
HAL Id: hal-00598553
https://hal.science/hal-00598553v2

Submitted on 19 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contrast estimator for completely or partially observed
hypoelliptic diffusion

Adeline Samson, Michèle Thieullen

To cite this version:
Adeline Samson, Michèle Thieullen. Contrast estimator for completely or partially observed hy-
poelliptic diffusion. Stochastic Processes and their Applications, 2012, 122 (7), pp.2521-2552.
�10.1016/j.spa.2012.04.006�. �hal-00598553v2�

https://hal.science/hal-00598553v2
https://hal.archives-ouvertes.fr


Contrast estimator for completely or partially observed

hypoelliptic diffusion

Adeline Samsona, Michèle Thieullenb
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Abstract

Parametric estimation of two-dimensional hypoelliptic diffusions is consid-
ered when complete observations -both coordinates discretely observed- or
partial observations -only one coordinate observed are available. Since the
volatility matrix is degenerate, Euler contrast estimators cannot be used
directly. For complete observations, we introduce an Euler contrast based
on the second coordinate only. For partial observations, we define a con-
trast based on an integrated diffusion resulting from a transformation of the
original one. A theoretical study proves that the estimators are consistent
and asymptotically Gaussian. A numerical application to Langevin systems
illustrates the nice properties of both complete and partial observations es-
timators.

Keywords: Hypoelliptic diffusion, Langevin system, Stochastic differential
equations, Partial observations, Contrast estimator

1. Introduction

In this paper we consider parametric estimation for hypoelliptic diffusions.
We focus on two dimensional diffusions, which are generalisations of systems
called Langevin or hypoelliptic by different communities. They appear in
many domains such as random mechanics, finance modeling, biology. Their
common form is as follows:{

dYt = g(Yt, Zt)dt
dZt = β(Yt, Zt)dt+ α(Yt, Zt)dBt

(1)
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where g, β and α are real functions depending on unknown parameters θ. In
these systems, noise acts directly on the ”speed” Zt and on the ”position”
Yt only through Zt. We refer to [15] for examples of such systems arising in
applications.

In some applications, it is not possible to measure the two coordinates.
Therefore, we consider two observations cases. The complete observations
case assumes that both (Yt) and (Zt) are discretely observed. The partial
observations case assumes that only the first coordinate (Yt) is observed.

Statistical inference for discretely observed diffusion processes is complex
and has been widely investigated [see e.g. 16, 18]. It is not possible in general
to express the density of stochastic differential equation (SDE) explicitely. So
different types of contrast estimators have been introduced for elliptic SDEs
estimation, such as the multidimensional Euler contrast [6, 10]. However for
the hypoelliptic system (1), Euler contrast methods are not directly appli-
cable as the volatility matrix is non invertible. References on hypoelliptic
estimations are few, even in the case of complete observations. The main
paper is [15]. They propose an empirical approximation of the likelihood
based on Itô-Taylor expansion so that the variance matrix becomes invert-
ible. They construct a Bayesian estimator of θ based on a Gibbs sampler.
They consider both complete and partial observation cases. Their method
is limited to g(Yt, Zt) = Zt, a drift function β(Yt, Zt) which is linear with
respect to the parameter and a constant volatility function α(Yt, Zt). In this
paper, we consider more general models. We assume that g belongs to a
family of functions such that it is possible to reduce to the case of integrated
diffusions with a non-autonomous diffusion for (Zt). Then, we propose to
reduce to an Euler contrast based only on the second equation. This allows
to consider general drift and volatility functions. We prove the consistency
and the asymptotic normality of this contrast estimator when the number of
observations n→∞ and the time step between two observations ∆n → 0.

The case of partial observations introduces more difficulties because (Yt)
is not Markovian while (Yt, Zt) is Markovian. A maximum-likelihood es-
timation from discrete and partial observations of a two-dimensional linear
system with a non-degenerate volatility function has been proposed [3]. How-
ever, their approach can not be extended to a degenerate volatility function.
Main references for partial observations of hypoelliptic diffusions are when
the function g(Yt, Zt) is equal to Zt. In this case, model (1) can be viewed as
an integrated diffusion process. Parametric estimation methods have been
proposed in this context under the additional condition that Zt satisfies an
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autonomous equation, meaning that the only coupling between Yt and Zt
is through the identity Yt =

∫ t
0
Zsds. Prediction-based estimating functions

have been studied [2]. Gloter (2006) proposes an Euler contrast function and
studies the properties of this estimator when the sampling interval ∆n tends
to zero [8]. However, their approaches are not adapted when Zt does not
satisfy an autonomous equation and when g(Yt, Zt) 6= Zt. In this paper, we
extend the approach of [8] to this case. We prove the consistency and the
asymptotic normality of this contrast estimator when ∆n → 0 when n→∞.

In order to establish asymptotic properties of our estimators we need
existence and uniqueness of an invariant measure for system (1). This is a
major difference with respect to Gloter’s work since in his framework the
second component Zt satisfies an autonomous equation. Hence the invariant
measure he introduces is that of a one dimensional diffusion. In our case,
we need an invariant measure for the vector (Yt, Zt). Ergodicity of Langevin
systems has been widely studied, relying on the hypoellipticity of the system
as well as a Lyapounov condition involving a Lyapounov function [12, 13].
We detail these conditions and propose examples where our assumptions are
verified. A numerical study is performed on these examples, to which we
compare results obtained by [15].

The paper is organized as follows. Section 2 presents the hypoelliptic
system, general assumptions and more details for Langevin systems. Section
3 defines the two observations cases and the contrast estimators. The main
results are presented, which consist in consistency and asymptotic normality
of both estimators. Asymptotic properties of functionals of the processes are
given in Section 4. Proofs of the estimator asymptotic properties are given
in Section 5. Estimation methods are illustrated in Section 6 on simulated
data. Section 7 presents some conclusions and discussions. Supplementary
proofs are given in Appendix.

2. Hypoelliptic system and assumptions

2.1. The Model

Let us consider system (1) and assume that the following condition holds

(C1) ∀(y, z) ∈ R× R, ∂zg(y, z) 6= 0
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Under assumption (C1), system (1) is hypoelliptic in the sense of stochastic
calculus of variations [14]. Indeed, the Stratonovich form of (1) is{

dYt = g(Yt, Zt)dt

dZt = β̃(Yt, Zt)dt+ α(Yt, Zt) ◦ dBt
(2)

with β̃(y, z) := β(y, z)− 1
2
α(y, z)∂zα(y, z). Writing the coefficients of (2) as

vector fields

A0(y, z) =

(
g(y, z)

β̃(y, z)

)
and A1(y, z) =

(
0

α(y, z)

)
and computing their Lie bracket leads to

[A0, A1] =

(
∂zg(y, z)
γ(y, z)

)
The form of γ is explicit but not detailed here. Under condition (C1) the
vectors A1 and [A0, A1] generate R2 and system (1) is hypoelliptic. We will
discuss the consequence of this property in Section 2.2.

Condition (C1) plays also a crucial role to reduce model (1) to an integrated
diffusion. Indeed, by the change of variable Xt := g(Yt, Zt), the first equation
of system (1) becomes dYt = Xtdt which suggests that the process (Yt, Xt)
should be an integrated diffusion. Condition (C1) enables us to apply the
implicit function theorem which states that Zt can be uniquely defined as a
function of (Yt, Xt). Consequently the vector (Yt, Xt) satisfies{

dYt = Xtdt
dXt = b(Yt, Xt)dt+ a(Yt, Xt)dBt

(3)

where b and a result from the combination of the implicit function theorem
and Itô formula. However the result of the implicit function theorem is only
local and no explicit expression is available in general for Zt as a function
of (Yt, Xt). Therefore in this paper, we assume that system (1) verifies the
following condition

(C2) The process (Yt, Xt) with Xt := g(Yt, Zt) satisfies a system of the form
(3) with explicit functions b and a.
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This includes in particular functions g for which an explicit function f is
available such that Zt = f(Yt, Xt). Examples are g(y, z) = θ1y + θ2z or
g(y, z) = φθ(y) + θ2z for a function φθ which depends on parameter θ. This
condition is also satisfied for more general systems. The following system{

dYt = −(θ1Yt − θ2Z
2
t )dt

dZt = −(θ3Zt + ZtFθ(Yt))dt+ α(Yt, Zt)dBt

with F ∈ C∞(R, [0,+∞[) a possibly non-linear function depending on pa-
rameter θ and α(Yt, Zt) = σZt is an example where the change of variables
Xt := g(Yt, Zt) yields to explicit functions b and a, even if there exists no
explicit function f such that Zt = f(Yt, Xt). Variants with volatility func-
tions α(Yt, Zt) = σZt/(1 + Z2

t ) or α(Yt, Zt) = σZtF (Yt) are other examples
of systems that we consider in this paper.

In this paper, we focus on systems (1) for which conditions (C1) and (C2)
hold. The first step of the estimation method consists in transforming system
(1) into system (3). We denote µ and σ the parameters of functions b and
a, respectively. These parameters include parameters of functions g, β and
α of system (1). Our parameter is the vector (µ, σ2) = θ. In the sequel, we
denote bµ(Yt, Xt) and aσ(Yt, Xt) the drift and volatility functions.

2.2. Assumptions

We assume that the vector θ belongs to Θ = Θ1 × Θ2 for Θ1 ⊂ Rd1 and
Θ2 ⊂ Rd2 two compact subsets.
We now come to the assumptions regarding the drift and volatility functions.
In this paper we work under conditions (C1)-(C2). In the present section we
list our additional assumptions (A1) to (A4). Then we provide a set of suf-
ficient conditions (S1) to (S3) ensuring that these assumptions are satisfied.
We also examine the particular case of Langevin systems.

(A1) (a) there exists a constant c such that supσ∈Θ2
|a−1
σ (y, x)| ≤ c(1+ |y|+

|x|)
(b) for all θ ∈ Θ, bµ and aσ belong to the class F of functions f ∈
C2(R2) for which there exists a constant c such that the function,
its first and second partial derivatives with respect to y and x are
bounded by c(1 + |y|+ |x|), for all x, y ∈ R, uniformly in θ.

(A2) (a) ∀k ∈]0,∞[ supt≥0 E(|Xt|k + |Yt|k) <∞
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(b) there exists a constant c such that ∀t ≥ 0, ∀δ ≥ 0,

E( sup
s∈[t,t+δ[

|Xs|k|Gt) + E( sup
s∈[t,t+δ[

|Ys|k|Gt) ≤ c(1 + |Xt|k + |Yt|k)

where Gt = σ(Bs, s ≤ t).

(A3) (Yt, Xt) admits a unique invariant probability measure ν0 with finite
moments of any order i.e. ∀k > 0, ν0(| · |k) <∞

(A4) (Yt, Xt) satisfies a weak version of the ergodic theorem namely

1

T

∫ T

0

f(Ys, Xs)ds −−−→
T→∞

ν0(f) a.s.

for any continuous function f with polynomial growth at infinity.

Remark 1. 1. Actually we need assumption (A2) only for k ≤ 4 to prove
the properties of our estimators.

2. We need (A4) for all f ∈ {aj, aj log a2, bk/aj, (∂b)k/aj,
(∂2b)k/aj, (∂a2)k/aj, (∂2a2)k/aj, j ∈ {0, 1, 2, 4, 6}, k ∈ {0, 1, 2}}. These
have indeed polynomial growth at infinity thanks to (A1).

We now provide a set of sufficient conditions, sometimes called stability con-
ditions, for (A2) to (A4) to hold. They are based on the existence of a func-
tion V , called Lyapounov function. Lyapounov functions are efficient tools
in the asymptotic study of systems; their use is classical for the Langevin
systems that we consider in Section 6.

(S1) For all θ ∈ Θ,

(a) V (y, x) ≥ 1, lim||(y,x)||→+∞ V (y, x) = +∞
(b) there exist c1 > 0 and c2 > 0 such that LθV (y, x) ≤ −c1V (y, x) +
c2, ∀(y, x) ∈ R2 where Lθ denotes the infinitesimal generator corre-
sponding to (3).

