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INVERSE PROBLEMS WITH POISSON NOISE: PRIMAL AND PRIMAL-DUA L SPLITTING

F.-X. Dup?, M.J. Fadil® and J.-L. Starck

& AIM UMR CNRS - CEA b GREYC CNRS-ENSICAEN-Université de Caen
91191 Gif-sur-Yvette France 14050 Caen France
ABSTRACT alternating method of multipliers algorithm (ADMM), which

is nothing but the Douglas-Rachford splitting applied te th
nchel-Rockafellar dual problenﬂ [5] presented a deconvo
on algorithm with TV and sparsity regularization. This
cheme however necessitates to solve a least-squaremroble
Hich can be done explicitly only in some cases.

In this paper, we propose two algorithms for solving linear
inverse problems when the observations are corrupted tﬁ%
Poisson noise. A proper data fidelity term (log-likelihodsd)
introduced to reflect the Poisson statistics of the noise. O
the other hand, as a prior, the images to restore are assum@&
to be positive and sparsely represented in a dictionary of In this paper, we propose a framework for solving lin-
waveforms. Piecing together the data fidelity and the priof@r inverse problems when the observations are corrupted by
terms, the solution to the inverse problem is cast as the mif20isson noise. In order to form the data fidelity term, we take
imization of a non-smooth convex functional. We establisHn€ exact Poisson likelinood. As a prior, the images to resto
the well-posedness of the optimization problem, charizeter are assumed to be positive and sparsely represented in a dic-
the corresponding minimizers, and solve it by means of prifionary of atoms. The solution to the inverse problem is cast
mal and primal-dual proximal splitting algorithms origtimg &S the minimization of a non-smooth convex functional, for
from the field of non-smooth convex optimization theory. Ex-Which we prove well-posedness of the optimization problem,

perimental results on deconvolution and comparison tor priccharacterize the corresponding minimizers, and solve them
methods are also reported. by means of primal and primal-dual proximal splitting al-

gorithms originating from the realm of non-smooth convex

optimization theory. Convergence of the algorithms is also
shown. Experimental results and comparison to other algo-
rithms on deconvolution are finally conducted.

Index Terms— Inverse Problems, Poisson noise, Duality,
Proximity operator, Sparsity.

1. INTRODUCTION

Linear inverse problems in presence of Poisson noise have 51{' tati dt inol
tracted less interest in the literature than their Gaussiaim- otafion and terminology
terpart, presumably because the noise properties are more

complicated to handle. Such inverse problems have how=€t # @ real Hilbert space, here a finite dimensional vector

: S S ) ._subspace oR™. We denote byj].|| the norm associated with
ever important applications in imaging such as restoratlort’nhe inner product i, and is the identity operator of
(e.g. deconvolution in medical and astronomical imaging) ' '

or reconstruction (e.g. computerized tomography). For in“'”P P = 1_is thet,, norm. z anda are respective_ly_ reordered
stance, the well-known Richardson-Lucy has been proposevcieCtorS of image samplgs and transform coefficients. We de-
for deconvolution. The RL algorithm, however, amplifiescgltjezyfﬁsc;[:; reilsag\(/)(zrl;s:erloi;l'of a convex sét f‘ real-
noise after a few iterations, which can be avoided by intro—ancl i< DroDer ifJictS domain is’nolnmgﬂ_h“w ! (f) - +,ZO’
ducing regularization. In[[l], the authors presented alTota prop 0. To(2) is the claspsiy’(ﬁlgllirgz eEr IOV\|/er
Variation (TV)-regularized RL algorithm, anf][2] advocdte f(z) < +oo} # 0. To(H) ) prop

a wavelet-regularized RL algorithm. semicontinuous (Isc) convex functions fréto (—oo, +00].

In the context of Poisson linear inverse problems usingVe denote byiM || = max,.o Hﬁgﬁ” the spectral norm of the
sparsity-promoting regularization, a few recent algonish linear operatoiM, andker(M) := {z € H : Mz = 0,z #
have been proposed. For exampld, [3] stabilize the noise} its kernel.

and proposed a family of nested schemes relying upon prox- Letx € # be an,/n x /n image. z can be written as
imal splitting algorithms (Forward-Backward and Douglas-the superposition of elementary atogps parameterized by
Rachford) to solve the corresponding optimization problem~y € Z such thatr = Z'yel aypy=®a, |I|=L,L>n.
The work of ﬂ] is in the same vein. However, nested al-We denote by® : %’ — # the dictionary (typically a frame
gorithms are time-consuming since they necessitate to sulbf #), whose columns are the atoms all normalized to a unit
iterate. Using the augmented Lagrangian method with thé;-norm




