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POLYGRAPHS OF FINITE DERIVATION TYPE

YVES GUIRAUD PHILIPPE MALBOS

Abstract — Craig Squier proved that, if a monoid can be presented by a finite convergent string
rewriting system, then it satisfies the homological finiteness condition left-FP3. Using this result, he
constructed finitely presentable monoids with a decidable word problem, but that cannot be presented
by finite convergent rewriting systems. Later, he introduced the condition of finite derivation type,
which is a homotopical finiteness property on the presentation complex associated to a monoid
presentation. He showed that this condition is an invariant of finite presentations and he gave a
constructive way to prove this finiteness property based on the computation of the critical branchings:
being of finite derivation type is a necessary condition for a finitely presented monoid to admit a
finite convergent presentation. This survey presents Squier’s results in the contemporary language
of polygraphs and higher-dimensional categories, with new proofs and relations between them.

Keywords — higher-dimensional categories, higher-dimensional rewriting, finite derivation type,
low-dimensional homotopy.
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1. Introduction

1. INTRODUCTION

Given a monoid M, a generating set X1 for M provides a way to represent the elements of M in the
free monoid X¥, i.e. as finite words written with the elements of X;. But, in general, an element of M
has several representatives in L. The word problem for M consists in finding a generating set £; and a
procedure that can determine whether or not any two elements of X represent the same element in the
monoid M.

The word problem and convergent presentations. One way to solve the word problem is to exhibit
a finite presentation £ = (X7, X;) of M, made of a generating set £; and a set X of directed relations
with a good computational property: convergence. Indeed, in rewriting theory, one studies presentations
where the relations in £, are not seen as equalities between the words in L7, such as u = v, but, instead,
as rewriting rules that can only be applied in one direction, like uw = v, thus simulating a non-reversible
computational process reducing the word u into the word v.

In rewriting theory, such a presentation £ of a monoid is called a string rewriting system or, his-
torically, a semi-Thue system; in that case, the directed relations of X, are called rewriting rules. A
presentation X is convergent if it has the two properties of

— termination, i.e. all the computations end eventually, and
— confluence, i.e. different computations on the same input lead to the same result.

The monoid presented by L is defined as the quotient, denoted by Z, of the free monoid Z¥ over I; by
the congruence generated by Z,. By extension, we say that £ presents any monoid isomorphic to Z.

A finite and convergent presentation X of a monoid M gives a solution to the word problem, called the
normal-form procedure and defined as follows. Given an element u of the free monoid L3, convergence
ensures that all the applications of (directed) relations to u, in every possible manner, will eventually
produce a unique result: an element U of X} where no relation applies anymore. The word 1l is called
the normal form of u. By construction, two elements u and v of L} represent the same element of M if,
and only if, their normal forms are equal in 7. Finiteness ensures that one can determine whether an
element of X7 is a normal form or not, by examining all the relations.

Rewriting and polygraphs. The notion of string rewriting system comes from combinatorial algebra.
It was introduced by Axel Thue in 1914 in order to solve the word problem for finitely presented semi-
groups [Thul4]. It is only in 1947 that the problem was shown to be undecidable, independently by Emil
Post [Pos47/] and Andrei Markov [Mar47a, IMar47b]. Then in 1943, Maxwell Newman gave a general
setting, the abstract rewriting theory, to describe the properties of termination and confluence, and to
show the first fundamental result of rewriting: Newman’s lemma [New42]. Since then, rewriting theory
has been mainly developed in theoretical computer science, producing numerous variants corresponding
to different syntaxes of the formulas being transformed: string, terms, terms modulo, A-terms, term-
graphs, etc. Rewriting is also present in other computational formalisms such as Petri nets or logical
systems.

More recently, higher-dimensional rewriting has unified several paradigms of rewriting. This ap-
proach is based on presentations by generators and relations of higher-dimensional categories, indepen-
dently introduced by Albert Burroni and Ross Street under the respective names of polygraphs in [Bur93|
and computads in [Str76}Str87]]. Those algebraic objects have been subsequently developed in rewriting
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theory, fixing the terminology to polygraph in that field [Mét03l |Gui06), [LatO7, IMét08, IGM09, Mim10,
GM11}IGM12al IGM12b, IGMM 13| IGGM]].

The main useful property of polygraphs is to encapsulate, in the same globular object, an algebraic
structure corresponding to the syntax of the terms and to the computations on the terms, together with
a homotopical structure describing the properties of the computations. As a consequence, polygraphs
provide a natural setting to formulate Squier’s theory, based on the discovery of deep relations between
the computational, the homological and the homotopical properties of presentations by generators and
relations.

From computational to homological properties. The normal-form procedure proves that, if a monoid
admits a finite convergent presentation, then it has a decidable word problem. The converse implication
was still an open problem in the middle of the eighties:

Question. [Jan82, |Jan85] Does every finitely presented monoid with a decidable word
problem admit a finite convergent presentation?

In [KNS8S|, Deepak Kapur and Paliath Narendran consider Artin’s presentation of the monoid B; of
positive braids on three strands
(s,t | sts = tst).

Kapur and Narendran proved that B;r admits no finite convergent presentation on the two generators s
and t. However, they also proved one gets a finite convergent presentation of B;r by adjunction of a new
generator a standing for the product st:

x )
< s,t,a ‘ ta = as, st :B> a, sas % aa, saa = aat > (D)

As a consequence, the word problem for B;r is solvable. The result of Kapur and Narendran shows that
the existence of a finite convergent presentation depends on the chosen generators. Thus, to provide the
awaited negative answer to the open question, one would have to exhibit a monoid with a decidable word
problem but with no finite convergent presentation for any possible set of generators: new methods had
to be introduced.

And, indeed, Craig Squier answered the question by linking the existence of a finite convergent
presentation for a given monoid M to an invariant of the monoid: the homological type left-FP3. Here,
invariant is to be taken in the sense that it is independent of the choice of a presentation of M and, in
particular, of a generating set. A monoid M is of homological type left-FP3 if there exists an exact
sequence

P3 P, P; Po Z 0

of projective and finitely generated (left) ZM-modules, where Z denotes the trivial ZM-module. From a
presentation X of a monoid M, one can build an exact sequence of free ZM-modules

d

d
IM[Z,] —2 ZM[Z,] ZIM—£57 0, )

where ZM|[ L] is the free ZM-module over Zy. In [Squ87||, Squier proved that, when X is convergent, its
critical branchings form a generating set of the kernel of d,, where a critical branching of X is a minimal
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overlapping application of two relations on the same word of Z}. For example, the relations « : ta = as
and (3 : st = a generate a critical branching (B a, s«x) on sta:

B% aa
sta
% sas
The convergence of L ensures that every critical branching (f, g) is confluent, that is, it can be completed
by rewriting sequences f’ and g’ as in

P
u u’ 3)
9\ w %
For example, the presentation () of B;r has four critical branchings, and all of them are confluent:

aaafp
a

[Sa/> aa % aat % aaas %x 1% aaaa & aaast
sta )Y sast )5 sasas aata sasaa Waa(xt
% sas % saa % saaa % % saaatﬁaatat

d

Squier proved that the set X3 of critical branchings of a convergent presentation X extends the exact
sequence (2)) by one step:

d;

d d
IM[Z3] —— ZM[£,] —= ZM[Z1] IM—£57 0, (4)

where the boundary map d3 is defined on the generic branching (3)) by

ds(f,9) = [f] = [g] + [f'] - [9'],

where [-] satisfies
WIV]  UnOnVn
PR —

[ = | = W]+ -+ Unfon]-

Moreover, when the presentation X is finite, then its set of critical branchings is finite, yielding Squier’s
homological theorem.

Theorem [Squ87, Theorem 4.1] If a monoid admits a finite convergent presentation,
then it is of homological type left-FPs.

Finally, Squier considers in [Squ87|] the family Sy of monoids, for k > 2, presented by

Caybyt, (xi)1<ick (Yi)i<ick | & (Bi)i<i<ir (Yi)i<isio (8i)1<i<ky (€)1<i<k )
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with

[od i i dj €
ab =1, Xia g atxy, xit i txi, xib = bx;, Xy = 1.

Each Sy is a finitely generated monoid with a decidable word problem. But, for k > 2, the monoid Sy is
not of homological type left-FP3 and, as a consequence, it does not admit a finite convergent presentation.
Thus, Squier gave a negative answer to the open question: there exist finitely generated monoids with a
decidable word problem that do not admit a finite convergent presentation (for any possible finite set of
generators).

Finite derivation type. Given a monoid M with a presentation X, Squier considers in [SOK94] the
presentation complex of Z, that is a cellular complex with one 0-cell, whose 1-cells are the elements of
the free monoid X7 and whose 2-cells are generated by the relations of X,. More precisely, the 2-cells of
the presentation complex are constructed as follows. We denote by X, the set obtained by reversing the
relations of X,:

_ o x L.
I, = {v:u suchthatuﬁvmm):z}.

There is a 2-cell in the presentation complex between each pair of words with shape wuw’ and www’
such that X I1 &5 contains a relation u = v. Then, Squier extends this 2-dimension complex with
3-cells filling all the squares formed by independent applications of relations, such as the following one,
where w; = vy and u; = vy arein L 1L

wviw uw”

=T

wuw’uyw’ = wviw’vow”

\/

wuww'vaw”

We will see that, in the 2-categorical formulation of this complex that we consider, this 3-cell corresponds
to the so-called exchange relations.

A homotopy basis of L is a set X3 of additional 3-cells that makes Squier’s complex aspherical, i.e.
such that every 2-dimensional sphere can be “filled” by the 3-cells of X3. The presentation X is of finite
derivation type if it admits a finite homotopy basis. Squier proved that the finite derivation type property
is an intrinsic property of the presented monoid:

Theorem [SOK94, Theorem 4.3] Let & and = be two finite presentations of the same
monoid. Then L has finite derivation type if and only if = has finite derivation type.

The proof given by Squier is based on Tietze transformations. In these notes, we give another proof
based on a homotopy bases transfer theorem, Theorem [.2.2] As a consequence of Theorem [4.2.3] we
can define the condition of finite derivation type for monoids independently of a considered presentation:
a monoid is of finite derivation type if its finite presentations are of finite derivation type.
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From computational to homotopical properties. In [SOK94]|, Squier links the existence of a finite
convergent presentation to the homotopical property of finite derivation type. He proves that, given a
convergent presentation X, it is sufficient to consider one 3-cell filling the diagram (3)) for each critical
branching to get a homotopy basis of £. Such a set of 3-cells is called a family of generating confluences
of L.