(S2) (Yt, Xt) admits a unique invariant probability measure ν0.

(S3) For all θ ∈ Θ, ∃C > 0 such that (aσ(y, x)∂xV (y, x))2 ≤ CV (y, x) for
all (y, x) ∈ R2.
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Assumption (S1) implies existence and uniqueness of a solution to system
(3) as well as existence of an invariant probability measure. Moreover, under
(S1) the process St := ec1t(V (Yt, Xt)− c2

c1
) is a local submartingale, hence [cf.

17] for all k ≥ 1 and all t ≥ 0,

E

(
sup

s∈[t,t+δ[

|Ss|k|Gt

)
≤
(

k

k − 1

)k
E
(
|St+δ|k|Gt

)
≤
(

k

k − 1

)k
|St|k. (4)

Uniqueness of the invariant probability measure is not guaranteed by (S1)
and is the purpose of assumption (S2). We show now that, if there exists a
polynomial Lyapounov function (or a Lyapounov function with polynomial
growth at infinity), then (S1)-(S3) imply (A2)-(A4). The examples of Section
6 admit quadratic Lyapounov functions. So, let us assume here that a poly-
nomial V in y and x satisfies (S1). An analogous argument can be used when
V is dominated at infinity by a polynomial. From (4) and the polynomial
character of V we deduce (A2) and (A3). From (S3), we know that for any
λ < 2c1

C
, the function Ṽ (y, x) := exp(λV (y, x)) satisfies (S1) or in other words

is a Lyapounov function, and also that ∀f ∈ C, 1
T

∫ T
0
f(Ys, Xs)ds −−−→

T→∞
ν0(f)

a.s. where C denotes the class of measurable functions f such that |f | is
negligible w.r.t. exp(λ

2
V (y, x)). The class C contains all polynomials.

As already mentioned, (S3) is satisfied when aσ is constant and V quadratic
at infinity. The following assumption can also be used
(S3’) For all θ ∈ Θ, ∃C > 0 and ζ ∈ [0, 1[ such that (aσ(y, x)∂xV (y, x))2 ≤
CV (y, x)2−ζ for all (y, x) ∈ R2.
In this case it is still possible to generate Lyapounov functions from V which
are polynomials in V of bounded degree and a weak version of (A4) holds on
a class C which contains all polynomials of degree smaller than some value.
The reader can find more details about (S1)-(S3) and their consequences for
the long time behaviour of (3) in [12].

We test our estimator numerically in Section 6 on particular Langevin sys-
tems. Such systems are defined by{

dYt = Xtdt
dXt = [−γXt − F ′D(Yt)]dt+ σdWt

(5)

with σ > 0, F ∈ C∞(R, [0,+∞[) is a possibly non-linear function depending
on parameter D and F ′ denotes the derivative of F w.r.t. y.
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For these systems the invariant probability ν0 is unique and admits the den-
sity

ρ(y, x) = C exp− γ

σ2
(x2 − 2FD(y))

where C is a multiplicative constant. Hence (A3) is fulfilled. Stability con-
ditions for these systems are presented in [13]. If FD(y) ≥ 0, ∀y ∈ R and
satisfies

βFD(y)− 1

2
F ′D(y)y +

γ2

8

β(2− β)

(1− β)
y2 ≤ α (6)

for some β ∈]0, 1[ and α > 0, a Lyapounov function (which satisfies (S1)) is
provided by

V (y, x) =
1

2
x2 + FD(y) +

γ

2
< y, x > +

γ2

4
y2 + 1. (7)

and condition (S3) is fulfilled. Note that the hypoelliptic property of these
Langevin systems is exploited in [13] in order to establish their geometric
ergodicity. In our numerical Section 6 we study respectively γ = 0, FD ≡ 0
which corresponds to our Model I , γ > 0, FD(y) ≡ D

2
y2 in Model II and

γ > 0, FD(y) ≡ −Σn
j=1j

−1Dj(cos y)j in Model III. In these three examples
(A1) is satisfied as well as (A3) (cf. [13]). Moreover aσ is constant and V
quadratic so (S3) holds which, as noticed previously, implies (A2) and (A4).
Moreover, Models II and III satisfy (6).

3. Estimators and their properties

In this section, we first present the two observations frameworks. Then, for
both frameworks, we introduce a discretized scheme of the system. The prop-
erties of these schemes are studied. They yield to the definition of the two
contrast functions. Finally, we present the main results of the two contrast
estimators, namely their consistency and the asymptotic normality.

3.1. Observations

We assume that (Yt, Xt) is the unique solution of the system{
dYt = Xtdt
dXt = bµ0(Yt, Xt)dt+ aσ0(Yt, Xt)dBt

(8)
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where θ0 = (µ0, σ0) is the true value of the parameter and functions bµ, aσ
are such that assumptions (A1)-(A4) are fulfilled. We assume that θ0 ∈ Θ.
From now on, we set b(y, x) = bµ0(y, x) and a(y, x) = aσ0(y, x).
Now, we describe the two observations frameworks. The first case assumes
that both components (Yt) and (Xt) are observed at discrete times 0 = t0 <
t1 < . . . < tn. The second case assumes that the process (Xt)t≥0 is hidden
or not observed and that we only observe at discrete times ti the process
(Yt)t≥0. In both cases, we assume that discrete times are equally spaced and
denote ∆n = ti − ti−1 the step size, so ti = i∆n. We denote (Yi∆n , Xi∆n) the
observation of the bidimensional process (Yt, Xt)t≥0 at time ti for the first
case, and (Yi∆n) the observation of the process (Yt)t≥0 for the second case.
Our purpose is to estimate θ from the complete and partial observations. As
for notation, in the sequel we use an upper index C (resp. P) for the case
of complete (resp. partial) observations. The asymptotic behavior of the
two estimators is studied for a step size ∆n such that ∆n → 0, as n → ∞,
n∆n →∞ and n∆2

n → 0.

3.2. Contrast estimator for complete observations

When (Yt) and (Xt) are both observed at discrete times (i∆n), we can con-

sider the classical two-dimensional Euler-Maruyama approximation (Ỹ(i+1)∆n ,

X̃(i+1)∆n) of (Y(i+1)∆n , X(i+1)∆n) which is(
Ỹ(i+1)∆n

X̃(i+1)∆n

)
=

(
Ỹi∆n

X̃i∆n

)
+ ∆n

(
X̃i∆n

b(Ỹi∆n , X̃i∆n)

)
+
√

∆nΣ

(
η1
i

η2
i

)
, (9)

Σ =

(
0 0

0 a(Ỹi∆n , X̃i∆n)

)
with (η1

i , η
2
i ) independent identically distributed centered Gaussian vector.

The two-dimensional Euler contrast can not be used directly to estimate
parameters θ because Σ is not invertible. To circle this problem, [15] considers
an Itô-Taylor expansion of higher order, by adding the first non-zero noise
term arising in the first coordinate. This yields to an invertible covariance
matrix for some hypoelliptic models, which may be complex to calculate.
On the contrary, our estimation approach remains based on the Euler scheme.
As said previously, it can not be used directly. However, as we focus on
parameter estimation of drift and volatility functions of the second coordinate
which is observed in this subsection, we propose to consider a contrast based
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on the Euler-Maruyama approximation of this second equation. Dependence
between successive terms (Xi∆n) are described in the following Proposition:

Proposition 1. Set Gni = Gi∆n. We have

X(i+1)∆n −Xi∆n −∆nb(Yi∆n , Xi∆n) = a(Yi∆n , Xi∆n)ηi,n + εCi,n

where ηi,n is such that E(η2k+1
i,n |Gni ) = 0 and E(η2k

i,n|Gni ) = (2k)!/(2kk!)∆k
n

for k ≥ 0; εCi,n is such that E(|εCi,n||Gni ) ≤ c∆
3/2
n (1 + |Yi∆n| + |Xi∆n|) and

E(|εCi,n|k|Gni ) ≤ c∆
k/2+1
n (1 + |Yi∆n|k + |Xi∆n|k) for k ≥ 2.

This leads to the definition of the following estimation contrast

LCn (θ) =
n−1∑
i=0

(
(X(i+1)∆n −Xi∆n −∆nbµ(Yi∆n , Xi∆n))2

∆na2
σ(Yi∆n , Xi∆n)

+ log(a2
σ(Yi∆n , Xi∆n))

)
(10)

which is an extension of the classical Euler contrast for unidimensional SDE
(see [10]) when drift bµ and volatility aσ depend on both Y and X. We define

the minimum contrast estimator θ̂Cn for complete observations as

θ̂Cn = arg min
θ∈Θ
LCn (θ)

3.3. Contrast estimator for partial observations

Contrast (10) can not be used in the second case of observations, as (Xi∆n)
is not observed. In the context of integrated diffusion, [8] proposes to ap-
proximate Xi∆n by increments of (Yt). We study the behavior of the process
of increments in Proposition 2. The basic idea which consists in replacing
directly Xi∆n by Y i,n in contrast (10) leads to a biased estimator [see 8, for
the case where (Xt) satisfies an autonomous diffusion]. This is due to the
dependence between two successive terms of the rate process Y i,n (Proposi-
tion 3). The estimation contrast for partial observation must be corrected to
take into account this correlation.
Now, we present more precisely these ideas. First, we introduce the increment
or rate process

Y i,n =
Y(i+1)∆n − Yi∆n

∆n

(11)
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Model (3) implies

Y i,n =
1

∆n

∫ (i+1)∆n

i∆n

Xsds

Thus, when ∆n is small, Y i,n is close to Xi∆n . More precisely, we have:

Proposition 2. Assume (A1)-(A2). We have

Y i,n −Xi∆n = ∆1/2
n a(Yi∆n , Xi∆n)ξ′i,n + ei,n

where there exists a constant c such that |E(ei,n|Gni ) ≤ c∆n(1+|Xi∆n|+|Yi∆n|)
and |E(e2

i,n|Gni ) ≤ c∆2
n(1 + |Xi∆n|4 + |Yi∆n|4).

Furthermore, if k is a real number ≥ 1, then for all i, n, we have

E
(∣∣Y i,n −Xi∆n

∣∣k |Gni ) ≤ c∆k/2
n (1 + |Xi∆n|k + |Yi∆n|k)

The link between two successive terms of the non-Markovian rate process
Y i,n is studied in the following Proposition.

Proposition 3. Assume (A1)-(A2). Then

Y i+1,n − Y i,n −∆nb(Yi∆n , Y i,n) = ∆1/2
n a(Yi∆n , Xi∆n)Ui,n + εPi,n

where Ui,n = ξi,n + ξ′i+1,n with

ξi,n =
1

∆
3/2
n

∫ (i+1)∆n

i∆n

(s− i∆n)dBs for i, n ≥ 0

ξ′i+1,n =
1

∆
3/2
n

∫ (i+2)∆n

(i+1)∆n

((i+ 1)∆n − s)dBs for i ≥ −1, n ≥ 0.

If k is a real number ≥ 1, then for all i, n

E
(∣∣Y i+1,n − Y i,n

∣∣k |Gni ) ≤ c∆k/2
n (1 + |X(i+1)∆n |k + |Y(i+1)∆n|k)
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Moreover there exist constants c such that

E(εPi,n|Gni ) ≤ c∆2
n(1 + |X(i+1)∆n|3 + |Y(i+1)∆n|3)

E((εPi,n)2|Gni ) ≤ c∆2
n(1 + |X(i+1)∆n|4 + |Y(i+1)∆n|4)

E((εPi,n)4|Gni ) ≤ c∆4
n(1 + |X(i+1)∆n|8 + |Y(i+1)∆n|8)

E(εPi,nUi,n|Gni ) ≤ c∆3/2
n (1 + |X(i+1)∆n|2 + |Y(i+1)∆n|2).

