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Abstract. The Von Kdarméan Sodium experiment yields a variety of dynamo regimes, when asymmetry is
imparted to the flow by rotating impellers at different speed F} and F>. We show that as the intensity
of forcing, measured as Fi + Fb, is increased, the transition to a self-sustained magnetic field is always
observed via a supercritical bifurcation to a stationary state. For some values of the asymmetry parameter
0 = (F1—F»)/(F1+F2), time dependent dynamo regimes develop. They are observed either when the forcing
is increased for a given value of asymmetry, or when the amount of asymmetry is varied at sufficiently high
forcing. Two qualitatively different transitions between oscillatory and stationary regimes are reported,
involving or not a strong divergence of the period of oscillations. These transitions can be interpreted
using a low dimensional model based on the interactions of two dynamo modes.

PACS. 47.35.Tv, 47.65.-d Magnetohydrodynamics in fluids — 05.45.-a Nonlinear dynamical systems —

47.20.Ky Bifurcation, flow instabilities

1 Introduction

While still being quite far from the parameter regime that
characterizes natural objects, dynamo experiments using
liquid metals have the advantage of having adjustable con-
trol parameters. They also display dynamical evolutions
that can be recorded over long durations compared to the
Joule characteristic time. The Riga [1] and Karlsruhe [2]
experiments have established the central role of helicity
and shear in the dynamo process, with dynamo character-
istics well predicted by laminar models — although the un-
derlying flows are turbulent, with a moderate turbulence
rate. In the recent VKS experiment (see [3] and references
therein), the situation is different since non axisymmetric
velocity components (in the bulk and near the impellers)
play a leading role in the magnetic field generation: the
observed axisymmetric dynamo mean field cannot be gen-
erated by the axisymmetric mean flow alone. Another cen-
tral observation in the VKS experiment lies in the variety
of dynamo regimes observed when the flow driving param-
eters and magnetic Reynolds number are varied [3]. We re-
port here on the bifurcations observed in the VKS dynamo
based on a thorough study of the parameter space. The

von Karman flow of sodium is generated inside a cylinder
by the counter rotation of coaxial impellers at frequen-
cies (F1, F») (see Fig. 1a). When both impellers rotate at
the same frequency F; = F5, the driving and hence the
mean flow structure are symmetric with respect to any
rotation R, of m around any radial axis in its equatorial
plane. When the frequencies F} and F are different, this
symmetry is broken. One possible variable to quantify this
asymmetry is the parameter 6 = (Fy — Fy)/(F) + F»). In
addition, the choice of frequencies (F, F») imposes a mean
shear F' = (Fy + F3)/2. When the parameters (F,0) are
varied, various types of dynamos are observed. We con-
centrate on the following issues:

(i) characteristics of the bifurcation to a dynamo regime
when F' increases, for a fixed value of the asymmetry pa-
rameter 6. Our observation is that a (statistically) steady
dynamo is always generated first, via a supercritical bi-
furcation. Time-dependent regimes can develop as a sec-
ondary bifurcation when F' is increased further for partic-
ular intervals of 6.

(ii) Transition between dynamo regimes (above critical),
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in particular changes from stationary to oscillatory dy-
namics when 6 is varied at constant F.

In some cases, we observe a divergence of the period of
oscillation during transition or bifurcations. In other cases
the period remains finite.

The next section describes the experimental set-up and
gives a summary of the dynamo capacity of the various
flows configurations studied so far in the VKS experiment.
The parameter space and the bifurcations observed when
increasing the forcing at a given value of asymmetry are
presented in section 3. Section 4 describes how the dy-
namo undergoes transitions between various regimes as
the asymmetry is varied at a given forcing. In section 5,
we show that these observations can be understood using
the predictions of a low dimensional model, involving the
interactions of two dynamo modes. A final discussion is
given in section 6.

