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A UNIFIED APPROACH TO THE THEORY OF NORMED STRUCTURES -

PART I: THE SINGLE-SORTED CASE

SALVATORE TRINGALI

Abstract. We introduce the concept of a prenormed model of a particular kind of single-
sorted finitary first-order theories, interpreted over a category with finite products. These
are referred to as prealgebraic theories, for the fact that their signature comprises, together
with arbitrary function symbols (of finite ariety), only relation symbols whose interpretation,
in any possible model, is a reflexive and transitive binary relation, namely a preorder. The
result is an abstract approach to the very notion of norm and, consequently, to the theory of
normed structures.

1. Introduction

There is no doubt that norms, along with diverse analog concepts such as valuations and semi-
norms, occupy a central place in mathematics, not only in relation to the notion of distance and
metric spaces, but also in their own right, as for instance in the theory of Banach spaces [8],
valuated rings [3] and normed groups [2] (differently from other authors, we use here the term
“valuation” with the meaning of “absolute value”). In fact, the present article is intended as
one-half of a two-part work in a series of papers devoted to norms and normed structures. Since
the “many-sorted case” is an essentially technical complication of the “one-sorted case” and
adds no significant insights to the theory (at least in its basic aspects), we will concentrate here
on the latter and consider the former only in the second part1. The long-term goal, as well as
our original motivation, is the development of a framework suitable to carry out computations
relevant to the a priori convergence theory of approximation schemes in numerical analysis, with
a special focus on reduced basis methods [4] (a standard technique used by several authors in
applied mathematics to provide effective solutions of numerical problems depending on a large
number of parameters). The link is the spectral theory of linear operators and Banach algebras
[12], but we are not really going to dig into this in the sequel.

One of the main achievements here is, instead, the introduction of an abstract notion of
norm for models of a special kind of finitary first-order theories interpreted over a category
K with (all) finite products. Such theories will be called subalgebraic, due to the fact that
their signature includes, together with arbitrary function symbols, only relation symbols whose
interpretation is always a partial order (algebraic structures are covered as a special case). The
corresponding models will be referred to as K-models, to stress the role of K in the picture. In
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1: when there are only finitely many sorts in a theory, many-sorted first-order logic can be reduced to single-

sorted first-order logic. Nevertheless, it is quite natural, and most convenient in practice, to study many-sorted
theories in their own right, even in the presence of finitely many sorts, regardless of the possibility of reducing
them to the single-sorted case.
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particular, it will be proved that all the K-models of a given collection of prealgebraic theories
form themselves a category whose morphisms can be eventually understood as “norms”. This is
used, in turn, to build up another category (over a fixed K-model), whose objects are ultimately
an abstraction of normed spaces and whose morphisms are, in a generalized sense, “short maps”
between them.

Upon these premises, we show by a number of examples how to recover down-to-earth con-
structions of common use in the everyday practice, for a variety of applications ranging from
functional analysis to linear algebra and number theory, such as normed groups and valuated
rings (Part I), normed spaces and normed algebras (Part II), and variants, generalizations or spe-
cializations thereof including seminormed semigroups, non-Archimedean pseudo-semivaluated
fields, normed modules over valuated rings, etc. In this respect, we will face, in the next pages,
the following (somewhat vague) questions: What is abstractly a norm? And what are the essen-
tial features that one should retain in order to give a purely algebraic definition of a norm, to the
degree that normed structures can be ultimately identified with the objects of an appropriate
category and norms with the arrows between these objects? The answers provided in the sequel
are certainly far from being exhaustive and definite, but we are confident that the subject may
be worth the effort and our hope is that it can attract the interest of other researchers in the
field, for the benefits are potentially great: push on the use of categorical methods in analysis
and analytical methods in category theory.

To the best of our knowledge, the only previous contribution in this line dates back to the
2008 Ph.D. thesis of G.S.H. Cruttwell [6, Ch. 3]. There, partially based on work by M. Grandis
[7], the author gives a categorical abstraction of normed groups by regarding a group norm as
a (lax) monoidal functor from a compact closed category D to a monoidal category M. Then,
he considers the category AbNorm with objects given by Abelian normed groups and arrows
by group homomorphisms which are also weakly contractive maps. Lastly, he defines a normed
(unital) ring R as a one-object category enriched over AbNorm and a normed module over R
as an AbNorm-functor R → AbNorm (having once recognized that AbNorm is a category
enriched over itself). Our approach is substantially different (despite of a few points in common).
We do not focus our attention on a restricted class of familiar normed structures to describe
them from the general perspectives of categories. Rather, we combine the language of categories
with that of model theory to invent a general notion of “norm”, which applies especially to any
arbitrary model of any algebraic theory, to the degree that normed groups, normed rings and
normed modules result as an instance of a general concept of “normed” structure.

Many ideas in this paper have been influenced by the prominent work of R. Lowen on approach
spaces [11] and F.W. Lawvere on algebraic theories [10] and generalized metric spaces [9]. From a
categorical point of view, extended pseudometric spaces and extended pseudoquasimetric spaces,
along with their corresponding Lipschitz maps, have the best properties that one can actually
expect from a category of metric spaces: It is possible, within them, to form quotients and take
arbitrary products and coproducts. Dropping the attribute “extended” implies that, in general,
only finite products and coproducts will exist, while curtailing the prefix “pseudo” affects the
existence of quotients. Moving from these considerations, it seems quite reasonable, in search
of a “good” answer to questions concerning the “real nature” of norms, to focus first on the
weaker notions of seminorm and pseudoseminorm. This leads to one more basic insight, which
has been central in this research and can be roughly outlined as follows.

Loosely speaking, a homomorphism of two algebraic structures of the same type, as described
in the language of model theory, is a function between the underlying sets with the property
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of “preserving the operations”. Then, one observes that, with a little effort of imagination, a
seminorm, say, on a real vector space exhibits almost the same behaviour:

(i) Its codomain is a special “reference structure”. In the toy case that we are considering,
this is the set of non-negative real numbers, herein denoted by R+

0 , together with its
standard structure of totally ordered semiring, i.e., a ring without additive inverses (we
do not intentionally regard R+

0 , in this paper, as an ordered semifield).
(ii) It preserves the additive identity (a nullary operation). This has always been something

subtle (and, hence, interesting) to our eyes: In the final analysis, one is basically re-
quiring a seminorm to map a distinguished element a in the domain to a distinguished
element b in the codomain, in a context where a and b play the same (algebraic) role,
but still in a match lining up essentially different teams (both of them are identities,
but in structures marked by significant differences).

(iii) It relates a sum (of vectors) to a sum (of scalars) by means of an inequality.
(iv) It equates the product of a scalar by a vector to a product of two scalars, which is

informally the same as saying that it preserves the products, except that the one product
and the other have very little in common, at least at a first glance.

That said, the next step is to give emphasis to something absolutely obvious, i.e., that equalities
and inequalities, appearing in such a fundamental way in the (classical) definition of seminorms,
have in common the property of being orders. Some of them are partial, as for the equality
relation, while others are total, like in the case of the standard order on the set of real numbers,
but they all are orders, i.e., reflexive, antisymmetric and transitive binary relations. And it
is just by using orders and relaxing equalities to inequalities that we can manage to relate
structures of different types and “let them play a good game.”

This intuition is strengthened by the inspection of other similar constructions encountered
in various fields of the mathematical landscape. E.g., a group seminorm can be abstractly
defined, based on common terminology and notation from model theory (cf. Remarks 2 and 3),
as a function ‖ · ‖ from a group (G; +,−, 0G) to an ordered monoid (M ; +, 0M ;≤M ) such that
‖a+b‖ ≤M ‖a‖+‖b‖ for all a, b ∈ G and ‖0G‖ = 0M , and this is, indeed, called a group norm if it
is symmetric (with respect to the unary operation of negation) and ‖a‖ = 0M for some a ∈ G if
and only if a = 0G. Likewise, an absolute value is defined, in the context of ring and field theory,
as a function | · | from a domain (D; +, · ,−, 0D) to an ordered ring (R; +, · ,−, 0R;≤R) such that
| · | is a group seminorm from the [Abelian] group (D; +,−, 0D) to the [Abelian] ordered monoid
(R+

0 ; +, 0R;≤R) such that |a · b| = |a| · |b| for all a, b ∈ D, where R+
0 := {a ∈ R : 0R ≤R a}.

Thus, it is naively apparent the existence of a common pattern among these definitions, and the
primary goal of the paper is, indeed, to give an explicit formal description of such a pattern.

Basic notation and terminology. We set our foundations in the Neumann-Bernays-Gödel
axiomatic class theory (NBG), as presented in [13, Ch. IV]. We use N for the non-negative
integers and Z, Q and R according to their standard meaning. Unless differently stated, each of
these sets will be endowed with its ordinary order and operations.