Remark that Proposition 3 implies that for any function f of the two variables
Yt and Xt, f(Yi∆n , Xi∆n) and Y i+1,n−Y i,n−∆nb(Yi∆n , Y i,n) have a correlation

of order ∆
1/2
n . Moreover the variance of Ui,n is 2/3∆n, while the variance of

ηi,n in Proposition 1 is 1. [8] proposes a correction of the contrast by weighting
the first sum in (10) by a factor 3/2. We extend this contrast to the case
of drift and volatility functions depending on both processes (Xt) and (Yt).
Thus we consider the following contrast

LPn (θ) =
n−2∑
i=1

(
3
2

(
Y i+1,n − Y i,n −∆nbµ(Y(i−1)∆n

, Y i−1,n)
)2

∆na2
σ(Y(i−1)∆n

, Y i−1,n)
+ log(a2

σ(Y(i−1)∆n
, Y i−1,n))

)
(12)

Remark that as (Y i,n) is not markovian, we introduce a shift in the index of

the drift and the diffusion functions to avoid a correlation term of order ∆
1/2
n

between (Y i+1,n − Y i,n) and functionals f(Yi∆n , Y i,n).

We define the minimum contrast estimator for partial observations θ̂Pn as

θ̂Pn = arg min
θ∈Θ
LPn (θ)

3.4. Main results

To simplify notations and proofs, we restrict to one-dimensional parameters
µ and σ. This could easily be extended to multidimensional parameters [see
remark 5 of 8]. Simulations (Section 6) illustrate this extension.
In this paper, we prove the consistency and asymptotic normality of both
estimators under the following identifiability assumption

aσ(y, x) = aσ0(y, x) dν0(y, x) almost everywhere implies σ = σ0

bµ(y, x) = bµ0(y, x) dν0(y, x) almost everywhere implies µ = µ0

12



Classically, the consistency of the estimator θ̂n requires ∆n → 0.

Theorem 1. Under assumptions (A1)-(A4), the estimators θ̂Cn and θ̂Pn are
consistent:

θ̂Cn
P−−−→

n→∞
θ0, and θ̂Pn

P−−−→
n→∞

θ0.

The asymptotic distribution requires the additional condition n∆2
n → 0. The

rate of convergence is different for µ̂n and σ̂2
n. The drift term is estimated

with rate (n∆n)1/2 and the diffusion term is estimated with rate n1/2.

Theorem 2. Set assumptions (A1)-(A4), n∆2
n −−−→

n→∞
0. In the complete

observations case,
(√

n∆n

(
µ̂Cn − µ0

)
,
√
n
(
σ̂2
n

C
− σ2

0

))
converges in distri-

bution to

N

(
0,

{
ν0

(
(∂µb)

2(·, ·)
a2(·, ·)

)}−1
)
⊗N

(
0, 2

{
ν0

(
(∂σ2a2)2(·, ·)
a4(·, ·)

)}−1
)

and in the partial observations case,
(√

n∆n

(
µ̂Pn − µ0

)
,
√
n
(
σ̂2
n

P
− σ2

0

))
converges in distribution to

N

(
0,

{
ν0

(
(∂µb)

2(·, ·)
a2(·, ·)

)}−1
)
⊗N

(
0,

9

4

{
ν0

(
(∂σ2a2)2(·, ·)
a4(·, ·)

)}−1
)

Theorem 2 is an extension of several results. We first comment the complete
observations case. When (Xt) is an autonomous diffusion, [10] proves that
the asymptotic distribution is

N

(
0,

{
νX,0

(
(∂µb)

2(·)
a2(·)

)}−1
)
⊗N

(
0, 2

{
νX,0

(
(∂σ2a2)2(·)
a4(·)

)}−1
)

where the limit distribution νX,0 is the stationary distribution of the diffusion
(Xt) itself. In that case, observations of (Yt) are not used. When (Xt) is not
autonomous and the diffusion is bi-dimensional, this result can be generalized
if the volatility matrix Σ is non degenerate. The asymptotic variance is then
based on ν0, the stationary distribution of the vector (Yt, Xt). When the
volatility matrix is degenerate as in model (3), the first assertion of Theorem
2 shows that reducing the contrast to the Euler approximation of the second

13



coordinate yields to asymptotic normality of θ̂n, the asymptotic variance
involving the stationary distribution of the vector (Yt, Xt). This is a major
difference with respect to the case of an autonomous diffusion for (Xt).
For the partial observations case, when (Xt) is autonomous, [8] proves that
replacing Xi∆n by Y i,n underestimates the asymptotic variance, as a conse-
quence of Proposition 3. As in the complete observation case, when (Xt) is
autonomous, the asymptotic variance is based on the stationary distribution
νX,0. In model (3) where the diffusion is not autonomous, second assertion
of Theorem 2 shows that the invariant measure of (Yt, Xt) is required in the
asymptotic variance.

The estimation of µ is asymptotically efficient since ν0

(
(∂µb)2(·,·)
a2(·,·)

)
is the Fisher

information of the continuous time model. This is not the case for σ2 as its
asymptotic variance is increased with a factor 9/16 instead of 1/2 for directly
observed diffusion [10].
Proofs of Theorems 1 and 2 are given in Section 5. They are based on
properties of functionals of (Yi∆n , Xi∆n) and (Yi∆n , Y i,n), which are studied
in Section 4.

4. Functionals of (Yi∆n, Xi∆n) and (Yi∆n, Y i,n)

Contrast properties rely on convergence results for functionals appearing in
the contrast functions. These functionals are of different types: functional
mean, variation and quadratic variation of Xi∆n and Y i,n. We consider for
the complete observations case, for a measurable function f , the three func-
tionals:

νCn (f) =
1

n

n−1∑
i=0

f(Yi∆n , Xi∆n , θ),

I
C

n (f) =
1

n∆n

n−1∑
i=0

f(Yi∆n , Xi∆n , θ)(X(i+1)∆n −Xi∆n −∆nb(Yi∆n , Xi∆n))

Q
C

n (f) =
1

n∆n

n−1∑
i=0

f(Yi∆n , Xi∆n , θ)
(
X(i+1)∆n −Xi∆n

)2

14



and for the partial observations case, the three functionals

νPn (f) =
1

n

n−1∑
i=0

f(Yi∆n , Y i,n, θ)

I
P

n (f) =
1

n∆n

n−2∑
i=1

f(Y(i−1)∆n , Y i−1,n, θ)(Y i+1,n − Y i −∆nb(Y(i−1)∆n , Y i−1,n))

Q
P

n (f) =
1

n∆n

n−2∑
i=1

f(Y(i−1)∆n , Y i−1,n, θ)
(
Y i+1,n − Y i

)2

Note that in I
P

n (f) and Q
P

n (f), we introduce shifted processes Y(i−1)∆n and
Y i−1,n in the function f as a consequence of the remark following Proposi-

tion 3. Consequently, the drift term b(Y(i−1)∆n , Y i−1,n) in I
P

n (f) and in the
contrast LPn are also shifted so that, when the square quantity in LPn is de-
veloped, functionals to be studied have the proper index. Asymptotic study
of these functionals is difficult because it involves (Yi∆n , Y i,n) instead of the
original Markovian process (Yi∆n , Xi∆n).
We first study the uniform convergence of these functionals, then their con-
vergence in distribution. In the following, we assume that f belongs to the
class F introduced in Assumption (A1).

4.1. Uniform convergence

The first result concerns the empirical mean of the discretized process (Xi∆n)i≥0

and the rate process (Y i,n)i≥1. The limits involve the stationary distribution
ν0 of the vector (Yt, Xt). Proofs are given in the Appendix. They are essen-
tially based on Propositions 2 and 3 and generalize the proofs of [8] to a non
autonomous diffusion (Xt).

Proposition 4. Under assumptions (A1)-(A4), we have uniformly in θ

νCn (f)
P−−−→

n→∞
ν0(f), νPn (f)

P−−−→
n→∞

ν0(f).

We see that replacing Xi∆n by Y i,n in the partial observations case does not

change the limit. The next result concerns the functionals I
C

n and I
P

n which
involve the variations of the processes (Xi∆n)i≤0 and (Y i,n)i≤0, respectively.

15



Theorem 3. Under assumptions (A1)-(A4), we have uniformly in θ

I
C

n (f)
P−−−→

n→∞
0, I

P

n (f)
P−−−→

n→∞
0. (13)

The limit is the same for the complete and partial functionals. This is due

to the introduction of the lag in the definition of I
P

n (f): f(Y(i−1)∆n , Y i−1,n, θ)
and b(Y(i−1)∆n , Y i−1,n) instead of f(Yi∆n , Y i,n, θ) and b(Yi∆n , Y i,n). This en-

ables us to avoid correlation terms of order ∆
1/2
n . When no lag is introduced,

the limit is not 0, see for instance [8].
The last result deals with the quadratic variations of (Xi∆n)i≥0 and (Y i,n)i≥1.

Theorem 4. Under assumptions (A1)-(A4), we have uniformly in θ

Q
C

n (f(·, ·, θ)) P−−−→
n→∞

ν0(f(·, ·, θ)a2(·, ·))

Q
P

n (f(·, ·, θ)) P−−−→
n→∞

2

3
ν0(f(·, ·, θ)a2(·, ·)).

Theorem 4 is an extension of various results. It implies several comments
which have already been partially addressed in Section 3.4. We first comment
the complete observations case. When (Xt) is an autonomous diffusion, [10]
proves that for a function f : R×Θ→ R

1

n∆n

n−1∑
i=0

f(Xi∆n , θ)
(
X(i+1)∆n −Xi∆n

)2 P−−−→
n→∞

νX,0(f(·, θ)a2(·))

where the limit distribution νX,0 is the stationary distribution of the diffusion
(Xt) itself. When the diffusion is two-dimensional and the volatility matrix
Σ is non degenerate, the limit is then ν0(f(·, ·, θ)ΣΣ′(·, ·)) where ν0 is the
stationary distribution of the vector (Yt, Xt). When the volatility matrix is
degenerate as in model (3), the first assertion of Theorem 4 shows that the
problem is reduced to the Euler approximation of the second equation of
the system with the limit involving the stationary distribution of the vector
(Yt, Xt).
For the partial observations case, when (Xt) is autonomous, [8] proves that re-
placing Xi∆n by Y i,n modifies the result by underestimating νX,0(f(·, θ)a2(·)).
In the case of model (3) where the diffusion is not autonomous, the second
assertion of Theorem 4 shows that the invariant measure of (Yt, Xt) is re-
quired.
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4.2. Convergence in distribution of functionals of the process

In this section, we study some central limit theorems for the functionals I
C

n ,

I
P

n and Q
C

n , Q
P

n . As I
C

n and I
P

n converge in probability to 0 (Theorem 3),
they also satisfy a central limit theorems as follows:

Theorem 5. Under assumptions (A1)-(A4) and n∆2
n −−−→

n→∞
0, we have

√
n∆nI

C

n (f)
D−−−→

n→∞
N (0, ν0(f 2a2))√

n∆nI
P

n (f)
D−−−→

n→∞
N (0, ν0(f 2a2))

The condition n∆2
n −−−→

n→∞
0 is classical [see 4]. This condition imposes that

the discretization step decreases to zero fast enough to ensure that the con-
tribution of the error terms tends to 0 as n→∞. The lag introduced in the

definition of I
P

n makes the result very similar for both complete and partial
observations case.
We now present a central limit theorem for Q

P

n and Q
C

n . Theorem 4 shows

that Q
P

n underestimates ν0(f(·, ·, θ)a2(·, ·)). The correction factor 2/3 is thus
required in the associated central limit theorem:

Theorem 6. Under assumptions (A1)-(A4) and n∆2
n −−−→

n→∞
0, we have

√
n
(
Q
C

n (f)− νCn (fa2)
)

D−−−→
n→∞

N (0, ν0(f 2a4))

√
n

(
Q
P

n (f)− 2

3
νPn (fa2)

)
D−−−→

n→∞
N (0, ν0(f 2a4))

In the partial observations case, when we replace Xi∆n by Y i,n, the asymp-
totic variance increases due to the factor 3/2. This can also be compared to
the results of [8] when the diffusion (Xt) is autonomous.