2 Experimental set-up and configurations
2.1 Set-up

The present set-up is displayed in Fig.1. A von Karmén
swirling flow is generated in a cylindrical vessel (radius
Ryesse1=289 mm, length L=604 mm) by two counter-rota-
ting impellers 371 mm apart. The flow is surrounded by
sodium at rest enclosed between the copper outer ves-
sel and an inner copper cylinder (radius Rey1 = 206 mm,
length H = 524 mm). The impellers are made of soft
iron disks (radius Rimp = 154.5 mm) fitted with 8 curved
blades with height A~ = 41.2 mm. Their rotation rate
can be adjusted independently to (Fy, Fy). The arrows
in Fig. 1 define the positive rotation rate Fp, Fy > 0.
It corresponds to the case where the curved blades are
counter-rotating and “unscooping” the fluid (pushing the
fluid with the convex side of the blades). The fluid is
liquid sodium (density p = 930 kg - m~3, electrical con-
ductivity o = 9.6 - 10° £2 - m~!, kinematic viscosity v =
6.7-107" m?-s~1 at 120°C). The driving motor power is
300 kW and cooling by an oil circulation inside the wall
of the outer copper vessel allows experimental operation
at constant temperature in the range 110 — 140°C. This
set-up is a slightly modified version of the one previously
described in [3]: the inner copper ring that was located in
the mid-plane has been removed. A hydrodynamic study
of this configuration has been done in [4] and the influence
of the inner ring on the flow has been studied in details
in [5].

The magnetic field is measured with Hall probes in-
serted inside the fluid, as shown in Fig.1. Unless otherwise
stated, the measurements presented in this paper were
made using the probe at location 1. Because of the small
number of probes that were available for the experimen-
tal data studied here, no statement will be made on the
spatial distribution of the observed dynamo modes. They
will only be distinguished by their amplitude and time
dynamics at the point of measurement.

Fig. 1. Experimental setup, showing the location of the
Hall probes. x is the axial coordinate directed from im-
peller 1 to impeller 2, r and ¢ the radial and azimuthal
coordinates.

In the following subsection, we give a brief summary
of the main results obtained with the different configura-
tions studied so far in VKS: the inner copper wall and
ring can be inserted or removed and the impellers ma-
terial can be varied independently. We define the kinetic
Reynolds number of the flow: Re = 27 Ry, FR/v with
R = Rcy if the inner cylinder is present and R = Ryessel
otherwise. The corresponding magnetic Reynolds number
is defined in the same way: R,, = 27 RimpF Rjioo, where
1o is the magnetic permeability of vacuum. This definition
is different from the one used in previous publications (it
leads to 25% higher values for R,,) but it was chosen here
because it contains explicitly the flow scale R and thus
allows quantitative comparisons between cases with and
without the inner cylinder. Since the asymmetry between
the rotation rates of the impellers is a key ingredient in the
results presented here, we also define individual magnetic
Reynolds numbers based on the velocity of each impeller:
Ry 2 = 27 Rimp F1,2 Rptpo . Finally, note that the conduc-
tivity of sodium is quite sensitive to temperature varia-
tions in the vicinity of its melting point (2% on R,, for
a temperature variation of +6°C around 125°C). These
variations are taken into account in the computation of

Ry,

2.2 Configurations and dynamo capacity

The first observation of the dynamo effect in our experi-
ment was made with inner copper wall, inner ring and iron
impellers in place. By removing the inner ring, dynamo ac-
tion is observed for Fy, F5 > 0, but the main change is that
no dynamo regime is observed when both impellers still
counter-rotate, but in the opposite (“scooping”) direction
(Fy = F5 < 0) up to the maximum operational power.
The disappearance of the dynamo regime with “scoop-
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inner cylinder+ring inner cylinder alone no inner cylinder, no ring
impeller 1/impeller 2 || (R,, = 2.42F @ 120°C) | (R,, = 2.42F) (R, = 3.40F)
SS/SS no dyn. Q@ F' < 29 Hz no dyn. @ F' < 28 Hz no dyn. Q@ F' < 24 Hz
A: Fe =15 Hz
B: no dyn. @ F > —22 Hz
Tron/S8 C: Ff = 17 Hz
D: no dyn. @ Fy < 25 Hz
A: F° =17 Hz A: F* =12 Hz
Iron/Iron B: F¢=—-18 Hz B: no data
C/D: Ff, =16 Hz C/D: no data

Table 1. Summary of the dynamo/non dynamo regimes observed in the different VKS configurations. Label “A”
corresponds to the “unscooping” exact counter-rotating case (Fy = F> > 0), label “B” to the “scooping” exact
counter-rotating case (F; = Fy < 0), labels “C” and “D” to the cases with a single impeller rotating, respectively
Fy >0, F, =0and Fy > 0, F} = 0, these two cases being different when two impellers of different materials are used
(middle line in the table). Light grey cells are cases where no data is available yet. The values indicated are either the
observed critical impellers rotation rate when dynamo is present, or the maximal rotation rate achieved, due to power
limitations, without observing dynamo. The correspondance between rotation rate and R,,, as defined in this paper,
is indicated for each configuration. The dark grey cell corresponds to the configuration presented in this paper.