If X,Y are classes, D ⊆ X and f ⊆ D × Y is such that, for every x ∈ D, there exists only
one y ∈ Y such that (x, y) ∈ f , we say that f is a (total) function (or map, mapping, or similia)
D → Y , but also that f is a partial function from X to Y . In this case, D, X and Y are called,
each in turn, the domain, the source and the target of f . In particular, we write dom(f) for D
and use the notation f : X 7→ Y (an arrow with a vertical stroke) for a partial function f from
X to Y . Note that, formally, a partial map from X to Y is an ordered triple (X,Y, f) for which
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f is a function D → Y for some D ⊆ X . Yet, we will often identify (X,Y, f) with f when it is
convenient to do that and it is clear from the context which classes must be used as source and
target. Lastly, if S ⊆ X and g is a function X → Y , then we denote by g|S , as is customary,
the mapping S → Y : x 7→ f(x) and refer to g|S as the restriction of g to S.

Furthermore, in dealing with a set I, we write |I| for its cardinality and use {Xi}i∈I if we want
to describe an indexed family of members of a certain class X . All indexed families considered
in this paper are implicitly indexed by sets.

Organization. In Section 2, after having recalled some rudiments of model theory and given
definitions useful to adapt them to our specific needs, we introduce prealgebraic [resp. subal-
gebraic] theories and prenorms [resp. subnorms] and prove the main result of the paper (i.e.
Proposition 2.1), subsequently presenting the category of prealgebraic [resp. subalgebraic] K-
models relative to a certain family of prealgebraic [resp. subalgebraic] theories (for K a category
with finite products). Section 3 discusses prenormed [resp. subnormed] models and Section 4
shows how these are ultimately an abstraction of familiar normed structures, such as normed
groups and valuated rings, by a number of examples. Lastly, in Appendix A, we provide a short
introductory overview to category theory. The intent is twofold. On the one hand, this article
is motivated by research in the field of numerical analysis, and therefore it aims to attract the
interest not only of categorists but also of non-specialists in the are. On the other, we feel
necessary to fix, once and for all, basic notation and terminology that we are going to use, both
here and in future work, to deal with categories.

2. First-order prealgebraic theories and prenorms

In the traditional language of model theory and first-order logic [5], a (finitary single-sorted)
signature, or type, is a triple σ = (Σf ,Σr, ar), where Σf and Σr are disjoint sets not including
logical symbols of the underlying formal language and ar is a map Σf ∪ Σr → N. The members
of Σf are called function symbols, those of Σr relation symbols. For each symbol ζ ∈ Σf ∪ Σr,
ar(ζ) is referred to as the ariety of ζ. A subsignature of σ is any signature σ0 = (Σf,0,Σr,0, ar0)
such that Σf,0 ⊆ Σf , Σr,0 ⊆ Σr and ar0 is the restriction of ar to Σf,0 ∪Σr,0. In addition to this,
we say that σ is algebraic if Σr = ∅ and balanced if there exists a bijection φ : Σf → Σr.

Remark 1. A balanced signature σ = (Σf ,Σr, ar) can be, and will be, systematically represented
as ({(ςr, ̺r)}r∈R; ar), where {ςr : r ∈ R} = Σf and {̺r : r ∈ R} = Σr.

Provided that σi = (Σf,i,Σr,i, ari) is a signature (i = 1, 2), we define a signature homomorphism
from σ1 to σ2 to be a map α : Σf,1 ∪Σr,1 → Σf,2 ∪Σr,2 such that α(Σf,1) ⊆ Σf,2, α(Σr,1) ⊆ Σr,2

and ar2(α(ζ)) = ar1(ζ) for every ζ ∈ Σf,1 ∪ Σr,1. If so, we write that α : σ1 → σ2 is a signature
homomorphism. In addition to this, for σ0 = (Σf,0,Σr,0, ar0) a subsignature of σ1, we say that a
signature homomorphism α0 : σ0 → σ2 is the restriction of α to σ0 if, regarded as a function, it
is the restriction of α to Σf,0∪Σr,0. Lastly, we refer to the signature homomorphism j : σ0 → σ1
sending each ζ ∈ Σf,0 ∪ Σr,0 to itself as the canonical injection σ0 → σ1.

Remark 2. Pick σ = (Σf ,Σr, ar) to be a signature. For k, ℓ ∈ N, suppose that Σf and Σr can
be respectively partitioned into k families of function symbols {ς1,r}r∈R1

, . . . , {ςk,r}r∈Rk
and ℓ

families of relation symbols {̺1,s}s∈S1
, . . . , {̺ℓ,s}s∈Sℓ

. Then, σ is possibly denoted by

({ς1,r}r∈R1
, . . . , {ςk,r}r∈Rk

; {̺1,s}s∈S1
, . . . , {̺ℓ,s}s∈Sℓ

; ar). (1)
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On another hand, assume that σ is balanced and let σ = ({(ςr, ̺r)}r∈Σf
; ar) (see Remark 1).

Admit that there exists k ∈ N such that {(ςr, ̺r)}r∈Σf
can be partitioned into k collections of

the form {(ς1,r, ̺1,r)}r∈R1
, . . . , {(ςk,r, ̺k,r)}r∈Rk

. Then, we possibly write σ as

({(ς1,r, ̺1,r)}r∈R1
; . . . ; {(ςk,r, ̺k,r)}r∈Rk

; ar). (2)

These notations are further simplified, in the most obvious way, whenever a family of symbols
consists of one element (i.e. is a singleton), to the extent of writing, for instance, (+, ⋆, 1;≤,∼; ar)
in place of σ = ({+, ⋆, 1}, {≤,∼}, ar) or (−,�; ⋆,≃; ar) instead of ({−, ⋆}, {�,≃}, ar).

One-sorted finitary signatures form a category, denoted by Sgn. This has the class of (one-
sorted finitary) signatures as objects and all triples of the form (σ, τ, α) as morphisms, with σ
and τ being signatures and α : σ → τ a signature homomorphism. As is customary, when there
is no likelihood of ambiguity, we will use α as a shorthand of (σ, τ, α). The composition of two
morphisms (σ, τ, α) and (τ, ω, β) is defined by the triple (σ, ω, β ◦Setα). The local identities and
the maps of source and target are the obvious ones.

With this in hand, let us assume henceforth that K is a category with (all) finite products
(see Appendix A for notation and terminology). In our understanding, a (finitary single-sorted)
structure over K, or K-structure, is then any 4-uple A = (A,χ, σ, I) consisting of

(i) an object A of K, referred to as the carrier of the structure and denoted by |A|.
(ii) a “sorting” function χ : N → obj(K) such that χ(1) = A and χ(n) ∈

∏
K{A}ni=1.

(iii) a (finitary single-sorted) signature σ = (Σf ,Σr, ar).
(iv) an interpretation function I : Σf ∪ Σr → hom(K) sending an n-ary function symbol

ς ∈ Σf to an arrow fς ∈ homK(χ(n), A) and an n-ary relation symbol ̺ ∈ Σr to a
monomorphism m̺ ∈ homK(R,χ(n)), whence an n-ary relation on A (see Definition 5).

As is customary, a nullary function symbol ς is called a constant symbol, because its interpre-
tation I(ς) can be identified with a distinguished “point” of A.

Remark 3. In the sequel, dealing with a (finitary single-sorted)K-structure A = (A,χ, σ, I), we
systematically forget about χ and write simply An in place of χ(n), with the implicit arrangement
that this is only a shorthand for a distinguished representative in the isomorphism class of the
product objects of

∏
K{A}ni=1. Thus, to describe a K-structure, we use a 3-uple instead of

a 4-uple and omit any further reference to any sorting function. In addition, given n points
a1, a2, . . . , an ∈ A, we write (a1, a2, . . . , an) in place of (a1, a2, . . . , an;A

0) (see Remark 21).
Finally, as far as there is no danger of confusion, we do not make any notational distinction
between a symbol ζ of σ and its interpretation under I, to the extent of using ζ for I(ζ): This
will be especially the case when ζ is the function symbol of a binary operation, such as +, · or
⋆, or the relation symbol of a preorder, such as ≤ or �. In these circumstances, for a, b ∈ A,
we will write, e.g., a + b in place of I(+)(a, b) and a ≤ b for (a, b) ∈ I(≤) without additional
explanation (see Remark 21).

Remark 4. Still for the sake of simplifying our notation, suppose that Ai = (Ai, σi, Ii) is
a K-structure (i = 1, 2), let ϕ be a morphism A1 → A2 of K, and pick n ∈ N. Then, we
agree to denote by ϕn the arrow

∏
K(π1,j ◦K ϕ, π2,j)

n
j=1 (indeed a morphism An

1 → An
2 ), where

{πi,j}nj=1 is the set of the canonical projections An
i → Ai. In point of fact, ϕn is unambiguously

determined in the light of Remarks 3 and 18.