5. Proofs of main results

In this section, asymptotic properties of estimators θ̂Cn and θ̂Pn are proved.

17



5.1. Proof of Theorem 1

We follow the proof of [11]. We have to show that, uniformly in θ,

1

n
LCn (θ)

P−−−→
n→∞

ν0

(
a2
σ0

(y, x)

a2
σ(y, x)

+ log a2
σ(y, x)

)
(14)

1

n
LPn (θ)

P−−−→
n→∞

ν0

(
a2
σ0

(y, x)

a2
σ(y, x)

+ log a2
σ(y, x)

)
(15)

This ensures the convergence of σ̂2
n to σ2

0 for both cases. Then, if we prove
that

1

n∆n

(LCn (µ, σ)− LCn (µ0, σ))
P−−−→

n→∞
ν0

(
(bµ(y, x)− bµ0(y, x))2

a2
σ(y, x)

)
(16)

1

n∆n

(LPn (µ, σ)− LPn (µ0, σ))
P−−−→

n→∞

3

2
ν0

(
(bµ(y, x)− bµ0(y, x))2

a2
σ(y, x)

)
(17)

this ensures the convergence of µ̂n to µ0 for both cases. We start by proving
(14-15). In the complete observations case, we have

1

n
LCn (θ) = Q

C

n (a−2
σ (·, ·)) + νCn (log a2

σ(·, ·))− 2∆nI
C

n (a−2
σ (·, ·)bµ(·, ·))

+∆nν
C
n (a−2

σ (·, ·)
(
b2
µ(·, ·)− 2bµ(·, ·)bµ0(·, ·)

)
)

Using Proposition 4, Theorems 3 and 4, we easily prove (14). In the partial
observations case, we have

1

n
LPn (θ) =

3

2
Q
P

n (a−2
σ (·, ·)) + νPn (log a2

σ(·, ·))− 3∆nI
P

n (a−2
σ (·, ·)bµ(·, ·))

+
3

2
∆nν

P
n (a−2

σ (·, ·)
(
b2
µ(·, ·)− 2bµ(·, ·)bµ0(·, ·)

)
)

Using Proposition 4, Theorems 3 and 4, we easily prove (15). For the proof
of (16), we have

1
n∆n

(
LCn (µ, σ)− LCn (µ0, σ)

)
= 2ICn

(
bµ0

a2
σ

(·, ·)− bµ
a2
σ

(·, ·)
)

+νCn

(
(bµ(·, ·)− bµ0(·, ·))2

a2
σ(·, ·)

)
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We conclude with Proposition 4 and Theorem 3. For the proof of (17), we
write

1
n∆n

(
LPn (µ, σ)− LPn (µ0, σ)

)
= 3IPn

(
bµ0

a2
σ

(·, ·)− bµ
a2
σ

(·, ·)
)

+
3
2
νPn

(
(bµ(·, ·)− bµ0(·, ·))2

a2
σ(·, ·)

)

We conclude with Proposition 4 and Theorem 3.

5.2. Proof of Theorem 2

The scheme of the proof is the same for both complete and partial obser-
vations cases. Let θ̂n and Ln(θ) denote the estimator and contrast either
for complete or partial observations. A Taylor’s formula around θ̂n yields:
Dn =

∫ 1

0
Cn(θ0 + u(θ̂n − θ0)du En where

Dn =

(
−(
√
n∆n)−1∂µLn(θ0)

−(
√
n)−1∂σLn(θ0)

)
, En =

( √
n∆n (µ̂n − µ0)
√
n
(
σ̂2

n − σ2
0

) )
,

Cn(θ) =

(
1

n∆n
∂2
µ2 Ln(θ) 1

n
√

∆n
∂2
σµ Ln(θ)

1
n
√

∆n
∂2
µσ Ln(θ) 1

n
∂2
σ2 Ln(θ)

)
.

Let now detail the two cases. In the complete observations case, we have

1√
n∆n

∂µLCn (θ0) = −2
√
n∆nI

C

n

(
∂µbµ0(·, ·)
a2
σ0

(·, ·)

)
1√
n
∂σ2LCn (θ0) = −

√
n

(
Q
C

n

(
∂σ2(a2

σ0
(·, ·))

a4
σ0

(·, ·)

)
− νCn

(
∂σ2(a2

σ0
(·, ·))

a2
σ0

(·, ·)

))
+ oP(1)

By Theorems 5 and 6, this yields

DCn
D−−−→

n→∞
N

0,

 4ν0

(
(∂µbµ0 )2(·,·)
a2
σ0

(·,·)

)
0

0 2ν0

(
(∂σ2a2

σ0
)2(·,·)

a4
σ0

(·,·)

) 
The proof of the convergence in distribution of En follows from the consis-
tency of θ̂Cn and if we prove the uniform (with respect to θ) convergence
in probability of CCn (θ). To prove the uniform convergence, we differentiate
twice LCn . Proposition 4 and Theorem 3 show that CCn (θ) converges uniformly
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in θ in probability to CC(θ) where

CC(θ) =

(
CC11(θ) 0

0 CC22(θ)

)

CC11(θ) = 2ν0

(
(∂µbµ)2(·, ·)
a2
σ(·, ·)

+
∂2
µ2bµ

a2
σ

(·, ·)(bµ(·, ·)− bµ0(·, ·))

)

CC22(θ) = ν0

(
(∂σ2a2

σ)2(·, ·)
(

2a2
σ0

(·, ·)
a6
σ(·, ·)

− 1

a4
σ0

(·, ·)

))
+ν0

(
∂2
σ2a2

σ(·, ·)
(

1

a2
σ(·, ·)

−
a2
σ0

(·, ·)
a4
σ(·, ·)

))
Hence the result for the complete observations case. In the partial observa-
tions case, we have

1√
n∆n

∂µLPn (θ0) = −3
√
n∆nI

P
n

(
∂µbµ0(·, ·)
a2
σ0

(·, ·)

)
1√
n
∂σ2LPn (θ0) = −3

2
√
n

(
Q
P
n

(
∂σ2a2

σ0
(·, ·)

a4
σ0

(·, ·)

)
− 2

3
νPn

(
∂σ2a2

σ0
(·, ·)

a2
σ0

(·, ·)

))
+ oP(1)

By Theorems 5 and 6, this yields

DPn
D−−−→

n→∞
N

0,

 9ν0

(
(∂µbµ0 )2(·,·)
a2
σ0

(·,·)

)
0

0 9
4
ν0

(
(∂σ2a2

σ0
)2(·,·)

a4
σ0

(·,·)

) 
Proof of the convergence in distribution of En follows from the consistency of
θ̂Pn and the uniform (with respect to θ) convergence in probability of CPn (θ).
To prove the uniform convergence, we differentiate twice LPn . Proposition 4
and Theorem 3 show that CPn (θ) converges uniformly in θ in probability to
CP (θ) where

CP (θ) =

(
CP11(θ) 0

0 CP22(θ)

)
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CP11(θ) = 3ν0

(
(∂µbµ)2(·, ·)
a2
σ(·, ·)

+
∂2
µ2bµ

a2
σ

(·, ·)(bµ(·, ·)− bµ0(·, ·))

)

CP22(θ) = ν0

(
(∂σ2a2

σ)2(·, ·)
(

2a2
σ0

(·, ·)
a6
σ(·, ·)

− 1

a4
σ0

(·, ·)

))
+ν0

(
∂2
σ2a2

σ(·, ·)
(

1

a2
σ(·, ·)

−
a2
σ0

(·, ·)
a4
σ(·, ·)

))
Hence the result. �

6. Simulation study

We consider three models of simulation, which are those proposed by [15].
Their general form is given as the Langevin system (5) where FD is some
(possibly non-linear) force function parameterized byD. Model I corresponds
to a simple linear stochastic growth with γ = 0, FD ≡ 0. Model II coresponds
to a linear oscillator subject to noise and damping with γ > 0, FD(y) ≡ D

2
y2.

Model III is a non-linear oscillator subject to noise and damping with γ >
0, FD(y) ≡ −Σn

j=1j
−1Dj(cos y)j. Stability conditions for these models have

been detailed in Section 2.

6.1. Model I: stochastic growth

We consider the following simple model{
dYt = Xtdt
dXt = σ0dBt

(18)

The process has one unknown parameter, σ0, that describes the size of the
fluctuations. Model (18) has a matricial form dUt = AUtdt + ΓdBt where
Ut = (Yt, Xt)

t and

A =

(
0 1
0 0

)
, Γ =

(
0 0
0 σ0

)
This model has an explicit solution Ut = eA(t−t0)U0 +

∫ t
t0
eA(t−s)ΓdBs. Given

the fact that eAt = I+At for this simple model, the process (Ut) is Gaussian
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with expectation vector and covariance matrix

E(Ut|U0) =

(
1 t
0 1

)
U0, V ar(Ut|U0) = σ2

0Σt = σ2
0

(
t3/3 t2/2
t2/2 t

)
The covariance matrix Σt is invertible. Note that the process (Ut) has no
stationary probability distribution. It is usual to consider the Lebesgue mea-
sure, which is not a probability measure, as its invariant measure. Although
the theory developed in this paper has to be extended to the existence of
an invariant measure which is not a probability measure, this is beyond the
scope of this paper. Nevertheless, this example illustrates that estimators
have good properties in that case. An exact discrete sampling scheme can
be deduced from the exact distribution of (Ut)(

Y(i+1)∆n

X(i+1)∆n

)
=

(
Yi∆n + ∆nXi∆n

Xi∆n

)
+ σ0Σ

1/2
∆n

(
ε

(1)
i∆n

ε
(2)
i∆n

)
, (19)

As the exact distribution is available and easily computable, the estimation
of σ can be obtained from the exact likelihood when complete observations
are available. The exact maximum likelihood estimator (MLE) is thus

σ̂MLE =
1

2n

n−1∑
i=0

(U(i+1)∆n − eA∆nUi∆n)′(Σ∆n)−1(U(i+1)∆n − eA∆nUi∆n)

The fact that the MLE is explicit is very specific to this simple model. It is
also interesting to study the two contrast estimators, which are defined for
more general models. The estimator for the complete observations case is
equal to

σ̂C =
1

∆nn

n−1∑
i=0

(X(i+1)∆n −Xi∆n)2.

When partial observations are available, the estimator is

σ̂P =
3

2

1

∆n(n− 2)

n−2∑
i=1

(Y i+1,n − Y i,n)2.

The behavior of these three estimators are compared on simulated data.
Three designs (∆n, n) of simulations are considered: ∆n = 0.1, n = 100;
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Figure 1: Model I: Stochastic Growth. Estimator densities of parameter σ computed on
1000 simulated datasets for three designs ∆n = 0.1, n = 100 (a), ∆n = 0.1, n = 1000 (b)
and ∆n = 0.01, n = 1000 (c). True value of σ is 1 (vertical line). Three estimators are
compared: MLE (dotted line), complete observations contrast estimator σ̂C (plain line),
partial observations contrast estimator σ̂P (bold line).

