(1/4) are algebraically independent.

The fact that a sharp simultaneous approximation measure is known for the three
numbers π, eπ and Γ(1/4), but not for the two numbers π and eπ, raises a natural
question: assume that a m-uple (θ1, . . . , θm) has a simultaneous approximation
measure ψ(D,µ) satisfying ψ(D,µ) ≺ D1/(m−1)µ. It follows from Conjecture 1
that the numbers θ1, . . . , θm are algebraically independent, and therefore any sub-
set of {θ1, . . . , θm} consists of algebraically independent numbers. Can we deduce
that for any m′ in the range 1 ≤ m′ ≤ m, there is a simultaneous approximation
measure ψ′(D,µ) for (θ1, . . . , θm′) which satisfies ψ′ ≺ D1/(m′−1)µ ?

As pointed out earlier, the answer is likely to be negative, and this calls for a
modification of Conjecture 1 which would not have this drawback.

In [16] P. Philippon produces further Diophantine approximation results on
these numbers, including the fact that Γ(1/4) is not a Liouville number (but it is
not yet proved that eπ is not a Liouville number).

4.5.2. On the Numbers e and π

• There exists an absolute constant c > 0 such that

cµ1/2(µ+D logD)(µ+D2 logD)1/2(logD)−3/2

is a simultaneous approximation measure for the two numbers e and π.
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This is not sufficient to deduce the algebraic independence of these two numbers,
and this is far from the expected cD1/2µ.

4.5.3. On the Numbers e, ee and ee
2

• There exists an absolute constant c > 0 such that

|e− γ0| + |ee − γ1| + |ee2 − γ2| >
exp

{

−cD2(h0 + h1 + h2)
1/2(h1 + h2)

1/2(h0 + logD)(logD)−1
}

whenever γ0, γ1, γ2 are algebraic numbers with

hi = max
{

1,h(γi)
}

(i = 0, 1, 2) and D = [Q(γ0, γ1, γ2) : Q].

It follows (cf. [1], Cor. 3 and [23], Cor. 1) that one at least of the two numbers

ee, ee
2

is transcendental. Indeed, the sequences Dν = ν and µν = ν log ν (for
instance) show that the function

ψ(D,µ) = c(Dµ)1/2(µ+D logD)(logD)−1

satisfies ψ(D,µ) ≺ Dµ, hence ψ cannot be an approximation measure for e.
It is yet an open problem to prove that two at least of the three numbers e, ee,

ee
2

are algebraically independent. The best known simultaneous approximation
measure for these numbers is only cµ(µ+ logD)(logD)−1, which is not ≺ Dµ.

4.5.4. On the Numbers π, e and eπ
2

• There exists an absolute constant c > 0 such that

|π − γ0| + |e− γ1| + |eπ2 − γ2| >
exp

{

−cD2
(

h0 + log(Dh1h2)
)

h
1/2
1 h

1/2
2 (logD)−1

}

whenever γ0, γ1, γ2 are algebraic numbers with

hi = max
{

1,h(γi)
}

(i = 0, 1, 2)

and

D = [Q(γ0, γ1, γ2) : Q].

We deduce that if the number eπ
2

is algebraic, then the function

c(Dµ)1/2
(

µ+D logD
)

(logD)−1

(which we already met) is a simultaneous approximation measure for π and e.
Therefore (cf. [1], Cor. 4 and [23], Cor. 1) one at least of the two following
statements is true:
(i) The numbers π and e are algebraically independent.

(ii) The number eπ
2

is transcendental.
Again the best known simultaneous approximation measure for the three num-

bers π, e, eπ
2

is cµ(µ +D logD)(logD)−1, which is not sufficient to deduce that
two of them are algebraically independent.
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5. Distribution of Algebraic Points of Large
Degree

For each positive numbers D and µ with µ ≥ D, let us define

Q
m

(D,µ) =
{

γ = (γ1, . . . , γm) ∈ Q
m

; [Q(γ) : Q] ≤ D, µ(γ) ≤ µ
}

.

That this is a finite subset of Cm is “a completely elementary result due to North-
cott” ([6] Chap. II, Th. 2.2; see also [22] Lemma 7C).

Schanuel’s counting Theorem ([6] Chap. II, Th. 2.5) provides an asymptotic
formula for the number of points in a number field with bounded height, but here
we do not fix the number field.

