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Abstract

We study a simple adaptive model in the framework of an N -player normal form game. The
model consists of a repeated game where the players only know their own strategy space and their
own payoff scored at each stage. The information about the other agents (actions and payoffs) is
unknown. In particular, we consider a variation of the procedure studied by Cominetti et al. [9]
where, in our case, each player is allowed to use the number of times she has played each action to
update her strategy. The resultant stochastic process is analyzed via the so-called ODE method
from stochastic approximation theory. We are interested in the convergence of the process to
rest points of a related continuous dynamics. Results concerning almost sure convergence and
convergence with positive probability are obtained and applied to a traffic game. Also, we provide
some examples where convergence occurs with probability zero. Finally, we verify that part of
the analysis holds when players are facing a random environment.

Keywords: Normal form games, Learning, Adaptive dynamics, Stochastic approximation
MSC2010 Subject classification: Primary: 91A26, 91A10 ; Secondary: 62L20, 93E35

1 Introduction

This paper studies an adaptive model for an N -player repeated game. We consider boundedly
rational players that adapt using simple behavioral rules based on past experiences.

The decision that a player can make at each stage hinges on the amount of information available.
Several approaches have been proposed depending on the information that agents can gather over
time. Fictitious play (see Brown [7], Fudenberg and Levine [14]) is one of the best studied proce-
dures. Players adapt their behavior by performing best responses to the opponent’s average past
play over time. In this case, each player needs to know her own payoff function and to receive
complete information about the other players’ moves. A less restrictive framework is when each
player is informed of all the possible payoffs that she could have received by using alternative moves.
The exponential procedure (Freund and Shapire [13]) is, among others, one example of this kind of
adaptive processes.
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We are interested in a less informative context. Players make no anticipation on the opponents’
behavior and we assume that they have no information on the structure of the game. This means
that agents have only their own space of actions and past realized payoffs to react to the environment.
We suppose that players are given a rule of behavior (a decision rule) which depends on a state
variable. The state variable is updated by a possibly time-dependent rule (an updating rule) based
on the history of play and current observations.

A widely studied model in this framework is the cumulative reinforcement learning procedure where
players conserve a vector perception (the state variable), in which each coordinate of the vector
represents how a move performs. The updating rule is defined by adding the payoff received to
the component of the previous vector perception corresponding to the move actually played, and
keeping the other components unaltered for the unused moves. The decision rule is given by the
normalization of this perception vector assuming that payoffs are positive. Several results for the
convergence (and nonconvergence) of players’ mixed actions have been obtained (see Beggs [1],
Börgers and Sarin [5], Laslier et al. [18], and a normalized version by Posch [22] for the 2-player
game framework and Erev and Roth [12] for experimental results). In Cominetti et al. [9] the
authors study a model in the same spirit mainly in the case of Logit rule decision (which allows
nonpositive payoffs) in the N -player case. Players update the perception vector by performing an
average between the new payoff received and the former perception. Conditions are given to ensure
the convergence to a Nash equilibrium of a perturbed version of the game. A similar model is
studied by Leslie and Collins [19], where results concerning 2-player games are obtained. Another
approach in this information framework is developed by Hart and Mas-Colell [16] where the analysis
focuses on the convergence of the empirical frequency of play instead of the long-term behavior of
the mixed strategy. Using techniques based on consistent procedures (see Hart and Mas-Colell [15]),
it is shown that, for all games, the set of correlated equilibria is attained.

We consider here a particular updating rule where players keep a perception vector that is updated,
on the coordinate corresponding to the strategy played, by computing the average between the
previous perception and the payoff received using the number of times that each strategy has been
played. The resultant process turns out to be a variation of the one studied by Cominetti et al. [9],
but in our case, players use more information on the history of play. Using the tools provided by the
stochastic approximation theory (see e.g., Benäım [3], Benveniste et al. [4], Kushner and Yin [17]),
the asymptotic behavior of the process can be analyzed by studying a related continuous dynamics.
We are interested in the case in which players use the Logit decison rule and our aim is to find
general conditions to have almost sure, or with positive probability, convergence to an attractor of
the associated ODE. This case is particularly interesting because the rest points of the ODE are
the Nash equilibria of a related game.

This paper is organized as follows. Section 2 describes the very basic aspects of the stochastic
approximation theory. Section 3 states precisely our model in the framework of an infinitely repeated
N -player normal form game. In Section 4, we restate our algorithm to make it fit in the set-up of the
stochastic approximation and we provide a general almost sure convergence result. In Section 5.1
we treat the case of the Logit rule in detail. We start by finding an explicit condition to ensure
almost sure convergence derived from Section 4. This condition demands the smoothing parameters
associated to the Logit rule to be sufficiently small. It is worth noting that, up to this point, we
proved that the same results obtained for the process studied by Cominetti et al. [9] hold in our
setting. Given this fact, we perform a comparison between these two processes in terms of the
path-wise rate of convergence. Later, under a weaker assumption, we study the convergence with
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positive probability to attractors. We apply this result to a particular traffic game on a simple
network (studied as an application in [9]) showing that a convergence with positive probability
property holds under a much weaker assumption than in the general case. Next, we provide some
examples where the convergence is lost. Finally, in Section 6, we prove that part of the analysis can
be recovered if players face random payoffs. For that purpose, we use some known techniques that,
to our knowledge, do not seem very exploited in the framework of learning in games.

2 Preliminaries

In this section, we revisit some basic aspects of the stochastic approximation theory following the
approach in Benäım [3]. The motivation is to study the following discrete process in R

d

zn+1 − zn = γn+1

(

H(zn) + Vn+1

)

, (2.1)

where (γn)n is a nonnegative step-size sequence, H : Rd → R
d is a continuous function and (Vn)n is

a (deterministic or random) noise. Let us denote by L(zn) the limit set of the sequence (zn)n, i.e.,
the set of points z such that liml→+∞ znl

= z for some sequence nl → +∞.

The connection between the asymptotic behavior of the discrete process (2.1) and the asymptotic
behavior of the continuous dynamics

ż = H(z) (2.2)

is obtained as follows. Given ε > 0, T > 0, a set Z ⊆ R
d and two points x, y ∈ Z, we say that there

is an (ε, T )-chain in Z between x and y if there exist k solutions of (2.2) {x1, . . . ,xk} and times
{t1, . . . , tk} greater than T such that

(1) xi([0, ti]) ⊆ Z for all i ∈ {1, . . . , k},
(2) ‖xi(ti)− xi+1(0)‖ < ε for all i ∈ {1, . . . , k − 1},
(3) ‖x1(0)− x‖ < ε and ‖xk(tk)− y‖ < ε.

Definition 2.1. A set D ⊆ R
d is Internally Chain Transitive (ICT) for the dynamics (2.2) if it is

compact and for all ε > 0, T > 0 and x, y ∈ D there exists an (ε, T )-chain in D between x and y.

This definition is derived from the notion of Internally Chain Recurrent sets introduced by Con-
ley [10]. Roughly speaking, on an ICT set, we can link any two points by a chain of solutions of the
dynamics (2.2) by allowing small perturbations. ICT sets are compact, invariant and attractor-free.
In Benäım [3] the following general theorem is proved.

Theorem 2.2. Consider the discrete process (2.1). Assume that H is a Lipschitz function and that

(a) the sequence (γn) is deterministic, γn ≥ 0,
∑

n γn = +∞ and γn → 0,

(b) sup
n∈N

‖zn‖ < +∞, and

(c) for any T > 0

lim
n→+∞

sup

{

∥

∥

∥

∥

∥

k−1
∑

i=n

γi+1Vi+1

∥

∥

∥

∥

∥

; k ∈ {n+ 1, . . . ,m(

n
∑

j=1

γj + T )}
}

= 0,
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where m(t) is the largest integer l such that t ≥
l
∑

j=1
γj. Then L(zn) is an ICT set for the dynamics

(2.2).

Remark 2.3. In the case where the noise (Vn)n in (2.1) is a martingale difference sequence with
respect to some filtration on a probability space, we say that (2.1) is a Robbins–Monro [23] algorithm.
In this framework if, for instance, supn E(‖Vn‖2) < +∞ and (γn)n ∈ l2(N) then assumption (c) in
Theorem 2.2 holds with probability one (see Benäım [3, Proposition 4.2]). Moreover this result is
still valid if the noise can be decomposed into a martingale difference process plus a random variable
that converges to zero almost surely.

3 The model

An N -player normal form game is introduced as follows. Let A = {1, 2, . . . , N} be the set of
players. For every i ∈ A let Si be the finite strategy set for player i and let the set ∆i = {z ∈
R
|Si|; zi ≥ 0,

∑

i z
i = 1} denote her mixed strategy set. S =

∏

i∈A Si is the set of strategy profiles
and ∆ =

∏

i∈A∆i is the set of mixed strategy profiles. We write as (s, s−i) ∈ S the strategy profile
where player i uses the strategy s ∈ Si and her opponents use the strategy profile s−i ∈ ∏j 6=i S

j

and we adopt the same notation when a mixed strategy profile is involved. The payoff function to
each player i ∈ A is denoted by Gi : S → R as well as its multilinear extension Gi : ∆ → R.