∆n = 0.1, n = 1000 and ∆n = 0.01, n = 1000. A thousand of datasets are
simulated for each design with the exact discrete scheme (19), the true pa-
rameter value σ0 = 1 and U0 = (1, 1)′. The three estimators are computed
on each dataset. Kernel estimations of the density of these estimators are
represented in Figure 1. The three estimators are unbiased for the three
designs. Their variances are small and decrease when n increases, whatever
the value of ∆n. The maximum likelihood estimator σ̂MLE has a smaller
variance than the two contrast estimators σ̂C and σ̂P , whatever the values of
n and ∆n. This is expected as the MLE is based on the exact distribution of
the diffusion, while σ̂C and σ̂P are based on Euler approximation. The two
contrast estimators behave very similarly. Empirical means and standard
deviations of the three estimators for the three designs are presented in Ta-
ble 1. Means and standard deviations obtained by [15] on the same example
are also reported. With complete observations, the MLE and the contrast
estimator have similar estimate means and are unbiased. The standard devi-
ations of σ̂C are three times larger than for σ̂MLE. With partial observations,
the contrast estimator σ̂P has similar mean than the one of [15], but twice
greater standard deviations.
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Design
∆n = 0.1 ∆n = 0.1 ∆n = 0.01

Observations Estimator n = 100 n = 1000 n = 1000
Complete σ̂MLE 0.999 (0.050) 1.000 (0.015) 1.000 (0.016)
Complete σ̂C 0.998 (0.142) 1.001 (0.044) 1.000 (0.044)
Partial σ̂P 1.005 (0.158) 1.002 (0.048) 1.001 (0.046)
Partial Pokern et al. 0.993 (0.077) 0.999 (0.024) 1.000 (0.024)

Table 1: Model I: Stochastic Growth. True value is σ = 1. Mean and standard error of
estimators of parameter σ computed on 1000 simulated datasets for three designs ∆n =
0.1, n = 100, ∆n = 0.1, n = 1000 and ∆n = 0.01, n = 1000. Four estimators are compared:
MLE with complete observations, complete observations contrast estimator σ̂C , partial
observations contrast estimator σ̂P and Gibbs estimates obtained by [15] with partial
observations.

6.2. Model II: harmonic oscillator

We consider an harmonic oscillator that is driven by a white noise forcing:{
dYt = Xtdt
dXt = (−D0Yt − γ0Xt)dt+ σ0dBt

(20)

with γ0 > 0 and D0 > 0. The process has three unknown parameters
(D0, γ0, σ0). Model (20) has a matricial form dUt = AUtdt + ΓdBt where
Ut = (Yt, Xt)

t,

A =

(
0 1
−D0 −γ0

)
, Γ =

(
0 0
0 σ0

)
The stationary distribution of (Ut) is Gaussian with zero mean and an explicit
variance matrix [5]

V ar(Ut) = ΣU =
1

−2tr(A)det(A)
(det(A)ΓΓ′+(A−tr(A)I2)ΓΓ′(A−tr(A)I2)′

where tr(A) and det(A) are the trace and the determinant of A.
The estimator for the complete observations case is defined as

θ̂C = arg min
θ

[
n−1∑
i=0

(X(i+1)∆n −Xi∆n + ∆n(DYi∆n + γXi∆n))2

∆nσ2
+ n log σ2

]
.
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When only partial observations (Yi∆n) are available, the constrast is

θ̂P = arg min
θ

[
3

2

n−2∑
i=1

(Y i+1,n − Y i,n + ∆n(DY(i−1)∆n + γY i−1,n))2

∆nσ2
+ (n− 2) log σ2

]

The behavior of these two estimators is compared on simulated data. Three
designs (∆n, n) of simulations are considered: ∆n = 0.1, n = 1000; ∆n =
0.1, n = 100 and ∆n = 0.01, n = 1000. A thousand of datasets are simulated
for each design with the exact stationary distribution, the true parameter
values D0 = 4, γ0 = 0.5 and σ0 = 1 and U0 = (1, 0)′. The two estimators

θ̂C and θ̂P are computed on each dataset. Empirical mean and standard
deviations of the estimators are reported on Table 2 (simultaneous estimation
of the three parameters). Results obtained by [15] when estimating only σ̂P

are reported in Table 2. In their paper, the authors do not detail their
results for drift parameters when using the Gibbs loop, which corresponds
to a simultaneous estimation. So we only report results for σ. Parameter
σ is estimated with very small bias whatever the design and the kind of
observations. The bias of σ is slightly less than the one of [15]. Its standard
deviation decreases with n. The drift parameters D and γ are estimated with
bias for the two first designs. The bias decrease when n = 1000, ∆n = 0.01.
This is corroborated by the theoretical results, as the asymptotic conditions
are not the same for drift and volatility parameter estimation. The bias is
very small for D but still remains for γ when n = 1000, ∆n = 0.01. The
bias for drift parameters obtained with partial observations are larger than
with complete observations. For example, with n = 100, ∆n = 0.1, the
mean estimated value for parameter D is 3.588 with partial observations and
3.567 for complete observations, to be compared to the true value 4. When
n increases and ∆n decreases, this difference decreases and the bias is small.

6.3. Model III: trigonometric oscillator

We consider the dynamics of a particle moving in a trigonometric potential
[see 15]. The model is{

dYt = Xtdt

dXt =
(
−γ0Xt −

∑c
j=1D0,j sin(Yt) cosj−1(Yt)

)
dt+ σ0dBt

(21)

with parameters θ = (γ0, D0j, j = 1, . . . , c, σ0). This system is non-linear.
No explicit closed form expression for the solution is known.
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Design
Estimator True ∆n = 0.1 ∆n = 0.1 ∆n = 0.01

value n = 100 n = 1000 n = 1000

σ̂C 1 0.980 (0.069) 0.974 (0.021) 0.996 (0.021)
σ̂P 0.946 (0.074) 0.956 (0.021) 0.994 (0.023)
Pokern et al. 1.154 (0.074) 1.114 (0.025) 1.016 (0.013)

D̂C 4 3.567 (0.489) 3.488 (0.187) 4.034 (0.642)

D̂P 3.588 (0.494) 3.501 (0.188) 4.032 (0.644)

γ̂C 0.5 1.022 (0.098) 1.086 (0.271) 0.678 (0.326)
γ̂P 1.285 (0.275) 1.215 (0.096) 0.699 (0.330)

Table 2: Model II: Harmonic Growth, estimation of the three parameters D, γ, σ. Mean
and standard error of parameter estimators D, γ and σ computed on 1000 simulated
datasets for three designs ∆n = 0.1, n = 100 (a), ∆n = 0.1, n = 1000 (b) and
∆n = 0.01, n = 1000 (c). Three estimators are compared: complete observations contrast
estimator θ̂C , partial observations contrast estimator θ̂P and Gibbs estimator obtained by
[15] with partial observations.

The estimator for the complete observations case is defined as

θ̂C = arg minθ [n log σ2

+
∑n−1

i=0

(X(i+1)∆n−Xi∆n+∆n(γXi∆n+
Pc
j=1 Dj sin(Yi∆n ) cosj−1(Yi∆n )))

2

∆nσ2

]
When only partial observations (Yi∆n) are available, the estimator is

θ̂P = arg minθ [(n− 2) log σ2

+ 3
2

∑n−2
i=1

(Y i+1,n−Y i,n+∆n(γY i−1,n+
Pc
j=1 Dj sin(Y(i−1)∆n ) cosj−1(Y(i−1)∆n )))

2

∆nσ2

]
The behavior of these estimators is compared on simulated data. Four de-
signs (∆n, n) of simulations are considered: ∆n = 0.1, n = 100; ∆n =
0.1, n = 1000; ∆n = 0.01, n = 1000 and ∆n = 0.01, n = 10000. A thousand
of datasets are simulated for each design with the exact stationary distribu-
tion and the true parameter values proposed by [15] D01 = 1, D02 = −8,

D03 = 8, γ0 = 0.5 and σ0 = 0.7 and U0 = (1, 1)′. The two estimators θ̂C

and θ̂P are computed on each dataset. Simultaneous estimation of the five
parameters is performed. Empirical mean and standard deviations of the
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Design
Estimator True ∆n = 0.1 ∆n = 0.1 ∆n = 0.01 ∆n = 0.01

value n = 100 n = 1000 n = 1000 n = 10000

σ̂C 0.7 0.886 (0.110) 0.861 (0.032) 0.713 (0.019) 0.714 (0.006)
σ̂P 1.012 (0.118) 1.021 (0.034) 0.873 (0.024) 0.784 (0.008)

D̂1

C
1 0.987 (0.414) 1.003 (0.125) 1.043 (0.381) 1.010 (0.111)

D̂1

P
1.002 (0.378) 1.002 (0.116) 1.036 (0.378) 1.005 (0.110)

D̂2

C
-8 -8.221 (1.451) -8.020 (0.367) -8.082 (1.878) -8.042 (0.498)

D̂2

P
-7.340 (1.382) -7.251 (0.339) -8.019 (1.859) -7.998 (0.495)

D̂3

C
8 8.271 (2.424) 8.001 (0.597) 7.722 (3.589) 8.010 (0.764)

D̂3

P
7.068 (2.235) 7.007 (0.565) 7.641 (3.559) 7.964 (0.758)

γ̂C 0.5 0.638 (0.290) 0.524 (0.074) 0.671 (0.384) 0.522 (0.099)
γ̂P 0.889 (0.304) 0.763 (0.074) 0.701 (0.384) 0.548 (0.100)

Table 3: Model III: Trigonometric Growth, estimation of the five parameters
D1, D2, D3, γ, σ. Mean and standard error of parameter estimators D, γ and σ com-
puted on 1000 simulated datasets for four designs ∆n = 0.1, n = 100, ∆n = 0.1, n = 1000,
∆n = 0.01, n = 1000 and ∆n = 0.01, n = 10000. Two estimators are compared: complete
observations contrast estimator θ̂C and partial observations contrast estimator θ̂P .

estimators are reported on Table 3. [15]’s results are presented as figures and
are not reported here. Bias and standard deviations of drift and volatility
parameters decrease when n increases and ∆n decreases. For example, for σ
with complete observations, the mean estimated value is 0.886 when n = 100,
∆n = 0.1 and 0.714 when n = 1000, ∆n = 0.01, to be compared to the true
value 0.7. For γ with complete observations, the mean estimated values is
0.638 when n = 100, ∆n = 0.1 and 0.522 when n = 1000, ∆n = 0.01, to be
compared to the true value 0.5. Estimators obtained from partial observa-
tions have greater bias than those obtained from complete observations. For
example, when n = 100, ∆n = 0.1, for σ with complete observations, the
mean estimated value for σ is 0.886 with complete observations and 1.012
with partial observations, to be compared to the true value 0.7.
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7. Discussion

We consider two cases of observations (partial and complete) of a hypoelliptic
two-dimensional diffusion, with non-autonomous equations. The contrast
estimators are based on Euler approximations of the second coordinate. We
prove their consistency and give their asymptotic distribution. The case of
complete observations leads to efficient estimator. On the contrary, in the
case of partial observations, our estimator is not efficient. This extends the
results of [8] to non-autonomous diffusion.
We compare our estimators to [15]’s estimator. [15] limit their study to
linear drift and constant diffusion coefficient. Their estimator is based on a
hybrid Gibbs sampler in a Bayesian framework. Their algorithm may be time
consuming. Our estimator has the advantage to be simple to compute. For
example, on the three examples considered in the simulation study, which
are the same than those handled by [15], our estimators are explicit and thus
computed in less than one second.
Only second-order hypoelliptic systems have been considered in this paper.
The estimation method proposed by [15] works for larger order. The exten-
sion of our approach to these higher order hypoelliptic systems would require
higher order approximation schemes, as Runge Kutta schemes.
Although Model (1) involves a function g in the first coordinate, we reduce
to the case dYt = Xt for the definition of the contrast functions as explained
in Section 2. Our estimation procedure could be used to estimate parameters
of function g. Numerical study of such models would be explored in future
works. This could have great usefulness to consider more complex models
and real data.

