
HAL Id: hal-00585840
https://hal.science/hal-00585840

Preprint submitted on 14 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pushing undecidability of the isolation problem for
probabilistic automata

Nathanaël Fijalkow, Hugo Gimbert, Youssouf Oualhadj

To cite this version:
Nathanaël Fijalkow, Hugo Gimbert, Youssouf Oualhadj. Pushing undecidability of the isolation prob-
lem for probabilistic automata. 2011. �hal-00585840�

https://hal.science/hal-00585840
https://hal.archives-ouvertes.fr

Pushing undecidability of the isolation problem

for probabilistic automata

Nathanaël Fijalkow1, Hugo Gimbert2 and Youssouf Oualhadj3

1 LIAFA, CNRS & Université Denis Diderot - Paris 7, France
nath@liafa.jussieu.fr
2 LaBRI, CNRS, France
hugo.gimbert@labri.fr

3 LaBRI, Université Bordeaux 1, France
youssouf.oualhadj@labri.fr

Abstract. This short note aims at proving that the isolation problem is
undecidable for probabilistic automata with only one probabilistic tran-
sition. This problem is known to be undecidable for general probabilistic
automata, without restriction on the number of probabilistic transitions.
In this note, we develop a simulation technique that allows to simulate
any probabilistic automaton with one having only one probabilistic tran-
sition.

1 Introduction

Probabilistic automata. Rabin introduced probabilistic automata over fi-
nite words as a natural and simple computation model [Rab63]. A probabilis-
tic automaton can be thought as a non-deterministic automaton, where non-
deterministic transitions are chosen according to a fixed probabilistic distribu-
tion. Probabilistic automata drew attention and have been extensively studied
(see [Buk80] for a survey).
The isolation problem. However, on the algorithmic side, most of the results
are undecidability results. The isolation problem asks, given some probability
0 ≤ λ ≤ 1, whether there exists words accepted with probability arbitrarily
close to λ. Bertoni showed that this problem is undecidable [Ber74,BMT77].
Contribution. In this note, we prove that the isolation problem is undecidable,
even for probabilistic automata having only one probabilistic transition. To do
this, we develop a simulation technique that allows to simulate any probabilistic
automaton with one having only one probabilistic transition.
Outline. Section 2 is devoted to definitions. In section 3, we develop a simulation
technique, which allows to simulate any probabilistic automaton with one having
only one probabilistic transition. Using this technique we show that the isolation
problem is undecidable for this very restricted class of automata.

2 Definitions

Given a finite set of states Q, a probability distribution (distribution for short)
over Q is a row vector δ of size |Q| with rational entries in [0, 1] such that

∑
q∈Q δ(q) = 1. We denote by δq the distribution such that δq(q

′) = 1 if q′ = q
and 0 otherwise. A probabilistic transition matrix M is a square matrix of size
|Q| × |Q|, such that for a state s, Ma(s,) is a distribution over Q.

Definition 1 (Probabilistic automaton). A probabilistic automaton is a tu-

ple A = (Q,A, (Ma)a∈A, q0, F), where Q is a finite set of states, A is the finite

input alphabet, (Ma)a∈A are the probabilistic transition matrices, q0 is the initial

state and F is the set of accepting states.

For each letter a ∈ A, Ma(s, t) is the probability to go from state s to state
t when reading letter a. A probabilistic transition is a couple (s, a) such that
Ma(s, t) /∈ {0, 1} for some t.

A probabilistic automaton is said simple if for all a, for all states s and t, we
have Ma(s, t) ∈ {0, 12 , 1}.

Given an initial distribution δ and an input word w, we define δ · w by
induction on w: we have δ · ε = δ, then for a letter a in A, we have δ · a = Ma · δ
and if w = v · a, then δ · (v · a) = (δ · v) · a.

We denote by PA(s
w
−→ T) the probability to reach the set T from state s

when reading the word w, that is
∑

t∈T (δs · w)(t).