The game is repeated infinitely and we suppose that players are not informed about the structure of
the game, i.e., neither the number of players (or their strategies) nor the payoff functions are known.
At the stage n ∈ N, each player i selects a strategy sin ∈ Si using the mixed strategy σi

n ∈ ∆i.
Then, she gets her own payoff gin = Gi(sin, s

−i
n ) and this is the only information she receives.

For every n ∈ N and for each player i, we assume that the mixed strategy at stage n , σi
n ∈ ∆i,

is determined as a function of a previous perception vector xin−1 ∈ R
|Si|, i.e., σi

n = σi(xin−1) with

σi : R|Si| → ∆i. The state space for the perception vector profiles x = (x1, . . . , xN ) ∈∏i∈A R
|Si| is

denoted X. We also assume that, for every i ∈ A,

the function σi : R|Si| → ∆i is continuous, and

for all s ∈ Si and xi ∈ R
|Si|, σis(xi) > 0.

(A)

We refer to the function σ : X → ∆ with σ(x) = (σ1(x1), . . . , σN (xN )) as the decision rule of the
players.

At the end of the stage n, each player i uses the value gin and xin−1 to obtain the new perception
vector xin, and so on. The manner in which xn is updated is called the updating rule of the players.

Cominetti et al. [9] study the following updating rule

xisn+1 =

{

(

1− γn+1

)

xisn + γn+1g
i
n+1, if s = sin+1,

xisn , otherwise,
(3.1)

where we assume that γn = 1
n
(see Remark 4.3 for an explanation on this choice).

In this paper we consider a variation of (3.1). Players will use more information by taking into
account the number of times that their actions have been played. Explicitly, we define the adjusted
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process (AP) by

xisn+1 =







(

1− 1

θisn

)

xisn +
1

θisn
gin+1, if s = sin+1,

xisn , otherwise,
(AP)

where θisn denotes the number of times that strategy s has been used by player i ∈ A up to time
n. Given the particular structure in (AP), we can suppose that xn lies in a compact subset of X
for all n ∈ N. We also note that (A) implies that the decision rule can be assumed component-wise
bounded away from zero.

For feasibility issues we suppose that θis0 > 0 for all i ∈ A and s ∈ Si and then θisn is not exactly
the number of times that the action s ∈ Si has been used by player i (since it contains the initial
condition), but we keep this interpretation. This assumption is not relevant in the asymptotic
analysis developed further on.

As usual we denote by Fn the σ-algebra generated by the history up to time n, Fn =
σ
(

(sm, gm)1≤m≤n

)

, where sm = (s1m, . . . , sNm) and gm = (g1m, . . . , gNm).

4 Asymptotic analysis

The main difficulty to analyze (AP) using the tools decribed in Section 2, is that we have a stochastic
algorithm in discrete time where the step-size is random and, moreover, depends on the coordinates
of the vector to update. Thus, in order to study the asymptotic properties of our adaptive process,
let us restate the updating scheme (AP) in the following manner

xisn+1 − xisn =
1

θisn
(gin+1 − xisn )1{s=sin+1

}

=
1

(n+ 1)λis
n

(gin+1 − xisn )1{s=sin+1
},

where λis
n = θisn

n+1 is interpreted as the empirical frequency of action s for player i up to time n and 1C

stands for the indicator function of the set C. Without loss of generality, assume that 0 < θis0 ≤ 1,
for every i ∈ A and s ∈ Si, in order to have λi ∈ ∆i for al n ∈ N. Standard computations involving
averages show that

λis
n+1 − λis

n =
1

n+ 1

(

1{s=sin+1
} − λis

n + bn+1

)

,

and

bn+1 = − 1

n+ 2

(

1{s=sin+1
} − λis

n

)

= O

(

1

n

)

. (4.1)

Then we can express (AP) differently by introducing the empirical frequency of play. The new form
is the (up to a vanishing term) martingale difference scheme























xisn+1 − xisn =
1

n+ 1

[σis(xin)

λis
n

(Gi(s, σ−i(xn))− xisn ) + U is
n+1

]

,

λis
n+1 − λis

n =
1

n+ 1

[

σis(xin)− λis
n +M is

n+1

]

,

(APD)
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where the noise terms are explicitly

U is
n+1 =

1

λis
n

(gin+1 − xisn )1{s=sin+1
} −

[

σis(xin)

λis
n

(Gi(s, σ−i(xn))− xisn )

]

,

=
1

λis
n

(gin+1 − xisn )1{s=sin+1
} − E

( 1

λis
n

(gin+1 − xisn )1{s=sin+1
} | Fn

)

,

M is
n+1 = 1{s=sin+1

} − σis(xin) + bn+1,

=
(

1{s=sin+1
} − λis

n

)

− E(
(

1{s=sin+1
} − λis

n

)

| Fn) + bn+1.

(4.2)

From now on, we denote by ǫn = (Un,Mn) the noise term associated to our process.

The scheme (APD) will allow us to deal with the random (and player-dependent) character of the
step-size in (AP). Now, in the spirit of Theorem 2.2, the asymptotic behavior of (APD) is related
with the continuous dynamics



















ẋist =
σis(xit)

λis
t

(

Gi(s, σ−i(xt))− xist

)

= Ψis
x (xt, λt),

λ̇is
t = σis(xit)− λis

t = Ψis
λ (xt, λt),

(4.3)

with Ψx : X × ∆ → ∏

i∈A R
|Si| and Ψλ : X × ∆ → ∏

i∈A∆i
0, and ∆i

0 standing for the tangent

space to ∆i, i.e., ∆i
0 = {z ∈ R

|Si|;
∑

s∈Si zs = 0}. Let us denote Ψ the function defined by
Ψ(x, λ) = (Ψx(x, λ),Ψλ(x, λ)).

For the sake of completeness, let us write the process (3.1) as

xisn+1 − xisn =
1

n+ 1

[

σis(xin)(G
i(s, σ−i(xn))− xisn ) + Ũ is

n+1

]

, (4.4)

with noise term given by

Ũ is
n+1 = (gin+1 − xisn )1{s=sin+1

} − σis(xin)(G
i(s, σ−i

n (xn))− xisn ),

= (gin+1 − xisn )1{s=sin+1
} − E((gin+1 − xisn )1{s=sin+1

} | Fn).
(4.5)

Therefore, the corresponding continuous dynamics is given by

ẋist = σis(xit)
(

Gi(s, σ−i(xt))− xist
)

= Φis(xt), (4.6)

where Φ : X → ∏

i∈A R
|Si|.

Remark 4.1. Observe that the following simple fact holds

(x, σ(x)) ∈ X ×∆ is a rest point of (4.3) ⇔ x ∈ X is a rest point of (4.6).

In the sequel we will show that asymptotic properties similar to those of (4.4) can be obtained for
our process. This means that explicit conditions can be found to ensure that the process (APD)
converges almost surely to a global attractor for the dynamics (4.3).

Recall that we have assumed that, for every n ∈ N and i ∈ A, the mixed action σi
n ∈ ∆i is

component-wise bounded away from zero. The purpose of the next simple lemma is to verify that
the same holds, almost surely, for the empirical frequencies of play.
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Lemma 4.2. For n ≥ 1, let σn be a probability distribution over a finite set T and let in+1 be

an element of T which is drawn with law σn and assume (σn)n is adapted to the natural filtration

generated by the history. For all j ∈ T , set

λj
n = γn

n
∑

p=1

1{ip=j},

where (γn)n is a decreasing positive real sequence such that
∑

n γn = +∞ and
∑

n γ
2
n < +∞.

Assume that there exists σ > 0 such that σj
n ≥ σ. Then

lim inf
n→+∞

λj
n ≥ σ,

almost surely, for every j ∈ T .

Proof. Fix j ∈ T and let Fk be the σ-algebra generated by the history {i1, . . . , ik} up to time k.
Then we have that E(1{ik=j} | Fk−1) = σj

k−1 ≥ σ. On the other hand the random process (φj
n)n

given by

φj
n =

n
∑

k=1

γk
(

1{ik=j} − E(1{ik=j} | Fk−1)
)

is a martingale and supn∈N (φj
n)2 ≤ C ·∑p≥1 γ

2
p < +∞ for some constant C. Hence (φj

n)n converges
almost surely. Now Kronecker’s lemma (see e.g., Shiryaev [25, Lemma IV.3.2]) gives that

lim
n→+∞

γn

n
∑

k=1

(

1{ik=j} − E(1{ik=j} | Fk−1)
)

= 0. (4.7)

So that γn
∑n

k=1(1{ik=j}−E(1{ik=j} | Fk−1)) ≤ λj
n−σ. Taking lim inf and using (4.7) we conclude.

Remark 4.3. Observe that we have defined an adjusted version of (4.4) with γn = 1
n
. The

previous lemma shows that all the analysis in this section can be carried out for more general step-
size sequences (γn)n by taking λis

n = θisn γn. We adopt γn = 1
n
to keep the convenient interpretation

in terms of frequencies of play.