4.3.2] Theorem [SOK94, Theorem 5.2] Let L be a convergent presentation of a monoid.
Every family of generating confluences of X is a homotopy basis.

Moreover, if X is finite, the presentation X has finitely many critical branchings.

4.3.3l Theorem [SOK94, Theorem 5.3] If a monoid admits a finite convergent presenta-
tion, then it is of finite derivation type.

In [SOK94], Squier used Theorem [4.3.3] to give another proof that there exist finitely generated
monoids with a decidable word problem that do not admit a finite convergent presentation. Moreover, he
showed that the homological finiteness condition left-FP3 is not sufficient for a finitely presented monoid
with a decidable word problem to admit a finite convergent presentation. Indeed, the monoid S; given
by the presentation

<a,b,t,x,y ‘ ab = 1, xa = atx, xt = tx, xb = bx, xy =1 >

has a decidable word problem, admits a finite presentation and is of homological type left-FP3, yet it is
not of a finite derivation type (and, thus, it does not admit a finite convergent presentation). This example
is entirely developed in Section[6.1]

Refinements of Squier’s conditions. Squier’s homological and homotopical finiteness conditions are
related: finite derivation type implies homological type left-FP3, as proved by several authors [[CO94,
Pri95, [Laf95]]. The converse implication is false in general, as already noted above with the monoid Sy,
but it is true in the special case of groups [CO96]. Squier has proved in [SOK94] that the invariant
homological type left-FP3; is a necessary, but not sufficient condition for a monoid to admit a finite
convergent presentation, the same question being still open for the homotopical invariant finite derivation
type. After Squier, various refinements of both invariants have been explored, in the quest for a complete
characterisation of the existence of finite convergent presentations of monoids.

In the homological direction, thanks to the notion of abelian resolution, one defines the more restric-
tive conditions homological type left-FP,,, for every natural number n > 3, and homological type left-
FP4,: a monoid M has homological type left-FP; if there exists a resolution of the trivial ZM-module by
finitely generated and projective ZM-modules. In [Kob90], a notion of n-fold critical branching is used
to complete the exact sequence into a resolution, obtaining the following implication: if a monoid
admits a finite convergent presentation, then it is of homological type left-FP,, the converse implication
still being false in general. The same results are also known for associative algebras presented by a finite
Grobner basis [[Ani86] and for groups [Coh92| Bro92, |Gro90]. One can obtain similar implications with
the properties right-FP,, and bi-FP,, defined with resolutions by right modules and bimodules, respec-
tively. In [[GM12b], the authors give a construction of a resolution involving n-fold critical branchings
and based on the notion of normalisation strategy.
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In the homotopical direction, the condition finite derivation type has been refined into FDT4, a prop-
erty about the existence of a finite presentation with a finite homotopy basis, itself satisfying a homo-
topical finiteness property [MPPOS]. The condition FDTjy is also necessary for a monoid to admit a
finite convergent presentation and it is sufficient, but not necessary, for having the conditions homologi-
cal type left/right/bi-FP,4. Higher-dimensional finite derivation type properties, called FDTy, are defined
in [GM12b], as a generalisation in any dimension of Squier’s finite derivation type. A monoid with
a finite convergent presentation is FDTy, and, for any n, the property FDT,, implies the homological
type FP,, [GMI12b].

Organisation and prerequisites. In Section [2| we consider presentations of monoids (and, more gen-
erally, of categories) by 2-polygraphs, and we explain their main rewriting properties in Section [3| In
Section 4] we introduce the property of finite derivation type for categories using the structure of 3-
polygraph and, in Section [4.3] we relate convergence and finite derivation type. This survey is rather
self-contained, but wider categorical notions are covered in more detail by Mac Lane in [ML98|] and by
Barr and Wells in [BW90]. For notions of rewriting theory, one can refer to Baader and Nipkow [BN9§]|,
Terese [[Ier03] and Book and Otto [BO93|] for the special case of string rewriting. For extension of the
finite derivation type property to higher-dimensional rewriting systems, we refer the reader to [GM09].

2. LOW-DIMENSIONAL CATEGORIES AND POLYGRAPHS
2.1. Categories and functors

2.1.1. Categories. A category (or 1-category) is a data C made of a set Cy, whose elements are called
the 0-cells of C, and, for all O-cells x and y of C, of a set C(x,y), whose elements are called the 1-cells
from x to y of C. Those sets are equipped with the following algebraic structure:

— for all O-cells x, y and z of C, a map, called the composition (or O-composition) of C,
Yxy,z ¢ C(X»y) X C(U) Z) - C(X» Z))
— for every 0-cell x of C, a specified element 1, of C(x, x), called the identity of x.

The following relations are required to hold, where we write u : x — y to mean that u belongs to C(x, y):

— the composition is associative, i.e. for all O-cells x, y, z and t and for all 1-cells u : x — vy,
v:y—zandw:z —tof C,

Yx,z,t (Yx,y,z (u) V) ) W) = Yxy,t (u) Yy,z,t (V3 W) ) 3

— the identities are local units for the composition, i.e. for all 0-cells x and y and for every 1-cell
u:x —->yofC,
Yy (low) = U = yyyyu, 1y).

A groupoid is a category where every 1-cell has an inverse, that is, for every T-cell u : x — vy, there
exists a (necessarily unique) 1-cell u™ : y — x such that

Yy (Wuw ) = 1y and Yyxyu,u) = 1y

Monoids (resp. groups) correspond exactly to categories (resp. groupoids) with only one O-cell.
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2.1.2. A globular point of view. A category C can also be seen as a graph
S0
Co— (4
to

where C is the disjoint union of all the hom-sets C(x, y), and the maps sg and to send a 1-cellu: x — y
to its source x and its rarget y, respectively. We usually simply write s(u) and t(u) instead of sp(u)
and ty(u). The composition of C equips this graph with a partial function

*01C1><C1—>C1

mapping a pair (u,v) of composable 1-cells (i.e. such that t(u) = s(v)) to u xo v (we often simply
write uv). By definition, the source and target of a composite 1-cell are given by

s(uxov) = s(u) and t(uxov) = t(v).
Moreover, the associativity axiom is written as
(Wxp V) oW = Wk (V*oW).

The identities define an inclusion
Co — G

that maps each O-cell x to the 1-cell 1. By definition, the source and target of an identity 1-cell are
s(1x) = x and t(1ly) = x.

Finally, the unit axioms become
Txxouw = U = Ux ly.

This globular definition of categories is equivalent to the original definition given in[2.1.1]

2.1.3. Functors. Let C and D be categories. A functor F : C — D is a data made of amap Fy : Cy — Dy
and, for all O-cells x and y of C, a map

Fxy + C(%y) — D(F(x), F(y)),
such that the following relations are satisfied:

— for all O-cells x, y and z and all T-cellsu:x - yandv:y — zof C,
Fx,z(u * V) = Fxy (1) *o Fyz v),

— for every O-cell x of C,
Fex(1x) = 1F(X).

We often just write F(x) for Fo(x) and F(u) for Fy(u). A functor F is an isomorphism if the map Fo
and each map Fy y is a bijection. We denote by Idc the identity functor on C. Morphisms of monoids are
exactly the functors between the corresponding categories with one O-cell.
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2.2. The word problem

2.2.1. 1-polygraphs. A 1-polygraph is a graph L, i.e. a diagram of sets and maps
So
Zo f: Z] .
to
The elements of Xy and X are called the O-cells and the 1-cells of X, respectively. If there is no confusion,

we just write £ = (X, Z1). A 1-polygraph is finite if it has finitely many 0-cells and 1-cells.

2.2.2. Free categories. If X is a 1-polygraph, the free category over X is the category denoted by X*
and defined as follows:

— the O-cells of X* are the ones of Z,

— the 1-cells of Z* from x to y are the finite paths of %, i.e. the finite sequences

u uz us3 Unp—1 Un
X—>X] —™>X2 —> -+ —> Xp-1 —)y

of T-cells of X,
— the composition is given by concatenation,
— the identities are the empty paths.
If X has only one O-cell, then the T-cells of the free category Z* form the free monoid over the set ;.

2.2.3. Generating 1-polygraph. Let C be a category. A 1-polygraph X generates C if there exists a
functor
m: ¥ - C

that is the identity on O-cells and such that, for all O-cells x and y of C, the map
Ty - I*(xy) — C(x,y)

is surjective. We usually consider that 7t is implicitly specified for a given generating 1-polygraph X and,
if wis a 1-cell of X*, we just write U instead of 7t(u). A category is finitely generated if it admits a finite
generating 1-polygraph (in particular, the category must have finitely many O-cells).

2.2.4. The word problem for categories. Let C be a category. The word problem for C is the problem
of finding a generating 1-polygraph Z for C together with an algorithm that decides, for any two 1-cells u
and v of £*, whether or not t = v holds in C (that is, whether or not the T-cells u and v represent the
same 1-cell of C). We note that, to have . = V, it is necessary for u and v to be parallel, i.e. they
must have the same source and the same target. The word problem is undecidable in general for a given
category C, even if it is finitely generated. However, a finite convergent presentation of C, see
provides a solution to the word problem for C.
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2.3. Presentations of categories

2.3.1. Spheres and cellular extensions of categories. A 1-sphere of a category C is a pair y = (u,Vv)
of parallel T-cells of C, that is, with the same source and the same target; such a 1-sphere is denoted by
v :uw = v. The 1-cell wis the source of y and v is its target. A cellular extension of C is a set I' equipped
with a map from I to the set of 1-spheres of C.

2.3.2. Congruences. A congruence on a category C is an equivalence relation = on the parallel 1-cells
of C that is compatible with the composition of C, that is, for all 1-cells

u
X——Y z——t
\/\
v

of C such that u = v, we have wuw’ = wvw’. If T is a cellular extension of C, the congruence
generated by T is denoted by =r and defined as the smallest congruence relation such that, if y : u = v
isin I, then uw = v. The literature also calls =r the Thue congruence generated by T'.

2.3.3. Quotient categories. If C is a category and I' is a cellular extension of C, the quotient of C by I’
is the category denoted by C/T" and defined as follows:

— the O-cells of C/T are the ones of C,

— for all O-cells x and y of C, the hom-set C/T'(x,y) is the quotient of C(x,y) by the restriction
of =r.