Definition 2 (Value and acceptance probability). The acceptance proba-

bility of a word w ∈ A∗ by A is PA(w) = PA(q0
w
−→ F). The value of A, denoted

val(A), is the supremum acceptance probability: val(A) = supw∈A∗ PA(w).

3 Simulation with one probabilistic transition

We first show how to simulate a probabilistic automaton with one having only
one probabilistic transition, up to a regular language:

Proposition 1. For any simple probabilistic automata A = (Q,A, (Ma)a∈A, q0, F),
there exists a simple probabilistic automaton B over a new alphabet B, with one

probabilistic transition, and a morphism ̂ : A∗ 7→ B∗ such that:

∀w ∈ A∗,PA(w) = PB(ŵ).

The morphism ̂ will not be onto, so this simulation works up to the regular
language {ŵ | w ∈ A∗}. We shall see that the automaton B will not be able to
check that a word read belongs to this language, which makes this restriction
unavoidable in this construction.

We first give the intuitions behind the construction. Intuitively, while reading
the word w, the probabilistic automaton A “throw parallel threads”. A com-
putation of A over w can be viewed as a tree, where probabilistic transitions
correspond to branching nodes.

On the figure, reading a from q0 or b from q1 leads deterministically to the
next state. Reading b from q2 leads at random to r or to s, hence the corre-
sponding node is branching. Our interpretation is that two parallel threads are
thrown. Let us make two observations:

a b b a b b

q0 q1 q2

r

s

. . .

. . .

. . .

q

q

. . .

.
. . .

. . .

. . .‖

Fig. 1. An example of a computation

– threads are not synchronised: reading the fourth letter (an a), the first thread
leads deterministically to the next state, while the second thread randomizes;

– threads are merged so there are at most n = |Q| parallel threads: whenever
two threads synchronize to the same state q, they are merged. This happens
in the figure after reading the fifth letter (b).

The automaton B we construct will simulate the n threads from the begin-
ning, and take care of the merging process each step.

Proof. We denote by qi the states of A, i.e Q = {q0, . . . , qn−1}. The alphabet B
is made of two new letters ‘∗’ and ‘merge’ plus, for each letter a ∈ A and state
q ∈ Q, two new letters check(a, q) and apply(a, q), so that:

B = {∗,merge} ∪
⋃

a∈A,q∈Q

{check(a, q), apply(a, q)}

We now define the automaton B. We duplicate each state q ∈ Q, and denote
the fresh copy by q̄. Intuitively, q̄ is a temporary state that will be merged at
the next merging process. States in B are either a state from Q or its copy, or
one of the three fresh states s∗, s0 and s1.

The initial state remains q0 as well as the set of final states remains F .

The transitions of B are as follows:

– for every letter a ∈ A and state q ∈ Q, the new letter check(a, q) from state
q leads deterministically to state s∗ i.e Mcheck(a,q)(q) = s∗,

– the new letter ∗ from state s∗ leads with probability half to s0 and half to
s1, i.e Ms∗(∗) =

1
2s0 +

1
2s1 (this is the only probabilistic transition of B);

– the new letter apply(a, q) from states s0 and s1 applies the transition function
from q reading a: if the transition Ma(q) is deterministic, i.e Ma(q, r) = 1
for some state r then Mapply(a,q)(s0) = r̄ and Mapply(a,q)(s1) = r̄, else the

transition Ma(q) is probabilistic i.e Ma(q) =
1
2r +

1
2r

′ for some states r, r′,
then Mapply(a,q)(s0) = r̄ and Mapply(a,q)(s1) = r̄′;

– the new letter merge activates the merging process: it consists in replacing
q̄ by q for all q ∈ Q.

q s∗

s0

s1

r̄0

r̄1

check(a, q)

∗

∗

apply(a, q)

apply(a, q)

Whenever a couple (letter, state) does not fall in the previous cases, it has no
effect. The gadget simulating a transition is illustrated in the figure.

Now we define the morphism ̂ : A∗ 7→ B∗ by its action on letters:

â = check(a, q0) · ∗ · apply(a, q0) . . . check(a, qn−1) · ∗ · apply(a, qn−1) ·merge.