Appendix A. Proofs

Proposition A of [7] can be extended to drift and volatility depending both
on y and x:

Proposition 5. Let f ∈ C1. If ∃c,∀y, x such that |f ′y(y, x)| + |f ′x(y, x)| ≤
c(1 + |y|+ |x|) then, for all integer k ≥ 1, we have

E

(
sup

t∈[i∆n,(i+1)∆n[
|f(Yt, Xt)− f(Yi∆n , Xi∆n)|k |Gni

)
≤ c∆k/2

n (1+ |Yi∆n |k+ |Xi∆n |k)

28



Proof. With start with f(y, x) = x. Let δi,n = supt∈[i∆n,(i+1)∆n[ |Xt −Xi∆n|.
Using the Burkholder inequality, we get

E(δki,n|Gni ) ≤ cE

(∫ (i+1)∆n

i∆n

|b(Yt, Xt)|dt

)k

|Gni


+ cE

(∫ (i+1)∆n

i∆n

|a2(Yt, Xt)|dt

)k/2

|Gni


Using Assumption (A2), we get

E(δki,n|Gni ) ≤ c∆k
nE

[
sup

t∈[i∆n,(i+1)∆n[

|bk(Yt, Xt)||Gni

]

+ c∆k/2
n E

[
sup

t∈[i∆n,(i+1)∆n[

|ak(Yt, Xt)||Gni

]
+ c∆k/2

n (1 + |Yi∆n|k + |Xi∆n|k)

Now for a general f , we study f(Yt, Xt) − f(Yi∆n , Xi∆n) = f(Yt, Xt) −
f(Yi∆n , Xt) + f(Yi∆n , Xt)− f(Yi∆n , Xi∆n). We have

E

(
sup

t∈[i∆n,(i+1)∆n[

|f(Yt, Xt)− f(Yi∆n , Xi∆n)|k |Gni

)
≤

2k−1E

(
sup

t∈[i∆n,(i+1)∆n[

|f(Yt, Xt)− f(Yi∆n , Xt)|k |Gni

)

+2k−1E

(
sup

t∈[i∆n,(i+1)∆n[

|f(Yi∆n , Xt)− f(Yi∆n , Xi∆n)|k |Gni

)

We first study f(Yt, Xt)− f(Yi∆n , Xt). Burkholder inequality yields

E( sup
t∈[i∆n,(i+1)∆n[

|f(Yt, Xt)− f(Yi∆n , Xt)|k |Gni ) ≤ c∆k/2
n (1 + |Yi∆n |k + |Xi∆n |k)

We then study f(Yi∆n , Xt)− f(Yi∆n , Xi∆n). Burkholder inequality yields the
result. �
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Proof of Proposition 1. We have

X(i+1)∆n −Xi∆n −∆nb(Yi∆n , Xi∆n) = a(Yi∆n , Xi∆n)ηi,n + αin + βin

where ηi,n =
∫ (i+1)∆n

i∆n
dBs, αi,n =

∫ (i+1)∆n

i∆n
(a(Ys, Xs)− a(Yi∆n , Xi∆n))dBs and

βi,n =
∫ (i+1)∆n

i∆n
(b(Ys, Xs) − b(Yi∆n , Xi∆n))ds. Properties of ηi,n are directly

deduced from properties of the Brownian motion. Let εCi,n = αi,n + βi,n.

Assumptions (A1)-(A2) lead to |E(βi,n|Gni )| ≤ c∆
3/2
n (1 + |Yi∆n| + |Xi∆n|).

Proposition 5 provides E(|βi,n|k|Gni ) ≤ c∆
k/2
n (1 + |Yi∆n|k + |Xi∆n|k) for k ≥ 2.

Burkholder inequality gives E(|αi,n|k|Gni ) ≤ c∆k
n(1 + |Yi∆n|k + |Xi∆n|k) for

k ≥ 2. �

Proof of Proposition 2. We have Y i,n−Xi∆n = 1
∆n

∫ (i+1)∆n

i∆n
(Xv−Xi∆n)dv and

Xv − Xi∆n =
∫ v
i∆n

b(Ys, Xs)ds +
∫ v
i∆n

a(Ys, Xs)dBs. By the Fubini theorem,

we get Y i,n−Xi∆n = ∆
1/2
n a(Yi∆n , Xi∆n)ξ′i,n + ei,n where ei,n = αi,n + βi,n and

αi,n =
1

∆n

∫ (i+1)∆n

i∆n

(a(Yv, Xv)− a(Yi∆n , Xi∆n)) ((i+ 1)∆n − v)dBv

βi,n =
1

∆n

∫ (i+1)∆n

i∆n

∫ v

i∆n

b(Ys, Xs)dsdv

By Assumption (A1), we get |βi,n| ≤ c∆n(1 + sups∈[i∆n,(i+1)∆n[(|Ys|+ |Xs|)).
As E(αi,n|Gni ) = 0, we get |E(ei,n|Gni ) ≤ c∆n(1+ |Xi∆n|+ |Yi∆n|). By assump-
tion (A2), for all k ≥ 0, we get E

(
|βi,n|k|Gni

)
≤ c∆k

n(1 + |Yi∆n|k + |Xi∆n |k).
For k ≥ 2, applying the Burkholder-Davis-Gundy and the Jensen inequalities
yields:

E
(∣∣αki,n∣∣ |Gni ) ≤ c

∫ (i+1)∆n

i∆n

E
(
|a(Ys, Xs)− a(Yi∆n , Xi∆n)|k|Gni

)
ds

By proposition 5 and assumption (A1), we get E
(∣∣αki,n∣∣ |) ≤ c∆

k/2+1
n (1 +

|Yi∆n|k + |Xi∆n|k). Finally, we get |E(e2
i,n|Gni ) ≤ c∆2

n(1 + |Xi∆n|2 + |Yi∆n|2).
Using Proposition 5, we have

E

(
sup

s∈[i∆n,(i+1)∆n[

|Xs −Xi∆n|k|Gni

)
≤ ∆k/2

n (1 + |Yi∆n|k + |Xi∆n|k)
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thus we directly deduce

E
(∣∣Y i,n −Xi∆n

∣∣k |Gni ) = E

∣∣∣∣∣ 1

∆n

∫ (i+1)∆n

i∆n

(Xs −Xi∆n)ds

∣∣∣∣∣
k

|Gni


≤ ∆k/2

n (1 + |Yi∆n|k + |Xi∆n|k)

�

Proof of Proposition 3. We have

Y i+1,n−Y i,n =
1

∆n

∫ (i+1)∆n

i∆n

∫ s+∆n

s
a(Yv, Xv)dBvds︸ ︷︷ ︸

Ai

+
1

∆n

∫ (i+1)∆n

i∆n

∫ s+∆n

s
b(Yv, Xv)dvds︸ ︷︷ ︸

Bi

By Fubini theorem, we have

Ai =

∫ (i+1)∆n

i∆n

a(Yv, Xv)(v− i∆n)dBv +

∫ (i+2)∆n

(i+1)∆n

a(Yv, Xv)((i+2)∆n−v)dBv

Bi =

∫ (i+1)∆n

i∆n

b(Yv, Xv)(v − i∆n)dv +

∫ (i+2)∆n

(i+1)∆n

b(Yv, Xv)((i+ 2)∆n − v)dv

We can rewrite Ai as Ai = a(Yi∆n , Xi∆n)∆
3/2
n (ξi,n + ξ′i+1,n) + ai,n + a′i+1,n

where ai,n =
∫ (i+1)∆n

i∆n
(a(Yv, Xv)− a(Yi∆n , Xi∆n)) (v − i∆n)dBv and a′i+1,n =∫ (i+2)∆n

(i+1)∆n
(a(Yv, Xv)− a(Yi∆n , Xi∆n)) ((i+ 2)∆n − v)dBv. Similarly,

Bi = b(Yi∆n , Xi∆n)∆2
n + bi,n + b′i+1,n

where bi,n =
∫ (i+1)∆n

i∆n

(
b(Yv, Xv)− b(Yi∆n , Y i,n)

)
(v − i∆n)dBv and b′i+1,n =∫ (i+2)∆n

(i+1)∆n

(
b(Yv, Xv)− b(Yi∆n , Y i,n)

)
((i+ 2)∆n− v)dBv. Therefore, this yields

Y i+1,n − Y i,n −∆nb(Yi∆n , Y i,n) = a(Yi∆n , Xi∆n)∆1/2
n (ξi,n + ξ′i+1,n) + εPi,n

with εPi,n =
ai,n
∆n

+
a′i+1,n

∆n
+

bi,n
∆n

+
b′i+1,n

∆n
.
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◦ Let us prove |E(εPi,n|Gni )| ≤ c∆2
n(1 + |X(i+1)∆n|3 + |Y(i+1)∆n|3). We have

E(ai,n|Gni ) = E(a′i+1,n|Gni ) = 0 and

E
(
bi,n
∆n

|Gni
)

=
1

∆n

∫ (i+1)∆n

i∆n

(v − i∆n)E(b(Yv, Xv)− b(Yi∆n , Xi∆n)|Gni )dv

+
1

∆n

∫ (i+1)∆n

i∆n

(v − i∆n)E(b(Yi∆n , Xi∆n)− b(Yi∆n , Y i,n)|Gni )dv

By Itô’s formula, assumptions (A1)-(A2) and Proposition 5, we get

sup
v∈[i∆n,(i+1)∆n[

|E (b(Yv, Xv)− b(Yi∆n , Xi∆n)|Gni )| ≤ ∆nc(1 + |Yi∆n |2 + |Xi∆n |2)

By Taylor’s formula of order two, there exists Z ∈ (Y i,n, Xi∆n) such that

b(Yi∆n , Y i,n)−b(Yi∆n , Xi∆n) = b′x(Yi∆n , Xi∆n)(Y i,n−Xi∆n)+
1
2
b′′x2(Yi∆n , Z)(Y i,n−Xi∆n)2

Using the Cauchy Schwartz inequality, we get∣∣E (b(Yi∆n , Y i,n)− b(Yi∆n , Xi∆n)|Gni
)∣∣ ≤ c∆n(1 + |Yi∆n|2 + |Xi∆n|2)|

Hence

sup
v∈[i∆n,(i+1)∆n[

∣∣E (b(Yv, Xv)− b(Yi∆n , Y i,n)|Gni
)∣∣ ≤ ∆nc(1 + |Yi∆n|2 + |Xi∆n|2)

and
∣∣∣E( bi,n∆n

|Gni
)∣∣∣ ≤ ∆2

nc(1 + |Yi∆n|2 + |Xi∆n|2). Similarly,
∣∣∣E( b′i+1,n

∆n
|Gni
)∣∣∣ ≤

∆2
nc(1 + |Y(i+1)∆n|2 + |X(i+1)∆n|2) and the bound on |E(εPi,n|Gni )| is proved.

◦ We now bound |E((εPi,n)2|Gni )| and |E((εPi,n)4|Gni )|. Using the Cauchy-

Schwarz inequality, it is sufficient to bound |E((εPi,n)4|Gni )|. By assumption

(A2) and Proposition 5, we obtain E
(∣∣∣ bi,n∆n

∣∣∣4 |Gni ) ≤ ∆4
nc(1+|Yi∆n|4+|Xi∆n|4)

and similarly E
(∣∣∣ b′i+1,n

∆n

∣∣∣4 |Gni ) ≤ ∆4
nc(1 + |Y(i+1)∆n|4 + |X(i+1)∆n|4). We have

to bound E
(∣∣∣ai,n∆n

∣∣∣4 |Gni ). Using the Burkholder-Davis-Gundy inequality,
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proposition 5 and assumption (A2), we get

E
(∣∣∣ai,n∆n

∣∣∣4 |Gni )
≤ c

∆4
n
E
(∫ (i+1)∆n

i∆n
(a(Yv, Xv)− a(Yi∆n , Xi∆n))4 dv

∫ (i+1)∆n

i∆n

(
(v − i∆n)4dv

)
|Gni
)

≤ c∆4
n(1 + |Yi∆n |4 + |Xi∆n |4)

Similarly, we obtain E
(∣∣∣a′i+1,n

∆n

∣∣∣4 |Gni ) ≤ c∆4
n(1 + |Y 4

(i+1)∆n
+ |X(i+1)∆n|4).

This completes the proof for the bound of |E(ε4
i,n|Gni )|.