We denote by 7tr : C — C/T the canonical projection. When the context is clear, we just write 7t for 7tp
and u for the image through 7t of a 1-cell u of C.

2.3.4. 2-polygraphs. A 2-polygraph is a triple £ = (¥y, X, X;) made of a 1-polygraph (X, L), often
simply denoted by X1, and a cellular extension X, of the free category Xj. In other terms, a 2-polygraph X
is a 2-graph

S0 S1
pa ét: Iy ét: pa}
0 1

whose O-cells and 1-cells form a free category. The elements of X are called the k-cells of X and X is
finite if it has finitely many cells in every dimension.

2.3.5. Presentations of categories. If ~ is a 2-polygraph, the category presented by L is the category
denoted by Z and defined by
T = 3i/5,.

If C is a category, a presentation of C is a 2-polygraph £ such that C is isomorphic to X. In that case, the
1-cells of X are called the generating 1-cells of C, or the generators of C, and the 2-cells of ¥ are called
the generating 2-cells of C, or the relations of C.

10
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2.3.6. Tietze equivalence. Two 2-polygraphs are Tietze-equivalent if they present the same category. It
is a standard result that two (finite) 2-polygraphs are Tietze-equivalent if, and only if, they are related
by a (finite) sequence of elementary Tietze transformations. On a 2-polygraph X, the elementary Tietze
transformations are the following operations:

— adjunction or elimination of a generating 1-cell x and of a generating 2-cell o : u = x, where u is
a T-cell of the free category over Z;\ {x},

— adjunction or elimination of a generating 2-cell « : u = v such that u =g\ (o V-

2.4. Two-dimensional categories

2.4.1. 2-categories. A 2-category is a data C made of a set Cy, whose elements are called the O-cells
of €, and, for all O-cells x and y of C, a category C(x,y), whose O-cells and 1-cells are respectively called
the T-cells and the 2-cells from x to y of C. This data is equipped with the following algebraic structure:

— for all O-cells x, y and z of €, a functor
Yryez © CO6Y) x Cy,2) — C(x,2),
— for every 0-cell x of C, a specified O-cell 1, of the category C(x, x).
The following relations are required to hold:
— the composition is associative, i.e. for all O-cells x, y, z and t of C,
Yxzt © (Yxyz X Idez)) = Yyt © (Idegy) X Vyzt)s

— the identities are local units for the composition, i.e. for all O-cells x and y of €,

Yy © (e X Mdepey)) = Mdetey) = Yxyy © (depey) xTy)-

This definition of 2-categories is usually stated as follows: a 2-category is a category enriched in cat-
egories. A (2, 1)-category is a 2-category whose 2-cells are invertible for the 1-composition: in other
terms, it is a 2-category whose hom-categories are groupoids.

2.4.2. The globular point of view. A 2-category can, equivalently, be defined as a 2-graph
S0 S1
Co—CT——C
to t
equipped with an additional algebraic structure. The definition of 2-graph requires that the source and
target maps satisfy the globular relations:

Spo0S] = Spotg and toosy = tooty.

The 2-graph is equipped with two compositions, the 0-composition *y and the 1-composition *1, re-
spectively defined on 0-composable 1-cells and 2-cells, and on 1-composable 2-cells. We also have an
inclusion of €y into Cy given by the identities of the 2-category, and an inclusion of C; into €, induced
by the identities of the hom-categories. In details, we have the following operations:

11



2. Low-dimensional categories and polygraphs

for all T-cells x — y Y, za 0-composite 1-cell x txoV z,

\ U*oV

SN TN

— for all 2-cells x ﬂf

\/

ﬂg z , a 0-composite 2-cell x ﬂf *g z,

u u/ *O vl
u u
I

— for all 2-cells x —vV———1y , a T-composite 2-cell x fx1g 'y,

w

for every O-cell x, an identity 1-cell x L> X,

1
— for every 1-cell x -, Yy, an identity 2-cell u = 1.

The following relations hold:
— for all T-cells x Ly sz W, (Wxo V) oW = Uy (VroW),
— for every 1-cell x LR Y, Ixrou=u=1uxgly,
— forall T-cells x —y — z, Tusgv = Tuxo Ty,

— forallZ-cellsu:f>v:g>w:>X, (f*1g)*x1 h="Fx (g* h),

e

v

/\/\/\

— for all 2-cells x ﬂg h t, (fxog)*oh="fx(g*oh)

N

w'

S
<<

>,:

— for every 2-cell x

—

f y7 ]X*Of:f:f*o]ya

(

— for every 2-cell u =f>v, lyxif=~f=~1%x1,,

/\
\/

>

— for all 2-cells x —,'

<

12
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2.4. Two-dimensional categories

The last relation is usually called the exchange relation or the interchange law for the compositions *
and =7. This globular definition of 2-categories is equivalent to the enriched one. In particular, the
0-composition of 2-cells with identity 2-cells defines the whiskering operations

W %o U

— for all cells x Ly ﬂf z , the left whiskering x ﬂw *f z,

W %oV
u U *y W
— for all cells x f Yy Ly , the right whiskering x ﬂf *OW Z,
v V *xg W

that satisfy the following relations, implied by the exchange and associativity relations:

— forall cells x —=y " Z, Wxg (fx ) = (uxpf)* (wxof’),

for all cells x /——y Yz, (fx1 f )y xov = (fxqv)*1 (f' %o V),

u
— for all cells x—>y V. ﬂf t, (UWxpV) %o =wxp(vxof),
w’
— for all cells x ——y ﬂf 20t (W f) 0w = wxo (F o w),
v/
u
— forall cells x foy—z-Yat, (frov) xow = fxo (vrow),

¢

u’

As for categories, we usually omit the *g notation. For 2-cells, we write s and t instead of s; and ty.

13



2. Low-dimensional categories and polygraphs

2.4.3. Free 2-categories. Let ~ be a 2-polygraph. The free 2-category over L is denoted by L* and
defined as follows:

— the O-cells of X* are the ones of X,
— for all O-cells x and y of X, the hom-category L*(x,y) is presented by the 2-polygraph

— whose 0-cells are the 1-cells from x to y of Z*,

— whose 1-cells are the

with & : u = vin Z; and w and w’ in L%,

— with one 2-cell with source cxwv *; w'wf and target uwp *; aowv’, for all o : u = u’ and
B:v=v'inX,andwin X¥,

— for all O-cells x, y and z of X the composition functor is given by the concatenation on 1-cells and,
on 2-cells, by

(Wroquy #1 -+ %1 Wn&mly,) %0 (VIB1V] #1 -+ %1 vnPnvy) =
wyoqwivis(B1)vy *1 - %1 WUl vis(Br)vi *
umt((xm)uénvl 61\’1’ *1 00k umt(o‘m)uwlnvnﬁnvtlm
— for every 0-cell x of X, the identity 1-cell 1, is the one of X7.

By definition of the 2-category £*, for all T-cells wand v of £*, we have U = V in the quotient category &
if, and only if, there exists a zigzag sequence of 2-cells of X* between them:
f 1 f —1 f
u:1>u1 g@w %uﬂ: () :>un71g<n:vn4 %lun&v.

2.4.4. Free (2, 1)-categories. If T is a 2-polygraph, the free (2,1)-category over X is denoted by LT
and is defined as the 2-category whose O-cells are the ones of £ and, for all O-cells x and y, the hom-
category £ (x,y) is given as the quotient

ZT04y) = (ZUZ7)*(xy)/Inv(y),
where:

— the 2-polygraph L~ is obtained from X by reversing its 2-cells,

— the cellular extension Inv(Z;) contains the following two relations for every 2-cell o of X and all
possible 1-cells w and v of Z* such that s(u) = x and t(v) = y:

uov U v = Jygan and uo vrpuay = 1yggy-

By definition of the (2,1)-category X', for all 1-cells u and v of £*, we have T = V in the quotient
category X if, and only if, there exists a 2-cell f : u = v in the (2, 1)-category L.

14



3. Rewriting properties of 2-polygraphs

3. REWRITING PROPERTIES OF 2-POLYGRAPHS

3.1. Convergent presentations of categories

Let us fix a 2-polygraph .

3.1.1. Rewriting and normal forms. A rewriting step of X is a 2-cell of the free 2-category X* with
shape

u
X—— Yy Jo z—t
\/‘
v

where @ : u = visa2-cell of £ and w and w’ are 1-cells of Z*. A rewriting sequence of X is a finite or
infinite sequence
fi f) fno1 f
U W () Up =2 (- )

of rewriting steps. If X has a rewriting sequence from u to v, we say that u rewrites into v. Let us
note that every 2-cell f of Z* decomposes into a finite rewriting sequence of L, this decomposition being
unique up to exchange relations. A T-cell uw of £* is a normal form if £ has no rewriting step with
source W, and a normal form of wis a T-cell v of £* that is a normal form and such that u rewrites into v.

3.1.2. Termination. We say that X terminates if it has no infinite rewriting sequence. In that case,
every T-cell of £* has at least one normal form and noetherian induction allows definitions and proofs of
properties of 1-cells of £* by induction on the size of the 2-cells leading to normal forms. A termination
order on X is an order relation < on parallel 1-cells of Z* such that the following properties are satisfied:

— the composition of T-cells of * is strictly monotone in both arguments,
— every decreasing family (u,, )nen of parallel 1-cells of L* is stationary,

— for every 2-cell « of Z, the strict inequality s(a) > t(«) holds.

As a direct consequence of the definition, if £ admits a termination order, then X terminates. A useful
example of termination order is the left degree-wise lexicographic order (or deglex for short) generated
by a given order on the T-cells of 2. Itis defined by the following strict inequalities, where the x;s and y;s
are 1-cells of X:

X1+ Xp < Y1---Ygqy ifp<q)
X7t XXk Xy < X7t Xk 1Ykt Yp,y if xx < yx.

The deglex order is total if, and only if, the original order on 1-cells of X is total.

3.1.3. Branchings. A branching of X is a pair (f, g) of 2-cells of £ with a common source, as in

15



3. Rewriting properties of 2-polygraphs

The T1-cell u is the source of this branching and the pair (v, w) is its target. We do not distinguish the
branchings (f, g) and (g, f). A branching (f, g) is local if f and g are rewriting steps. Local branchings
belong to one of the following three families:

. . . f
— aspherical branchings, for a rewriting step u = v:

. . ... f
— Peiffer branchings, for rewriting steps u = 1’ and v .