The computation of A while reading w in A∗ is simulated by B on ŵ, i.e we
have:

PA(w) = PB(ŵ)

This completes the proof. ⊓⊔

Let us remark that B is indeed unable to check that a letter check(a, q) is
actually followed by the corresponding apply(a, q): inbetween, it will go through
s∗ and “forget” the state it was in.

We now improve the above construction: we get rid of the regular external
condition. To this end, we will use probabilistic automata whose transitions have
probabilities 0, 1

3 ,
2
3 or 1. This is no restriction, as stated in the following lemma:

Lemma 1. For any simple probabilistic automata A = (Q,A, (Ma)a∈A, q0, F),
there exists a probabilistic automaton B whose transitions have probabilities 0,
1
3 ,

2
3 or 1, such that for all w in A∗, we have:

val(A) = val(B).

Proof. We provide a construction to pick with probability half, using transitions
with probability 0, 1

3 ,
2
3 and 1. The construction is illustrated in the figure.

q

s0

s1

r0

r1

1

3

2

3

1

3

2

3

2

3

1

3

In this gadget, the only letter read is a fresh new letter ♯. The idea is the
following: to pick with probability half r0 or r1, we sequentially pick with proba-
bility a third or two thirds. Whenever the two picks are different, if the first was

a third, then choose r0, else choose r1. This happens with probability half each.
We easily see that PA(a0 ·a1 · . . . ak−1) = supp PB(a0 · ♯

p ·a1 · ♯
p . . . ak−1 · ♯

p). ⊓⊔

Proposition 2. For any simple probabilistic automata A = (Q,A, (Ma)a∈A, q0, F),
there exists a simple probabilistic automaton B over a new alphabet B, with one

probabilistic transition, such that:

val(A) ≥ λ ⇔ val(B) ≥ λ.

Thanks to the lemma, we assume that in A, transitions have probabilities 0,
1
3 ,

2
3 or 1.
We first deal with the case where λ = 1. The new gadget used to simulate a

transition is illustrated in the figure.

q s∗

s0

s1

r0

r1

w to q0

check(a, q)

∗

finish
∗

∗
apply(a, q)

apply(a, q)

The automaton B reads words of the form u1·finish·u2·finish . . ., where ‘finish’
is a fresh new letter. The idea is to “skip”, or “delay” part of the computation
of A: each time the automaton B reads a word ui, it will be skipped with some
probability.

Simulating a transition works as follows: whenever in state s∗, reading two
times the letter ‘∗’ leads with probability half to s1, quarter to s0 and quarter
to s. As before, from s0 and s1, we proceed with the simulation. However, in the
last case, we “wait” for the next letter ‘finish’ that will restart from q0. Thus each
time a transition is simulated, the word being read is skipped with probability
1
4 .

Delaying part of the computation allows to multiply the number of threads.
We will use the accepted threads to check the extra regular condition we had
before. To this end, as soon as a simulated thread is accepted in B, it will go
through an automaton (denoted C in the construction) that checks the extra
regular condition.

Proof. We keep the same notations. The alphabet B is made of three new letters:
‘∗’, ‘merge’ and ‘finish’ plus, for each letter a ∈ A and state q ∈ Q, two new
letters check(a, q) and apply(a, q), so that:

B = {∗,merge, finish} ∪
⋃

a∈A,q∈Q

{check(a, q), apply(a, q)}

We first define a syntactic automaton C. We define a morphism ̂ : A∗ 7→ B∗

by its action on letters:

â = check(a, q0) · ∗ · ∗ · apply(a, q0) . . . check(a, qn−1) · ∗ · ∗ · apply(a, qn−1) ·merge.

Consider the regular language L = {ŵ·finish | w ∈ A∗}∗, and C = (QC , δC , sC , FC)
an automaton recognizing it.

We now define the automaton B. We duplicate each state q ∈ Q, and denote
the fresh copy by q̄. States in B are either a state from Q or its copy, a state
from QC or one of the four fresh states s∗, s0, s1 and wait.