ing” blades is also observed in kinematic simulations us-
ing measured mean velocity fields in an equivalent water
experiment [6], although the context is different since the
dynamo modes in this case are non-axisymmetric. Note
that changing the direction of rotation of the impellers
changes the ratio of poloidal over toroidal components of
the velocity field because of the curvature of the blades.
In the case where the median copper ring is present, dy-
namo regimes are observed for both directions of rotation
of the impellers, although the thresholds differ by about
6%. These observations indicate that some aspects of the
flow structure (poloidal/toroidal ratio, position of recircu-
lation loops, stability of the shear layer, level of fluctua-
tions, ...) do play a role in the onset of the instability.

For the configuration with the inner wall removed, the
dynamo threshold is reached for a rotation rate 1.4 times
lower for exact counter-rotation, compared to the case
with inner wall, corresponding to the same critical R,,,
as defined in section 2.1.

Other experimental configurations have been studied,
in which the iron impellers are replaced by stainless steel
(SS) ones (with and without inner walls and ring). In these
cases, no dynamo is observed at the highest R,, achievable
with our experiment. A hybrid configuration has also been
tested in which one of the impellers is made of soft iron
and the other of stainless steel (no inner walls or ring).
In the exact counter-rotating case, dynamo generation is
observed above F'¢ = 15 Hz. When the iron impeller only
is rotating and the stainless steel impeller is kept at rest,
dynamo is observed above a different critical rate F¢ =
17 Hz and no dynamical regimes are evidenced in this
case. When only the stainless steel impeller is rotating,
no dynamo could be observed up to a maximum rotation
rate of 25 Hz. In addition, no dynamo is observed in exact
corotation.

Table 1 presents a summary of these results, including
the dynamo thresholds based on the rotation frequency,
obtained in the various configurations which produced a
dynamo. The study presented in this paper corresponds to

one specific configuration, where the parameter space has
been explored in details. It includes iron impellers and the
inner copper cylinder, without the copper ring in the mid-
plane. Nevertheless, similar parameter spaces have been
observed in all VKS flows driven by 2 iron impellers. For
instance, when the inner cylinder is removed, the parame-
ter space still has non-dynamo to dynamo transitions with
supercritical bifurcations to statistically stationary mag-
netic fields and regimes with oscillations and reversal are
observed, with the restriction that only one window of
time dependent behavior is evidenced.

3 Parameter space and bifurcations

The flow and dynamo configurations spanned in the re-
sults reported here are summarized in Fig.2. It shows the
(Rpm1, Rimo) parameter space (only in the case F1, Fy > 0),
where each R,, is defined based on the rotation rate of one
impeller. Since we observe almost no asymmetry in this
parameter space under the exchange F} <> Fb, the ac-
tual experimental points are represented only in the upper
left half of the plane (see Fig. 6b for an estimate of the
experimental imperfections). Color codes are used, corre-
sponding to the dynamo regime observed at each location,
broadly characterized as non dynamo, (statistically) sta-
tionary magnetic field and time-dependent regimes. We
also indicate the paths that have been followed in the ex-
perimental measurements at F' or 6 constant (note that
O=constant also corresponds to Fj/F> =constant) along
which dynamo transitions are discussed in more details
below. In the lower right part of the graph in Fig. 2, a
schematic view of the regimes is sketched.

We start by exploring the bifurcations that develop
at a constant asymmetry parameter 6§ as the magnetic
Reynolds number is increased. At all investigated values
of 0, we observe that increasing R,,, the first instability is
a supercritical bifurcation to a stationary dynamo, with
time-dependent regimes possibly developing at larger R,,
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Fig. 2. (R, Rimo) parameter space explored, varying in-
dependently the rotation rate of each impeller (top left,
where blue crosses indicate no dynamo regimes, red cir-
cles stationary dynamo regimes and green stars time de-
pendent regimes), and schematic of accessible dynami-
cal regimes (bottom right) — boundaries between different
regimes are voluntarily smoothed due to lack of experi-
mental resolution. The type of transition is also indicated,
as well as some paths along F' or 6 constant, followed dur-
ing the experimental investigations.