Remark 5. In the cases considered below to work out the basics of the abstract theory of normed
structures, we will restrict ourselves to K-structures of type (A, σ, I), where σ is balanced and
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each relation symbol ̺ of σ, if any is present, is binary and its interpretation is a preorder [resp.
a partial order] on A, in such a way that (A, I(̺)) is an object of Pre(K) [resp. Pos(K)], i.e.,
a preordered object [resp. a pod] of C (see Definition 6). When this occurs, A will be referred
to as a prealgebraic [resp. subalgebraic] K-structure, and indeed as an algebraic K-structure if
I(̺) is the equality relation on A for every ̺ ∈ Σr. Algebraic structures over Set are precisely
the (finitary single-sorted) structures traditionally studied by universal algebra.

Remark 6. Say that A = (A, σ, I) is a K-structure, with σ = (Σf ,Σr, ar), and assume that,
for some k, ℓ ∈ N, it is possible to partition Σf and Σr, each in turn, into k families of function
symbols {ς1,r}r∈R1

, . . . , {ςk,r}r∈Rk
and ℓ families of relation symbols {̺1,s}s∈S1

, . . . , {̺ℓ,s}s∈Sℓ

(see Remark 2). In this case, A is possibly represented by

(A; {ς1,r}r∈R1
, . . . , {ςk,r}r∈Rk

; {̺1,s}s∈S1
, . . . , {̺ℓ,s}s∈Sℓ

). (3)

On another hand, admit that σ is balanced and let σ = ({(ςr, ̺r)}r∈Σf
; ar) (see Remark 1).

Suppose that there exists k ∈ N such that {(ςr, ̺r)}r∈Σf
can be partitioned into k collections of

the form {(ς1,r, ̺1,r)}r∈R1
, . . . , {(ςk,r, ̺k,r)}r∈Rm

. Then, we possibly denote A by

(A; {(ς1,r, ̺1,r)}r∈R1
; . . . ; {(ςk,r, ̺k,r)}r∈Rk

). (4)

Moreover, these notations are further simplified, in the most obvious way, if a family of symbols
is a singleton, to the degree of writing, e.g., (A; +, ⋆, 1;≤,∼) in place of (A, σ, I) provided
σ = ({+, ⋆, 1}, {≤,∼}, ar) or (A;−,�; ⋆,≃) instead of (A, σ, I) for σ = ({−, ⋆}, {�,≃}, ar).

Upon these premises, fix an infinite set V of (propositional) variables. One denotes by 〈V ;σ〉
the collection of all (well-formed) formulas in the variables V generated by σ according to the
formation rules of first-order logic and says that a K-structure A = (A, σ, I) satisfies a formula
φ ∈ 〈V ;σ〉 of n arguments x1, x2, . . . , xn ∈ V if the interpretation φ(A) of φ over A is a true
statement, which is expressed by writing that A |= φ. Here, φ(A) is obtained from φ by

(i) by replacing each variable xi with a point A0 → A and each ζ ∈ Σf ∪ Σr occurring in
the expression of φ with its interpretation under I.

(ii) by interpreting expressions of the form I(ς)(a1, a2, . . . , an) and (a1, a2, . . . , an) ∈ I(̺),
where ς ∈ Σf and ̺ ∈ Σr are n-ary symbols and a1, a2, . . . , an are points A0 → A of K,
according to Remarks 3 and 21.

A σ-theory, or a theory of type σ, in the variables V is then any triple T = (V, σ,Ξ) such
that Ξ is a (possibly empty) subset of 〈V ;σ〉, while a K-model A of T , or equivalently a model
of T over K, is a K-structure (A, σ, I) that satisfies every axiom φ ∈ Ξ. Such a condition is
equivalently stated by writing A |= T and saying that A satisfies T : in this respect, σ will be
also referred to as the signature of (T,A). If T = (V, σ,Ξ) is a theory, a subtheory of T is
any theory Ts = (V, σs,Ξs) such that σs is a subsignature of σ and Ξs = Ξ ∩ 〈V ;σs〉, while a
K-submodel of T is a K-model of a subtheory of T . If Ts is a subtheory of T , we write Ts ≤ T
and possibly say that T is an extension, or a supertheory, of Ts.

Remark 7. Let σ include, among its functional symbols, two binary symbols ∨ and ∧, a unary
symbol u and a nullary symbol e. Then, consider the following formulas from 〈V ;σ〉:

(a.1) ∀x, y, z ∈ V : (x ∨ y) ∨ z = x ∨ (y ∨ z).
(a.2) ∀x ∈ V : x ∨ e = e ∨ x = x.
(a.3) ∀x ∈ V : x ∨ u(x) = u(x) ∨ x = e.
(a.4) ∀x, y, z ∈ V : x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).
(a.5) ∀x, y, z ∈ V : (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z).
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We refer, as is usual, to (a.1) as the axiom of associativity for the symbol ∨; to (a.2) as the
axiom of neutrality for the pair (∨, e); to (a.3) as the axiom of inverses for the triple (∨, u, e);
to (a.4) and (a.5), respectively, as the axioms of left and right distributiveness of ∧ over ∨. We
list them here for future reference, they will be used later to deal with examples in Section 4.

Definition 1. We say that a theory T = (V, σ,Ξ) is prealgebraic if σ is a balanced signature of
type (Σf ,Σr, ar), where all relation symbols are binary and, for each ̺ ∈ Σr, the axioms of T
include at least the axiom of reflexivity: ∀x ∈ V : (x, x) ∈ ̺, and the axiom of transitivity:

∀x, y, z ∈ V : (((x, y) ∈ ̺) AND ((y, z) ∈ ̺))) =⇒ ((x, z) ∈ ̺).

In addition to this, T will be called subalgebraic if it is prealgebraic and, for every ̺ ∈ Σr, Ξ
contains also the axiom of antisymmetry:

∀x, y ∈ V : (((x, y) ∈ ̺) AND ((y, x) ∈ ̺))) =⇒ (x = y).

On another hand, T is called algebraic if Σr is empty (no relational symbols are permitted)
and algebraic over K if, for each K-model A = (A, σ, I) of T , there is one more K-model
Aa = (A, σ, Ia) of T such that Ia(ς) = I(ς) for each ς ∈ Σf and Ia(̺) is the equality relation
on A for all ̺ ∈ Σr, so that Aa is an algebraic K-structure (see Remark 5), referred to as an
algebraization of A, on the one hand, and an algebraic K-model of T , on the other.

Note that, if T is prealgebraic [resp. subalgebraic], any relation symbol of its signature will be
interpreted, in any possible K-model A of T , as a preorder [resp. a partial order] on |A|.

Definition 2. A K-model A = (A, σ, I) of a theory T = (V, σ,Ξ), with σ = (Σf ,Σr, ar), is said
pivotal if the symbols of Σr have all the same ariety and either Σr = ∅ or there exists ̺0 ∈ Σr

such that I(̺) ⊆ I(̺0) for every ̺ ∈ Σr. When this happens, I(̺0) is called the pivot of A.

Pivotal models will be crucial, later in this section, for the definition of the categories of
prenormed and subnormed structures over a fixed “target” (see Section 3).

Remark 8. A subalgebraic theory is always a prealgebraic theory. More interestingly, there is
a canonical way to identify a K-model A = (A, σ, I) of an algebraic theory T = (V, σ,Ξ) with a
K-model of a subalgebraic theory (in the same variables), so that any algebraic theory can be
definitely identified with an subalgebraic theory. To see how, let σ = (Σf , ∅, ar). For each ς ∈ Σf ,
consider a binary relation symbol ̺ς /∈ Σf , not already comprised among the basic symbols of the
underlying logic, and set Σr := {̺ς}ς∈Σf

. Extend ar to the function are : Σf ∪Σr → N by taking
are(̺) := 2 for every ̺ ∈ Σr and define σe := (Σf ,Σr, are). Lastly, expand Ξ to a larger set of
axioms, namely Ξe, in such a way as to include all and only the axioms of reflexivity, symmetry
and transitivity relative to every relation symbol ̺ ∈ Σr. Then, Te = (V, σe,Ξe) is a subalgebraic
(and hence prealgebraic) theory and A can be identified with the model Ae = (A, σe, Ie) of Te
defined by assuming that Ie = I on Σf and Ie(̺) is the equality relation on A for each ̺ ∈ Σr.
On another hand, say that T is an arbitrary theory. Then, a slight modification of the above
arguments shows that it is always possible to find a smallest prealgebraic [resp. subalgebraic]
theory in the same variables and with the same signature as T , where “smallest” must be
intended as “with the fewest possible axioms”. This will be denoted by ♯pT [resp. ♯sT ] and
called the prealgebraic [resp. subalgebraic] embodiment of T .