/

f%uv

uv
% uwv’

— overlapping branchings are the remaining local branchings.

Local branchings are compared by “inclusion”, i.e. by the order < generated by the relations

(f,9) < (ufv,ugv)

given for any local branching (f, g) and any possible 1-cells wand v of £}. An overlapping local branch-
ing that is minimal for the order < is called a critical branching (or a critical pair). The terms “aspher-
ical” and “Peiffer” come from the corresponding notions for spherical diagrams in Cayley complexes
associated to presentations of groups, [LSO1]], while “critical” is used in rewriting theory, [BO93l[BNI§]].

4
u
Sr=w
is confluent if there exist 2-cells " and g’ in £, as in the following diagram:
" Y
\ /

We say that X is confluent (resp. locally confluent) if all of its branchings (resp. local branchings) are
confluent. If X is confluent, every 1-cell of Z* has at most one normal form.

3.1.4. Confluence. A branching

16



3.1. Convergent presentations of categories

3.1.5. Lemma. A 2-polygraph is locally confluent if, and only if, all its critical branchings are confluent.

Proof. Every aspherical branching is confluent:

/
\

\%—

We also have confluence of every Peiffer local branching:

/
.y

u'v

\

We note that, in the aspherical and Peiffer cases, the 2-cells f’ and g’ can be chosen in such a way that
f x1 f = g *; g’ holds. Finally, in the case of an overlapping but not minimal local branching (f, g),
there exist factorisations f = uhv and g = ukv with

a critical branching of X. Moreover, if the branching (h, k) is confluent, then so is (f, g):
~ uwy
\ )

\ /;z

N e

The following result, also called the diamond lemma, is implied by Theorem[4.3.2]

3.1.6. Theorem (Newman’s lemma [New42, Theorem 3]). For terminating 2-polygraphs, local con-
fluence and confluence are equivalent properties.

3.1.7. Convergent polygraphs. We say that X is convergent if it terminates and it is confluent. Such
a L is called a convergent presentation of Z, and of any category that is isomorphic to Z. In that case,
every T-cell u of X¥ has a unique normal form, denoted by i, so that we have U = V in T if, and only
if, U = V holds in Z* This defines a section £ — ¥ of the canonical projection £f — I, mapping a
1-cell u of £ to the unique normal form of its representative T-cells in X*, still denoted by 1.

As a consequence, a finite and convergent 2-polygraph X yields a decision procedure for the word
problem of the category I it presents: the normal-form procedure, which takes, as input, two T-cells u

17



3. Rewriting properties of 2-polygraphs

and v of £*, and decides whether L = v holds in  or not. For that, the procedure computes the respective
normal forms U and V of w and v. Finiteness is used to test whether a given 1-cell u is a normal form or
not, by examination of all the relations and their possible applications on u. Then, the equality @ = v
holds in X if, and only if, the equality 1L = ¥ holds in *.

3.2. Transformations of 2-polygraphs

3.2.1. Knuth-Bendix completion. Let  be a terminating 2-polygraph, equipped with a total termina-

tion order <. A Knuth-Bendix completion of ¥ is a 2-polygraph 3 obtained by the following process. We
start with X equal to £ and with B equal to the set of critical branchings of £. If B is empty, then the
procedure stops. Otherwise, it picks a branching

f/v

u
g\w

in B and it performs the following operations:

1. It computes 2-cells ' : v = Vand g’ : w = W of £*, where ¥ and W are normal forms for v
and w, respectively, as in the following diagram:

f/v:>v
u
g

2. It tests which (in)equality v = w or v > w or v < w holds, corresponding to the following three
situations, respectively:

! !
vV=w u o u
\ / \w w \w W

If V # W, the procedure adds the dotted 2-cell « of the corresponding situation to 3 and all the
new critical branchings created by « to B.

3. It removes (f, g) from B and restarts from the beginning.

If the procedure stops, it returns the 2-polygraph 3. Otherwise, it builds an increasing sequence of 2-
polygraphs, whose limit is denoted by X. Note that the resulting 2-polygraph may depend on the order

18



3.3. Normalisation strategies

of examination of the critical branchings. Also, if the starting 2-polygraph X is already convergent, then
the Knuth-Bendix completion of X is X. By construction, the 2-polygraph X is convergent and, since all
the operations performed by the procedure are Tietze transformations, it is Tietze-equivalent to X:

3.2.2. Theorem ([KB70]). Any Knuth-Bendix completion b of a 2-polygraph X, equipped with a total
termination order, is a convergent presentation of the category X. Moreover, the 2-polygraph ¥ is finite
if, and only if, the 2-polygraph L is finite and the Knuth-Bendix completion procedure halts.

3.2.3. Métivier-Squier reduction. A 2-polygraph X is reduced if, for every 2-cell « : u = v of L,
we have that u is a normal form for X\ {«} and that v is a normal form for £;. Given a convergent
2-polygraph X, the Métivier-Squier reduction of ¥~ is the 2-polygraph obtained by the procedure that
successively performs the following operations:

1. The procedure replaces every generating 2-cell o : u = vby & : u = :

uﬁ(x A% u v
ﬂ . \ﬂ
U 4

u

2. Next, if the resulting 2-polygraph contains parallel generating 2-cells, the procedure removes all

but one:
o
A R a R
Kn

3. Finally, the procedure removes every generating 2-cell « with source vs(f3)v’, where 3 is another
generating 2-cell:

“ ! —
]

- S VY VWV VWV
\ W > \ ﬂ

!

' Vv
Vv . ~ )
vivy VWY

By construction, we get the following result, originally obtained by Métivier for term rewriting and
by Squier for string rewriting:

3.2.4. Theorem ([Mét83]], [Squ87, Theorem 2.4]). Every (finite) convergent 2-polygraph is Tietze-
equivalent to a (finite) reduced convergent 2-polygraph.

3.3. Normalisation strategies

3.3.1. Normalisation strategies. Let Z be a 2-polygraph and let C denote the category presented by X.
We consider a section C ~— X} of the canonical projection 7t : £ — C, i.e. we choose, for every
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3. Rewriting properties of 2-polygraphs

T-cellwof C, a 1-cell U of £* such that 7t(il) = u. In general, we cannot assume that the chosen section
is functorial, i.e. that v = UV holds in *. However, we assume that 1, = 1, holds for every O-cell x
of C. Given a 1-cell u of £*, we simply write 1 for 1.

Such a section being fixed, a normalisation strategy for ¥ is a map

0:X7 - %)

that sends every 1-cell u of Z* to a 2-cell
w2 G

of LT, such that o = 1 holds for every 1-cell u of £*.

3.3.2. Left and right normalisation strategies. Let £ be a 2-polygraph, with a chosen section. A
normalisation strategy o for X is a left one (resp. a right one) if it also satisfies

u . . Y%
3Ou Y p v
- . 6} ﬂ Odiv . (resp. Ouw = . @ )

v v

The 2-polygraph X always admits left and right normalisation strategies. For example, in the left case,
let us arbitrarily choose a 2-cell oo : wa = tain LT, for every T-cell u of £* and every 1-cell a of Z,
such that . = u and ua is defined, with ta # ua. Then we extend o into a left normalisation strategy
for £ by putting 0y, = 1y, if U = u (which implies o7, = 17_), and

Oy = 0vA *1 O3q
ifii #uandu = vawithvin X* and a in X.

3.3.3. Leftmost and rightmost normalisation strategies. If X is areduced 2-polygraph, then, for every
1-cell u of £*, the set of rewriting steps with source u can be ordered from left to right: for two rewriting
steps T = vav’ and g = wRw’ with source u, we have f < g if the length of v is strictly smaller than
the length of w. If X is finite, then the order < is total and the set of rewriting steps of source wu is finite.
Hence, this set contains a smallest element A,, and a greatest element p,,, respectively called the leftmost
and the rightmost rewriting steps on u. If, moreover, the 2-polygraph X terminates, the iteration of A
(resp. p) yields a normalisation strategy o called the leftmost (resp. rightmost) normalisation strategy
of X:
Ou=Au* Oy, (Tesp. oy = Py *1 Oypy))-

We prove, by noetherian induction, that the leftmost (resp. rightmost) normalisation strategy of X is a left
(resp. right) normalisation strategy. The leftmost and rightmost normalisation strategies give a way to
make constructive some of the results we present here. For example, they provide a deterministic choice

of a confluence diagram
f/ A% \O_(V)
u u
9\\ w /

o(w)
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4. Finite derivation type

for every branching (f, g) of Z.

4. FINITE DERIVATION TYPE

4.1. Coherent presentations of categories

4.1.1. Cellular extensions and homotopy bases of 2-categories. Let C be a 2-category. A 2-sphere
of Cis a pair y = (f, g) of parallel 2-cells of C, i.e. with s(f) = s(g) and t(f) = t(g). We call f the
source of y and g its rarget and we denote such a 2-sphere by vy : f = g. A cellular extension of the
2-category C is a set I' equipped with a map from I to the set of 2-spheres of C.

A congruence on a 2-category C is an equivalence relation = on the parallel 2-cells of € that is
compatible with the two compositions of C, that is, for all cells

of € such that f = g, we have
W (hx fx1 k) %o w' = wrg (hxp g* k) *w'.

If T is a cellular extension of C, the congruence generated by T is denoted by =r and defined as the
smallest congruence such that, if I' contains a 3-cell y : f = g, then f = g. The quotient 2-category of
a 2-category C by a congruence relation = is the 2-category, denoted by €/ =, whose O-cells and 1-cells
are those of C and whose 2-cells are the equivalence classes of 2-cells of € modulo the congruence =.

A homotopy basis of C is a cellular extension I" of € such that, for every parallel 2-cells f and g of C,
we have f =r g, that is, the equality f = g holds in the quotient 2-category C/ =r. For instance, the set
of 2-spheres of C forms a homotopy basis.

4.1.2. (3, 1)-polygraphs and coherent presentations. A (3, 1)-polygraph is a pair X = (X;, X3) made
of a 2-polygraph L, and a cellular extension X3 of the free (2, 1)-category ZZT over X, as summarised in
SO S1 S,

2o PR Z;— $ 33
to tH t

If C is a category, a coherent presentation of C is a (3,1)-polygraph £ = (X;,X3) such that X, is a
presentation of C and X3 is a homotopy basis of ZZT.