Conjecture 1 suggests to study the distribution of Q
m

(D,µ) into Cm. Our
analysis is not sharp enough to make any difference with the smaller set where the
condition

[Q(γ) : Q] max
1≤i≤m

h(γi) ≤ µ

is replaced by an upper bound

[Q(γ) : Q]h(1 : γ1 : · · · : γm) ≤ µ

involving the logarithmic height of the corresponding point in a projective space.
Other variations are possible; for instance the condition on µ(γ) could be replaced
by the upper bound

max
1≤i≤m

H(γi) ≤ eµ

involving the usual height. A further interesting issue is how far the condition
µ ≥ D could be relaxed.

On the other hand it follows from D. Roy’s recent paper [18] that the description
which we are going to give does not hold for the subset

{

γ ∈ Q
m

(D,µ) ; [Q(γ) : Q] = D
}

.

5.1. The Subset Q(D, µ) of C

Let us start with the case m = 1. A crude estimate for the number of points in
Q(D,µ) is

log Card Q(D,µ) ≃ Dµ

for sufficiently large D. We are interested with the distribution of Q(D,µ) in C

when D is sufficiently large.
We fix θ ∈ C. The case θ ∈ Q is not relevant, since then θ ∈ Q(D,µ) for any

sufficiently large D. So let us assume θ is transcendental. Let D0 be sufficiently
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large (depending on θ). For each κ > 0, consider the set

Eκ(θ) =
{

(D,µ) ; µ ≥ D ≥ D0, min
γ∈Q(D,µ)

|θ − γ| ≤ exp{−κDµ}
}

.

For κ1 ≤ κ2 we have Eκ2
(θ) ⊂ Eκ1

(θ). For κ > 0 the set Eκ(θ) is empty if and only
if κDµ is an approximation measure for θ.

We shall denote by

Eκ(θ)c =
{

(D,µ) ; µ ≥ D ≥ D0, (D,µ) 6∈ Eκ(θ)
}

the complement set of Eκ(θ). Then Eκ(θ)c is empty if and only if θ is at a distance
≤ exp{−κDµ} of an algebraic number γ of degree ≤ D and logarithmic measure
≤ µ.

If the sets Q(D,µ) were “well” distributed in C, then for sufficiently large κ,
say κ ≥ κ2, the set Eκ(θ) would be empty, while for sufficiently small κ, say κ ≤ κ1,
the complement Eκ(θ)c of Eκ(θ) would be empty.

One can construct transcendental numbers θ (of the form θ = 2ξ, where ξ is a
Liouville number – see [26], Exercise 17.8) for which each of these two properties
fails for an infinite sequence of pairs (D,µ) with unbounded D and µ. More
precisely, if ψ is an approximation measure for such a θ, then for any D0 > 0 there
is a sequence (Dν , µν)ν≥0 with µν ≥ Dν ≥ D0, µν → ∞ and

ψ(Dν , µν)

Dνµν
→ ∞;

moreover there is another sequence (D′
ν , µ

′
ν)ν≥0 with µ′

ν ≥ D′
ν ≥ D0, µ

′
ν → ∞

such that the function

ψθ(D,µ) = − log min
γ∈Q(D,µ)

|θ − γ|

satisfies

ψθ(D
′
ν , µ

′
ν)

D′
νµ

′
ν

→ 0.

The work of Y. Bugeaud [2] includes the following statement:

• For almost all complex numbers θ, there exist D1(θ) and κ1 such that the
complementary set of Eκ1

(θ) (defined with D0 = D1(θ)) is empty.

From Lemma 5 of [2] then follows:

• For almost all complex numbers θ, there exist D2(θ) and κ2 such that the
set Eκ2

(θ) (defined with D0 = D2(θ)) is empty.

Let us quote also the following result of A. Baker and W.M. Schmidt (see
(3.12), Chap. VIII § 3 in [21]):

• For almost all θ ∈ C, for any D > 0 and any ǫ > 0, there exists a constant
c(D, θ, ǫ) such that

|θ − γ| ≥ c(D, θ, ǫ)H(γ)−D−1−ǫ
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for any γ ∈ Q of degree ≤ D.

Now we need to consider all elements of C \ Q, and not only almost all complex
numbers.

We introduce a few definitions.