Remark 9. When the set of variables V is well understood from the context, we will use simply
(σ,Ξ) in place of (V, σ,Ξ) to indicate a theory in the variables V .

If P ∈ obj(K) and Q = (Q,≤Q) is a preordered object of K (see Definition 6), we convey to
denote by ℘(P,Q) the preorder induced on homK(P,Q) by ≤Q as follows: If f, g ∈ homK(P,Q),
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we let (f, g) ∈ ℘(P,Q) if and only if f(x) ≤Q g(x) for all x ∈ P . Observe that, in the special
case where K = Set, ℘(P,Q) represents, up to an isomorphism, the preorder corresponding
to the exponential [1, Chapter 6] of the pair (P ,Q) in Pre(Set) for P being the trivial poset
on P (see Example c.3 in Appendix A). Also, note that ℘(P,Q) is, in fact, a partial order on
homK(P,Q) when Q is a pod of K and K is such that two arrows f, g : A → B are equal if
f(a) = g(a) for all a ∈ A: this is, e.g., the case for Set and Pos(Set) (cf. [1, p. 36]).

Lemma 2.1. Given that P ∈ obj(K) and Q = (Q,≤Q) and R = (R,≤R) are preordered objects
of K, let f, f1, f2 ∈ homK(P,Q) and g, g1, g2 ∈ homK(Q,R). The following hold:

(i) If (g1, g2) ∈ ℘(Q,R), then (g1 ◦K f, g2 ◦K f) ∈ ℘(P,R).
(ii) If (f1, f2) ∈ ℘(P,Q) and g ∈ homPre(K)(Q,R), then (g ◦K f1, g ◦K f2) ∈ ℘(P,R).

Proof. The first claim is obvious. As for the second, pick x ∈ P . Since (f1, f2) ∈ ℘(P,Q), it is
f1(x) ≤Q f2(x), from which g(f1(x)) ≤R g(f2(x)), for g is a monotonic function Q → R. By
the arbitrariness of x ∈ P , this completes the proof. �

Now, in what follows, let Ti = (V, σi,Ξi) be a prealgebraic [resp. subalgebraic] theory and
Ai = (Ai, σi, Ii) a K-model of Ti (i = 1, 2), with σi = ({ςr,i, ̺r,i}r∈Ri

; ari). It is then possible to
regard a signature homomorphism α : σ1 → σ2 as a pair (α1, α2) of maps α1, α2 : R1 → R2 by
imposing that ςα1(r),2 = α(ςr,1) and ̺α2(r),2 = α(̺r,1) for each r ∈ R1. Hence, we systematically
abuse notation and identify α with its “components” α1 and α2, to the extent of writing ςα(r),2
in place of ςα1(r),2 and ̺α(s),2 for ̺α2(s),2. In addition to this, set Ar,i equal to (Ai, ̺r,i) for
every r ∈ Ri (while having in mind Remark 3). The following definition is fundamental:

Definition 3. We say that A1 is prehomomorphic [resp. subhomomorphic] to A2 if there exist
α ∈ homSgn(σ1, σ2) and ϕ ∈ homK(A1, A2) such that, for each r ∈ R1,

(i) (ϕ ◦K ςr,1, ςα(r),2 ◦K ϕn) ∈ ℘(An
1 ,Aα(r),2) (see Remark 4);

(ii) ϕ is a monotonic arrow Ar,1 → Aα(r),2 in Pre(K) (see Example c.3 in Appendix A),

where n := ar1(ςr,1) (see Remark ). Then, we call Φ := (α, ϕ) aK-prenorm [resp. K-subnorm] or
write that Φ : A1 → A2 is a prenorm [resp. subnorm] of K-models. In particular, a K-prenorm
A1 → A2 is said a K-homomorphism if I2(̺α(r),2) is the equality on A2 for each r ∈ R1.

Remark 10. Definition 3 returns exactly the standard notion of a homomorphism of algebraic
structures, as given in the framework of universal algebra, in the special case where Ti is an
algebraic theory over Set and T1 = T2.

Remark 11. Let T∅ denote the “empty theory” (V, σ∅, ∅), where σ∅ = (∅, ∅, ∅). Clearly, T∅ is
a subalgebraic (indeed algebraic) theory and its K-models are all and only the triples (A, σ∅, ∅)
such that A ∈ obj(K). Therefore, for T another prealgebraic [resp. subalgebraic] theory in the
variables V , A∅ a K-model of T∅ and A a K-model of T , the K-prenorms [resp. K-subnorms]
A∅ → A are all and only the pairs (∅, ϕ) for which ϕ is a morphism |A∅| → |A| in K.

Remark 12. Except for those required to turn T1 and T2 into prealgebraic [resp. subalgebraic]
theories, the definition of a K-prenorm [resp. K-subnorm] A1 → A2 does not depend at all on
the axioms that A1 and A2 have to satisfy as models of T1 and T2, respectively. This ultimately
means that other axioms, if any is present, do not play an active role in the foundations of
the abstract theory so far developed. Rather, they (can) contribute to determining “extrinsic”
properties of prenorms (and, later, prenormed structures), i.e., properties complementary to the
inherent ones stemming directly from their very definition.

8



Remark 13. Clearly, for a K-prenorm A1 → A2 to exist, it is necessary that any n-ary function
symbol of σ1 has a corresponding n-ary function symbol in σ2, though it is not necessary that
σ1 is smaller than σ2 (in the sense that the former contains less symbols than the latter).

Remark 14. If R1 = ∅, the pair (α, ϕ) is a K-prenorm A1 → A2 if and only if α = (σ1, σ2, ∅)
and ϕ ∈ homK(A1, A2) is monotonic in the sense of condition (ii) of Definition 3. Lastly, for A1

an algebraic K-model of T1, (α, ϕ) is a K-prenorm A1 → A2 if and only if it satisfies condition
(i) in the aforementioned definition (since the other, in this case, is automatically fulfilled).

Remark 15. Suppose that (α, ϕ) is a K-prenorm A1 → A2 and pick an index r ∈ R1, if any
exists, such that ςr,1 is (interpreted as) a nullary operation of A1. It then follows from Definition
3 that (ϕ(cr,1), cα(r),2) ∈ ̺α(r),2, where cr,1 := ςr,1 ◦K idK(A0

1) is a distinguished point of A1 and

cr,2 := ςα(r),2 ◦K idK(A0
2) a distinguished point of A2. In particular, if ̺α(r),2 is antisymmetric,

thus a partial order on A2, and cα(r),2 is the least element of (A2, ̺α(r),2), in the sense that
(cα(r),2, a) ∈ ̺α(r),2 for every a ∈ A2, this implies ϕ(cr,1) = cα(r),2. On account of the worked
examples examined in Section 4, such a result represents a minor but attractive byproduct of
the framework set up in this work. In the ultimate analysis, it shows that there is no need
to assume, say, that a group norm or a ring valuation, as defined in the traditional setting by
taking them to be valued in R+

0 (cf. Examples e.3 and e.5 in Section 4), preserve the additive
identities, for this is nothing but a consequence of the inherent properties of subnorms.

Definition 4. Assume that A2 is pivotal and denote its pivot by ≤. Take ς2 to be a nullary
function symbol in σ2 (if any exists) and Φ = (α, ϕ) a K-prenorm A1 → A2. We say that Φ is

(i) upward [resp. downward] semidefinite with respect to ς2 if (ς2 ◦K ϕ0)(a) ≤ ϕ(a) [resp.
ϕ(a) ≤ (ς2 ◦K ϕ0)(a)] for every a ∈ A1;

(ii) upward [resp. downward] definite (with respect to ς2) if it is upward [resp. downward]
semidefinite and (ς2◦Kϕ0)(a) 6= ϕ(a) for all a ∈ A1\

⋃
ς1∈α−1(ς2)

(ς1◦K idK(A0
1)), which is

equivalently expressed by writing that (ς2 ◦K ϕ0)(a) � ϕ(a) [resp. ϕ(a) � (ς2 ◦K ϕ0)(a)]
for every a ∈ A1 \

⋃
ς1∈α−1(ς2)

(ς1 ◦K idK(A0
1)).

(iii) indefinite (with respect to ς2) if it is neither upward nor downward semidefinite.

On another hand, we say that Φ is trivial if ϕ(a) = ϕ(b) for all a, b ∈ A1.