4.1.3. Finite derivation type. A 2-polygraph X is of finite derivation type if it is finite and if the (2, 1)-
category X | admits a finite homotopy basis. A category C is of finite derivation type if it admits a finite
coherent presentation.
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4. Finite derivation type

4.1.4. 3-categories. The definition of 3-category is adapted from the one of 2-category by replacement
of the hom-categories and the composition functors by hom-2-categories and composition 2-functors. In
particular, in a 3-category, the 3-cells can be composed in three different ways:

— by %, along their 0-dimensional boundary:

u A% uv

— by *1, along their 1-dimensional boundary:

— by *, along their 2-dimensional boundary:
u u
/A_\ m
=

B
x f|l = 9=

A (3,1)-category is a 3-category whose 2-cells are invertible for the composition x; and whose 3-cells
are invertible for the composition *,. This implies that 3-cells are also invertible for the composition *1.

4.1.5. Free (3, 1)-categories. Given a (3, 1)-polygraph X, the free (3,1)-category over L is denoted
by ' and defined as follows:

— its underlying 2-category is the free (2, 1)-category %, ,

— its 3-cells are all the formal compositions by *q, x1 and %, of 3-cells of L, of their inverses and of
identities of 2-cells, up to associativity, identity, exchange and inverse relations.

In particular, we get that X3 is a homotopy basis of Z; if, and only if, for every pair (f, g) of parallel
2-cells of Z;, there exists a 3-cell A : f = g in T,
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4.2. The homotopy basis transfer theorem

4.2. The homotopy basis transfer theorem

The objective of this section is to prove Theorem [4.2.3} given two finite presentations of the same
category, both are of finite derivation type or neither is. Towards this goal, we prove Theorem }.2.2] that
allows transfers of homotopy bases between presentations of the same category.

4.2.1. Lemma. Let C be a category and let Z and = be presentations of C. There exist 2-functors
F:2T =T and G:ZT 3T
and, for every 1-cells wof L andv of =7, there exist 2-cells
oy: GF(u)=u and T, : FG(v) = v
in LT and =7, such that the following conditions are satisfied:

— the 2-functors F and G induce the identity through the canonical projections onto C:

Ty

sT ™, ¢ sT ™, ¢
FJ - Jldc GT _ [Idc
=T =T

=2 ——C =2 ——C

l
0

— the 2-cells oy and T, are functorial in w and v:

o, =11, T1, = Ty, Ouw = OuOy and Ty = TyTyr.

Proof. Letus define F, the case of G being symmetric. On a 0-cell x of &, we take F(x) = x. Ifa : x — y
is a T-cell of £, we choose, in an arbitrary way, a 1-cell F(a) : x — y in =7 such that =F(a) = 7tz (a).
Then, we extend F to every 1-cell of Z' by functoriality. Let o : u = 1’ be a 2-cell of Z. Since I is a
presentation of C, we have 7ty (1) = 7tz (1), so that m=F(u) = m=F(u’) holds. Using the fact that = is a
presentation of C, we arbitrarily choose a 2-cell () : F(w) = F(u/) in =7. Then, we extend F to every
2-cell of LT by functoriality.

Now, let us define o, the case of T being symmetric. Let a be a 1-cell of X. By construction of F
and G, we have:

nsGF(a) = m=F(a) = nz(a).

Since X is a presentation of C, there exists a 2-cell 04 : GF(a) = ain . We extend o to every 1-cell u
of ZT by functoriality. O

4.2.2. Theorem. Let C be a category, let £ and = be two presentations of C and let F, G and T be chosen
as in Lemma If T is a homotopy basis of L', then

A = F(F) o T=

is a homotopy basis of =T, where:
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4. Finite derivation type

— the cellular extension F(T') contains one 3-cell

for every 3-celly : f = g of T,

— the cellular extension T= contains one 3-cell

for every 2-cell x : u= v of =

Proof. Let us define, for every 2-cell f of =7, a 3-cell T; of AT with shape

FG(f) FG(v) Tg w
Thag = / \Tv /
g

and

One checks that the 3-cells T are well-defined, i.e. that their definition is compatible with the rela-
tions on 2-cells of =", such as the exchange relation:

Tfgehk = T(fxh)(gxk):
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4.2. The homotopy basis transfer theorem

Now, let us consider parallel 2-cells f, g : u = v of Z'. The 2-cells G(f) and G(g) of Z' are parallel so
that, since I" is a homotopy basis of T, there exists a 3-cell

in T'". An application of F to A gives the 3-cell

FG(f)

TR
FGw  |[FA) Fe)
SN~

FG(g)

of =1, which, by definition of A and functoriality of F, is in AT. Using the 3-cells F(A), tf and Tg, W€
get the following 3-cell from f to gin AT:

This concludes the proof that A = F(T') L Tz is a homotopy basis of the (2, 1)-category = . O
We deduce from Theorem §.2.2] the following result.

4.2.3. Theorem ([SOK94, Theorem 4.3]). Let & and = be finite presentations of the same category.
Then X is of finite derivation type if, and only if, = is of finite derivation type.

The following proposition is useful to prove that a presentation admits no finite homotopy basis.

4.2.4. Proposition. Let ¥ be a 2-polygraph and let T be a homotopy basis of L. If £ admits a finite
homotopy basis, then there exists a finite subset of T that is a homotopy basis of £ .

Proof. Let A be a finite homotopy basis of X and let d be a 3-cell of A. Since I' is a homotopy basis of X,
there exists a 3-cell As in I'" with boundary (s(5), t(5)). This induces a 3-functor

F:AT > TT
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4. Finite derivation type

that is the identity on X and such that F() = Aj for every 3-cell 5 of A. Let I's be the subset of I'
that contains all the generating 3-cells that appear in the 3-cells Ag, for every 6 in A. Since A is finite
and each Aj contains finitely many 3-cells of I', we have that T's is finite. Finally, let us consider a
2-sphere (f, g) of ZT. By hypothesis, there exists a 3-cell A in AT with boundary (f, g). By application
of F, one gets a 3-cell F(A) in I'" whose boundary is (f, g). Moreover, the 3-cell F(A) is a composite
of cells As: hence, the 3-cell F(A) is in T'{. As a consequence, one gets f =r, g, so that Tx is a finite
homotopy basis of £, which concludes the proof. O

4.3. Squier completion for convergent presentations

Squier completion provides a way to extend a convergent presentation of a category C into a coherent
presentation of C.

4.3.1. Squier completion. For X a 2-polygraph, a family of generating confluences of * is a cellular
extension of £ T that contains exactly one 3-cell

for every critical branching (f, g) of £. We note that, if £ is confluent, it always admits a family of
generating confluences. However, such a family is not necessarily unique, since the 3-cell can be directed
in the reverse way and, for a given branching (f, g), we can have several possible 2-cells f’ and g’ with the
required shape. Normalisation strategies provide a deterministic way to construct a family of generating
confluences, see [GM12b, 4.3.2].

For a convergent 2-polygraph X, Squier completion of X is the (3, 1)-polygraph denoted by 8(X) and
defined by $(X) = (X, T"), where I" is a chosen family of generating confluences of X. By the following
result, if X is a convergent presentation of a category C, then Squier completion 8(X) is a coherent
presentation of C.

4.3.2. Theorem ([SOK94, Theorem 5.2]). Let X be a convergent 2-polygraph. Every family of gener-
ating confluences of L is a homotopy basis of L.

Proof. We fix a family of generating confluences of X and consider the corresponding Squier comple-
tion 8(X). We proceed in three steps.

Step 1. We prove that, for every local branching (f, g) : w = (v, w) of X, there exist 2-cells f’ : v = u’
andg’:w=u'inZ*anda3-cell A:fx f' = g*; g’'in8(X)T, as in the following diagram:

v f !

A
\w g’

\
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4.3. Squier completion for convergent presentations

As we have seen in the study of confluence of local branchings, in the case of an aspherical or Peiffer
branching, we can choose ' and g’ such that f x; f' = g *; g’: an identity 3-cell is enough to link them.
Moreover, if we have an overlapping branching (f, g) that is not critical, we have (f,g) = (uhv, ukv)
with (h, k) critical. We consider the 3-cell & : h 1 h' = k »; k’ of §(X) corresponding to the critical
branching (h, k) and we conclude that the following 2-cells f’ and g’ and 3-cell A satisfy the required
conditions:

f' = uh’v g’ =ukv A = uov.

Step 2. We prove that, for every parallel 2-cells f and g of £* whose common target is a normal form,
there exists a 3-cell from f to g in §(Z) . We proceed by noetherian induction on the common source u
of f and g, using the termination of X. Let us assume that u is a normal form: then, by definition, both
2-cells f and g must be equal to the identity of u, so that 1y : 1, = 1y is a 3-cell of ()" from f to g.

Now, let us fix a 1-cell u of £* with the following property: for every 1-cell v of X* such that u
rewrites into v in one step, and for every parallel 2-cells f,g : v = V = U of Z*, there exists a 3-cell
from f to g in §(Z)". Let us consider parallel 2-cells f,g : u = i and let us prove the result by
progressively constructing the following composite 3-cell from f to g in §(Z) ':

Since u is not a normal form, we can decompose f = f; x; f, and g = g7 *1 g2 so that f; and g7 are
rewriting steps. They form a local branching (f7, g1) and we build the 2-cells f] and g; of Z* together
with the 3-cell A of S(Z)T, as in the first part of the proof. Then, we consider a 2-cell h : u/ = 1 in Z*,
that must exist by confluence of £ and since 1l is a normal form. We apply the induction hypothesis to
the parallel 2-cells f; and f{ »; h in order to get B and, symmetrically, to the parallel 2-cells gj %1 h
and g; to get C.