Proposition 4.4. The process (APD) converges almost surely to an ICT set for the continuous

dynamics (4.3).

Proof. We only have to show that our process satisfies the hypotheses of Theorem 2.2. The assump-
tions concerning the regularity of the function involved, the step-size sequence and the boundedness
of the process (xn, λn)n hold immediately.

According to (4.2), (Mn)n is almost surely bounded and can be written as a martingale difference
scheme plus a vanishing term. Observe that E(Un+1 | Fn) = 0 and that

∥

∥U is
n+1

∥

∥ ≤ C/λis
n ,

for some constant C. Then Lemma 4.2 implies that Un is almost surely bounded. In view of Re-
mark 2.3, assumption (c) of Theorem 2.2 holds for the noise term ǫn = (Un,Mn) and the conclusion
follows.
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Let us define the function F : X →∏

iR
|Si| by

F is(x) = Gi(s, σ−i(x)). (4.8)

Cominetti et al. [9] show that if the function F is contracting for the infinity norm, then the process
(4.4) converges almost surely to the unique rest point of the dynamics (4.6). The following result
shows that the same holds for the process (APD) by adding a slighlty stronger assumption on the
decision rule σ.

Proposition 4.5. Assume that F is contracting for the infinity norm and that, for every i ∈ A, the
function σi is Lipschitz for the infinity norm. Then there exists a unique rest point (x∗, σ(x∗)) ∈
X × ∆ of (4.3). Furthermore, the set {(x∗, σ(x∗))} is a global attractor and the process (APD)
converges almost surely to (x∗, σ(x∗)).

Proof. According to Remark 4.1, (x∗, σ(x∗)) ∈ X×∆ is a rest point of (4.3) if and only if F (x∗) = x∗,
hence the existence and uniqueness follow from the fact that F is contracting.

Let 0 ≤ L < 1 and Ki be the Lipstchitz constants associated to the functions F and σi, i ∈ A,
respectively. We want to find a suitable strict Lyapunov function, i.e., a function V that decreases
along the solution paths and that verifies V −1({0}) = {(x∗, λ∗)} with λ∗ = σ(x∗). Let V : X×∆ →
R+ be defined by

V (x, λ) = max
{

‖x− x∗‖∞ ,
1

ζ
‖λ− λ∗‖∞

}

,

where ζ > 0 will be defined later on. The function V is the maximum of a finite number of
smooth functions, therefore it is absolutely continuous and its derivatives are the evaluation of the
derivatives of the function attaining the maximum. We distinguish two cases:

Case 1. V (xt, λt) = ‖xt − x∗‖∞. Let i ∈ A and s ∈ Si be such that V (xt, λt) = |xist − xis∗ |. Let us
assume that xist − xis∗ ≥ 0. Then, for almost all t ∈ R,

d

dt
V (xt, λt) =

d

dt
(xist − xis∗ )

=
σis(xit)

λis
t

(

F is(xt)− F is(x∗) + xis∗ − xist
)

≤ −ξ(1− L) ‖xt − x∗‖∞
= −ξ(1− L)V (xt, λt),

for some ξ > 0 such that σis(x) ≥ ξ for every i ∈ A and s ∈ Si. If xist − xis∗ < 0, the computations
are analogous.

Case 2.: V (xt, λt) =
1
ζ
‖λt − x∗‖∞. Let i ∈ A and s ∈ Si be such that V (xt, λt) =

1
ζ
|λjr

t −λjr
∗ |. We

also assume that λjr
t − λjr

∗ ≥ 0. Then, for almost all t ∈ R,

d

dt
V (xt, λt) =

1

ζ

[

σjr(xjt )− σjr(x∗) + λjr
∗ − λjr

t

]

≤ −1

ζ
‖λt − λ∗‖∞ +

1

ζ
|σjr(xjt)− σjr(x∗)|

≤ −V (xt, λt) +
maxiKi

ζ
‖xt − x∗‖∞

= −(1− maxiKi

ζ
)V (xt, λt),
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and we take ζ > 0 sufficiently large to have 1 > maxiKi/ζ. Again, if the relation λjr
t − λjr

∗ < 0
holds, the computations are the same.

Hence V (xt, λt) ≤ −KV (xt, λt) for some K > 0. So V decreases exponentially fast along the
solution paths of the dynamics and V (x, λ) = 0 if and only if (x, λ) = (x∗, λ∗). Therefore the
set {(x∗, λ∗)} is a global attractor which is the unique ICT set for (4.3) (see [3, Corollary 5.4]).
Proposition 4.4 finishes the proof.

5 Logit rule

In this section we will focus on the analysis of a particular decision rule: the Logit rule which has
a large foundation in the field of discrete choice models as well as in game theory. Explicitly the
decision rule σ : X → ∆ is given by

σis(xi) =
exp (βix

is)
∑

r∈Si

exp (βixir)
, (5.1)

for every i ∈ A and s ∈ Si, where βi > 0 is called the smoothing parameter for player i. According
to Remark 4.1, the following result shows that the rest points of the dynamics (4.3) are the Nash
equilibria for an entropy perturbed version of the original game.

Lemma 5.1 (Cominetti et al. [9]). Under the Logit decision rule (5.1), if x ∈ X is a rest point of

the dynamics (4.6), then σ(x) is a Nash equilibrium of a game where the strategy set for the each

player i is ∆i and her payoff G
i
: ∆ → R is given by

G
i
(π) =

∑

s∈Si

πisGi(s, π−i)− 1

βi

∑

s∈Si

πis
(

ln(πis)− 1
)

. (5.2)

5.1 Almost sure convergence

We want to apply Proposition 4.5 in this particular framework. For that purpose, let us introduce
the maximal unilateral deviation payoff that a single player can face,

η = max
i∈A,s∈Si

r1,r2∈S̃−i

|Gi(s, r1)−Gi(s, r2)|, (5.3)

where S̃−i = {(r1, r2) ∈ S−i × S−i; rk1 6= rk2 for exactly one k}. Now we can show the following
proposition that ensures that, if the parameters are sufficiently small, the unique attractor is attained
with probability one. From now on, we denote α = maxi∈A

∑

j 6=i βj .

Proposition 5.2. If 2ηα < 1, the discrete process (APD) converges almost surely to the unique

rest point (x∗, σ(x∗)) of the dynamics (4.3).

Proof. We know from Cominetti et al. [9, Proposition 5] that, if 2ηα < 1, the function F (defined
in (4.8)) is contracting for the infinity norm. Observe also that, for every i ∈ A, the function σi is
Lipschitz for the infinity norm, since it is a smooth function defined on a compact set. Therefore,
Proposition 4.5 applies.
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Rate of Convergence

Up to this point, we were able to reproduce some of the theoretical results of the original model (4.4)
regarding its almost sure convergence to global attractors. Now, we want to justify the inclusion of
a counter of the previous actions in terms of the rate of convergence when both learning processes
(APD) and (4.4) converge almost surely to (x∗, λ∗) and x∗, respectively, and the step-size γn = 1

n

is considered. This rate of convergence is deeply linked with the largest real part eigenvalue of the
Jacobian matrix of the functions Ψ = (Ψx,Ψλ) and Φ at the respective rest points.

Let us denote ρ(B) the maximal real part of the eigenvalues of a matrix B ∈ R
k×k , i.e.,

ρ(B) = max{Re(µj); j = 1, . . . , k, where µj ∈ C is an eigenvalue of the matrix B}.

We say that a matrix B is stable if ρ(B) < 0.

Lemma 5.3. Assume that 2ηα < 1. Let (x∗, λ∗) and x∗ be the unique rest points of the dynamics

(4.3) and (4.6), respectively. Then

− 1 ≤ ρ(∇Ψ(x∗, λ∗)) < −1

2
≤ − N

∑

k∈A

|Sk| ≤ ρ(∇Φ(x∗)) < 0. (5.4)

Proof. Straigthforward computations concerning the function Ψ (see (4.3)) show that

∂Ψis
λ

∂xjr
(x∗, λ∗) = 0 and

∂Ψis
λ

∂λjr
(x∗, λ∗) = −1{is=jr},

for every i, j ∈ A and (s, r) ∈ Si × Sj . Therefore, the matrix ∇Ψ(x∗, λ∗) looks like

∇Ψ(x∗, λ∗) =

(

∇xΨx(x∗, λ∗) 0
L −I

)

, (5.5)

where I stands for the identity matrix and ∇xΨx(x∗, λ∗) denotes the Jacobian matrix of Ψx with
respect to x at (x∗, λ∗). Notice that the interesting eigenvalues of this matrix are given by its upper-
left block because of the zero block and the identity matrix on the right side in (5.5). Observe also

that ∂Ψis
x

∂xis (x∗, λ∗) = −1, i.e., the matrix ∇xΨx(x∗, λ∗) has diagonal terms equal to −1.