values. We note that the possibility of a direct bifurca-
tion to time-dependent dynamo cannot be excluded, for
instance near || ~ 0.12 where non dynamo and oscillat-
ing regimes are observed in Fig. 2 in very close proximity.
We first discuss the case where time dependent regimes do
not appear, the dynamo field remaining statistically sta-
tionary at the highest R,, values achieved in the exper-
iment (due to power/torque limitations). Figure 3 shows
examples of this type. The amplitude and standard de-
viation of the magnetic field are plotted as a function
of Ry = (Rm1 + Rm2)/2. In the case of exact counter-
rotation (0 = 0, top figure), a clear transition to dynamo
can be observed at RS, ~ 39 after an initial slowly growing
phase (R,, < 38), which we interpret as induction from
the ambient magnetic field. Above the threshold, the am-
plitude of the magnetic field is observed to grow linearly
with R,, — R, up to R, ~ 55, after which the trend is
less clear. This is different from the case when the inner
ring is present [3], where a best fit of dynamo field growth
lead to a power law increase (R,,, — Ry,.)%, with o ~ 0.77.
Note that, due to the imperfection of the bifurcation curve
already discussed in presence of the inner ring, the deter-
mination of the exponent depends strongly on the chosen
value for the threshold R, leading to a larger uncertainty.
Simple arguments from bifurcation theory [7] would lead
one to expect an a = 1/2 value. For such a bifurcation
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Fig. 3. Bifurcation to stationary dynamos, magnetic
field amplitude and standard deviation. a) Exact counter-
rotation, § = 0, STAT HIGH regime; b) § = —0.158,
STAT LOW regime. In this case, as indicated by the ar-
rows, data points measured with increasing R,, are shown
in blue (amplitude) and red (standard deviation), while
data points measured with decreasing R, are shown in
green (amplitude) and magenta (standard deviation). The
inset shows the same plot with vertical log scale, in the
case of increasing R,,.

from a turbulent state, the existence and universality of
critical exponents is still an open problem.

At 0 = —0.158 (bottom figure), we also observe a su-
percritical bifurcation, but the amplitude of the dynamo
field is much lower, by almost an order of magnitude. We
thus call this regime “STAT LOW” as opposed to the
“STAT HIGH” regime observed in exact counter-rotation.
The change in behavior from an induction regime to a low
field dynamo regime is best seen in the lin/log plot in
the inset, showing a clear break in the slopes at about
Ry, ~ 41 —42. Tt is a low amplitude dynamo, and the ef-
fect of the slight magnetization of the iron disks cannot be
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ignored; hence the magnetic field is different if the mea-
surement is made after a dynamo run (green and magenta
symbols in 3b — measured when decreasing R,,) or follow-
ing a non dynamo configuration (blue and red symbols—
measured when increasing R,,). Note that induction ef-
fects from the ambient field are also present, which can
add up to the starting dynamo. Because in this case the
dynamo is a low amplitude one, both effects can be of
the same order of magnitude, so that the behavior near
threshold is non trivial. The standard deviations follow
the same evolution, with an amplitude about half of that
of the mean fields.

Fig. 4a,d,g shows bifurcation curves for other values of
0, for which we observe the development of time depen-
dent regimes as R, is increased. A stationary dynamo is
first generated at Ry, ~ 25 — 30, then oscillations de-
velop as Ry, > Rper ~ 30 — 40 (examples of the time
signals shown in Fig. 4c,f,i). For the larger values of 6,
the dynamical change is also associated with a disconti-
nuity in the amplitude of the magnetic field. It indicates
that this second bifurcation is not supercritical, although
the observation of the discontinuity may depend on the
choice of the order parameters. When the regime becomes
oscillatory, the mean value vanishes for each component,
as can be seen by the equality between the field amplitude
and its standard deviation. Another interesting observa-
tion, evidenced in Fig. 4b,eh, is that at low (§ = —0.09)
and high (# = —0.5) asymmetry, the period diverges at
the secondary bifurcation threshold. At the intermediate
value 6 = —0.25 the oscillations develop with a finite pe-
riod.