Upward (semi)definiteness abstracts and generalizes one of the most basic properties of standard
norms, to wit, positive (semi)definiteness. More than this, Definition 4 suggests that, at least in
principle, (semi)definitiness of norms has nothing really special to do with the additive identities
in group-like, ring-like or module-like structures, as one might naively conclude from the classical
perspective. Rather, it is an issue related to constants, all constants: Which one of them is more
significant than the others strongly depends on the case at hand.

Proposition 2.1. Let Ti = (V, σi,Ξi) be a prealgebraic [resp. subalgebraic] theory and Ai =
(Ai, σi, Ii) a K-model of Ti (i = 1, 2, 3). Suppose Φ = (α, ϕ) is a K-prenorm [resp. K-subnorm]
A1 → A2 and Ψ = (β, ψ) a K-prenorm [resp. K-subnorm] A2 → A3. Finally, take γ := β ◦Sgnα
and ϑ := ψ ◦K ϕ. Then, Θ = (γ, ϑ) is a K-prenorm [resp. -subnorm] A1 → A3.

Proof. Assume σi = ({(ςr,i, ̺r,i)}r∈Ri
; ari) and, for every r ∈ Ri, take Ar,i to be the preordered

[resp. partially ordered] object (Ai, ̺r,i) of K. Since Sgn and Pre(K) [resp. Pos(K)] are
categories, γ is obviously a signature homomorphism σ1 → σ2 and ϑ a monotonic arrow Ar,1 →
Aγ(r),3 for every r ∈ R1. Thus, it is left to prove that (ϑ ◦K ςr,1, ςγ(r),3 ◦K ϑn) ∈ ℘(An

1 ,Aγ(r),3)
for each n-ary function symbol ςr,1 ∈ σ1. For this purpose, pick r ∈ R1 and set n := ar1(ςr,1).
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Since, by hypothesis, (ϕ ◦K ςr,1, ςα(r),2 ◦K ϕn) ∈ ℘(An
1 ,Aα(r),2) and ψ is a monotonic morphism

Aα(r),2 → Aγ(r),3, it follows from the second point of Lemma 2.1 that

(ψ ◦K (ϕ ◦K ςr,1), ψ ◦K (ςα(r),2 ◦K ϕn)) ∈ ℘(An
1 ,Aγ(r),3). (5)

By the associativity of ◦K, this in turn is equivalent to

(ϑ ◦K ςr,1, (ψ ◦K ςα(r),2) ◦K ϕn) ∈ ℘(An
1 ,Aγ(r),3). (6)

On the other hand, again by hypothesis, (ψ ◦K ςα(r),2, ςγ(r),3 ◦K ψn) ∈ ℘(An
2 ,Aγ(r),3). Hence,

the first point of Lemma 2.1 implies that

((ψ ◦K ςα(r),2) ◦K ϕn, (ςγ(r),3 ◦K ψn) ◦K ϕn) ∈ ℘(An
1 ,Aγ(r),3). (7)

Using once more the associativity of ◦K, along with the fact that ψn ◦K ϕn = (ψ ◦K ϕ)n = ϑn,
this equation can be rearranged in the form:

((ψ ◦K ςα(r),2) ◦K ϕn, ςγ(r),3 ◦K ϑn) ∈ ℘(An
1 ,Aγ(r),3). (8)

In the light of Equation (6), it then follows that (ϑ ◦K ςr,1, ςγ(r),3 ◦K ϑn) ∈ ℘(An
1 ,Aγ(r),3), since

℘(An
1 ,Aγ(r),3) is a preorder on homK(An

1 , A3). And this ultimately proves, by the arbitrariness
of r ∈ R1, that (γ, ϑ) is a K-prenorm [resp. K-subnorm] A1 → A3. �

With this in hand, suppose T is a given collection of prealgebraic [resp. subalgebraic] theories
in the variables V . We take Co to be the class of all pairs (T,A) for which T ∈ T and A |= T ,
and Ch that of all triples (M1,M2,Φ) such that Mi = (Ti,Ai), with Ti ∈ T and F(Ai) |= Ti,
and Φ is a prenorm [resp. subnorm] of K-models A1 → A2. We let s and t be, each in turn, the
maps Ch → Co : (M1,M2,Φ) 7→ M1 and Ch → Co : (M1,M2,Φ) 7→ M2, while denoting by i
the mapping Co → Ch that sends a pair M = (T,A) of Co, with T = (σ,Ξ) and A = (A, σ, I),
to the triple (M,M, ε) of Ch with ε := (idSgn(σ), idK(A)). Lastly, we specify a partial function
c : Ch × Ch 7→ Ch as follows: Pick m = (M1,M2,Φ) and n = (N1,N2,Ψ) in Ch. If M2 6= N1,
then c(m, n) is not defined. Otherwise, in the light of Proposition 2.1, assume Φ = (α, ϕ) and
Ψ = (β, ψ) and set c(m, n) := (M1,N2,Θ), where Θ := (β ◦Sgn α, ψ ◦K ϕ).

It is then routine to check that (Co, Ch, s, t, i, c) is a category. We call it the category of
prealgebraic [resp. subalgebraic] K-models of T. It will be denoted, in general, by PnrK(T)
[resp. SnrK(T)], and especially written as PnrK(T ) [resp. SnrK(T )] in the case where T

consists of a unique prealgebraic [resp. subalgebraic] theory T (in the variables V ). In the latter
occurrence, whenever T is implied by the context, we use A in place of (T,A) to mean an object
of PnrK(T ) [resp. SnrK(T )]. A thorough investigation of the properties of these categories is
behind the scope of the present paper: it will, in fact, be the subject of a subsequent article.
For the moment, we restrict ourselves to a few trivial remarks and observations.

First, it is clear that SnrK(T) is contained in PnrK(T) as a full subcategory, so that we
can partially reduce the study of the former to the study of the latter. Second, suppose T =
(V, σ,Ξ) is a prealgebraic [resp. subalgebraic] theory and Ts = (V, σs,Ξs) a prealgebraic [resp.
subalgebraic] subtheory of T . Then, there exists an obvious “forgetful” functor CTs

: PnrK(T ) →
PnrK(Ts) [resp. CTs

: SnrK(T ) → SnrK(Ts)] defined by mapping

(i) a prealgebraic [resp. subalgebraic] K-model M = (T,A) of T , with A = (A, σ, I), to the
pair (Ts,As), where As := (A, σs, I|σs

);
(ii) a morphism (α, ϕ) : M1 → M2 of PnrK(T ) [resp. SnrK(T )] to the K-prenorm [resp.

K-subnorm] (αs, ϕ) : CTs
(M1) → CTs

(M2), where αs is the restriction of α to σs.
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In particular, CTs
returns a “forgetful” functor to K in the extreme case where Ts is the empty

theory in the variables V . One question is, then, to establish under which conditions CTs
admits

a left or right adjoint. Nevertheless, this and other properties of PnrK(T ) and SnrK(T ) appear
to to be strongly dependent on the actual characteristics of T , Ts and K and will be considered
non here but in a separate paper.

3. Prenormed models over a fixed target

Continuing with the notation of the previous section (unless explicitly overridden), assume
henceforth that M0 = (T0,A0) is a fixed “target” in PnrK(T) and suppose that A0 is pivotal:
Let us denote its pivot by ≤ and set A0 := (|A0|,≤). A prenormed K-model of T over M0 is,
then, any pair M = (M,Φ) such that M is another object of PnrK(T) and Φ a K-prenorm
M → M0: We refer to Φ as an M0-valued K-prenorm on M (or a K-prenorm on M with
values in M0), and indeed as an M0-valued K-subnorm on M (or a K-subnorm on M with
values in M0) if M and M0 are both prenormed K-models of T. Observe that M can be well
identified with the morphism Φ : M → M0 of PnrK(T).

Given a prenormed K-model Mi = (Mi,Φi) of T over M0 (i = 1, 2), with Mi = (Ti,Ai) and
Φi = (αi, ϕi), we define a K-short morphism M1 → M2 to be any morphism (β, ψ) : M1 → M2

in PnrK(T) such that β ◦Sgn α2 = α1 and (ϕ2 ◦K ψ, ϕ1) ∈ ℘(|A1|,A0). The terminology is
prompted by the fact that the latter condition is ultimately equivalent to saying, in a much
more familiar notation, that ‖ψ(a)‖2 ≤ ‖a‖1 for all a ∈ |A1|, with ‖ · ‖i := ϕi. In particular, we
write that Ψ is a K-isometry M1 → M2 if ‖ψ(a)‖2 = ‖a‖1 for all a ∈ |A1|.