On the other hand, we know that every eigenvalue of a complex matrix B = (Bpq) lies within at
least one of the Gershgorin discs Dp(B) = {z ∈ C, |z − Bpp| ≤ Rp} where Rp =

∑

q 6=p |Bpq|. Given
the specific form of the matrix ∇xΨ(x∗, λ∗) we can estimate the position of its eigenvalues. So, in
our case,

Ris =
∑

j∈A,
j 6=i

∑

r∈Sj

∣

∣

∣

∣

∂Ψis
x

∂xjr
(x∗, λ∗)

∣

∣

∣

∣

,

since ∂Ψis
x

∂xjr (x∗, λ∗) = 0 if i = j and r 6= s. This follows from the fact that F is(x) (defined in (4.8))
is independent of the vector xi. Explicitly,

∂Ψis
x

∂xjr
(x∗, λ∗) = βjσ

jr
∗

[

Gi(s, r, σ
−(i,j)
∗ )−Gi(s, σ−i

∗ )
]

,
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where
Gi(s, r, σ

−(i,j)
∗ ) =

∑

a∈S−i

aj=r

Gi(s, a)
∏

k 6=i
k 6=j

σkak

∗ ,

for i 6= j. So that

Ris =
∑

j∈A
j 6=i

βj
∑

r∈Sj

σjr
∗

∣

∣Gi(s, r, σ
−(i,j)
∗ )−Gi(s, σ−i

∗ )
∣

∣

≤ ηα.

Then we have that all the eigenvalues of the matrix ∇xΨx(x∗, λ∗) are contained in the complex disc

{z ∈ C, |z + 1| ≤ ηα} ⊇
⋃

i∈A
s∈Si

Dis(∇xΨx(x∗, λ∗)), (5.6)

which implies that ρ(∇Ψ(x∗, λ∗)) < −1/2.

Analogous computations involving the function Φ show that

Dis(∇Φ(x∗)) ⊆ {z ∈ C, |z + σis
∗ | ≤ σis

∗ ηα},

for every i ∈ A and s ∈ Si. Since −σis
∗ + σis

∗ ηα < 0, then ρ(∇Φ(x∗)) < 0.

The fact that −1 ≤ ρ(∇Ψ(x∗, λ∗)) is evident. Finally, the inequality −N/
∑

k |Sk| ≤ ρ(∇Φ(x∗))
follows since the trace of the matrix ∇Φ(x∗) is equal to −N .

Remark 5.4. Notice that 1/2 = N/
∑

k |Sk| if and only if |Sk| = 2 for all k ∈ A.

The following reduced version of Chen [8, Theorem 3.1.1] will be useful.

Theorem 5.5. Consider the discrete process given by (2.1). Assume that the following hold.

(a) For every n ∈ N, γn > 0, limn→+∞ γn = 0,
∑

n γn = +∞ and

lim
n→+∞

γn − γn+1

γn+1γn
= γ ≥ 0.

(b) zn → z0 almost surely.

(c) There exists δ ∈ (0, 1] such that

(c.1) for a path such that zn → z0, the noise Vn can be decomposed in Vn = V ′
n + V ′′

n where

∑

n≥1

γ1−δ
n V ′

n+1 < +∞ and V ′′
n = O(γδn),

(c.2) the function H is locally bounded and is differentiable at z0 such that H(z) = H(z−z0)+
r(z) where r(z0) = 0 and r(z) = o(‖z − z0‖) as z → z0 and

(c.2) the matrix H is stable and, furthermore, H + δγI is also stable.
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Then, almost surely,

(1/γn)
δ(zn − z0) → 0, as n → +∞.

The previous result allows us to show that, in some sense, our algorithm is faster. This will show
that, under the common hypothesis 2ηα < 1 (which ensures almost sure convergence for both
processes), the employment of the adjusted process (APD) will help the players to adapt faster
their behavior than the original process (4.4).

Proposition 5.6. Assume that 2ηα < 1 and let (x∗, λ∗) ∈ X ×∆ and x∗ ∈ X be the unique rest

points of the dynamics (4.3) and (4.6), respectively. Then the following estimates hold

(i) for almost all trajectories of (4.4)

nδ(xn − x∗) → 0, as n → +∞,

for every δ ∈ (0, |ρ(∇Φ(x∗))|),

(ii) for almost all trajectories of (APD)

nδ
(

(xn, λn)− (x∗, λ∗)
)

→ 0, as n → +∞,

for every δ ∈ (0, 1/2).

Proof. Recall that ǫn = (Un,Mn) and Ũn are the noise terms associated to (APD) and (4.4),
respectively (see (4.2) and (4.5)). We observe that, for both processes, hypotheses (a) and (b) in
Theorem 5.5 are immediately satisfied since γn = 1

n
, (with γ = 1) and since Proposition 5.2 applies.

Let us verify that condition (c) holds.

(i) Fix δ ∈ (0, |ρ(∇Φ(x∗))|). The random process (Ũn)n is almost surely bounded and satisfies that
E(Ũn+1 | Fn) = 0. Therefore, Zn =

∑n
k=1(1/k)

1−δŨk+1 is a martingale where supn ‖Zn‖2 <
∑+∞

k=1(1/k)
2(1−δ) < +∞, thus convergent (since δ < 1/2). To conclude, observe that the

function Φ is smooth and that the matrix ∇Φ(x∗) + δI is stable.

(ii) Fix δ ∈ (0, 1/2). We repeat the argument by noticing that ǫn = ǫ̃n + b̃n where b̃n = O(1/n)
and E(ǫ̃n+1 | Fn) = 0. To finish, we use the fact that the matrix ∇Ψ(x∗, λ∗) + δI is stable
since inequality (5.4) holds.

Remark 5.7. Two important comments are in order.

(a) For the process (APD), if the matrix Cn = E(ǫTn+1ǫn+1 | Fn) converges almost surely to a de-
terministic positive definite matrix C, then

√
n((xn, λn)−(x∗, λ∗)) converges in distribution to

a normal random variable (see e.g., Benveniste et al. [4] or Kushner and Yin [17]). For the pro-
cess (4.4), if the sequence C̃n = E(ŨT

n+1Ũn+1 | Fn) converges almost surely to a deterministic

positive definite matrix C̃, then it can be shown (see Duflo [11]) that n|ρ(∇Φ(x∗))|(xn−x∗) con-
verges almost surely to a finite random variable. For instance, if we consider the game defined
by (5.7), we can show that both sequences (Cn)n and (C̃n)n converge almost surely to a deter-
ministic positive definite matrix and that |ρ(∇Φ(x∗))| < 1/2. Therefore, in general, nothing
more can be said when the step-size γn = 1

n
is considered. Figure 1 consists in the results of

a numerical experience in this particular example where 2ηα = 0.8 and |ρ(∇Φ(x∗))| ≈ 0.3.
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(b) Observe that a better rate can be achieved for the process (4.4) if the step-size is given by
γn = a

n
for a > |ρ(∇Ψ(x∗))|. This leads to the rate o(n−δ) for all δ ∈ (0, 1/2). However it is

fairly unrealistic to assume that the players know in advance this information. Nevertheless,
we always have that |ρ(∇Φ(x∗))| < |ρ(∇Ψ(x∗, λ∗))| and then the scheme (APD) can reach
at least the same path-wise rate of convergence under the hypotheses of Proposition 5.6 and
independent of the step-size considered.





(0, 0) (1, 0) (0, 1)
(0, 1) (0, 0) (1, 0)
(1, 0) (0, 1) (0, 0)



 (5.7)

0

0.005

0.01

0.015

0.02

0.025

0.03

0 5000 10000 15000 20000 25000

||xn − x∗||2
||(xn, λn)− (x∗, λ∗)||2

Figure 1: ‖(xn, λn)− (x∗, λ∗)‖2 versus ‖xn − x∗‖2.

5.2 Convergence with positive probability

The estimates given by Lemma 5.3 allows us to improve the range of parameters in which general
convergence results can be obtained for the process (APD). We start by showing that there exists
a unique rest point of (4.3) which is stable if 1 ≤ 2ηα < 2. Let Y ⊆ X ×∆ be the set of rest points
of (4.3) and let B(A) be the basin of attraction corresponding to the attractor A.

Proposition 5.8. Assume that 1 ≤ 2ηα < 2. Then, there exists a unique rest point (x∗, λ∗) for the
dynamics (4.3) which is an attractor.

Proof. Let (x∗, λ∗) ∈ Y. If 1 ≤ 2ηα < 2, equation (5.6) shows that the matrix ∇Ψ(x∗, λ∗) is stable.
To prove that {(x∗, λ∗)} is an attractor, take V (x, λ) = ((x, λ)− (x∗, λ∗))

TD((x, λ)− (x∗, λ∗)) as a
(local) Lyapunov function where, for instance, D is the positive definite solution of the Lyapunov
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equation ∇Ψ(x∗, λ∗)
TD + D∇Ψ(x∗, λ∗) = −I. Given the fact that basins of attraction cannot

overlap, the set Y is finite since X×∆ is compact and Ψ is regular. Finally, Y reduces to one point
since, in this case, it is impossible to have finitely many stable equilibibria due to the Poincaré–Hopf
Theorem (see e.g., Milnor [20, Chapter 6]).