Definition. A regular sequence (Dν , µν)ν≥0 is a sequence of elements of N×R>0

which satisfies

Dν ≤ µν , Dν ≤ Dν+1 ≤ 2Dν , µν ≤ µν+1 ≤ 2µν (ν ≥ 0)

and such that the sequence (µν)ν≥0 is unbounded.

Definition. A subset E of N×R>0 is thick if there exists c > 0 such that, for any
regular sequence (Dν , µν)ν≥0 satisfying D0 ≥ c, the set

{

ν ≥ 0 ; (Dν , µν) ∈ E
}

is infinite.

Obviously if E ′ is thick and E ′ ⊂ E ′′, then E ′′ is also thick. On the other hand
if E is thick, then for any D0 > 0 the set

{

(D,µ) ∈ E ; D ≥ D0

}

again is thick. By the way, the set Eκ(θ) depends on D0, but the property either
for Eκ(θ) or for Eκ(θ)c to be thick does not depend on D0.

Also this remark allows us to define:

Definition. A subset E of N × R>0 is thin if its complementary set

Ec =
{

(D,µ) 6∈ E ; µ ≥ D ≥ D0

}

is thick. (This does not depend on D0.)

One deduces from Th. 3.2 of [19] (see also Proposition 2 below) that for any
transcendental number θ, there exists κ1 > 0 such that Eκ1

(θ) is thick (and then
Eκ(θ) is thick for any κ in the range 0 < κ ≤ κ1).

As kindly pointed out to me by Y. Bugeaud, it follows from Liouville’s inequal-
ity that for any θ ∈ C \ Q, there exists κ2 > 0 such that, for κ ≥ κ2, the set Eκ(θ)
is thin.

A subset E of N × R>0 may be neither thick nor thin: an example is
{

(D,µ) ; D ≡ 0 (mod 2), µ ≥ D
}

.

On the opposite, if ϕ : N → N is a mapping satisfying

ϕ(n+ 1) ≥ 2ϕ(n) for n ≥ 0,

then the set
⋃

k≥0

{

(D,µ) ; ϕ(2k) ≤ D < ϕ(2k + 1), µ ≥ D
}

is at the same time thick and thin!
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Finally we notice that, given two positive valued functions ψ1 and ψ2 on N ×
R>0, the condition ψ1(D,µ) ≺ ψ2(D,µ) can be written: for any ǫ > 0, the set

{

(D,µ) ; ψ1(D,µ) > ǫψ2(D,µ)
}

is not thick.

5.2. The Subset Q
m

(D, µ) of Cm

Let m be a positive integer. To give an asymptotic formula for the number of
elements in Q

m
(D,µ) is an open problem (cf [22] Chap. I, § 7, p. 27 – notice that in

Schmidt’s Lecture Note [22], the normalization of the absolute logarithmic height
at the Archimedean places involves the Euclidean norm). For us the following easy
(and rough) estimate

Card Q(D,µ) ≤ Card Q
m

(D,µ) ≤
(

Card Q(D,µ)
)m

will suffice. Therefore log Card Q
m

(D,µ) is (up to a multiplicative constant) Dµ.
Again we are interested with the distribution of Q

m
(D,µ) in Cm when D is

sufficiently large and µ ≥ D.
We first notice that each affine algebraic curve of Cm, which is rational over

Q, contains plenty of elements of Q
m

(D,µ):

• For any algebraic curve C ⊂ Cm, rational over Q, there exists a constant
κ > 0 such that, for any sufficiently large D and for µ ≥ D,

log Card
(

C ∩ Q
m

(D,µ)
)

≥ κDµ.

Moreover, on such a curve, the points of Q
m

(D,µ) have a distribution which is
similar to the distribution of Q(D,µ) in C. Indeed, the case m = 1 of Conjecture 1,
which is proved in [19], Th. 3.1 – see also [20] Cor. 1.2 – can be stated as follows:

Proposition 2. Let C be an affine algebraic curve in Cm, rational over Q. For
any θ ∈ C, θ 6∈ Q

m
, there exist D0 > 0 and κ > 0 such that the set

{

(D,µ) ; µ ≥ D ≥ D0, min
γ∈Q

m
(D,µ)∩C

|θ − γ| ≤ exp{−κDµ}
}

is thick.