The initial state remains q0, and the set of final states is FC .
The transitions of B are as follows:

– for every letter a ∈ A and state q ∈ Q, the new letter check(a, q) from state
q leads deterministically to state s∗ i.e Mcheck(a,q)(q) = s∗,

– the new letter ∗ from state s∗ leads with probability half to s∗ and half to
s0, i.e Ms∗(∗) =

1
2s∗ +

1
2s0 (this is the only probabilistic transition of B);

– any other letter from state s∗ leads deterministically to w, i.e Ms∗() = wait;
– the new letter ∗ from state s0 leads deterministically to s1, i.e Ms0(∗) = s1;
– the new letter apply(a, q) from states s0 and s1 applies the transition function

from q reading a: if the transition Ma(q) is deterministic, i.e Ma(q, r) = 1
for some state r then Mapply(a,q)(s0) = r̄ and Mapply(a,q)(s1) = r̄, else the

transition Ma(q) is probabilistic i.e Ma(q) =
1
2r +

1
2r

′ for some states r, r′,
then Mapply(a,q)(s0) = r̄ and Mapply(a,q)(s1) = r̄′;

– the new letter merge activates the merging process: it consists in replacing
q̄ by q for all q ∈ Q;

– the new letter finish from state wait leads deterministically to q0;
– the new letter finish from state q in F leads deterministically to sC ;
– the new letter finish from any other state is not defined (there is a determin-

istic transition to a bottom non-accepting state).

Transitions in C are not modified. Whenever a couple (letter, state) does not fall
in the previous cases, it has no effect.

We now show that this construction is correct.
We first prove that for all w ∈ A∗, there exists a sequence of words (wp)p≥1

such that PA(w) = supp PB(wp).
We have, for δ a distribution over Q:

δB(δ, â) =
3

4
δA(δ, a) +

1

4
wait.

It follows:

δB(δ, ŵ) =

(
3

4

)k

δA(δ, w) + 1−

(
3

4

)k

wait,

where k = |w|. Hence:

δB(q0, ŵ · finish) =

(
3

4

)k

PA(w) + 1−

(
3

4

)k

q0.

The computation of A while reading w is simulated by B on ŵ · finish. This
implies that supp PB((ŵ ·finish)p) = PA(w), hence if val(A) = 1, then val(B) = 1.

Conversely, we prove that if val(B) = 1, then val(A) = 1. Let w a word
read by B accepted with probability close to 1, we slice it as follows: w =
u1 · finish · . . . · uk · finish, such that ui does not contain the letter finish. The
key observation is that if k = 1, the word w is accepted with probability at
most 3

4 . Hence we consider only the case k > 1. We assume without loss of
generality that PA(u1) > 0 (otherwise we delete u1 · finish and proceed). In this
case, a thread has been thrown while reading u1 that reached sC , so the syntactic
process started: it follows that ui for i > 1 are in the image of .̂ This implies
that the simulation is sound: from w we can recover a word in A∗ accepted with
probability arbitrarily close to 1 by A.

The case where λ is any positive rational is handled similarly. We only need
to ensure that the previous key observation still holds: a word of the form u·finish
where u does not contain finish cannot be accepted with probability more than
3λ
4 . This is made possible by slightly modifying the simulation gadget, adding
new intermediate states.

This completes the proof. ⊓⊔

We conclude:

Theorem 1. The isolation problem is undecidable for simple automata with one

probabilistic transition.

References

Ber74. Alberto Bertoni. The solution of problems relative to probabilistic automata
in the frame of the formal languages theory. In GI Jahrestagung, pages 107–
112, 1974.

BMT77. Alberto Bertoni, Giancarlo Mauri, and Mauro Torelli. Some recursive un-
solvable problems relating to isolated cutpoints in probabilistic automata. In
International Colloquium on Automata, Languages and Programming, pages
87–94, 1977.

Buk80. R. G. Bukharaev. Probabilistic automata. Journal of Mathematical Sciences,
13(3):359–386, 1980.

Rab63. M. O. Rabin. Probabilistic automata. Information and Control, 6(3):230–245,
1963.