2. PROBLEM STATEMENT

2.1. Well-posedness dfP, )

Consider the image formation model where an input imag&©t M be the set of minimizers of problerf®{ ). Suppose
of n pixels:E is indirecﬂy observed through the action of a that\Ij is coercive. Thug is coercive. Therefore, the follow-

bounded linear operatdl : H — X, and contaminated by

Poisson noise. The observed image is then a discrete cal-

lection of countsy = (y[i])1<i<n Which are bounded, i.e.
y € {o. Each couni] is a realization of an independent
Poisson random variable with a me@z),. Formally, this
writes in a vector form as

y~ P(Hz). @

The linear inverse problem at hand is to reconstiufiom
the observed count image

ing holds:

Proposition 2.

0] Existence:%?)as at least one solution, i.& # 0.

(ii) Uniqueness: has a unique solution W is strictly con-
vex, or under (ii) of Propositioﬂ 1.

3. ITERATIVE MINIMIZATION ALGORITHMS

3.1. Proximal calculus

A natural way to attack this problem would be to adopt

a maximum a posteriori (MAP) bayesian framework with an

appropriate likelihood function — the distribution of thb-o
served datay given an original: — reflecting the Poisson

We are now ready to describe the proximal splitting algo-
rithms to solve ). At the heart of the splitting framework
is the notion of proximity operator.

statistics of the noise. As a prior, the image is supposee to pefinition 3 ([E])_ Let F € To(H). Then, for everyr € 7, the

economically (sparsely) represented in a pre-choserodicti
nary & as measured by a sparsity-promoting penaitgup-
posed throughout to be convex but non-smooth, e.g./the
norm.

functiony — F(y) + ||z — y||* /2 achieves its infimum at a unique
point denoted byrox, x. The operatorprox, : H — H thus
defined is the proximity operator &f.

From the probability density function of a Poisson random  Then, the proximity operator of the indicator function of a

variable, the likelihood writes:

. @

2)[3]))v1 exp (—(Hz) [
p(y‘x):H((H )[a])Y y[i]I!)( (Hz)[4])

Taking the negative log-likelihood, we arrive at the foliogy
data fidelity term:

fiine R™ — proisson(nm)v (3

-

—yfillog(nli]) +nli] 1 n{i] > 0,
i yli] = 0, ﬁMMAWD{W}””m€“+wL

otherwise,

if y[i] > 0, fpoisson(n[i})

400
+oo otherwise.

Our aim is then to solve the following optimization prob-
lems, under a synthesis-type sparsity ;ﬂior
argmin J(a),
acH/!
ar— fioHo®(a) +y¥(a) +1c o ().

(P'y,w)
J

The penalty functio : o — Zfzo ¥;(«ali]) is positive, ad-
ditive, and chosen to enforce sparsity;> 0 is a regulariza-
tion parameter and- is the indicator function of the convex
setC. In our case( is the positive orthant since we are fitting
Poisson intensities, which are positive by nature.

From the objective i ), we get the following,

Proposition 1.
(i) f1is aconvex function and so afg o Hand f; o H o ®.

(i) f1 is strictly convex ifvi € {1,...,n},y[i] #0. fioHo ®
remains strictly convex i is an orthobasis andter(H) = §).
(iii) Suppose that0, +oco) NH ([0, +00)) # @. ThenJ € To(H).

1our framework and algorithms extend to an analysis-typer gust as
well, though we omit this for obvious space limitation reaso

convex set is merely its orthogonal projector. One impdrtan
property of this operator is the separability property:

Lemma4([). Let £, € T'o(H), k € {1,---,K} and letG :
(xk)1<k<1< — Zk Fk(l'k) ThenprOXG = (prOXFk)lékéK-

The following result can be proved easily by solving the
proximal optimization problem in Definitioﬂ 3 witfy as de-
fined in {3), see alsd]8].