An explicit version of Proposition 2 (including a lower bound for the degree
[Q(γ) : Q]) is Th. 1 of [10].

The distribution of elements of Q
m

(D,µ) on a fixed algebraic subvariety V
of Cm, defined over Q, should follow a similar pattern, with the exponent 1 of
D replaced by 1/t, where t is the dimension of V. This explains the following
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notation: For each θ ∈ Cm \ Q
m

, for sufficiently large D0 and for each κ > 0, we
introduce the set

Eκ(θ) =
{

(D,µ) ; µ ≥ D ≥ D0, min
γ∈Q

m
(D,µ)

|θ − γ| ≤ exp{−κD1/tµ}
}

,

where t is the transcendence degree over Q of the field Q(θ).

Conjecture 3. Let m be a positive integer.
1) For any θ ∈ Cm \ Q

m
, there exist κ1 > 0 and κ2 > 0 such that the set Eκ(θ) is

thick for κ ≤ κ1 and thin for κ ≥ κ2.
2) For almost all m-uples θ = (θ1, . . . , θm) of complex numbers, there exist κ1 > 0
and κ2 > 0 such that, for κ ≤ κ1, the set Eκ(θ)c is empty, while for κ ≥ κ2, the
set Eκ(θ) is empty.

For each θ ∈ Cm \ Q
m

, for sufficiently large D and for µ ≥ D, define κθ(D,µ)
by

min
γ∈Q

m
(D,µ)

|θ − γ| = exp{−κθ(D,µ)D1/tµ},

where t is the transcendence degree over Q of the field Q(θ). Hence

κθ(D,µ) = sup
{

κ > 0 ; (D,µ) ∈ Eκ(θ)
}

.

Conjecture 3 states that for “most” pairs (D,µ) with µ ≥ D, we have

κ1 ≤ κθ(D,µ) ≤ κ2.

More precisely, part 1) of Conjecture 3 states that the sets
{

(D,µ) ; µ ≥ D ≥ D0, κθ(D,µ) < κ1

}

and
{

(D,µ) ; µ ≥ D ≥ D0, κθ(D,µ) > κ2

}

are thin, while part 2) replaces “thin” by “empty” for almost all θ ∈ Cm.
The existence of κ1 in part 1) of Conjecture 3 is nothing else than Conjecture 1.

The existence of both κ1 and κ2 would yield a “criterion” (i.e. a necessary and
sufficient condition) for a m-uple θ ∈ Cm to generate a field of transcendence
degree t.

For part 2) of Conjecture 3, it is likely that a stronger statement holds with
constants κ1 and κ2 depending only on m, but not on θ (running over a subset
of Cm of measure 1). On the other hand one cannot expect that 2) would hold
for any θ ∈ Cm \ Q

m
: there exist algebraically independent numbers which, for

infinitely many (D,µ), have good approximations by elements of Q
m

(D,µ):

• Let f : N → N satisfy

lim
D→∞

f(D) → ∞.

There exists a set {θa ; 0 ≤ a ≤ 1} of algebraically independent numbers
such that, for any m ≥ 1 and any (a1, . . . , am) ∈ Rm with 0 ≤ ai ≤ 1, for
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infinitely many D > 0 there exists γ ∈ Q
m

(D,D) such that

m
∑

i=1

|θai
− γi| ≤ e−Df(D).

For instance ([26] Exercise 17.12), if Φ : N → N is an increasing function such that

Φ(n+ 1) ≥ 2ϕ(2nΦ(n)) (n ≥ 0),

then the numbers

θa = 2ξa (0 ≤ a < 1) with ξa =
∑

n≥1

[n2a]2−Φ(n)

provide a solution.

5.3. Approximation by Cycles

In place of simultaneous approximation by algebraic numbers, one may also con-
sider other similar questions. An easy one is related with “polynomial approxima-
tion”: given a m-uple θ = (θ1, . . . , θm) of complex numbers, one seeks a non zero
polynomial f ∈ Z[X1, . . . , Xm] such that |f(θ)| is “small”. The existence of such a
polynomial follows from Dirichlet’s box principle (see for instance [19] Lemme 3.8,
[10] Lemme 1, as well as [25] and [26]).

Next one asks for several “independent” such polynomials; more precisely one
considers Diophantine approximation by cycles. This program has been suggested
by P. Philippon [14], who already achieved partial results for small transcendence
degree [17].