◦ We now proof |E(εi,nUi,n|Gni ) ≤ c∆
3/2
n (1 + |Xi∆n|2 + |Yi∆n|2). From the

definitions of (ai,n, a
′
i+1,n, bi,n, b

′
i+1,n), we can prove the following inequalities

|E(ai,nξi,n|Gni )| ≤ ∆5/2
n c(1 + |Yi∆n|+ |Xi∆n|), |E(a′i+1,nξi,n|Gni )| = 0

|E(bi,nξi,n|Gni )| ≤ ∆5/2
n c(1 + |Yi∆n|+ |Xi∆n|),

|E(b′i+1,nξi,n|Gni )| ≤ ∆5/2
n c(1 + |Y(i+1)∆n|+ |X(i+1)∆n|)

Hence the results for |E(εi,nUi,n|Gni ).
◦ Proposition 5 yields

E

(
sup

s∈[i∆n,(i+2)∆n[

|Xs −Xi∆n|k
)
≤ c∆k/2

n (1 + |Y(i+1)∆n|k + |X(i+1)∆n|k)

which provides

E
(∣∣Y i+1,n − Y i,n

∣∣k |Gni ) ≤ c∆k/2
n (1 + |Y(i+1)∆n|k + |X(i+1)∆n|k)

�

Proof of Proposition 4. The first assertion in the complete observations case
is based on the convergence of the Euler scheme [1]. For partial observations
case, Taylor’s expansion ensures that there exists s ∈ (Y i,n, Xi∆n) such that

f(Yi∆n , Y i,n, θ) = f(Yi∆n , Xi∆n , θ) + f ′x(Yi∆n , Xs, θ)(Y i,n −Xi∆n).

Thus we deduce that E(sup |f(Yi∆n , Y i,n, θ)−f(Yi∆n , Xi∆n , θ)||Gni ) ≤ c∆
1/2
n (1+

|Xi∆n |+ |Yi∆n|). Hence, the L1 convergence of sup 1
n

∑n
i=0 |f(Yi∆n , Y i,n, θ)−
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f(Yi∆n , Xi∆n , θ)| is proved. The results yields by applying Proposition 2. �

Proof of Theorem 3. The scheme of the proof is the same for both com-
plete and partial observations cases, but the arguments are simpler for the
complete observations case. We only detail the second case. Set ĨPn (f) =

1
n∆n

∑n−2
i=0 f(Y(i−1)∆n , Y i−1,n, θ)

(
Y i+1,n − Y i −∆nb(Yi∆n , Y i,n)

)
. We can write

I
P
n (f) = ĨPn (f)+

1
n∆n

n−1∑
i=1

∆nf(Y(i−1)∆n
, Y i−1,n, θ)(b(Yi∆n , Y i)−b(Y(i−1)∆n

, Y i−1,n))

we first study the convergence of ĨPn (f) and then we deduce the result for

I
P

n (f).
We have ĨPn (f) = 1

n∆n

∑n−1
i=0 Zi,n(θ) with Zi,n(θ) = f(Y(i−1)∆n , Y i−1,n, θ)(

Y i+1,n − Y i −∆nb(Yi∆n , Y i,n)
)
. The random variable Y i,n is Gni+1-measurable

and Zi,n(θ) is Gni+2-measurable. We split ĨPn (f) into the sum of three terms

ĨPn (f) =
1

n∆n

(
n−1∑
i=0

Z3i,n(θ) +
n−1∑
i=0

Z3i+1,n(θ) +
n−1∑
i=0

Z3i+2,n(θ)

)

To prove (13), it is enough to show that 1
n∆n

∑n−1
i=0 Z3i,n(θ)

P−−−→
n→∞

0 uniformly

in θ, in probability (the proof for the convergence of 1
n∆n

∑n−1
i=0 Z3i+1,n(θ)

and 1
n∆n

∑n−1
i=0 Z3i+2,n(θ) is analogous). Using Proposition 3, we set Zi,n(θ) =

z
(2)
i,n (θ) + z

(2)
i,n (θ) with

z
(1)
i,n (θ) = f(Y(i−1)∆n , Y i−1,n, θ)∆

1/2
n a(Yi∆n , Xi∆n)Ui,n

z
(2)
i,n (θ) = f(Y(i−1)∆n , Y i−1,n, θ)ε

P
i,n

To prove 1
n∆n

∑n−1
i=0 z

(j)
3i,n(θ)

P−−−→
n→∞

0 for j = 1, 2, we use lemma A2 of [8]. It

is thus enough to prove

1

n∆n

n−1∑
i=0

E(z
(j)
3i,n(θ)|Gn3i)

P−−−→
n→∞

0

1

n2∆2
n

n−1∑
i=0

E((z
(j)
3i,n(θ))2|Gn3i)

P−−−→
n→∞

0
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As Y 3i−1,n is Gn3i measurable and E(U3i,n|Gn3i) = 0, we have E(z
(1)
i,n (θ)|Gn3i) = 0.

Using E(U2
3i,n|Gn3i) = 2/6, we get

E((z
(1)
3i,n(θ))2|Gn3i) =

2

6
∆nf

2(Y(3i−1)∆n , Y 3i−1,n, θ)a
2(Y3i∆n , X3i∆n)

Assumptions (A1)-(A2) yields 1
n2∆2

n

∑n−1
i=0 E((z

(1)
3i,n(θ))2|Gn3i)

P−−−→
n→∞

0. For

z
(2)
3i,n(θ), using proposition 3, we get E(z

(1)
3i,n(θ)|Gn3i) ≤ cf(Y(3i−1)∆n , Y 3i−1,n, θ)∆

2
n(1+

|Y(3i−1)∆n |3 + |X(3i−1)∆n|3) and thus 1
n∆n

∑n−1
i=0 E(z

(2)
3i,n(θ)|Gn3i)

P−−−→
n→∞

0.

Similarly, we have E((z
(2)
3i,n(θ))2|Gn3i) ≤ cf 2(Y3i∆n , Y 3i,n, θ)∆

2
n(1+|Y3i∆n|4+

|X3i∆n|4) and thus 1
n2∆2

n

∑n−1
i=0 E((z

(2)
3i,n(θ))2|Gn3i)

P−−−→
n→∞

0. This gives the con-

vergence in probability of ĨPn (f) for all θ.
To obtain uniformity with respect to θ, we use the proposition 51 of [8]. It

is enough to show supn∈N E
(

supθ |∂θĨPn (f)|
)
<∞. We have

∂θĨ
P
n (f) =

1

n∆n

n−1∑
i=1

∂θf(Y(i−1)∆n , Y i−1,n, θ)
(
∆1/2
n a(Yi∆n , Xi∆n)Ui,n + εi,n

)
.

As E(Ui, n|Gni ) = 0 and E(εi,n|Gni ) ≤ c∆2
n(1 + |Xi∆n|3 + |Yi∆n|3), we have

E
(
∂θfθ(Y(i−1)∆n , Y i−1,n)

(
∆

1/2
n a(Yi∆n , Xi∆n)Ui,n + εi,n

)
|Gni
)
≤ c∆n(1+|Xi∆n|3+

|Yi∆n|3). With assumption (A2), it implies

E(∂θf(Y(i−1)∆n , Y i−1,n, θ)
(
∆1/2
n a(Yi∆n , Xi∆n)Ui,n + εi,n

)
|Gni ) ≤ c∆n.

Hence, supn∈N E
(

supθ |∂ĨPn (f)|
)
< ∞ and uniformity in θ follows. We can

now deduce the result for I
P

n (f). Taylor’s formula gives the existence of s1

and s2 such that

b(Yi∆n , Y i)− b(Y(i−1)∆n , Y i−1,n) = b′y(Ys1 , Y i)(Yi∆n − Y(i−1)∆n)

+b′x(Y(i−1)∆n , Xs2)(Y i − Y i−1,n)
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Assumptions (A1)-(A2), Cauchy-Schwarz inequality and Yi∆n − Y(i−1)∆n =

∆nY i−1,n imply

E(
∣∣b(Yi∆n , Y i)− b(Y(i−1)∆n

, Y i−1,n)
∣∣ |Gni )

≤ c
(
E(
∣∣∆nY i−1,n

∣∣2 |Gni )1/2 + E(
∣∣Y i − Y i−1,n

∣∣2 |Gni )1/2
)

(1 + |Xi∆n |+ |Yi∆n |)

≤ c∆1/2
n (1 + |Xi∆n |+ |Yi∆n |)

This implies

1

n∆n

n−1∑
i=1

∆nf(Y(i−1)∆n , Y i−1,n, θ)(b(Yi∆n , Y i)− b(Y(i−1)∆n , Y i−1,n))
P−−−→

n→∞
0.

Hence the result. �

Proof of Theorem 4. We only detail the partial observations case. We set

Wi,n(θ) = f(Y(i−1)∆n , Y i−1,n, θ)(Y i+1,n−Y i,n)2 such thatQ
P

n (f) = 1
n∆n

∑
Wi,n(θ).

We split the sum into the sum of three terms W3i,n, W3i+1,n and W3i+2,n.
Given this partition, it is enough to show that

(n∆n)−1

n−1∑
i=1

W3i,n(θ)
P−−−→

n→∞

2

3
ν0(f(·, ·, θ)a2(·, ·)).

As the expression of Q
P

n is slightly different from [8], we are able to write
W3i,n(θ) as the sum of only three terms (instead four). Using Taylor’s for-
mula, there exists Xs ∈ (Y 3i,n, X3i∆n) such that we can write W3i,n(θ) =

w
(1)
3i,n(θ) + w

(2)
3i,n(θ) + w

(3)
3i,n(θ) with

w
(1)
3i,n(θ) = ∆na

2(Y3i∆n , X3i∆n)U2
3i,nf(Y(3i−1)∆n

, Y 3i−1,n, θ)

w
(2)
3i,n(θ) = 2∆1/2

n U3i,na(Y3i∆n , X3i∆n)f(Y(3i−1)∆n
, Y 3i−1,n, θ)(ε3i,n

+∆nb(Y3i∆n , X3i∆n) + ∆nb
′
x(Y3i∆n , Xs)(Y 3i,n −X3i∆n))

w
(3)
3i,n(θ) = (ε3i,n + ∆nb(Y3i∆n , X3i∆n)

+∆nb
′
x(Y3i∆n , Xs)(Y 3i,n −X3i∆n))2f(Y(3i−1)∆n

, Y 3i−1,n, θ)

We set Q
(Pj)

n (θ) = (n∆n)−1
∑n−1

i=1 w
(j)
3i,n(θ), for j = 1, 2, 3. We start by

studying Q
(P1)

n (θ). Using E(U2
3i,n|Gn3i) = 2/3 and E(U4

3i,n|Gn3i) = 4/3 and the
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fact that Y 3i−1,n is Gn3i-measurable, we obtain:

E(w
(1)
3i (θ)|Gn3i) =

2∆n

3
a2(Y3i∆n , X3i∆n)f(Y(3i−1)∆n , Y 3i−1,n, θ)

E(
(
w

(1)
3i (θ)

)2

|Gn3i) =
4∆2

n

3
a4(Y3i∆n , X3i∆n)f(2Y(3i−1)∆n , Y 3i−1,n, θ)

Thus, applying lemma A1 of [8], we get

(n∆n)−1

n−1∑
i=0

E(w
(1)
3i (θ)|Gn3i)

P−−−→
n→∞

2

3
ν0(f(·, ·, θ)a2(·, ·))

and by assumption (A2), we get E
∣∣∣∣E(
(
w

(1)
3i (θ)

)2

|Gn3i)
∣∣∣∣ ≤ c∆2

n and therefore,

(n∆n)−1
∑n−1

i=0 E(
(
w

(1)
3i (θ)

)2

|Gn3i)
P−−−→

n→∞
0. By lemma A2 of [8], we deduce

Q
(P1)

n (θ)
P−−−→

n→∞
2
3
ν0(f(·, ·, θ)a2(·, ·)) in probability. Using proposition 3 and

lemma A2 of [8], we easily prove that Q
(P2)

n (θ)
P−−−→

n→∞
0 and Q

(P3)

n (θ)
P−−−→

n→∞
0.