The following definition is crucial to ensure convergence with positive probability of the process
(xn, λn)n to a given (not necessarily global) attractor.

Definition 5.9. Let (zn)n be a discrete stochastic process with state space Z. A point z ∈ Z is

attainable by (zn)n if for each m ∈ N and every open neighborhood U of z, P(∃n ≥ m, zn ∈ U) > 0.

The following lemma uses strongly the particular form of the updating rule (AP) considered in this
work.

Lemma 5.10. Fix λ = (λ1, . . . , λN ) ∈ ∆. Set xi ∈ R
|Si| such that xis = Gi(s, λ−i) for all s ∈ Si

and put x = (x1, . . . , xN ) ∈ X. Then, the point (x, λ) ∈ X×∆ is attainable by the process (xn, λn)n.
In particular, any rest point of the dynamics (4.3) is attainable.

Proof. The fact that σis
n ≥ ξ > 0 for every i ∈ A, s ∈ Si and n ∈ N implies that any finite

sequence generated by (APD) has positive probability. The updating rule (AP) can be expressed
as (including only for this time the initial conditions)

xisn+1 =
1

θisn + θis0

(

giυis(θisn ) + giυis(θisn −1) + · · ·+ giυis(1) + xis0
)

, (5.8)

where υis(k) = inf{q ≥ 1, θisq = k}, i.e., the stage when player i has played strategy s ∈ Si for the
k-th time. Observe that, without loss of generality, we can suppose that m = 0 in the definition of
attainability given the particular form of the updating rule (5.8).

Let ζsn be the number of times that the strategy profile s ∈ S has been played up to time n. Hence,
for every i ∈ A and s ∈ Si, (5.8) implies that

xisn+1 =
∑

r∈S−i

Gi(s, r)
ζ
(s,r)
n

θisn + θis0
+

xis0
θisn + θis0

,

=
∑

r∈S−i

Gi(s, r)
ζ
(s,r)
n

θisn
+ bn,

with bn = O
(

(θisn )
−1
)

. Observe that θisn → +∞ almost surely due to the conditional Borel–Cantelli

lemma. Fix ε > 0 and let n be an integer such that kis = nk̃is ∈ N, where, for every i ∈ A and
s ∈ Si, k̃is denotes a rational number satisfying that |λis − k̃is| < ε. For a strategy profile s ∈ S, let
us define the positive integers ns =

∏

i∈A ki
si
and n =

∑

s∈S ns. Now we take the sequence generated
by (APD) defined by l ∈ N blocks of size n where within each block, each s ∈ S is played exactly
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ns times, regardless the order of play. Fix i ∈ A and r ∈ S−i, so that, by construction

ζ
(s,r)
ln

θisln
=

∏

j 6=i k
j

rj
kis

kis
∑

u∈S−i

∏

j 6=i k
j

uj

=

∏

j 6=i k̃
j

rj

∏

j 6=i

(
∑|Sj |

pj=1 k̃
j
pj

)

=
∏

j 6=i

λjrj + b̃ε,

where b̃ε → 0 as ε → 0. Finally, given ε′ > 0, take l large and ε small to have
‖(xln+1, λln+1)− (x, λ)‖ < ε′.

Recall that L(zn) is the limit set of the sequence (zn)n. The following result is the goal of this
subsection.

Proposition 5.11. If an attractor A for the dynamics (4.3) satisfies that B(A) ∩ Y 6= ∅, then

P(L(xn, λn) ⊆ A) > 0. In particular, under the Logit decision rule decision (5.1), if 1 ≤ 2ηα < 2,
then Y reduces to one point (x∗, λ∗) and P((xn, λn) → (x∗, λ∗)) > 0.

Before providing the proof we need to briefly introduce the following concepts. Let φ be the semi-flow
induced by the differential equation (4.3) and let Yt the continuous time affine process associated
to the discrete process (xn, λn)n, i.e.,

Y (τn + u) = (xn, λn) + u
(xn+1, λn+1)− (xn, λn)

τn+1 − τn
, (5.9)

for all n ∈ N and u ∈ [0, 1
n+1), where τn =

∑n
m=1

1
m
. Let (Ft)t≥0 be the natural associated filtration.

The following technical lemma is needed. We only provide an outline of the proof because we follow
exactly the lines in Benäım [3, Proposition 4.1] along with the explicit computations provided in
the proof of Schreiber [24, Theorem 2.6].

Lemma 5.12. For all T > 0 and δ > 0,

P

(

sup
u≥t

[

sup
0≤h≤T

‖Y (u+ h)− φh(Y (u))‖
]

≥ δ | Ft

)

≤ C(δ, T )

exp(ct)
,

for some positive constants c and C(δ, T ) when t ≥ 0 is large enough.

Outline of the proof. Roughly speaking, the process (APD) can be written as

(xn+1, λn+1)− (xn, λn) =
1

n+ 1

(

Ψ(xn, λn) + ǫ̃n+1 + bn+1

)

,

where (ǫn)n is almost surely bounded, E(ǫ̃n+1 | Fn) = 0 and bn = O(1/n). Recall that m(t) is the

largest integer l such that t ≥
l
∑

j=1
1/j. Then from Benäım [3, Proposition 4.1] we have that

sup
0≤h≤T

‖Y (u+ h)− φh(Y (u))‖ ≤ C(T )

(

1

m(u)
+A(u, T )

)

,
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for u sufficiently large, where

A(u, T ) = sup
0≤h≤T

∥

∥

∥

∥

∥

∥

m(u+h)−1
∑

l=m(u)

ǫl+1 + bl+1

l + 1

∥

∥

∥

∥

∥

∥

.

To conclude, it is enough to follow word by word, in this simpler case, the lines in the proof of
Schreiber [24, Theorem 2.6].

Proof of Proposition 5.11. In view of Proposition 5.8 and Lemmas 5.10 and 5.12 the result follows
directly from Benäım [3, Theorem 7.3].

Remark 5.13. Notice that for Lemma 5.10 and for the first part of the statement in Proposi-
tion 5.11, we have only assumed the condition (A) on the decision rule σ. Furthermore, from
Benäım [3, Theorem 7.3], we have the following estimate for the probability of convergence to an
attractor A. If the set U ⊆ X × ∆ is such that U ⊆ B(A), then there exists numbers T, δ > 0,
depending on U so that

P(L(xn, λn) ⊆ A) ≥
(

1− C(δ, T )

exp(ct)

)

P(∃u ≥ t, Y (u) ∈ U),

for all t > 0, where the constants C(δ, T ) and c are given by Lemma 5.12.

A traffic game

The (almost sure or with positive probability) convergence to attractors results obtained when the
Logit decision rule is considered are valid under the strong assumption 2ηα < 2. In fact, this condi-
tion becomes very difficult to verify as the number of players increases. Moreover, nonconvergence
can occur for some games (see Section 5.3 for details) if the parameter ηα is large. In this part, we
will discuss the interesting application developed in Cominetti et al. [9, Section 3] and we will show
that a result in the spirit of Proposition 5.11 can be obtained under a much weaker condition.

Consider a network with a topology that consists on a set of parallel routes. Each route r ∈ R in
the network is characterized by an increasing sequence of values cr1 ≤ · · · ≤ crN where cru represents
the average travel time when r carries a load of u users.

The traffic game is defined as follows. The strategy set is common for all players, i.e., Si = R, for
every i ∈ A with R the set of available routes. The payoff to each player i, when the strategy profile
r ∈ RN is played (i.e., when the network is loaded by the configuration r), is given by the value
−cr

i

u = Gi(r), that is, minus her travel time.

This traffic game is shown to be a potential game in the sense that there exists a function Λ :
[0, 1]N×|R| → R such that

∂Λ

∂λis
(λ) = Gi(s, λ−i),

for every λ ∈ ∆. Explicitly, the function Λ is given by

Λ(π) = −Eπ

[

∑

r∈R

Ur
∑

u=1

cru
]

, (5.10)
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where the expectation is taken with respect to the random variables U r =
∑

i∈AXir with Xir

independent Bernouilli variables such that P(Xir = 1) = πir. It is also shown that the second
derivatives of Λ are zero except for

∂2Λ

∂πjr∂πir
(π) = Eπ

(

crUr
ij+1 − crUr

ij+2

)

∈ [−η, 0], (5.11)

i 6= j, where U r
ij =

∑

k 6=i,j X
kr.

Recall that we are assuming that player use the Logit decision rule in the learning process (APD).
We also suppose that the smoothing parameters are identical for all players, i.e., βi = β for every
i ∈ A. Notice that, in this framework, the value η (defined in (5.3)) translates to

η = max{ηru ; r ∈ R, 2 ≤ u ≤ N} = max{cru − cru−1 ; r ∈ R, 2 ≤ u ≤ N}. (5.12)

Cominetti et al. [9] obtain the following (among others) result. Recall that α = maxi∈A
∑

j 6=i βj =
(N − 1)β.