4 Transitions between regimes

The observation of a variety of dynamo regimes when the
asymmetry is varied can also be explored in the parameter
space along lines of constant F', at varying 6 values. This
corresponds to a fairly constant global magnetic Reynolds
number R,,, save for small changes due to variations in the
temperature of the sodium. We first consider the behavior
for Iy + 5 = 36 Hz (R, = 34.8 £ 0.6) as || increases
— shown in Fig.5a. Close to exact counter-rotation (6 ~
0), the dynamo is a STAT HIGH type. Then, the region
0 € [—0.25,—0.1] corresponds to the STAT LOW regime
(identified as a STAT LOW dynamo when the field am-
plitude is larger than 3 G), before reaching again a STAT
HIGH regime, as 6 increases. At higher values (6 < —0.45)
the stationary dynamo looses its stability for a regime with
random reversals before turning into an oscillating one. As
shown in the inset, as the oscillating/reversing regime ap-
proaches the stationary regime (decreasing |6]), the period
at the transition diverges. As R,, is increased, the main
change is the occurrence of reversal and oscillating regimes
on each side of the STAT LOW region. This is confirmed
in Fig. 5b and c, where the transition plots are shown re-
spectively in the case Fy + F» = 40 Hz (R,,, = 38.6 £ 0.5)
and Fy + F», = 44 Hz (R,, = 41.8 £0.7). Note that the
oscillating region at high 6 observed in Fig. 5a could also
be present at higher forcing, but it was not possible to

reach regimes at 6§ < —0.4 for F' > 40 Hz, due to torque
limitations on the motors driving the impellers. It is in-
teresting to observe that these transition plots display a
similar shape. Actually, a qualitative collapse of the 3 plots
shown in Fig. 5 can be obtained (see Fig. 6a) if the vari-
able AR,, = Ry9 — Ry is used for the abscissa and the
amplitude of the magnetic field in the ordinate is normal-
ized by (1/0Rey)\/p/to(Rm — RE,) (with RS, = 39), as
suggested from the linear growth observed in Fig. 3a. Sim-
ilarly to the 0 variable, AR, is also representative of the
amount of asymmetry in the flow and seems to provide a
better collapse of these data.

As was observed earlier, windows of oscillating dynamo
can be present between two stationary modes. Fig. 6b dis-
plays the periods measured in all the time dependent cases
of the parameter space, as a function of |[AR,,|. Using this
variable, the evolution of the oscillation periods collapses
on a single plot. Note that the collapse is slightly better
when only the points related to a given sign of AR, are
plotted. This traces back to experimental imperfections
that slightly break the symmetry of the parameter space
when F; and F5 are exchanged. In the cases of transition
from time dependent to STAT HIGH regions, the oscilla-
tion period diverges, displaying a (|AR,| — |AR,,“|)~/?
behavior, where AR,,,¢ is defined as the value of AR, at
the onset of each oscillating regime. On the other hand,
when oscillatory regimes approach the STAT LOW region,
the transition develops with a finite period.

5 Low dimensional dynamics
5.1 Observations

In order to understand better the observed transitions, we
can display a cut in the phase space for the magnetic field
recorded in one location, by representing a component of
the field as it evolves in time, versus the same component
delayed by a time 7. Fig. 7a shows examples of such trajec-
tories in the phase space for different regimes: two fixed
points are observed, corresponding to the STAT HIGH
regime (green curve) and to the STAT LOW regime (blue,
where a transient regime can also be seen). Then the two
limit cycles (magenta and red) correspond respectively to
a periodically oscillating regime and a randomly reversing
one. Examples of the 4 types of dynamo regimes are shown
in Fig. 7b to e. The transition between the STAT LOW
and the STAT HIGH regimes, via the two time dependent
regimes, corresponds to the rising branch in Fig. 5¢, in the
region of 0.2 < 6 < 0.27.

5.2 Comparison with a model

Several studies have shown how features of the Earth pa-
leomagnetic records [8,9] or sunspots activity [10,11], can
be described as the dynamics of a low dimensional sys-
tem. In the VKS experiment, the low dimensional nature
of the dynamics of the magnetic field has been empha-
sized in [12]. A model based on the interactions of two
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Fig. 4. Examples of dynamo bifurcations with a secondary bifurcation to a time-dependent regime (left) and corre-
sponding periods of oscillation (middle). The error bars represent the standard deviation for the series of measure-
ments. In the case where only one (or one half) period is observed, the error has been arbitrarily set to one third of
the period. The separation between stationary and oscillatory regimes is indicated by a vertical line. For each case,
one point (magenta symbol in each of the left and middle plots) has been chosen in the oscillating region, for which

the corresponding time signal is shown in the right plots.

magnetic modes having the symmetry of a dipole and of a
quadrupole has been introduced in [13]. In this framework
two types of bifurcations from stationary to oscillatory dy-
namo regimes have been introduced. When the stationary
state is far enough from the dynamo threshold, the tran-
sition to an oscillatory regime occurs via a saddle-node
bifurcation [13]. When both instability modes are nearly
marginal, i.e. in the vicinity of a codimension-two bifurca-
tion, bistability of stationary and oscillatory states occurs
and the dynamics is more complex [14]. We expect that
the STAT HIGH and STAT LOW stationary dynamos bi-
furcate to time dependent regimes in related ways.