The uniformity is obtained by bounding

sup
n∈N

(n∆n)−1

n−1∑
i=0

E
(

(Y i+1,n − Y i,n)2 sup
θ

∣∣∂θf(Yi∆n , Y i,n, θ)
∣∣) <∞

due to proposition 51 of [8]. This is easily obtained using proposition 2 and
assumption (A2). �

Proof of Theorem 5. We only detail the partial observations case. We have

√
n∆nI

P

n (f) =
√
n∆nĨ

P
n (f)

+ 1√
n∆n

∑n−1
i=2 f(Y(i−1)∆n , Y i−1,n, θ)∆n(b(Yi∆n , Y i)− b(Y(i−1)∆n , Y i−1,n)).

We first study the distribution convergence of
√
n∆nĨ

P
n (f) then we deduce

the result for
√
n∆nI

P

n (f). Using the same notations as in Theorem 4, we

set
√
n∆nĨ

P
n (f) = N

(1)
n + N

(2)
n with N

(1)
n = 1√

n

∑n−1
i=1 f(Y(i−1)∆n , Y (i−1)∆n , θ)

a(Yi∆n , Xi∆n)(ξi,n + ξ′i+1,n) and N
(2)
n = 1√

n∆n

∑n−1
i=1 f(Y(i−1)∆n , Y (i−1)∆n , θ)εin.

First, we study N
(1)
n . In order to use a martingale central limit theorem, we
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reorder the terms

N (1)
n =

1√
n
f(Y0, Y 0, θ)a(Y∆n , X∆n)ξ0,n +

1√
n

n−1∑
i=2

s
(1)
in (A.1)

+
1√
n
f(Y(n−2)∆n , Y (n−2)∆n , θ)a(Y(n−1)∆n , X(n−1)∆n)ξ′n,n

with

s
(1)
in = f(Y(i−1)∆n , Y (i−1)∆n , θ)a(Yi∆n , Xi∆n)ξi,n

+f(Y(i−2)∆n , Y (i−2)∆n , θ)a(Y(i−1)∆n , X(i−1)∆n)ξ′i,n).

We have E(s
(1)
in |Gni ) = 0 and we compute the conditional variance E[(s

(1)
in )2|Gni ]:

E[(s(1)
in )2|Gni ] = 1

3{f
2(Y(i−1)∆n

, Y (i−1)∆n
, θ)a2(Yi∆n , Xi∆n)

+f(Y(i−1)∆n
, Y (i−1)∆n

, θ)f(Y(i−2)∆n
, Y (i−2)∆n

, θ)a(Yi∆n , Xi∆n)a(Y(i−1)∆n
, X(i−1)∆n

)
+f2(Y(i−2)∆n

, Y (i−2)∆n
, θ)a2(Y(i−1)∆n

, X(i−1)∆n
)}.

We want to prove that 1
n

∑n−1
i=2 E[(s

(1)
in )2|Gni ]

P−−−→
n→∞

ν0(f 2a2). We first start

with the term 1
n

∑n−1
i=2 f

2(Y(i−1)∆n , Y (i−1)∆n , θ)a
2(Yi∆n , Xi∆n). By the ergodic

theorem, we have

1

n

n−1∑
i=2

f 2(Y(i−1)∆n , X(i−1)∆n , θ)a
2(Yi∆n , Xi∆n)

P−−−→
n→∞

ν0(f 2a2).

A Taylor development and the Cauchy-Schwarz inequality provide the con-
vergence in L1 towards 0 of supθ

1
n

∑n−1
i=2 |f 2(Y(i−1)∆n , Y (i−1)∆n , θ)a

2(Yi∆n , Xi∆n)−
f 2(Y(i−1)∆n , X(i−1)∆n , θ)a

2(Yi∆n , Xi∆n)| using assumptions (A1)-(A2). The
terms f(Y(i−1)∆n , Y (i−1)∆n , θ)f(Y(i−2)∆n , Y (i−2)∆n , θ)a(Yi∆n , Xi∆n)

a(Y(i−1)∆n , X(i−1)∆n) and f 2(Y(i−2)∆n , Y (i−2)∆n , θ)a
2(Y(i−1)∆n , X(i−1)∆n) are

similar.

We easily bound E[(s
(1)
in )4|Gni ] and show that 1

n2

∑n−1
i=2 E[(s

(1)
in )4|Gni ]

L1

−−−→
n→∞

0.

By the martingale central limit theorem, we deduce that 1√
n

∑n−1
i=2 s

(1)
in

D−−−→
n→∞

N (0, ν0(f 2a2)). By (A.1), we deduce N
(1)
n

D−−−→
n→∞

N (0, ν0(f 2a2)).
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We now have to prove the convergence to 0 of N
(2)
n . Using proposition 3, we

easily have the convergence to 0 of 1√
n∆n

∑n−1
i=1 E[f(Y(i−1)∆n , Y (i−1)∆n , θ)εin|Gni ]

in probability. Similarly, we obtain that 1
n∆n

∑n−1
i=1 E[f 2(Y(i−1)∆n , Y (i−1)∆n , θ)ε

2
in|Gni ]

converges to 0 in probability. Thus, using proposition 5, we get N
(2)
n

P−−−→
n→∞

0.

This implies

1

n∆n

n−1∑
i=1

∆nf(Y(i−1)∆n , Y i−1,n, θ)(b(Yi∆n , Y i)− b(Y(i−1)∆n , Y i−1,n))
P−−−→

n→∞
0.

This gives the convergence in distribution of
√
n∆nĨ

P
n (f). To deduce the

results for
√
n∆nI

P

n (f), we remark that

b(Yi∆n , Y i)− b(Y(i−1)∆n , Y i−1,n) = b(Yi∆n , Y i)− b(Y(i−1)∆n , Y i)

+ b(Y(i−1)∆n , Y i)− b(Y(i−1)∆n , Y i−1,n).

Taylor’s development gives

E[|b(Yi∆n , Y i,n)− b(Yi∆n , Y i−1,n)|Gni ] ≤ c
√

∆n(1 + |Xi∆n|+ |Yi∆n|).

Using b(Yi∆n , Y i)−b(Y(i−1)∆n , Y i) =
∫ i∆n

(i−1)∆n
b′y(Ys, Y i−1,n)(Xi+

∫ s
(i−1)∆n

b(Vu, Xu)du+∫ s
(i−1)∆n

a(Vu, Xu)dBu)ds and the Burkholder inequality, this yields

E[|b(Yi∆n , Y i)− b(Y(i−1)∆n , Y i)| |Gni ] ≤ c
√

∆n(1 + |Xi∆n|+ |Yi∆n|).

Using assumptions (A1)-(A4), we deduce the convergence to 0 in probability
of 1√

n∆n

∑n−1
i=2 f(Y(i−1)∆n , Y i−1,n, θ)∆n(b(Yi∆n , Y i) − b(Y(i−1)∆n , Y i−1,n)). We

deduce that
√
n∆nI

P

n (f)−
√
n∆nĨ

P
n (f) = oP(1). �

Proof of Theorem 6. We only detail the partial observations case. We use

the same notations as in Theorem 4. Set Mn(f) =
√
n
(
Q
P

n (f)− 2
3
νn(fa2)

)
and β(y, x) = a2(y, x)f(y, x, θ). We have

Mn(f) =
√
n
[

1
n∆n

∑n−1
i=2

(
∆nf(Yi∆n , Y i, θ)a

2(Yi∆n , Xi∆n)U2
i

+f(Yi∆n , Y i, θ)(ε
P
i,n + ∆nb(Yi∆n , Y i))

2 + 2∆
1/2
n f(Yi∆n , Y i, θ)a(Yi∆n , Xi∆n)Ui(ε

P
i,n

+∆nb(Yi∆n , Y i))
)
− 2

3n

∑n−1
i=2 f(Yi∆n , Y i, θ)a

2(Yi∆n , Y i)
]
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By Taylor expansion, there exists Xv ∈ (Xi∆n , Y i,n) such that

Mn(f) =
√
n
[

1
n∆n

∑n−1
i=2

(
∆nβ(Yi∆n , Xi∆n)(U2

i − 2
3
) + f(Yi∆n , Xi∆n , θ)(ε

P
i,n

+∆nb(Yi∆n , Y i))
2 + 2∆

1/2
n f(Yi∆n , Xi∆n , θ)a(Yi∆n , Xi∆n)Ui(ε

P
i,n

+ ∆nb(Yi∆n , Y i))(Y i+1,n − Y i,n)2(Y i,n −Xi∆n)f ′x(Yi∆n , Xv, θ)
)

− 2
3n

∑n−1
i=2 (β(Yi∆n , Y i)− β(Yi∆n , Xi∆n))

]
Thus Mn(f) =

∑5
l=1 M

(l)

n with

M
(1)

n =
1√
n

n−1∑
i=2

β(Yi∆n , Xi∆n)(U2
i −

2

3
)

M
(2)

n =
1√
n∆n

n−1∑
i=2

2f(Yi∆n , Xi∆n , θ)a(Yi∆n , Xi∆n)Ui(ε
P
i,n + ∆nb(Yi∆n , Y i))

M
(3)

n =
1√
n∆n

n−1∑
i=2

f(Yi∆n , Xi∆n , θ)(ε
P
i,n + ∆nb(Yi∆n , Y i))

2

M
(4)

n =
1√
n∆n

n−1∑
i=2

(Y i+1,n − Y i,n)2(Y i,n −Xi∆n)f ′x(Yi∆n , Xv, θ)

M
(5)

n = 2
3
√
n

∑n−1
i=2 (β(Yi∆n , Y i)− β(Yi∆n , Xi∆n))

We first study the convergence of M
(1)

n . Reordering terms to obtain a trian-
gular array of martingale increments, we get

M
(1)

n =
1√
n

{
n−1∑
i=2

sin +

(
ξ2

0,n −
1

3

)
β(Y0, X0) + (ξ

′2
n,n −

1

3
)β(Y(n−1)∆n , X(n−1)∆n)

+ 2ξn−1,nξ
′
n,nβ(Y(n−1)∆n , X(n−1)∆n)

}
where sin =

(
ξ2
i,n − 1

3

)
β(Yi∆n , Xi∆n) +

(
ξ
′2
i,n − 1

3

)
β(Y(i−1)∆n , X(i−1)∆n)

+2ξi−1,nξ
′
i,nβ(Y(i−1)∆n , X(i−1)∆n). But, sin is Gni+1 measurable and cen-

tered conditionally to Gni . Furthermore, using the properties of (ξi,n, ξ
′
i,n), we

deduce

E(s2
in|Gni ) = 2

9
β2(Yi∆n , Xi∆n) + 2

9
β2(Y(i−1)∆n , X(i−1)∆n)

+4
3
ξ2
i−1,nβ

2(Y(i−1)∆n , X(i−1)∆n) + 1
9
β(Y(i−1)∆n , X(i−1)∆n)β(Yi∆n , Xi∆n)
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To prove the convergence of M
(1)

n , it is sufficient to prove that

1

n

n−1∑
i=2

E
(
|s2
in| |Gni

) P−−−→
n→∞

ν0(β2) and
1

n2

n−1∑
i=2

E
(
|s4
in| |Gni

) P−−−→
n→∞

0

Indeed, applying theorem 3.2 in [9], we get 1√
n

∑n−1
i=2 sin

D−−−→
n→∞

N (0, ν0(β2))

and so doesM
(1)

n . By lemma A2 of [8], we have 1
n

∑n−1
i=2 ξ

2
i−1,nβ

2(Y(i−1)∆n , X(i−1)∆n)
P−−−→

n→∞
1/3ν0(β2).

Thus, we deduce 1
n

∑n−1
i=2 E (|s2

in||Gni )
P−−−→

n→∞
ν0(β2). The bound on β4

yields the convergence of 1
n2

∑n−1
i=2 E (|s4

in||Gni ).

We have to prove M
(l)

n
P−−−→

n→∞
0 for l = 2, . . . , 5. This holds true using

that n∆2
n → 0 and the hypothesis (A1) for M

(5)

n . �
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