Step 3. We prove that every 2-sphere of £ is the boundary of a 3-cell of §(Z)". First, let us consider a
2-cell f: uw = vin X* Using the confluence of X, we choose 2-cells

~

Oy : U =1 and oy :V=v=1

in £*. By construction, the 2-cells *; 0, and oy, are parallel and their common target 1 is a normal form.
Thus, there exists a 3-cell in 5():)T from f 1 oy to oy, or, equivalently, a 3-cell o¢ from f to oy *1 0
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4. Finite derivation type

in 8§(X) ', as in the following diagram:

Moreover, the (3,1)-category 8(Z)T contains a 3-cell o from f~ to o, *; 0, given as the following
composite:

Now, let us consider a general 2-cell f : u = v of Z'. By construction of L', the 2-cell f can be
decomposed (in general in a non-unique way) into a zigzag

fy g; f) In—7 fn 9n
u 2 uy > (-+0) Up > Vi v

where each f; and g; is a 2-cell of Z*. We define oy as the following composite 3-cell of §(X) T, with
source f and target oy, *7 O, :

fi 9r

u %w \ ( . ) Vi N v
A
M(rf] oy, = \Uw MGQT G;f{ \—u Mcfn o, = \Gv %n
& N v A/ N\ N Ao
u u (--+) u u v

We proceed similarly for any other 2-cell g : u = vof L', to geta 3-cell 04 from g to oy *7 0} in (o).
Thus, the composite 0 *; 0 is a 3-cell of 8(X)T from f to g, concluding the proof. O

Theorem 4.3.2] is extended to higher-dimensional polygraphs in [GMQ9, Proposition 4.3.4]. In the
special case of presentations of monoids, we recover the original result of Squier.

4.3.3. Theorem ([SOK94, Theorem 5.3]). If a monoid admits a finite convergent presentation, then it
is of finite derivation type.

4.3.4. Generating confluences in the reduced case. Theorem m holds for any choice of family of
generating confluences. If X is a reduced convergent 2-polygraph, we can construct an explicit such
family as follows. Let o be the leftmost normalisation strategy of X. Since X is reduced, every critical
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4.3. Squier completion for convergent presentations

branching of X has the form

u
o .
w v
U W
vl

where o and 3 are 2-cells of £ and where U, W and V are non-identity normal forms. Let us note that oV
is the leftmost reduction step of WwV and that U is its rightmost reduction step. In particular, we have

o(Uwy) = ov %1 o(u'v).
We define 3 as the cellular extension of £ made of one 3-cell with the following shape, for every
critical branching b = (v, uf) of L:
a7

ap ™ S\ o)
/Wvb\

uwv v

A~ AN A

o(uww)

4.3.5. Example. The standard presentation of a category C is the 2-polygraph Std,(C) defined as fol-
lows. The O-cells and 1-cells of Std, (C) are the ones of C, with 1t denoting a 1-cell w of C when seen as
a T-cell of Std,(C). The 2-polygraph Std,(C) contains a 2-cell

/jh ,v

forall 1-cellsu:x > yandv:y — zof C, and a 2-cell

for every O-cell x of C. The standard coherent presentation of C is the (3,1)-polygraph denoted
by Std;(C) and obtained by extension of Std;(C) with the homotopy basis made of the following 3-
cells:

— forall 1-cellsu:x - y,v:y - zand w:z — t of C, one 3-cell

Yu/ uvw
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4. Finite derivation type

— forevery T-cell u : x — y of C, two 3-cells
O 1,d ~ i,
LU Yigu Ul Yu,1y
I [l

Let us prove that Std;(C) is, indeed, a coherent presentation of C. The standard presentation Std,(C) is
not terminating: indeed, for every 0-cell x of C, the 2-cell 1, creates infinite rewriting sequences

1, = 1, = T,ﬁx = TX?XTX = .-

However, we get a convergent presentation of C by reversing all the 2-cells 1, into (. Indeed, for
termination, we consider the size of the 1-cells (the number of generators they contain) and we check
that each 2-cell vy, has source of size 2 and target of size 1, while each 2-cell 1,/ has source of size 1
and target of size 0. As a consequence, for every non-identity 2-cell f : u = v of the free 2-category, the
size of u is strictly greater than the size of v. For confluence, we study the critical branchings, divided
into three families:

— forall Tcellsu:x —» y,v:y — zand w: z — t of C, one critical branching (‘yu,v\?\v, ﬁ‘yvyw),
giving the 3-cell

— for every T-cell u: x — y of C, two critical branchings (y1, u, t, 1) and (yy,1,, Uit ), producing
the 3-cells
Y]X,u ’Yu»]y

/Fu a1 /Jp’\ﬁ
v yu

uly

Since considering the 2-cells t, or (5 as generators does not change the generated (2, 1)-category, we get
that those three families of 3-cells form a homotopy basis of Std;(C). We replace A/ by Ay = 1 1 Ay
and p}, by py = Uty *1 py to get the result.

4.3.6. Example. Let us consider the monoid M presented by the 2-polygraph

I ={(xy | xyxéyy)

We prove that X terminates with the deglex order generated by x < y. The 2-polygraph X has one, non
confluent critical branching (ocyx, xyoa). Knuth-Bendix completion X of X is obtained by adjunction of
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5. A homological finiteness condition

the following 2-cell 3 : yyyx = xyyy:

xyx yyyx
XYXxyx B
XY= 1y

Then, Squier completion S() extends ¥ with the following two 3-cells:

xyx Yyyyx Byx XYyyyyx XUB
awxgx A |l Yyyxyx [ XYXyYY
A= xyyy Y= yyyyy < 99Y

In fact, the 3-cell A is sufficient to get a homotopy basis of ¥, as witnessed by the following 3-sphere of
the (3, 1)-category 8(X)T:

Yyyxyx Yyyxyx

Wz I yyyx ayxyx yyya
D T S
Xyxyxyx =XYWYx=—=> xyyyyx B  yyyyy = XYXYXyx 1 oy Yyyyy
XYyA XH 8
Xyxy TL ayyy XyYxyoo ayyy
Xyxyyy Yyyxyx

Indeed, the 3-sphere w proves that the boundary of B is also the boundary of a 3-cell of the (3,1)-
category (S(X)\ {B})". This elimination mechanism, based on the study of the triple critical branchings
of T is part of the homotopical reduction procedure introduced in [GGM]]. This construction coherently
eliminates pairs of redundant cells of a coherent presentation. On this particular example, it yields that the
(2,1)-category £ admits an empty homotopy basis, i.e. that the (3, 1)-polygraph (Z, ¥) is a coherent
presentation of the monoid M.

5. A HOMOLOGICAL FINITENESS CONDITION

5.1. Monoids of finite homological type

5.1.1. Resolutions. Let M be a monoid. We denote by ZM the ring generated by M, that is, the free
abelian group over M, equipped with the canonical extension of the product of M:

(XA (D Av) = DT Aduw = DT > Adw.

ueM veM uw,veM weM uw=w
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5. A homological finiteness condition

Given a (left) ZM-module M, a resolution of M is an exact sequence of ZM-modules

d d d
(...)*)MHLan (-) -y P I VIR I 0

that is, a sequence (M )neny of ZM-modules, together with a sequence (dn )nen of morphisms of ZM-
modules, called the boundary maps, such that dg is surjective and

imd,,1 = kerd,

holds for every natural number n. In particular, the sequence (M, dn )nen is a (chain) complex of ZM-
modules, that is, we have the inclusion im d,, .1 € ker d;, or, equivalently, the relation d,,d1 = 0 holds
for every natural number n.. Such a resolution is called projective (resp. free) if all the modules M, are
projective (resp. free). Given a natural number n, a partial resolution of length 1 of M is defined in a
similar way but with a bounded sequence (My)o<k<n of ZM-modules.

5.1.2. Contracting homotopies. Given a complex of ZM-modules

d d d,
() Mot My -0 My ) — My Y M- M0

a method to prove that such a complex is a resolution of M is to construct a contracting homotopy, that
is a sequence of morphisms of Z-modules

1 M, 10 M

ing i
("')‘7Mn+1<LMn(LMn—1 () M
such that dpip = Idpm and, for every n, we have
dn+]in+1 + indn = Id]\/[n .

Indeed, in that case, we have that dy is surjective. Moreover, for every natural number n and every x
in ker d,,, the equality d,1in41(x) = x holds, proving that x is in im dy, 11, so that ker d,, € im dy 1
holds. As a consequence, the considered complex is a resolution of M.

5.1.3. Homological type left-FP,,. If M is a monoid, the trivial ZM-module is the abelian group 7Z
equipped with the trivial action un = n, for every u in M and n in Z. A monoid M is of homological
type left-FP;,, for a natural number n, if there exists a partial resolution of length n of the trivial ZM-
module Z by projective, finitely generated ZM-modules:

d,._ d d d
p,dnip L) 2P S p 07 0.

A monoid M is of homological type left-FPo, if there exists a resolution of Z by projective, finitely
generated ZM-modules.

5.1.4. Lemma. Let M be a monoid and let 1 be a natural number. The following assertions are equiv-
alent:
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5.2. Monoids of homological type left-FP;

i) The monoid M is of homological type left-FP;,.

ii) There exists a free, finitely generated partial resolution of the trivial ZM-module 7. of length n

Fn Fn—1 (--+) Fo Z 0.

iii) For every 0 < k < n and every projective, finitely generated partial resolution of the trivial ZM-
module 7, of length k

d di_ d
Pk~ Prg — b (+++) —— Pg —2s Z——0,

the ZM-module ker dy is finitely generated.

Lemma[5.1.4]is a consequence of the following generalisation of Schanuel’s lemma. If

0 Q Pn O Po Z 0

and

0 Q' |4 (--+) P} Z 0

are exact sequences of ZM-modules, with each Py and P| finitely generated and projective, then the
ZM-module Q is finitely generated if, and only if, the ZM-module Q' is finitely generated.

5.2. Monoids of homological type left-FP,

5.2.1. Presentations and partial resolutions of length 2. Let M be a monoid and let & be a presentation
of M. Let us define a partial resolution of length 2 of Z by free ZM-modules

d; €

d
ZM[Z,]| —2 ZM[Z,] ZM Z 0.

The ZM-modules ZM[X;] and ZM[X;] are the free ZM-modules over X; and X,, respectively: they
contain the formal sums of elements denoted by u[x], where u is an element of M and x is a 1-cell of X
or a 2-cell of . Let us note that ZM is isomorphic to the free ZM-module over the singleton 2. The
boundary maps are defined, on generators, by

M -5 7, Mm[z] -3 zm IM[E,] % ZM[5)]
u— 1 [x] — X —1 [o] — [s(e0)] — [t(e0)]

The maps € and d; are respectively called the augmentation map and the Reidemester-Fox Jacobian of X.
In the definition of d, the bracket [-] is extended to the 1-cells of £ thanks to the relation

[1] =0 and [w] = [u] +ulv],

for all 1-cells u and v of X.
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5. A homological finiteness condition

5.2.2. Proposition. Let M be a monoid and let £ be a presentation of M. The sequence of ZM-modules
d

ZM[5,] ~ 92 ZM[5,] M —£7, 0

is a partial free resolution of length 2 of Z.