The STAT HIGH regime is at finite distance from the
dynamo threshold when it undergoes a time dependent
instability, and we ascribe this transition to a saddle-node
bifurcation. The fixed point related to STAT HIGH col-
lides with an unstable fixed point and a limit cycle is gen-

erated (see figure 7a), which connects the system to the
opposite polarity. As expected in the vicinity of a saddle-
node bifurcation, a divergence of the period of oscillation
is observed with a (AR,, — AR,,©)~/? behavior (see fig-
ure 6b). Random reversals (figure 7d) appear at the bor-
der between the STAT HIGH stationary state (figure 7e)
and the periodic regime (figure 7c). Indeed, slightly before
the saddle-node bifurcation, small fluctuations are enough
to push the system beyond the unstable fixed point and
thus generate a field reversal [15]. Although fluctuations
are necessary to escape from the metastable fixed point
STAT HIGH, most of the trajectory that connects this
point to its opposite in phase space is driven by the de-
terministic low dimensional dynamics. This explains why
trajectories related to different reversals are robust and
can be superimposed [3]. But the time between two re-
versals is random because turbulent fluctuations acting as
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noise trigger the escape from STAT HIGH. This waiting
time is governed by the distance to the saddle-node bifur-
cation and by the intensity of the fluctuations. It can be
very long compared to the duration of a reversal when the
distance to the saddle node bifurcation increases because
the mean exit time depends exponentially on the system
parameters (see equation (6) in [15]).
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(Fl + F2 =44 HZ)

We propose that the STAT LOW regime bifurcates to
a time dependent regime in a different way, similar to the
transitions observed near the regime where only one im-
peller is rotating, a situation described in details in [14].
The transition from STAT LOW occurs in the vicinity
of non-dynamo regimes, as shown in figures 1 and 4. As-
cribing the bifurcation to the features of a codimension 2
point, one has the existence of two stationary states with
opposite polarities which are encircled in phase space by
two limit cycles, an unstable one and a stable one. The un-
stable orbit separates the stationary states and the stable
oscillatory one. When R,, is increased from the station-
ary state in the bistable regime, the unstable limit cycle
bifurcates via a double saddle homoclinic connection with
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Fig. 8. Example of time signal at F; = 16.75 Hz and F5

=25.25 Hz (§ = 0.2).

zero, generating two unstable limit cycles located around
each stable fixed point. Then, these limit cycles shrink
on the fixed points which become unstable. The system
jumps to the stable limit cycle with finite oscillation pe-
riod. When the forcing is decreased from the oscillatory
state in the bistable regime, the system stays on the sta-
ble limit cycle until it collides with the unstable one and
disappears. The magnetic field then jumps to one of the
stationary states. This scenario is in agreement with our
observations. It also predicts a region of bistability, clearly
evidenced for the one-impeller flow (at #=1) [14] and also
observed in a narrow range of parameters around 6 = 0.2,
as can be seen in Fig. 8, showing a time signal where the
dynamo spontaneously jumps from a STAT LOW regime
to an oscillatory regime [16].

6 Discussion

We first consider several aspects related to dynamo gen-
eration and then discuss the modeling of the dynamical
regimes. Our results indicate that the iron impellers play
a crucial role. As shown in Table 1, no dynamo is gen-
erated when driving the flow by impellers made of other
materials. In addition, when the flow is driven by an iron
impeller and a stainless steel one, only the rotation of
the iron impeller gives rise to a dynamo and no further
time dependent regime is observed. The exact influence
of the iron impellers is still an open question, although it
has been emphasized in several studies: modeling [17], ex-
perimental [18] and numerical [19,20]. New experimental
runs, using impellers with disks and blades made of dif-
ferent materials are underway in the VKS set-up, and will
hopefully contribute to the understanding of this issue.
We have also observed that the dynamo threshold can
depend on the flow characteristics. For instance, without
the inner ring, the threshold has not been reached when
the impellers are rotated in the scooping direction. This
observation, together with others mentioned in section 2.2,
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implies that certain aspects of the flow characteristics play
a role in the onset of the instability.