Lemma 5. Lety be the count map (i.e. the observations), the prox-
imity operator associated tf; (i.e. the Poisson anti log-likelihood)
is,

ai] — B+ /(=[i] — B)? + 4Byli]
2

) - (4
1<i<n

We now turn toprox., ¢ Which is given by Lemm£|4 and
the following result:

pI'OXﬁf1 xr = (

Theorem 6([@]). Suppose that i: (i) 1; is convex even-symmetric,
non-negative and non-decreasing B, and+; (0) = 0; (ii) 1; is
twice differentiable ofiR \ {0}; (iii) ; is continuous ofR, and ad-
mits a positive right derivative at zem; , (0) = limy, o+ 2% >

0. Then, the proximity operatairox;,, (8) = &(3) has exactly one
continuous solution decoupled in each coordinaté :

ali] = {

Among the most popular penalty functiotts satisfying
the above requirements, we have(ali]) = |a[]|,V i,
in which case the associated proximity operator is soft-
thresholding, denotedlT in the sequel.

0 it |81i]] < ;. (0)

’ ’ 5
Bi — 6y (ald]) if |BL]| > ¢, (0) ©



3.2. Splitting on the primal problem the composition ofe and H. Let the two linear operators

. ) Li=[I 0 —®JandL, =[-H I 0]. Then, the opti-
3.2.1. Splitting for sums of convex functions mization problemf., ,]) can be equivalently written:
Suppose that the objective to be minimized can be expressed i
as the sum of functions inl"(#), verifying domain quali- s iy file) +re(@) +y¥(a) + )
fication conditions: G(z1,22,0)
K tker Ly (1, T2, @) + tker Ly (T1, T2, @) . (8)
argmin | F(z) = Fy(x (6) ] ] ) -
zeH < (=) ; k )> Notice that in our cas& = 3 by virtue of separability of the

. " . . . proximity operator of= in z1, x2 anda; see LemmE|4.
Proximal splitting methods for soIV|n(6) are iterativga The proximity operators of” and U are easily accessi-

rithms which may evaluate the ino!iv_idual pro_ximity operato pje through Lemm4]5 ar@ 6. The projector onto the positive
proxp, , supposed to have an explicit convenient structure, birthantC is also trivial. It remains now to compute the projec-
never proximity operators of sums of tig. tor onker L;, i = 1,2, which by well-known linear algebra
Splitting algorithms have an extensive literature sin@e th arguments, is obtained from the projector onto the image of
1970's, where the casE = 2 predominates. Usually, split- L.
ting algorithms handling > 2 have either explicitly or
implicitly relied on reduction 0f|@0) to the cad€é = 2 in
the product spacg{’. For instance, applying the Douglas- Prerr, =1 — L (Lio L) 'L; . )
Rachford splitting to the reduced form produces Spingarn’s
method, which performs independent proximal steps on each The inverse in the expressionBfe, 1, is (I+®o®T)~!
F,, and then computes the next iterate by essentially averagan be computed efficiently wheh is a tight frame. Simi-
ing the individual proximity operators. The scheme desatib larly, for Lo, the inverse write$I + Ho H*)~!, and its com-
in [Ld] is very similar in spirit to Spingarn’s method, with putation can be done in the domain whéfes diagonal; e.g.

Lemma 7. The proximity operator associated Q. .., iS

some refinements. Fourier for convolution.
Finally, the main steps of our primal scheme are sum-
Algorithm 1: Primal scheme for solvingP, ). marized in Algorithm[JL. Its convergence is a corollary of
Parameters: The observed image counjsthe dictionary®, [LdiTheorem 3.4].

number of iterationsVicer, 1 > 0 and regularization
parametery > 0.

Initialization:

Vie {1,2,3}, po,y =(0,0,0". 20 = (0,0,0)".
Main iteration:

For ¢t = 0t0 Niter — 1,

o Data fidelity(Lemmalb):;¢.1)[1] = prox,,, /5(p(e.1)[1]).

Proposition 8. Let(z:):en be a sequence generated by Algoriﬂm 1.
Suppose that Propositicﬂ1 1-(iii) is verified, add, . 0:(2 — 0¢) =
+o0. Then(z:):en converges to a (non-strict) global minimizer of

3.3. Splitting on the dual: Primal-dual algorithm

e Sparsity-penaltylLemmalp): Our problem[P,_]) can also be rewritten in the form,
§(t,1)[2] = proxp,w\ll/?)(p(t,l)[Q])'
e Positivity constrainté, 1)[3] = Pe(p(:,1)[3])- argmin F' o K(«a) + 7 («) (10)
e Auxiliary constraints withL; andL.: (Lemmal[): a€H!
£t,2) = PrerLy (P(1,2)), €(t,3) = Prer Lo (P(1.3))- Ho &
o Average the proximity operators: where nowK = andF : (z1,22) — f1(z1) +
& = (e + £y +Ea) /3. | e .
e Choose); elo 2[’_ ’ 1c(z2). Again, one may notice that the proximity operator of
e Update the components: F can be directly computed using the separability:inand
Vi€ {1,2,3}, D+1,) = D) + 0:(28 — 20 — Er5y). T2 _ _
e Update the coefficients estimata: 1 = z; + 0:(&: — 21). Recently, a primal-dual scheme, which turns to be a pre-
conditioned version of ADMM, to minimize objectives of the