Remark 16. As shown shortly, prenormed K-models of T over M0 and K-short morphisms
thereof give rise to a further category, besides PnrK(T). In the many-sorted case (discussed in
the second part of the present work), this provides a full abstraction of the usual category of
left modules over a fixed valuated ring (normed spaces over a fixed valuated field can be viewed
as a special case of these), with morphisms given by weakly contractive linear transformations
between the underlying vector spaces. This sounds intriguing, for it seems to suggest that,
from the perspective of the framework set up in this paper, the “right choice” about the kind
of morphisms to be considered in relation to normed structures, based only on abstract non-
sense reasoning (and especially regardless of any further considerations relevant to applications),
should “naturally” fall on short maps. Simply for the fact that common alternatives available
in the “localized” context of normed spaces, such as bounded transformations or continuous
functions between the standard topologies induced by the norms on the underlying sets, are
ruled out, for they are not even possible, in the setting where we are planting the foundations
of the general theory of normed structures.

Lemma 3.1. Let Mi = (Mi,Φi) be a prenormed K-model of T over M0 (i = 1, 2, 3) and suppose
that Ψ and Θ are, respectively, K-short maps M1 → M2 and M2 → M3. The composition of Θ
with Ψ in PnrK(T) is then a K-short map M1 → M3.

Proof. Let Ψ = (β, ψ) and Θ = (γ, ϑ) and set Mi = (Ti,Ai), Φi = (αi, ϕi) and ‖ · ‖i := ϕi. It is
enough to show that ‖(ϑ ◦K ψ)(a)‖3 ≤ ‖a‖1 for all a ∈ |A1|. But this is straightforward since,
by hypothesis, ‖ϑ(ψ(a))‖3 ≤ ‖ψ(a)‖2 on the one hand, and ‖ψ(a)‖2 ≤ ‖a‖1 on the other, so
that the conclusion follows from the transitivity of ≤. �

Define Co as the class of prenormed K-models over M0 and Ch as that of triples (M1,M2,Ψ)
such thatMi is a prenormedK-model of T overM0 and Ψ aK-short morphismM1 → M2. Then,
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take s and t to be the maps Ch → Co : (M1,M2,Φ) 7→ M1 and Ch → Co : (M1,M2,Φ) 7→ M2,
respectively, and denote by i the function Co → Ch sending a prenormed K-model M = (M,Φ)
to the triple (M,M, ε), where ε is the identity M → M in PrnK(T). Lastly, let c be the partial
function Ch×Ch 7→ Ch specified as follows: Pick m = (M1,M2,Ψ) and n = (N1,N2,Θ) in Ch. If
M2 6= N1, then c(m, n) is not defined. Otherwise, based on Lemma 3.1, assume Ψ = (β, ψ) and
Θ = (γ, ϑ) and set c(m, n) equal to the triple (M1,N2,Π), where Π := (γ ◦Sgn β, ϑ ◦K ψ).

It is easy to verify that the 6-uple (Co, Ch, s, t, i, c) gives a category. We call it the category of
prenormedK-models of T overM0 and refer to its objects as prenormedK-models of T overM0.
This category will be denoted, in general, by PnrK(T;M0), and especially by PnrK(T ;M0) in
the case where T = {T, T0} for some prealgebraic theory T (possibly equal to T0). When M0 is
a subnormed K-model of T, then the objects in PnrK(T;M0) that are, indeed, subnormed K-
models of T overM0, form a full subcategory of PnrK(T;M0). This is written as SnrK(T;M0),
or as SnrK(T ;M0) for T = {T, T0}, and called the category of subnormed K-models over M0.

A detailed study of the properties of these categories is beyond the scope of the present paper
and we just restrict ourselves to a couple of considerations. The first is that SnrK(T;M0) is a
full subcategory of PnrK(T;M0) wheneverM0 is a subnormedK-model of T. As for the second,
assume T = {T, T0} and Ts = {Ts, T0}, where T and Ts are prealgebraic [resp. subalgebraic]
theories and Ts ≤ T . Then, the “forgetful” functor CTs

: PnrK(T) → PnrK(Ts) [resp. CTs
:

SnrK(T) → SnrK(Ts)] defined by the end of Section 2 gives rise to another “forgetful” functor
ETs

: PnrK(T ;M0) → PnrK(Ts;M0) [resp. ETs
: SnrK(T ;M0) → SnrK(Ts;M0)] by sending

(i) a prenormed [resp. subnormed] K-model (M,Φ) of T over M0 to (CTs
(M), CTs

(Φ)),
the last being regarded as a prenormed [resp. subnormed] K-model of Ts over M0;

(ii) a K-short morphism Ψ : (M1,Φ1) → (M2,Φ2) of PnrK(T ;M0) [resp. SnrK(T ;M0)]
to the K-short morphism (CTs

(M1), CTs
(Φ1)) → (CTs

(M2), CTs
(Φ2)) of PnrK(Ts;M0)

[resp. SnrK(Ts;M0)].

In particular, ETs
returns a “forgetful” functor to K in the extreme case where Ts is the empty

theory in the variables V (see Remark 11). It is then interesting to ask when ETs
admits ad-

joints. However, the question, along with other properties of PnrK(T ;M0) and SnrK(T ;M0),
critically depends on the specificity of K, T and Ts and will be investigated in future work.

4. Some worked examples

Unless explicitly overridden, the notation throughout is based on that of the previous section.
Here, we show how the framework developed so far succeeds to capture all the essential features
of the notion itself of norm as this is intended in the classical approach to the theory of normed
groups, valuated rings and similar one-sorted structures (modules and vector spaces will be
discussed in Part II). In each of the examples examined, it isK = Set. Thus, we omit any further
reference to K and use, e.g., “model” in place of “K-model”, “prenorm” [resp. “subnorm”]
instead of “K-prenorm” [resp. “K-subnorm”], Pnr(·) for PnrK(·), and so on. We focus on a
family T consisting of two theories T = (σ,Ξ) and T0 = (σ0,Ξ0), possibly equal to each other.

That said, we take A = (A, σ, I) to be an algebraic model of T and A0 = (A0, σ0, I0) a pivotal
prealgebraic [resp. subalgebraic] model of T0 (keep Remark 14 in mind). We set M := (T,A)
and M0 := (T0,A0) and denote the pivot of A0 by ≤. Furthermore, in the light of Remark 13,
we assume that σ is a subsignature of σ0 and concentrate only on M0-valued prenorms [resp.
subnorms] on M of the form Φ = (α, ‖ · ‖) such that α is the canonical injection σ → σ0, hence
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identifying Φ with ‖ · ‖ by a convenient abuse of notation. Lastly, for Ts a subtheory of T , we
use CTs

for the “forgetful” functor Pnr(T ) → Pnr(Ts) defined by the end of Section 2.
Now, we pick a distinguished set of (non-logical) function symbols, Σf = {+, ⋆, u, 0, 1}, and

a distinguished set of (non-logical) relation symbols, Σr = {≤+,≤⋆,≤u,≤0,≤1}, and introduce
a “reference signature” σref = (Σf ,Σr, arref), where arref is defined in such a way that +, ⋆ and
every member of Σr are binary, u is unary, and 0 and 1 are nullary. Then, as is usual, we call

(s.1) σsgrp := (+,≤+; arsgrp) the signature of semigroups;
(s.2) σmon := (+,≤+; 0,≤0; armon) the signature of monoids;
(s.3) σgrp := (+,≤+;u,≤u; 0,≤0; argrp) the signature of groups;
(s.4) σrg := (+,≤+; ⋆,≤⋆; 0,≤0; arrg) the signature of semirings;
(s.5) σrig := (+,≤+; ⋆,≤⋆; 0,≤0; 1,≤1; arrig) the signature of unital semirings;
(s.6) σrng := (+,≤+; ⋆,≤⋆;u,≤u; 0,≤0; arrng) the signature of rings;
(s.7) σring := (+,≤+; ⋆,≤⋆;u,≤u; 0,≤0; 1,≤1; arrng) the signature of unital rings.

Here, arsgrp, armon, etc are the appropriate restrictions of arref to {+,≤+}, {+,≤+, 0,≤0}, etc.
We then say that a subnorm ‖ · ‖ : M → M0, if any exists, is an M0-valued semigroup [resp.
group] subnorm (on M) if T is the smallest subalgebraic theory of type σsgrp [resp. σgrp], an
M0-valued monoid subnorm if T is the smallest subalgebraic theory of type σmon, an M0-valued
semiring [resp. ring] subnorm if T is the smallest subalgebraic theory of type σrg [resp. σrng], and
an M0-valued subnorm of unital semirings [resp. unital rings] if T is the smallest subalgebraic
theory of type σrig [resp. σring] (cf. Remark 8). Thus, a subnorm ‖ · ‖ : M → M0 is

(e.1) an M0-valued semigroup subnorm (on M) if and only if

‖a+ b‖ ≤+ ‖a‖+ ‖b‖ for all a, b ∈ A. (9)

It is common that A is a model of the subalgebraic theory Tsgrp of semigroups, which is
the smallest subalgebraic theory of signature σsgrp including the axiom of associativity
(see Remark 7) for the symbol +.