Once the threshold is reached for which a dynamo is
generated, we have shown that owing to the asymmetry
that can be introduced by rotating both impellers at differ-
ent frequencies, a rich variety of dynamical regimes arises.
Experiments in an equivalent water device have been per-
formed in order to check whether the dynamics of the
magnetic field is related to instabilities of the flow in the
non dynamo regime. They showed that a hysteretic bi-
furcation is observed at |0] = 0.09, between a flow with
two recirculation cells and a flow with one recirculation
cell [5]. In the same set-up, adding the inner ring in the
median plane, this hydrodynamic bifurcation is moved to
alarger asymmetry (|6] = 0.16), showing that the presence
or absence of the inner ring can strongly change the flow
characteristics. As to the magnetic bifurcations observed
in the VKS experiment, we have seen that at |6] = 0.09,
a transition between high amplitude and low amplitude
steady dynamo occurs, sometimes via a time-dependent
one. But this feature is robust whether the inner ring is
present or not (see figure 18 in [3]). Other magnetic bifur-
cations are present around |f| = 0.16 with the inner ring
and, without inner ring, at higher |0| values (0.2< |6] <0.3,
dependent on R,,) (see Fig. 5).

We also evidenced other situations where some tran-
sitions take place that are not driven by hydrodynamics
instabilities: for example, we have observed that a period-
ically oscillating regime observed at T' = 145°C bifurcates
to a chaotically reversing one when the temperature drops
to T = 120°C (see figure 22 in [3]). In this case the flow
presumably remains unchanged (]0] = 0.16), while R,,
is changed from 42.3 to 44.4 via variations of the sodium
electrical conductivity. More generally, one may argue that
flows driven at a constant |f|, for which bifurcations of
magnetic behaviors are observed, as discussed in section
3, evolve with the same geometrical characteristics. In VK
flows, erratic changes in the structure of the flow have
however been reported even when the driving (and every-
thing else such as temperature) had been kept to steady
values [5,21]. Thus, one can infer that hydrodynamic bi-
furcations are not necessary for a magnetic bifurcation to
occur, but in some cases, a correlation can exist.

As explained above, the dynamics of the magnetic field
reported in this study can be captured by a minimal model
which involves the interactions of two magnetic modes.
These two modes have the symmetries of an axial dipole
and of a quadrupole. The dynamics resulting from the
non-linear interactions of two competing modes [13] de-
scribes the transitions between neighboring regimes, if one
assumes that the two modes are simultaneously marginally
stable. Dipole and quadrupole modes have been observed
to have nearly the same threshold, in analytical studies
of earthlike systems [22] as well as in numerical simu-
lations of the Earth dynamo [23]. In addition, numeri-
cal studies aimed at modelling the VKS experiment show
that axial dipolar and quadrupolar modes have nearly the
same threshold and that their interaction leads to a time

dependent regime when the impellers rotate at different
rates [20].

In this description using amplitude equations for the
dipolar and quadrupolar components of the magnetic field,
the fluid parameters, the flow characteristics and the boun-
dary conditions determine the values of the coeflicients of
the equations. The level of turbulent fluctuations, which
changes with 6 [5], is taken into account through multi-
plicative noise in the model. However, the deterministic
part of the dynamics does not explicitly involve velocity
modes. Besides describing the bifurcations reported in this
paper, this two-dimensional phase space of the determin-
istic dynamics is crucial to explain why the mean value
of the magnetic field should vanish in the time periodic
regime, and to correctly predict the shape of the rever-
sals [13]. Including velocity modes will modify the geom-
etry of the phase space and this will be likely to generate
behaviors in disagreement with the experimental obser-
vations. More generally, no experimental evidence about
the dynamics of the magnetic field requires the inclusion
of any additional velocity mode in the framework of this
model.

There are of course other issues in the VKS experiment
besides the dynamical regimes and transitions described
here. For instance, the detailed mechanisms of magnetic
field generation and saturation still need to be clarified.
A future study combining informations from torque mea-
surements and local velocity measurements (using either
potential measurements [24] or Doppler velocimetry [25,
26]) could contribute to a better understanding of magne-
tohydrodynamics features in the VKS dynamo.
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