Proposition 5.14. The following hold

(i) if 2ηα < 4, the function F is contracting for the infinity norm and the process (4.4) converges
almost surely to the unique rest point of (4.6),

(ii) if ηβ < 1, (4.6) has a unique rest point x∗ ∈ X which is symmetric in the sense that x∗ =
(x̂, . . . , x̂). Furthermore, {x∗} is an attractor for (4.6).

Notice that the first part in the proposition above can be recovered for the process (APD) since
Proposition 5.2 applies. The second part provides a much weaker condition to have existence and
uniqueness of a rest point of (4.6) (or, equivalently, a Nash equilibrium of the perturbed game
defined in Lemma 5.1). Observe also that, despite the fact that the second part gives the existence
of an attractor, no convergence result is obtained for the discrete process (4.4). The next result
show that, under the assumption ηβ < 1, something more can be said for (APD).

Proposition 5.15. If ηβ < 1, (4.3) has a unique rest point (x∗, λ∗) ∈ X×∆ which is symmetric in

the sense that x∗ = (x̂, . . . , x̂) and λ∗ = (λ̂, . . . , λ̂) = σ(x∗). Furthermore, {(x∗, λ∗)} is an attractor

for (4.3) and P((xn, λn) → (x∗, λ∗)) > 0.

Proof. The existence and uniqueness of the symmetric rest point of (4.3) follows from Remark 4.1
and Proposition 5.14. Lemma 5.16 below shows that the matrix ∇Ψ(x∗, λ∗) is stable. Hence,
{(x∗, λ∗)} is an attractor for (4.3) and Proposition 5.11 applies.

Lemma 5.16. If ηβ < 1, then the matrix ∇Ψ(x∗, λ∗) is stable.

Proof. Recall that the matrix Jβ = ∇xΨx(x∗, λ∗) is the upper-left block of the matrix ∇Ψ(x∗, λ∗)
(see (5.5)). Observe that, from the definition of the function Ψx, the fact that σi depends only on
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xi and (5.10), the entries of Jβ are given by

Jβ
is,jr =

∂Ψis
x

∂xjr
(x∗, λ∗) =

∂

∂xjr

(

∂Λ

∂πis
(σ(x))

)

(x∗)− 1{is=jr}

=
∑

k∈A

∑

r′∈R

∂2Λ

∂πkr′∂πis
(λ∗)

∂σkr′

∂xjr
(x∗)− 1{is=jr}

=
∑

r′∈R

∂2Λ

∂πjr′∂πis
(λ∗)

∂σjr′

∂xjr
(x∗)− 1{is=jr}

=
∂2Λ

∂πjr∂πir
(λ∗)

∂σjr

∂xjr
(x∗)1{s=r,i 6=j} − 1{is=jr}

= βλjr
∗ (1− λjr

∗ )Eλ∗

(

crUr
ij+1 − crUr

ij+2

)

1{s=r,i 6=j} − 1{is=jr}. (5.13)

Since λ∗ is symmetric (λir = λjr, for all i, j ∈ A), Jβ is a symmetric matrix. Let us show that
Jβ is negative definite by modifying the trick used in Cominetti et al. [9, Proposition 12]. Take
h ∈ R

N |R|\{0}, then, from (5.13),

hTJβh =
∑

r∈R

[

β
∑

i 6=j

hir
√

λir
∗ (1− λir

∗ )h
jr

√

λjr
∗ (1− λjr

∗ )Eλ∗

(

crUr
ij+1 − crUr

ij+2

)

−
∑

i

(hir)2
]

.

For every i ∈ A and r ∈ R, put vir = hir
√

1−λir
∗

λir
∗

, Zir = virXir and set ηr0 = ηr1 = 0. Therefore,

hTJβh =
∑

r∈R

[

β
∑

i 6=j

virvjrλir
∗ λ

jr
∗ Eλ∗

(

crUr
ij+1 − crUr

ij+2

)

−
∑

i

λir
∗

(vir)2

1− λir
∗

]

=
∑

r∈R

Eλ∗

(

β
∑

i 6=j

ZirZjr(crUr−1 − crUr

)

−
∑

i

(Zir)2

1− λir
∗

)

≤
∑

r∈R

Eλ∗

(

− ηrUrβ
∑

i 6=j

ZirZjr −
∑

i

(Zir)2
)

=
∑

r∈R

Eλ∗

(

− ηrUrβ

(

∑

i

Zir

)2

+ (ηrUrβ − 1)
∑

i

(Zir)2
)

< 0,

where the last inequality follows by observing that ηrUr ≤ η.

Remark 5.17. In fact, part (ii) in Proposition 5.14 holds true if ηβ < 2. The authors provide an
explicit (local) Lyapunov function which does not seem suitable in our case.

5.3 Nonconvergence

In order to give an idea of the behavior of the stochastic process defined by (APD) when the
parameter β (we assume βi = β for all i ∈ A) becomes large, we provide a small class of games
which underlines the relevance of the hypotheses considered throughout this document. Consider a
2-player symmetric game, i.e., the strategy set S = S1 = S2 is common for and the payoffs verify
that G1 = (G2)T . Let us assume that G1 has constant-sum by row, this is,

∑

r G
1(s, r) = k ∈ R for

every s ∈ S. It is easy to check that for this kind of games there exists a rest point of (4.3) which
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has the form (x, σ(x)) ∈ X ×∆ such that xi = (1/k, . . . , 1/k) for i ∈ {1, 2}. We also assume that
∑

sG
1(s, s) 6= k.

A game that satisfies the precedent conditions is the good (resp. bad) Rock-Scissors-Paper game





0 a −b
−b 0 a
a −b 0



 ,

where 0 < b < a (resp. 0 < a < b) or the game (5.7).

The (strong) hypotheses above ensure that at least one rest point of (4.3) does not depend on
the parameter β. In the following we will easily show that if the parameter β is sufficiently large
then the rest point (x, σ(x)) becomes linearly unstable. Later, we will prove that this implies that
P((xn, λn) → (x, σ(x))) = 0.

Lemma 5.18. If the parameter β > 0 is sufficiently large, then there exists an eigenvalue µ of the

matrix ∇Ψ(x, σ(x)) such that Re(µ) > 0.

Proof. Again, let Jβ = ∇xΨx(x, σ(x)) be the upper-left block of the Jacobian matrix of the function
Ψ, which is the only relevant part, evaluated at (x, σ(x)). The precise expression for the entries of
Jβ is

Jβ
is,jr =

∂Ψis
x

∂xjr
(x, σ(x)) =















−1, if i = j and s = r

0, if i = j and s 6= r

β 1
|S|

[

Gi(s, r)− k

|S|

]

, otherwise,

i, j ∈ {1, 2}. Thus the matrix Jβ has the form
(

−I J
β

J
β −I

)

,

with J
β ∈ R

|S| × R
|S|. Observe that we can decompose Jβ as Jβ = βJ − I, where

J =

(

0 J

J 0

)

.

Let µ1, . . . , µ|S| ∈ C be the eigenvalues of J (counting multiplicity). Since we have assumed that
∑

sG
1(s, s) 6= k, the trace of J is not zero. So that, there exists some eigenvalue µk , k ∈ {1, . . . |S|},

with nonzero real part. We have that, if v is an eigenvector associated to µk, then µk is an eigenvalue
of J with corresponding eigenvector u = (v, v) ∈ R

|S| × R
|S| since

Ju =

(

0 J

J 0

)(

v
v

)

=

(

Jv

Jv

)

= µku.

If Re(µk) > 0, the proof is finished. If Re(µl) ≤ 0 for all l ∈ {1, . . . |S|} then
∑

l Re(µl) < 0. Also,
the trace of J is zero and therefore there exists µ eigenvalue of J (which is not an eigenvalue of J)
such that Re(µ) > 0.

Finally, observe that

det (βJ − µI) =
1

β|S|
det

(

J − µ

β
I

)

, (5.14)
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and it is straightforward from (5.14) that µ is an eigenvalue of the matrix Jβ if µ = (1+µ)/β is an
eigenvalue of J . Then µ = βµ − 1 whose real part is strictly positive for a sufficiently large β.

Proposition 5.19. There exists β > 0 large enough and at least one rest point (x, σ(x)) ∈ X ×∆
of (4.3) such that,

P((xn, λn) → (x, σ(x))) = 0.

Proof. We can directly apply Brandière and Duflo [6, Theorem 1]. The hypotheses of the theorem
concerning the continuous dynamics and the step-size of the discrete process (APD) are immediately
satisfied. The only condition that deserves attention is the one referred to the excitation of the noise
on a repulsive direction at (x, σ(x)). Explicitly, it is sufficient to prove that

lim inf
n→+∞

E(||ǫprn+1||2 | Fn) > 0 a.s. on the event Γ
(

x, σ(x)
)

= {(xn, λn) → (x, σ(x))}, (5.15)

since the noise term ǫn = (Un,Mn) is almost surely bounded. Here the upper-script pr stands for
the projection onto the repulsive subspace spanned by the eigenvectors associated to the eigenvalues
with positive real part.