(e.2) an M0-valued monoid subnorm if and only if C♯sTsgrp
(‖ · ‖) is an M0-valued semigroup

subnorm on C♯sTsgrp
(M) and ‖0‖ ≤0 0 (see Remark 8). Typically, A models the sub-

algebraic theory Tmon of monoids, to wit, the smallest subalgebraic extension of Tsgrp
comprising the axiom of neutrality (see Remark 7) for the symbol 0. When this happens,
motivated by the “classical theory”, we refer to an M0-valued monoid subnorm ‖ · ‖
(on M) which is upward semidefinite [resp. definite] with respect to 0 as an M0-valued
monoid seminorm [resp. norm], and call M a seminormed [resp. normed] monoid over
M0. One usually takes M0 to be the additive monoid of the non-negative real numbers
with its standard (order and algebraic) structure: then, Remark 15 implies ‖0‖ = 0.

(e.3) an M0-valued group subnorm if and only if

‖u(a)‖ ≤u u(‖a‖) for all a ∈ A (10)

and C♯sTmon
(‖ · ‖) is an M0-valued monoid subnorm on C♯sTmon

(M). Commonly, A is a
model of the subalgebraic theory Tgrp of groups, the smallest subalgebraic extension of
Tmon containing the axiom of inverses (see Remark 7) for the triple (+, u, 0). In these
cases, u is usually represented by the symbol −, so the above Equation (10) reads as:

‖ − a‖ ≤u u(‖a‖) for all a ∈ A (11)

and indeed as: ‖ − a‖ ≤ −‖a‖ for all a ∈ A if Tgrp ≤ T0. Therefore, one concludes that
group subnorms are, in some sense, “naturally negative” as far as we look at them as
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morphisms between structures of the very same type, i.e., groups. While intriguing, this
is not completely satisfactory, for the relevant case of standard (positive definite) group
norms [2, p. 5] is not covered. However, similar structures can be brought within the
scope of our framework in the light of one trivial consideration: That the target of a
standard group norm is taken to be R+

0 , which is everything but a group. With this in
mind, the most obvious workaround is to assume that T0 is not a supertheory of T , but
instead the smallest subalgebraic σgrp-theory. Then, u can be interpreted as the identity
map on A0 and Equation (11) becomes: ‖ − a‖ ≤u ‖a‖ for all a ∈ A. If ≤ is a partial
order, it follows from here that ‖ · ‖ is necessarily symmetric. This is another byproduct
of our approach. It suggests that “asymmetric group norms” (cf. [2, Remark 2]) do not
really exist as such: They can, e.g., as monoid norms but not as group norms, which
is absolutely reasonable if we think of the fact that an “asymmetric group norm” is
ultimately defined without any specific requirement about inverses. Starting from these
considerations, we then refer to an M0-valued group subnorm ‖ · ‖ (on M), which is
upward semidefinite [resp. definite] with respect to 0, as an M0-valued group seminorm
[resp. norm] (on M), and call M a seminormed [resp. normed] group over M0.

(e.4) an M0-valued semiring subnorm if and only if

‖a ⋆ b‖ ≤⋆ ‖a‖ ⋆ ‖b‖ for all a, b ∈ A (12)

and C♯sTmon
(‖ · ‖) is an M0-valued monoid subnorm on C♯sTmon

(M). Note how this
suggests that norms on ring-like structures are “inherently submultiplicative”: “Multi-
plicativeness” is covered by assuming that ≤⋆ is (interpreted as) the equality relation
on A0, and the same applies to different operations, to the extent that, from an abstract
point of view, there is no apparent reason to focus on the one rather than the others.
Motivated by the terminology of the theory of valuated rings, we then refer to an M0-
valued semiring subnorm ‖ ·‖ (on M), which is upward semidefinite [resp. definite] with
respect to 0 and “multiplicative” with respect to ⋆, as an M0-valued semiring semival-
uation [resp. valuation] (on M), and call M a semivaluated [resp. valuated] semiring
over M0. In most applications, A and A0 will be models of the subalgebraic theory Trg
of semirings, i.e., the smallest subalgebraic extension of Tmon containing the axioms of
left and right distributiveness of ⋆ over + and the axiom of associativity for ⋆. E.g.,
this is the case with the semiring of non-negative real numbers (with the usual structure
inherited from the real field).

(e.5) an M0-valued ring subnorm if and only if C♯sTgrp
(‖ · ‖) is an M0-valued group subnorm

on C♯sTgrp
(M) and C♯sTrg

(‖ · ‖) is an M0-valued group semiring subnorm on C♯sTrg
(M).

Thus, all the considerations previously made on group and semiring subnorms also apply
to ring subnorms. In particular, we refer to an M0-valued ring subnorm ‖ · ‖ (on M),
which is upward semidefinite [resp. definite] with respect to 0 and “multiplicative” with
respect to ⋆, as an M0-valued ring semivaluation [resp. valuation] (on M), and then
call M a semivaluated [resp. valuated] ring over M0. In common cases, A is a model of
the subalgebraic theory Trng of rings, i.e., the smallest subalgebraic theory containing
both the axioms of Tgrp and those of Trg.

(e.6) an M0-valued subnorm of unital semirings if and only if C♯sTrg
(‖ · ‖) is an M0-valued

semiring subnorm on C♯sTrg
(M) and ‖1‖ ≤1 1. The same considerations previously made

on the symbol 0 in the case of group subnorms apply to 1. Furthermore, mimicking the
case of semiring subnorms, we refer to anM0-valued subnorm ‖·‖ of unital semirings (on
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M), which is upward semidefinite [resp. definite] with respect to 0 and “multiplicative”
with respect to ⋆, as an M0-valued semivaluation [resp. valuation] of unital semirings
(on M), and then call M a semivaluated [resp. valuated] unital semiring over M0. If
‖ · ‖ is a M0-valued semivaluation of unital semirings (on M) for which ‖1‖ is a unit in
M0, i.e., an invertible element with respect to ⋆, and ≤⋆ is compatible with ⋆, in the
sense that a1 ⋆ a2 ≤⋆ b1 ⋆ b2 for ai, bi ∈ A and ai ≤⋆ bi, then ‖1‖ = ‖1 ⋆ 1‖ ≤⋆ ‖1‖ ⋆ ‖1‖
implies ‖1‖ = 1, and hence ‖1‖ = 1 (one more unexpected outcome of our approach).
In relevant applications, A will model the subalgebraic theory Trig of unital semirings,
i.e., the smallest subalgebraic extension of Trg including the axiom of neutrality for 1,
as for the non-negative real numbers with their usual order and algebraic structure.

(e.7) an M0-valued subnorm of unital rings if and only if C♯sTrig
(‖ · ‖) is an M0-valued

subnorm of unital semirings on C♯sTrig
(M) and C♯sTgrp

(‖ · ‖) is an M0-valued group
subnorm on C♯sTgrp

(M). The very same considerations previously made in the case of
group subnorms and subnorms of unital semirings apply to ring subnorms. We refer
to an M0-valued subnorm ‖ · ‖ of unital rings (on M), which is upward semidefinite
[resp. definite] with respect to 0 and “multiplicative” with respect to ⋆, as an M0-valued
semivaluation [resp. valuation] of unital rings (on M), and then call M a semivaluated
[resp. valuated] unital ring over M0. Typically, A models the subalgebraic theory Tring
of unital rings, the smallest subalgebraic extension of Trig including the axiom of inverses
for the triple (+, u, 0).

M0-valued semigroup subnorms, monoid subnorms, etc are defined and characterized in the
very same way, by replacing “subalgebraic” with “prealgebraic” and ♯s with ♯p in all of their
occurrences in the above discussion. Furthermore, most of the considerations made in the
subalgebraic case still hold in the prealgebraic one, except for those based on Remark 15.

Field valuations and norms of vector spaces over a fixed valuated field, together with variants
thereof, will be discussed in Part II as special instances of many-sorted subnormed structures.

Appendix A. A resumé of the very basics of category theory

Following [14], we define a category as a 6-uple (Co, Ch, s, t, i, c), where Co and Ch are classes,
the former referred to as the collection of objects, the latter as the collection of morphisms or
arrows; s and t are functions Ch → Co which assign, to every arrow, its source and target; i is a
further function Co → Ch sending each object A to a distinguished morphism, called the (local)
identity on A; c is a partial operation Ch ×Ch 7→ Ch (called composition) whose domain is the
class of all pairs ((f, g1), (g2, h)) ∈ Ch × Ch with g1 = g2; and all is accompanied by the usual
axioms that s, t, id and ◦ are required to satisfy, to wit,

(i) s(c(f, g)) = s(f) and t(c(f, g)) = t(g) for every (f, g) ∈ dom(c).
(ii) s(i(A)) = t(i(A)) = A.
(iii) c(f, c(g, h)) = c(c(f, g), h) for all f, g, h ∈ Ch such that (f, g), (g, h) ∈ dom(c).
(iv) c(f, i(t(f))) = c(i(s(f)), f) = f for each f ∈ Ch.