Proof. We first note that the sequence is a chain complex. Indeed, the augmentation map is surjective by
definition. Moreover, we have

edi[x] = ex)—¢e(1) =1-1 =0,

for every 1-cell x of X. In order to check that dyd; = 0, we first prove, by induction on the length, that
we have dq[u] = -1 for every 1-cell wof £ '. For the unit, we have d1[1] = d;(0) =0and T—1 = 0.
Then, for a composite 1-cell uv such that the result holds for both u and v, we get

difluwv] = dyJu] +udifv] =u-1T+w—-u = w-—1.

As a consequence, we have

dida[a] = di[s(«)] = dift(«)] = s(e) — t(x) = 0,
s(a) = t(o)

for every 2-cell o of X, where the last equality comes from s
tation of M.
The rest of the proof consists in defining contracting homotopies 1y, i1, 1i2:

) = t(w), that holds since X is a presen-

d; d; 3
IM[L) —— ZIM[5 ] 2 ZM ——2 7
1 1 %)

We choose a representative U in L for every element u of M, with TX = 1y for every O-cell x of X, and
we fix a normalisation strategy o for X. Then we define the morphisms of Z-modules iy, i1 and i, by
their values on generic elements

(1) =1, t(w) = [u, L(ulx]) = [o(@x)],
where the bracket [-] is extended to every 2-cell of £ thanks to the relations
[l =0, [ufv] =u[f] and  [fx19] = [f]+][g],

for all 1-cells wand v and 2-cells f and g of Z' such that the composites ufv and f x; g are defined.
First, we have e¢iy = Idz. Next, for every u in M, we have ipe(u) = 1 and

diti(w) = di[u] =u-—1.
Thus dyi; + ipe = Idzm. Finally, we have, on the one hand,
Ldi(ulx) = b(ux-w) = [&X] - [d]
and, on the other hand,
daiz(ux]) = dofo(ix)] = [Ux] — [ux] = ufx] + [u] — [ux].

For this equality, we check that d;[f] = [s(f)] — [t(f)] holds for every 2-cell f of Z" by induction on
the size of f. Hence we have dyi; + 11d1 = ldzyz, |, thus concluding the proof. O
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5.3. Squier’s homological theorem

From Proposition we deduce the following result:
5.2.3. Theorem. The following properties hold.
i) Every monoid is of homological type left-FP.
ii) Every finitely generated monoid is of homological type left-FP1.
iii) Every finitely presented monoid is of homological type left-FP;.

5.2.4. Examples. Let us consider the monoid M presented by the 2-polygraph

L ={act | at™t! gct”,neN)

The monoid M is finitely generated and, thus, it is of homological type left-FP;. However, for every
natural number n, we have
dZ[(anH] _ [athrZ] . [Cthr]])
= [at™"'] + at"+H1[t] — [ct™] — ct™[t],
da[oen] + (at™! — ctm)[t].

The equality at™*! = ct™ holds in M by definition, yielding ds[oty 1] = d2[oen]. As a consequence,
the ZM-module ker d; is generated by the elements [, ] — [xo]. Since the ZM-module ker d; is equal
to im d;, hence isomorphic to ZM[X,]/ker d;, it follows that ker d; is generated by [ ] only, so that,
by Lemma the monoid M is of homological type left-FP,. This can also be obtained by simply
observing that M admits the finite presentation (a, c,t | &p).

Now, let us consider the monoid M presented by the 2-polygraph

£ ={abt]|ab21,neN).

The monoid M is of homological type left-FPy, but not left-FP,. This is proved by showing that ker d,
is not finitely generated as a ZM-module, which is tedious by direct computation in this case. Another
way to conclude is to extend the partial resolution of Proposition [5.2.2] by one dimension: it will then
be sufficient to compute im d3, which is trivial in this case because £ has no critical branching, so that
ker d; = 0 and, as a consequence, ker d; is isomorphic to ZM[Z;]|. Convergent presentations provide a
method to obtain such a length-three partial resolution.

5.3. Squier’s homological theorem

5.3.1. Coherent presentations and partial resolutions of length 3. Let M be a monoid and let & be a
coherent presentation of M. Let us extend the partial resolution of into the resolution of length 3

d;

d d
IM[Z3] —— ZM[£,] —= ZM[Z1] M —£57 0,
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5. A homological finiteness condition

where the ZM-module ZM[Z3] is the free ZM-module over 3, formed by the linear combination of
elements u[y], with uin M and 'y a 3-cell of Z. The boundary map d3 is defined, for every 3-cell y of Z,
by

ds[v] = [s2(9)] - [2(v)]-

The bracket [-] is extended to 3-cells of £ thanks to the relations
[uAv] = w[A],  [AxiB] = [A]+[B],  [AxB] = [A]+[B],

for all 1-cells w and v and 3-cells A and B of Z' such that the composites are defined. In particular,
the latter relation implies [1¢] = O for every 2-cell f of . We check, by induction on the size, that
d3[A] = [s2(A)] — [t2(A)] holds for every 3-cell A of £'.

5.3.2. Proposition. Let M be a monoid and let L be a coherent presentation of M. The sequence of
ZM-modules

ZM[z5] 55 zmzs] -2 zmpzy] - zm &

is a partial free resolution of length 3 of 7Z.

Proof. We proceed with the same notations as the ones of the proof of Proposition[5.2.2] with the extra
hypothesis that o is a left normalisation strategy for . This implies that i;(u[v]) = [o(1iv)] holds for
alluin M and v in £}, by induction on the length of v.

We have d;d3; = 0 because s1s; = s1t; and t1s; = t1t,. Then, we define the following morphism
of Z-modules

ZM[5,] 2> ZM[1;]
u[o] — [o(ux)]
where o({ir) is a 3-cell of T with the following shape, with v = s(«) and w = t(«x):

~

uw

o(tv)

Let us note that such a 3-cell necessarily exists in £ because Z3 is a homotopy basis of Z'. Then we
have, on the one hand,

da(uled) = L(ulv] - uw]) = [o(@v)] - [o(@w)]
and, on the other hand,

dziz(u[a]) = [tocxy o(tw)] — [o(uv)],
u[a] + [o(uw)] — [o(Tv)].

Hence d3i3 + i,d; = ldzwx,], concluding the proof. O
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5.3. Squier’s homological theorem

5.3.3. Remark. The proof of Propositionuses the fact that X3 is a homotopy basis to produce, for
every 2-cell oc of X and every win M, a 3-cell o(tix) with the required shape. The hypothesis on L3 could
thus be modified to only require the existence of such a 3-cell in £': however, it is proved in [GM12b]
that this implies that 3 is a homotopy basis.

From Proposition[5.3.2] we deduce

5.3.4. Theorem ([CO94, Theorem 3.2], [Laf95, Theorem 3], [Pri95]). Let M be a finitely presented
monoid. If M is of finite derivation type, then it is of homological type left-FP3.

By Theorem[4.3.3] this implies

5.3.5. Theorem ([Squ87, Theorem 4.1]). If a monoid admits a finite convergent presentation, then it is
of homological type left-FPs.

5.3.6. Example. Let us consider the monoid M with the convergent presentation

(a|aa L ay.

With the leftmost normalisation strategy o, we get, writing the 2-cell u as a string diagram ¢:

o(a) = 1q o(aa) = ¢ o(aaa) = pax p = w

The presentation has exactly one critical branching, whose corresponding generating confluence can be
written in the two equivalent ways

aaa m* or v;w .

The ZM-module ker d; is generated by

5.3.7. Resolutions from convergent presentations. In [GM12b]], the results presented here are gener-
alised to produce a free resolution

dn dZ

(...)M

ZMIE] -2 zMiz, ] 2 ) 92 M) -4 ZMse] 52— 0

of the trivial ZM-module Z from a convergent presentation of a monoid M. For k > 4, the ZM-module
ZM[Zy] is defined as the free ZM-module over a family Xy of k-cells obtained from the (k — 1)-fold
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6. Squier’s example and variant

critical branchings. For example, the 4-cell

is the only element of X4 in the case of the monoid of Example A related resolution is obtained
in [Kob90] using antichains instead of k-fold critical branchings.

5.3.8. Other homological finiteness conditions. In the definition of homological type left-FP,,
for a monoid M, the replacement of left modules by right modules, bimodules or natural systems gives
the definitions of the homological types right-FP;,, bi-FP,, and FP;,, for every 0 < n < oo. We refer
the reader to [GM12b, Section 5.2] for the relations between these different finiteness conditions. In
particular, for n = 3, all of these homotopical conditions are consequences of the finite derivation type
property. The proof is similar to the one for the left-FP3 property in Section[5.3} for example, in the case
of the right-FP3 property, we consider right modules and, to get the contracting homotopy, we construct
a right normalisation strategy o by defining a 3-cell (i) with shape

vil _— = vu
o(vir)

for any generating 2-cell o : v = w and u in the monoid.

6. SQUIER’S EXAMPLE AND VARIANT
6.1. Squier’s example
In [Squ87], Squier defines, for every k > 1, the monoid Sy presented by

Caybyty Xty oy Xio Uty - Yk | (@ndnen, (Bi)i<icio (Yi)i<isk (8i)1<i<ko (€i)1<i<k )
with
o i i o €
at"b =1, xia i atxi, x;t % txi, xb = bxi, xy;—> 1.

In [SOK94], Squier proves the following properties for S1. With similar arguments, the result extends to
every monoid Sy, for k > 1.
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6.2. Proof of Theorem|[6.1.1

6.1.1. Theorem ([SOK94, Theorem 6.7, Corollary 6.8]). For every k = 1, the monoid Sy satisfies the
following properties:

i) it is finitely presented,
ii) it has a decidable word problem,
iii) if is not of finite derivation type,
iv) it admits no finite convergent presentation.
In [Squ87], Squier had already proved

6.1.2. Proposition ([Squ87, Example 4.5.]). For k > 2, the monoid Sy, is not of finite homological type
left-FP3 and, as a consequence, it does not admit a finite convergent presentation.

Proposition does not hold for S;. Indeed, this monoid is of homological type left-FP;, [Squ87,
Example 4.5]. This proves that, if finite derivation type implies left-FP3, the reverse implication does not
hold for general monoids. However, in the special case of groups, the property of having finite derivation
type is equivalent to the homological finiteness condition left-FP3 [CO96]. The latter result is based on
the Brown-Huebschmann isomorphism between homotopical and homological syzygies [BH82].