Fix i ∈ {1, 2}, take β large to have an eigenvalue µ of ∇Ψ(x, σ(x)) such that Re(µ) > 0 and let v a
correspondent (eventually generalized) eigenvector. The vector v has the form v = (v1, v2). Notice
that necessarily v2 6= 0 since, if v2 = 0, then v1 is a vector of ones, which is indeed an eigenvector
for the upper-left block of ∇Ψ(x, σ(x)) having -1 as the associated eigenvalue. So that

E(||εprn+1||2 | Fn) ≥ E(‖〈εn+1,v〉v‖2 | Fn)

≥ E(
∑

r

(vjr2 M jr
n+1)

2 | Fn)

≥ cE((M jr
n+1)

2 | Fn),

with j = −i and for some r ∈ S and c > 0.

In view of (4.2),

E((M jr
n+1)

2 | Fn) = E((1
{sjn+1

=r}
− σjr(xjn))

2 | Fn) +O

(

1

n

)

= σjr(xjn)(1− σjr(xjn)) +O

(

1

n

)

.

Finally, take the lim infn in the previous expression on the event Γ(x, σ(x)) to conclude that (5.15)
holds, since σis is bounded away from zero for every i ∈ {1, 2} and s ∈ S.

Remark 5.20. For the game (5.7), if β > 3/2, then ρ(∇Ψ(x, σ(x))) > 0. Compare with Proposi-
tions 5.2 and 5.11.

As observed by Pemantle [21], the nonconvergence results like the previous proposition are not very
interesting if the set of unstable points is too large. Particularly, the most useful consequences can
be stated when this set is finite. This is the case of our example (5.3) and, moreover, it is easy to
check that (x, σ(x)) is the unique rest point of (4.3) for all β > 0. The previous result shows that
for a large β, (x, σ(x)) has probability zero to be the limit of the process while for small β it is
almost surely the limit. Simulations suggest that there is a cycle that attracts the trajectories and
that the empirical frequencies of play still converge to σ(x). Figure 2 shows the behavior of the
procedure (specifically the evolution of the mixed action σ1

n of player 1) when β is large.
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However, it does not seem plausible to pursuit a result like Proposition 5.19 on a general class of
games. For instance, consider the 2-player zero-sum game defined by the payoff

G =

(

0 −1
1 0

)

. (5.16)

Let (x∗, σ(x∗)), with σ1(x1∗) = σ2(x2∗) = (1/(1+eβ), eβ/(1+eβ)) and x1∗ = x2∗ = (−eβ/(1+eβ), 1/(1+
eβ)), be the unique rest point of (4.3). In this case, every eigenvalue of ∇Ψ(x∗, σ(x∗)) is equal to
-1. Then P((xn, λn) → (x∗, σ(x∗))) > 0 for all β > 0 due to Proposition 5.11.

σ1

Figure 2: The mixed action σ1
n of Player 1 when β = 4.

6 Random environment

Our aim in this section is to consider the case where players receive, at each stage, a perturbed
version of their payoffs. The general result given by Theorem 2.2 allows to add some perturbation
to the process (APD) maintaining unaltered the results presented in this work. For example, we
can consider that each player i ∈ A get a payoff gin = gin+εin at stage n, where (εin)n is a martingale
difference process bounded in L2 or a vanishing random variable (see Remark 2.3). In this section,
we are interested in a different kind of perturbation.

For the sequel, the model runs analogously as before. We only add that, at each time n ∈ N, each
player i ∈ A receives a random payoff gin = Gi(sn, wn) where the sequence (wn)n is a controlled
(by the parameter λ ∈ ∆) Markov chain with finite state space W , i.e., there exists a family of
transition matrices (P (λ))λ∈∆ where

P(wn+1 = w | Fn) = P(wn,w)(λn),
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for w ∈ W with λn determined by the learning process and Fn being the σ-algebra generated by
the history (s1, g1, w1, . . . , sn, gn, wn) up to time n. We assume the following.

(A1) For any λ ∈ ∆ the Markov chain with transition matrix P (λ) has a unique invariant probability
τ(λ) ∈ ∆W , where ∆W denotes the set of probabilities over W .

(A2) The function P : ∆ → M (the set of stochastic matrices of dimension |W | × |W |), λ → P (λ)
is of class C1.

Remark 6.1. The hypothesis above imply that the function τ is also of class C1 (see Benäım [2,
Lemma 3.2]).

Observe that the unique recurrent class of the associated Markov chain may be periodic. Note also
that the process (sn, wn)n is also a controlled (by the parameter (x, λ) ∈ X × ∆) Markov chain
with state space S×W . The independence hypothesis implies that for a given (x, λ) the associated
transition matrix is given by

P (a,b)(x, λ) =
∏

i∈A

σiri(xi)P(w,w′)(λ),

for each (a,b) =
(

(s, w), (r, w′)
)

∈ (S ×W )2. From (A1), the Markov chain with transition matrix
P (x, λ) has a unique invariant probability τ(x, λ), where

τa(x, λ) =

N
∏

i=1

σisi(xi)τw(λ), (6.1)

for a = (s, w) ∈ S ×W .

Let us now state precisely the corresponding discrete process in this framework. We conserve the
notation and the hypotheses (A) over the decision rule of players σ. For each player i ∈ A, we
define the new payoff function Gi : S ×W → R and its multilinear extension to ∆×∆W as usual.
Therefore the updating rule is this case is given by

xisn+1 =







(1− 1

θisn
)xisn +

1

θisn
gin+1, if s = sin+1,

xisn , otherwise,
(APM)

with gin = Gi(sn, wn). As before, we can conveniently recast the process (APM) as


























xisn+1 − xisn =
1

n+ 1

[

σis(xin)G
i(s, σ−i(xn), τ(λn))

λis
n

+
U

is
n+1

λis
n

]

,

λis
n+1 − λis

n =
1

n+ 1

[

σis(xin)− λis
n +M is

n+1

]

,

(APDM)

where
U

is
n+1 =

(

gin+1 − xisn
)

1{s=sin+1
} −

(

σis(xin)G
i(s, σ−i(xn), τ(λn))− xisn

)

,

M is
n+1 = 1{s=sin+1

} − σis(xin) + bn+1,
(6.2)

and bn = O( 1
n
). Observe that the process (Un)n is not a martingale difference sequence. The next

result shows that the analogous to Proposition 4.5 holds.
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Proposition 6.2. The process (APDM) converges almost surely to an ICT set of the continuous

dynamics


















ẋist =
σis(xit)

λis
t

[

Gi(s, σ−i(xt), τ(λ)) − xist

]

= Ψ
is
x (x, λ),

λ̇is
t = σis(xit)− λis

t = Ψ
is
λ (x, λ).

(6.3)

In the sequel, our analysis will rely on the ideas in the proof of Benäım [2, Proposition 3.3] (which are
indeed a reduction to the finite state space case of the general framework developed in Benveniste
et al. [4, Part II]) to show that hypothesis (c) of Theorem 2.2 holds (since assumptions (a) and (b)
are immediately satisfied).

Fix i ∈ {1, . . . , N} and (x, λ) ∈ X ×∆. Let us define the matrices Hi(x, λ) and W(x, λ) by

Hi
(a,b)(x, λ) =

{

Gi(s, w) − xis
i

, if si = ri,

0, otherwise,
(6.4)

and
W(a,b)(x, λ) = τb(x, λ), (6.5)

for every a = (s, w),b = (r, w′) ∈ S × W and τb(x, λ) given by equation (6.1). Notice that, for
every s ∈ Si, an+1 = (sn+1, wn+1) and bn+1 =

(

(s, s−i
n+1), wn+1

)

, the following equality holds

Hi
(an+1,bn+1)

(xn, λn) =
(

Gi(s, s−i
n+1, wn+1)− xisn

)

1{s=sin+1
},

and
[

W(xn, λn))H
i(xn, λn)

]

(an+1,bn+1)
=

∑

a=(r,w)

τa(xn, λn)
(

Gi(r, w) − xir
i

n

)

1{s=ri}

= σis(xin)

(

∑

w

τw(λn)G
i(s, σ−i(xn), w) − xisn

)

= σis(xin)

(

Gi(s, σ−i(xn), τ(λn))− xisn

)

,

so that
[

(I −W(xn, λn))H
i(xn, λn)

]

(an+1,bn+1)
= U

is
n+1. (6.6)

Lemma 6.3. There exists a C1 function Qi(x, λ) such that

(I − P (x, λ))Qi(x, λ) = (I −W(x, λ))Hi(x, λ). (6.7)

Outline of the proof. The required function is given by Qi(x, λ) = E(x, λ)Hi(x, λ) where

E(x, λ) =

+∞
∫

0

(Et(x, λ)−W(x, λ))dt,

with Et(x, λ) being the matrix solution of the linear differential equation

d

dt
Ei

t(y) =− (I − P (y))Ei
t(y),

Ei
0(y) =I.