Property (iii) is spelled by saying that c is associative. If C is a category, one denotes obj(C) the
class of its objects and hom(C) the one of its arrows. We write srcC and trgC for the functions
mapping a morphism to its source and target, respectively, and idC for that sending an object
A to the identity on A. For A,B ∈ obj(C), we adopt the notation (f : A → B) ∈ C to mean
that f ∈ hom(C), srcC(f) = A and trgC(f) = B. This simplifies to the usual f : A → B,
or one says that f is an arrow A → B, when C is clear from the context. We use ◦C for the
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composition law of C and homC(A,B) for the collection of arrows (f : A→ B) ∈ C, or simply
homC(A) when A = B. Lastly, for (f, g) ∈ dom(◦C), we write g ◦C f in place of ◦C(f, g) and
refer to g ◦C f , as is customary, as the composition of g with f (cf. [1, Section 1.3]).

Remark 17. We denote ∼=C the equivalence on obj(C) defined by: A ∼=C B for A,B ∈ obj(C)
if and only if there is an isomorphism u : A→ B. Then, for A ∈ obj(C), we indicate by isoC(A)
the equivalence class of A in the quotient of obj(C) by ∼=C and refer to it as the isomorphism
class of A in C. If B,C ∈ isoC(A), one says that B and C are isomorphic (cf. [1, Section 1.5]).

Let C be a category and {Ai}i∈I an indexed family of objects of C. We write
∏

C{Ai}i∈I ,
whenever it exists, for the C-product of the Ai’s, i.e., for the class of all pairs (P, {πi}i∈I) such
that P ∈ obj(C), πi ∈ homC(P,Ai) for each i ∈ I and the following universal property is
satisfied: if (Q, {ωi}i∈I) is any other pair with Q ∈ obj(C) and ωi ∈ homC(Q,Ai), there exists
a unique morphism u : Q → P such that ωi = πi ◦C u for all i ∈ I. The universal arrow u is
denoted by

∏
C(ωi, πi)i∈I , or equivalently by (ω1, π1)×C (ω2, π2)×C · · ·×C (ωn, πn) if I is finite

and 0 6= n := |I|, and one refers to P as a product object of the Ai’s and to the πi’s as the
canonical projections from P (cf. [1, Section 2.4]).

Remark 18. One same product object cannot have two different classes of projections asso-
ciated with it in the product of the Ai’s, when this exists. Therefore, if P is a product object
of an indexed collection {Ai}i∈I of objects of C and {πi}i∈I the family of the corresponding
canonical projections, one can write P ∈

∏
C{Ai}i∈I to mean that (P, {πi}i∈I) ∈

∏
C{Ai}i∈I if

there is no need to make an explicit reference to the πi’s.

Remark 19. If there is no likelihood of confusion, any explicit reference to C is dropped in
these and other similar notations and one writes, e.g., ◦ in place of ◦C, ∼= for ∼=C, and so on. In
particular, if {Ai}i∈I is an indexed subfamily of obj(C) with a product and C is clear from the
context, one writes

∏
i∈I Ai instead of

∏
C{Ai}i∈I and AI if the Ai’s are all equal to one same

object A. Moreover,
∏

i∈I Ai is written as A1 ×A2 × · · · ×An if I is finite and 0 6= n := |I|, and
indeed as An if the Ai’s are all equal to one same object A.

Remark 20. If C has a terminal object ⊤ [1, Section 2.2] and I is a set, then ⊤I exists and
⊤ ∈ ⊤I , i.e., ⊤ is isomorphic to all of its own powers.

Definition 5. Let {Ai}i∈I be an indexed subfamily of obj(C). Provided that the Ai’s have a
product, a relation on {Ai}i∈I (in C) is then any monomorphism [1, Section 2.1] ̺ ∈ hom(R,P )
for which P ∈

∏
C{Ai}i∈I . This is called an n-ary relation if I is finite and n := |I|, and indeed

an n-ary relation on A if the Ai’s are all equal to one same object A.

Remark 21. If C has a terminal object ⊤ and A ∈ obj(C), one refers to an arrow a ∈ hom(C)
with src(a) ∼= ⊤ as a point of A [1, Section 2.3] and defines a point of C as any morphism
a ∈ hom(C) such that src(a) ∼= ⊤: a point is, a fortiori, a monomorphism. Subsequently, one
writes a ∈ A to mean that a is a point of A and f(a) in place of f ◦ a for f ∈ hom(C) with
src(f) = A. Taking this in mind, pick a family {ai}i∈I of points of C with ai ∈ Ai and let
ϕ ∈ hom(P ), where (P, {πi}i∈I) ∈

∏
i∈I Ai. Then, based on Remark 20, we use

(i) (a1, a2, . . . , an;⊤) for the morphism
∏n

i=1(ai ◦ ui, πi);
(ii) ϕ(a1, a2, . . . , an;⊤) in place of ϕ ◦ (a1, a2, . . . , an;⊤);
(iii) (a1, a2, . . . , an;⊤) ∈ ̺ if there is a monic µ : ⊤ → R such that (a1, a2, . . . , an;⊤) = ̺◦µ,

where ui is the unique arrow ⊤ → src(ai) of C (indeed an isomorphism). The notation is
suggestive of the fact that a point can be regarded as a generalization of the set-theoretic notion
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of element and is unambiguous since, as observed before, the πi’s are uniquely determined by
the datum of P , and P is clearly understood as the target of ϕ and ̺. Moreover, since the
condition underlying the latter of these notations does not really depend on the actual choice
of ⊤ as a representative of the isomorphism class of the terminal objects of C, we can further
simplify our notational system by writing (a1, a2, . . . , an) ∈ ̺ for (a1, a2, . . . , an;⊤) ∈ ̺.

Definition 6. Assume C is a category with binary products and a terminal object ⊤, and hence
with all finite products [1, Section 2.6]. Pick A ∈ obj(C) and let ̺ : R → P be a binary relation
on A, where P ∈ A2. We say that ̺ is reflexive if (a, a) ∈ ̺ for every a ∈ A; antisymmetric if,
for all parallel a, b ∈ A, it holds that (a, b), (b, a) ∈ ̺ only if a = b; transitive if, for all a, b, c ∈ A,
one has that (a, c) ∈ ̺ whenever (a, b), (b, c) ∈ ̺. Then, ̺ is called a preorder (on the object
A) if it is reflexive and transitive, and a partial order if it is an antisymmetric preorder: In the
former case, we refer to (A, ̺) as a preordered object of C; in the latter, as a partially ordered
object, or pod.

These definitions are different from those analogously given for internal relations, especially in
reference to the notion of congruence [15]. Yet, they are more than suitable for our purposes.

Thus, we have fixed the bulk of the terminology and notation used here and in future work
to deal with categories. However, before concluding with this appendix, we add the definition
of four basic categories that will be considered at several points (cf. [1, Section 1.4]):

(c.1) Rel, the category having sets as objects and all triplesR of type (X,Y,R) as morphisms,
where X and Y are sets and R is a subset of the Cartesian product X × Y . When this
does not lead to confusion, we identify R with R. The composition of two relations
R : X → Y and S : Y → Z is defined by the triple (X,Z, T ), where T ⊆ X × Z and
(x, z) ∈ T for x ∈ X and z ∈ Z if and only if (x, y) ∈ R and (y, z) ∈ S for some y ∈ Y .

(c.2) Set, the subcategory of Rel whose morphisms are functions.
(c.3) Pre(C), the category having as objects the preordered objects of a given categoryC with

finite products and as morphisms all triples f of type (P ,Q, f), where P = (P, ̺) and
Q = (Q, η) are preordered objects ofC and f ∈ homC(P,Q) is such that (f(x), f(y)) ∈ η
for all x, y ∈ homC(⊤, P ) with (x, y) ∈ ̺, where ⊤ is any terminal object of C. We call
f a monotonic arrow P → Q and use f as a shorthand of f when there is no danger of
confusion. The composition of two morphisms (P ,Q, f) and (Q,R, g) is (P ,R, g ◦C f).

(c.4) Pos(C), the full subcategory of Pre(C) whose objects are pods of C.

The local identities and the maps of source and target are specified in the most obvious way. This
completes our brief introduction to the categorical language. For anything else not explicitly
mentioned here, the interested reader can refer to [1].
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