6.2. Proof of Theorem m

Let us prove the result in the case of the monoid S¢, with the following infinite presentation:
Sq = <Cl, b, t, XY | (o‘n)neN» B» Y, O, £>
with
o S
at"b =1, xa :B> atx, xt N tx, xb=Dbx, xy =1,
In what follows, we denote by vy : xt™ = t™x the 2-cell of Sq* defined by induction on n as follows:
Yo = 1y and Yne1 = yt"* tyn.

For every n, we write f, : xat® = at™*'bx the 2-cell of Sq* defined as the following composite:

t"b atynb n+1
xat"b B:> atxt™b % at™txb % at™ ox.

We note that f;, contains no 2-cell o.
6.2.1. Proposition. The monoid S1 admits the finite presentation §(i ={a,b,t,x,y | &0, B,Y, 0, €).

Proof. For every natural number n, we consider the following 2-sphere of Sq '

n+1
at™ T bxy _at’ be . jyn+iy

ﬂ% &:ﬂ

xat™by 1 ©)

X0 /

Xy
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6. Squier’s example and variant

Thus, the 2-cell &y, 41 is parallel to the composite 2-cell
at™ Tbe™ 1 Y %1 xony *7 €. (6)
Since f, contains no &, this proves the result by induction on n. 0

6.2.2. Proposition. The 2-polygraph Sq is convergent and Squier completion of Sq contains a 3-cell A,
with shape

tTIJr] bx

/ MMNX

xat™b w x
for every natural number n.

Proof. Let us prove that Sq terminates. For that, we build a termination order based on derivations,
similar to the method of [GMQ9, Theorem 4.2.1] for 3-polygraphs. We associate, to every 1-cell u
of Sq*, two maps

« - N> N and ou) : N > N

as follows. First, we define them on the 1-cells of Sq:
xx(n)=n+1, a:(n) =b.(n) = tu(n) =y (n) =n,
oa)(n) =3%  ab)(n) =dy)(n) =2 At)(n) = d(x)(n) = 0.
Then, we extend the mappings to every 1-cell of Sq* thanks to the following relations:
L) =n, (W) =vi(us(m)), o) =0,  d(w)(n) = d(w)(n) + o(v)(u.(n)).

We compare parallel 1-cells of Sq* by the order generated by u < v if u, < v, and d(u) < d(v).
The defining relations of (-), and ¢ imply that the composition of 1-cells of Sq* is strictly monotone in
both arguments. The natural order on N implies that every decreasing family of parallel T-cells of Sq* is
stationary. To get a termination order, hence the termination of Sq, there remains to check that u > v for
every 2-cell u = v of Sq. Indeed, we check that the following (in)equalities are satisfied:

(at*b).(n) = n = 1,(n), (xa)s(n) =n+ 1 = (atx).(n), (xt)«(m) =+ 1 = (tx)x(n),
(xb)x(n) =n+1 = (bx).(n), (xy)«s(m) =n+1>n=1,(n),
and
(at*b)(n) = 3"+ 2" > 0 = a(1)(n), d(xa)(n) = 3™ > 2™ 4 3" = 9(atx)(n),
A(xt)(n) = 2™ > 2™ = 9(tx)(n), d(xb)(n) = 21 > 2™ = 9(bx)(n),

dxy)(n) =21 > 0 = (1) (n).
Let us prove that Sq is confluent and compute Squier completion of Sq. The 2-polygraph Sq has exactly

one critical branching (t™b, x«y,) for every natural number n, and each of those critical branchings is
confluent, yielding the 3-cell A,,. We conclude thanks to Theorem O
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6.2. Proof of Theorem|[6.1.1

6.2.3. Proposition. The monoid S has a decidable word problem.

Proof. The convergent presentation Sq of S7 is infinite, so that the normal-form procedure cannot be
applied. However, the sources of the 2-cells «,, are exactly the elements of the regular language at*b.
This implies that the sources of the 2-cells of Sq form a regular language over the finite set {a, b, t, x, y}:
by [OKKO98, Proposition 3.6], this implies that the word problem of Sy is decidable. O

In order to show that Sy is not of finite derivation type, by Theorem[d.2.3] it is sufficient to check that
the finite presentation Sq of Sy given in Proposition admits no finite homotopy basis. We denote by

n:SqT—>§ElT

the projection that sends the 2-cells 3, v, & and ¢ to themselves and whose value on «, is given by
induction on n, thanks to (6)), i.e.

(o) = « and T nt+1) = gp *1 XTH(Xn )Y *7 €

where
gn = fny 1 at™be.

By application of the homotopy basis transfer theorem to Sq and §(i, with F the canonical inclusion
of Sq" into Sq ', with G = 7r and with T mapping each T-cell wof Sq' to 1, we obtain

6.2.4. Lemma. The monoid Sy admits the coherent presentation {a,b,t,x,y | oo, B,v,8, € | (Ar)nen)
where Ay, is the 3-cell

at™ bx

% T[((X'TlJr] )X
F\H\

Let us now deduce that St is not of finite derivation type. A direct proof is given in [Squ87, Theo-
rem 6.7], see also [Laf95, §6]. However, we can use an argument coming from the dimension above, to
explicit as 4-cells the relations between the 3-cells. We choose this proof to incite the reader to continue
the exploration of the higher dimensions of rewriting, e.g. with [Mét03, (GM12b]. Precisely, we use the
fact that the triple critical branchings (the minimum overlaps of three rewriting steps) of a reduced conver-
gent 2-polygraph £ induce a homotopy basis of Squier completion 8(Z): all the parallel 3-cells of §(X) T
are equal up to the 4-cells generated by the triple critical branchings [GM12b, Proposition 4.4.4]. This
implies

6.2.5. Proposition. Let ~ be a reduced convergent 2-polygraph with no triple critical branching. Then
all the parallel 3-cells of the free (3, 1)-category 8(X) " are equal.

We can now conclude with

6.2.6. Proposition. The monoid Sy is not of finite derivation type.
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6. Squier’s example and variant

Proof. We note that the 3-cell Ay *; € of §(Sq) " has the 2-sphere (5) as boundary:

n+1
at™ by atﬁbs ™ b

ﬂ% &-&-1
n AHA =
o (XTHQ /

As a consequence, for every natural number n, the 3-cell g;; *1 Ay *1 € has source a1 and target
gn *1 X0nY *1 €. We define the 3-cell By, of §(Sq) ' by induction on 1 as

By = 1g, and  Bni1 = (g, *1 Anyx1 €) %2 By

so that B, has source «,, and target 7(«y ), by definition of 7t. As a consequence, the 3-cell /N\n, when
seen as a 3-cell of $(Sq) T through the canonical inclusion, is parallel to the following composite 3-cell:

(7

x7t( 0t )

We observe that the convergent 3 -polygraph is reduced and has no critical triple branching. Thus, as a
consequence of Proposmon | all the parallel 3-cells of §(Sq)" are equal. This implies that An 18
equal to the composite (7). Expandlng the definition of B, 1, we get:

An = (fn %1 Byx) %2 (fn %1 gux *1 AqYx *1 €X) %2 Ap %2 XBr. (8)

Now, let us assume that Sq admits a ﬁmte homotopy basis. By Proposnlonn there exists a natural
number n such that the 3-cells Ao, .. A form a homotopy basis of Sq—r In partlcular the 3-cell An+1
is parallel to a composite W of the 3- cells Ao, .. An, hence it is equal to W' in Sq'.

Thus, on the one hand, by application of (§) to each of Ao, et An, and by definition of By, ..., By,
we get that Knﬂ is a composite of the 3-cells Ay, ..., A;,,. But, on the other hand, the relation (8] tells
us that 7\“+1 is equal to a composite

Anit = Cry(Nxg A7 yx*1 k) %3 Apgq %2 D )

n+1

where the 3-cells C and D contain Ay, ..., Ay only.
To prove that this leads to a contradiction, let us consider the free right ZS;-module ZS;|TI'] over the
homotopy basis I' = {A,n € N}. We define a map

[]1:8(Sq)" — ZS4[T]
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6.3. A variant of Squier’s example

thanks to the relations
[uAv] = [A]lv,  [AxB] = [A]+[B], [AxB] = [A]+[B],

for all 1-cells 1 and v and 3-cells A and B of 8§(Sq) " such that the composites are defined. From (9], we
deduce that N

[Ant1] = [C] = [Ant1]yx + [Ani] + [D] (10)
holds in ZS;[T']. Since the 3-cell /?\nﬂ is a composite of the 3-cells Ay, ..., An, we have that [Knﬂ] is
a linear combination of [Ao], ..., [An]. Since the right ZS;-module ZS1[I'] is free, it follows from (I0)
that

yx =1

holds in S;. However, the 1-cells yx and 1 are distinct normal forms of the convergent presentation Sq
of S1. This means that yx is distinct from 1 in S; and, thus, leads to a contradiction, so that we conclude
that é\(iT does not admit a finite homotopy basis. O

Finally, by Theorem[.3.3] we get:

6.2.7. Corollary. The monoid S1 admits no finite convergent presentation.

6.3. A variant of Squier’s example
Let us consider the monoid M presented by the following 2-polygraph from [LP91] [Laf95]:

LP = (a,b,c,d,d’ | abga, da:B>ac, d’a%ac>.

The monoid M has similar properties to Squier’s example: it admits a finite presentation, it has a decid-
able word problem, yet it is not of finite derivation type and, as a consequence, it does not admit a finite
convergent presentation.
To prove these facts, the 2-polygraph LP is completed, by Knuth-Bendix procedure, into the infinite
convergent 2-polygraph
[3 !
= {(a,b,c,d,d" | (ac™d 2y ac™)nen, da = ac, d'a = ac ).

Squier completion of LP has two infinite families of 3-cells:

n+1
fy“ b&ﬂ B’c“/ba &H
dacnb m n+1 m

An ac d’ac™®
4o 4 n % kd /

Moreover, the 2-polygraph LP has no triple critical branching. In a similar way to the case of Squier’s
monoid Sy, we get that the (finitely generated, with a decidable word problem) monoid M is not of finite
derivation type: we prove that the 3-cells B;, induce a projection 7t of LP' onto LP', so that the family
(7t(An) )nen is an infinite homotopy basis of LP". Then we prove that no finite subfamily of (7t(Ay,))nen
can be a homotopy basis of LP .
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