End main iteration
Output: Reconstructed image® = zn;,

iter

(0. form @)) was proposed ilﬁlll]. Transposed to our setting,

this scheme gives the steps summarized in Algorﬁhm 2.
Adapting the arguments of [lL1], convergence of the se-

quence(ay ), generated by Algorithrf] 2 is ensured.

3.2.2. Application to Poisson noise inverse problems Proposition 9. Suppose that Propositio} 1-(ii) holds. Lét —

Problem [P_]) is amenable to the forn{](6), by wisely in- |®]* (1 + |[H||*), chooser > 0 and o such thato7¢ < 1, and
troducing auxiliary variables. A$P( ) involves two linear 1€t (a):er as defined by A'QOFithE” 2. The(w)icn converges to
operators ¢ and H), we need two of them, that we define a (non-strict) global minimize(P,..{) at the rateO(1/t) on the re-
asz; = ®a andz, = Hx;. The idea is to get rid of stricted duality gap.



3.4. Discussion RL-MRS [B] | RL-TV ] | StabG [B] | PIDAL-FS (] | Alg.f] | Alg. p
MAE 635 52.8 43 436 46 | 436
Algorithm[] andp share some similarities, but exhibit atge I TMes 230s 4.38 811s 342s 183s | 154s

portant differences. For instance, the primal-dual atbaori

enjoys a convergence rate that is not known for the primaTable 1. MAE and execution times for the deconvolution of the sky imag

algorithm. Furthermore, the latter necessitates two dpera
inversions that can only be done efficiently for sofdeand

H, while the former involves only application of these linear
operators and their adjoints. Consequently, Algoriﬂhm 2 ca
virtually handle any inverse problem with a bounded linear
H. In case where the inverses can be done efficiently, e.g.
deconvolution with a tight frame, both algorithms have com-
parable computational burden. In general, if other regular
izations/constraints are imposed on the solution, in thefo

of additional proper Isc convex terms that would appear in

x10°

— ALG1
- - -AG2 \

10° 10" 10°

Iterations

(P-...], both algorithms still apply by introducing wisely cho- Fig 1. Objective function in function if iterations (left) and

sen auxiliary variables.

Algorithm 2: Primal-dual scheme for solving(, ).

times (right).

5. CONCLUSION

Parameters: The observed image counjsthe dictionary®,
number of iterationgVie,, proximal steps > 0 andr > 0,
and regularization parameter> 0.

Initialization:

ap=0a0=0& =mno=0.

Main iteration:

For t = 0t0 Niter — 1,

e Data fidelity(LemmaﬂS):
§ey1 = (I = oproxy ,,) (/o + Ho @ay).
e Positivity constraintrn.+1 = (I — oPc)(ne /o + ®an).
° Sparsity-penalt;(Lemma[b):
Q41 = PIoX .y (Ozt — T (H*€t+1 + 7]t+1))-
e Update the coefficients estimai@; 1 = 2az11 —
End main iteration
Output: Reconstructed image® = ®an;

iter "

4. EXPERIMENTAL RESULTS

Our algorithms were applied to deconvolution. In all exper-
iments, I was the¢;-norm. Table[Jl summarizes the mean

absolute error (MAE) and the execution times for an astro-,
nomical image, where the dictionary consisted of the wavele
transform and the PSF was that of the Hubble telescope. Our

algorithms were compared to state-of-the-art alternatiae
the literature. In summary, flexibility of our framework and

the fact that Poisson noise was handled properly, demaeastra

the capabilities of our approach, and allow our algorithas t

compare very favorably with other competitors. The compury

tational burden of our approaches is also among the lowest,

typically faster than the PIDAL algorithm. Fiﬂ. 1 displayet

objective as a function of the iteration number and time (in11]

s). We can clearly see that Algorithm 2 converges faster tha
Algorithm 1.

In this paper, we proposed two provably convergent algo-
rithms for solving the Poisson inverse problems with a spar-
sity prior. The primal-dual proximal splitting algorithraems

to perform better in terms of convergence speed than the pri-
mal one. Moreover, its computational burden is lower than

most comparable of state-of-art methods.
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