Here is a result dealing with approximation by a point on a hypersurface, due
to M. Laurent and D. Roy [11] Th. 2.3.

Theorem (Laurent-Roy). Let θ ∈ Cm. Let (Dn)n≥1 be a non-decreasing se-
quence of positive integers, and let (hn)n≥1 be a sequence of real numbers ≥ 1 such
that (Dnhn)n≥1 is non-decreasing and unbounded. Then, for infinitely many n,
there exists a non zero polynomial P ∈ Q[X1, . . . , Xm] of degree ≤ Dn and height
h(P ) ≤ hn which admits at least one zero α ∈ Cm with

max
1≤i≤m

|θi − αi| ≤ exp
(

− 1

8(m+ 1)!
Dm+1
n−1 hn−1

)

.

In the case m = 1, we get α ∈ Q(Dn−1, Dn−1hn−1), and we recover Proposi-
tion 2. For m ≥ 1, this statement together with Proposition 2 can be seen as a
first step of an inductive process towards Conjecture 1, but the constants relative
to a curve in Th. 1 of [10] are not yet sharp enough to conclude in the case m = 2.
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5.4. Measures

A related question deals with quantitative refinement to Schanuel’s Conjecture.
One may expect that such a precise conjectural statement would include “all”
expected results of Diophantine approximation for complex numbers related to the
exponential function. It may be important to state a sufficiently sharp estimate;
for instance this may help in an inductive argument.

Conjecture 2 is a first step in this direction, but it deals only with approximation
by algebraic numbers. One may consider further (conjectural) estimates for higher
dimensional cycles (which should include also Conjecture 1.4 of [24], for instance).
Chow forms ([3], Chap. 6, § 3, [14], [15], [16], [17] and [11]) seem to be a convenient
tool to formulate such a desired general estimate.

5.5. Metric Theory — Extremal Manifolds

We propose further open problems involving Lebesgue’s measure.
Our first question is:

• Which functions ψ : N × R>0 → R>0 are simultaneous approximation mea-
sures for almost all m-uples θ ∈ Cm?

The following interesting phenomenon occurs. Denote by Ψ the set of mappings
ψ which are simultaneous approximation measures for almost all elements of Cm.
For each ψ ∈ Ψ, denote by Eψ the subset of θ in Cm for which ψ is a simultaneous
approximation measure. By definition Eψ contains almost all complex numbers,
but

⋂

ψ∈Ψ

Eψ = ∅.

From the point of view of Diophantine approximation, no m-uple in Cm behaves
like almost all m-uples!

Our last question is related with the problem of existence of κ1 in part 2) of
Conjecture 3. A positive answer would mean that for almost all θ ∈ Cm, there
exist D0 > 0 and κ > 0 such that, for any µ ≥ D ≥ D0,

min
γ∈Q

m
(D,µ)

|θ − γ| ≤ exp{−κD1/mµ}.

It would be interesting to investigate whether a similar estimate holds also
for almost all elements on a given analytic subvariety of Cm? The meaning of
Conjecture 1 is that the answer should be positive for algebraic subvarieties.

Such a problem, but involving only rational approximation, has been studied
by many a mathematician, including K. Mahler, V.G. Sprindžuk (who coined the
words extremal manifolds), A. Baker, W.M. Schmidt, G.V. Chudnovsky, V. Bernik,
V. Beresnevich, M. Dodson, G.A. Margulis, D. Kleinbock. Approximation by
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algebraic numbers of bounded degree has been also considered from a metrical
point of view, but here our concern is with algebraic numbers of large degree.

For instance, consider the analytic subvariety zn+i = ezi (1 ≤ i ≤ n) in C2n.
A strong form of Schanuel’s Conjecture holds almost everywhere: for almost all n-
uples (x1, . . . , xn) ∈ Cn, the 2n numbers x1, . . . , xn, e

x1 , . . . , exn are algebraically
independent. Hence it seems natural to conjecture:

Conjecture 4. Let n be a positive integer. For almost all n-uples (x1, . . . , xn) of
complex numbers, there exists a constant c > 0 such that

cD1/(2n)µ

is a simultaneous approximation measure for the 2n numbers

x1, . . . , xn, e
x1 , . . . , exn .
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