See Benäım [2, Lemma 5.1] (and the previous discussion therein) for further details.
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Proof of Proposition 6.2. To prove that the third assumption in the statement of Theorem 2.2 is

satisfied almost surely, we have to show that the noise term (ǫn)n = (Un,Mn)n, where U
is
n = U

is
n /λ

is
n

(see equation (6.2)) satisfies that

sup

{

∥

∥

∥

∥

∥

k−1
∑

l=n

1

l + 1
ǫl+1

∥

∥

∥

∥

∥

; k ∈ {n+ 1, . . . ,m(

n
∑

j=1

1

j
+ T )}

}

−→ 0, (6.8)

as n → +∞, for every T > 0. Since (Mn)n is an almost surely bounded martingale difference
process plus a vanishing term, it is sufficient to show that (6.8) holds for (Un)n. For a matrix B (of
appropriate dimension) and a fixed s ∈ Si, let us set by B[n] the operation that consists on taking
the (an,bn) entry of B, where an = (sn, wn) and bn =

(

(s, s−i
n ), wn

)

. Now, according to (6.6) and
Lemma 6.3, we have, for every n ≥ 1,

U is
n+1

n+ 1
=

1

(n+ 1)λis
n

(

(I −W(xn, λn))H
i(xn, λn)

)

[n+ 1]

=
1

(n+ 1)λis
n

Qi(xn, λn)[n+ 1]− 1

(n+ 1)λis
n

P (xn, λn)Q
i(xn, λn)[n + 1]

=uisn+1(1) + uisn+1(2) + uisn+1(3) + uisn+1(4),

where

uisn+1(1) =
1

(n + 1)λis
n

Qi(xn, λn)[n+ 1]− 1

(n+ 1)λis
n

P (xn, λn)Q
i(xn, λn)[n],

uisn+1(2) =
1

(n + 1)λis
n

P (xn, λn)Q
i(xn, λn)[n]−

1

nλis
n−1

P (xn, λn)Q
i(xn, λn)[n],

uisn+1(3) =
1

nλis
n−1

P (xn, λn)Q
i(xn, λn)[n]−

1

(n + 1)λis
n

P (xn+1, λn+1)Q
i(xn+1, λn+1)[n + 1], and

uisn+1(4) =
1

(n + 1)λis
n

P (xn+1, λn+1)Q
i(xn+1, λn+1)[n+ 1] +

− 1

(n+ 1)λis
n

P (xn, λn)Q
i(xn, λn)[n+ 1].

Note that, almost surely,
∥

∥uisn+1(2)
∥

∥ ≤ C/n2 and
∥

∥

∥

∑k−1
l=n uisl+1(3)

∥

∥

∥
≤ C/n since the functions

P ,Qi, and the process (λn)n are bounded (for a generic positive constant C). We also have that
∥

∥uisn+1(4)
∥

∥ ≤ ‖(xn+1, λn+1)− xn, λn‖ ·C/n ≤ C/n2 because of the smoothness of PQi and the com-

pactness of X ×∆ and that (
∑n

l=1 u
is
l+1(1))n is a convergent martingale (since

∥

∥uisl+1(1)
∥

∥

2 ≤ C/l2).
So that

∥

∥

∥

∥

∥

k−1
∑

l=n

1

l + 1
U is
l+1

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

k−1
∑

l=n

uisl+1(1)

∥

∥

∥

∥

∥

+O

(

1

n

)

,

which implies that (6.8) holds.

Once we have the connection between the discrete process (APDM) and the continuous dynamics
(6.3), the task of finding explicit almost sure convergence results becomes more difficult because of
the general form of the function P defined in (A2). However, it is possible to state an analog of
Proposition 4.5 in the Logit decision rule case by strengthening the conditions over the parameters
βi and assuming that the variation of payoffs is small. Recall that α = maxi∈A

∑

j 6=i βj .
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Proposition 6.4. Under the Logit decision rule (5.1), let ηw be the maximal unilateral deviation

that a player can face for a fixed w ∈ W (see (5.3)). Set η = maxw ηw and η̃ = maxi,s,w,w′ |Gi(s, w)−
Gi(s, w′)|. If

{

2ηα+ η̃
√

|W |k < 1,

2maxi βi < 1,
(6.9)

where k is the ‖·‖∞-Lipschitz constant for the function τ , then the discrete process (APDM) con-

verges almost surely to the global attractor {(x∗, λ∗)} for the dynamics (6.3).

Proof. It is not difficult to see that under condition (6.9) there exists a unique rest point (x∗, λ∗) ∈
X × ∆ of (6.3). Consider the function V defined by V (x, λ) = max{‖x− x∗‖∞ , ‖λ− λ∗‖∞}.
Now if V (xt, λt) = ‖λt − λ∗‖∞ ≥ ‖xt − x∗‖∞ then V̇ (xt, λt) ≤ −KV (xt, λt) for some K ≥ 0,
using exactly the same computations as in Proposition 4.5,the fact that 2maxi βi < 1 and that
∥

∥σis(x)− σis(y)
∥

∥

∞
≤ 2βi ‖x− y‖∞ for all i ∈ A and s ∈ Si (see e.g., Cominetti et al. [9, Proposi-

tion 5]). On the other hand, if V (xt, λt) = ‖xt − x∗‖∞ ≥ ‖λ− λ∗‖∞, assume that the maximum is
attained on the is coordinate, that xis ≥ xis∗ and define F is(x, τ) = Gi(s, σ−i(x), τ). So that

d

dt
(xist − xis∗ ) =

σis(xit)

λis
t

[

xis∗ − xist + F is(xt, τ(λt))− F is(x∗, τ(λt))+

+ F is(x∗, τ(λt))− F is(x∗, τ(λ∗))

]

≤ σis(xit)

λis
t

[

− ‖xt − x∗‖∞ + 2ηα ‖xt − x∗‖∞ + η̃ ‖τ(λt)− τ(λ∗)‖1
]

≤ −ξ
(

1− 2ηα− η̃
√

|W |k
)

V (xt, λt),

for some ξ > 0 such that σis(x) ≥ ξ for every i ∈ A and s ∈ Si. Notice that we have used the fact
that, for every w′ ∈ W ,

F is(x∗, τ(λt))− F is(x∗, τ(λ∗)) =
∑

w∈W

(τw(λt)− τw(λ∗))(F
is(x∗, w)− F is(x∗, w

′)),

≤ η̃ ‖τ(λt)− τ(λ∗)‖1
≤ η̃

√

|W | ‖τ(λt)− τ(λ∗)‖∞ ≤ η̃
√

|W |k ‖λt − λ∗‖∞ .

Again, if xist − xis∗ < 0, the computations are the same. Then, V is a strict Lyapunov function.

The constant case

We restrict our attention to the constant case, i.e., the function P is such that P (λ) ≡ P ∗ and
consequently τ(λ) ≡ τ∗ where τ∗ is the unique invariant measure of P ∗. Therefore the condition
to ensure convergence in Proposition 6.4 reduces to 2ηα < 1 (by considering the same Lyapunov
function as in Proposition 4.5).

Notice that, in this case, ∇xΨx(x∗, λ∗) is an average (by τ∗) of the Jacobian matrices∇xΨ(x∗, λ∗, w),
where

Ψ
is
x (x, λ,w) =

σis(xi)

λis

[

Gi(x, σ−i(x), w) − xis
]

,
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for every w ∈ W . Then the estimate given by (5.4) can be obtained exactly in the same manner
than in Lemma 5.3 for the function Ψ if 2ηα < 1. Hence, as in the deterministic environment case,
the matrix ∇Ψ(x, λ) is stable for every rest point (x, λ) of (6.3) if 1 ≤ 2ηα < 2 and Proposition 5.11
can also be recovered in this framework. Let Y be the set of rest points of the dynamics (6.3).

Proposition 6.5. If an attractor A for the dynamics (6.3) verifies that B(A) ∩ Y 6= ∅, then

P(L(xn, λn) ⊆ A) > 0. In particular, under the Logit decision rule decision (5.1), if 1 ≤ 2ηα < 2,
then the set Y reduces to one point (x∗, λ∗) and P((xn, λn) → (x∗, λ∗)) > 0.

Proof. We only have to check that the conclusion of Lemma 5.10 (regarding the attainability points
of the process (APDM)) is satisfied in this case, since the remaining assumptions to apply [3,
Theorem 7.3] hold just as before. For the sake of simplicity, let us suppose that τ∗w is rational for
all w ∈ W . Let (x, λ) be such that xis = Gi(s, λ−i, τ∗) for all i ∈ A and s ∈ Si. Take m ∈ N

large such that, for every w ∈ W , mτ∗w ∈ N. Then, for a fixed w, repeat the block-argument in the
proof of Lemma 5.10 to construct a w-block of play. Then consider the block of play that consists
on playing mτ∗w-times each w-block, for each w. This sequence generated by (APDM) carries the
process (xn, λn)n close to (x, λ).

Remark 6.6. In fact, without the constantness assumption, we have shown that for every (x, λ) ∈
X × ∆ such that xis = Gi(s, σ−i(x), τ(λ)) for all i ∈ A and s ∈ Si, the point (x, λ) is attainable
by (APDM). Hence, in particular, any rest point of (6.3) is attainable and the first part in the
statement of Proposition 6.5 holds only under condition (A) on the decision rule σ.
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