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ABSTRACT

Source-sensitive routing is a routing technique where rout-

ing decisions are made according to both the source and the

destination address of a packet. This is a slight refinement

of ordinary next-hop routing, as used in the Global Inter-

net, where packets are routed according to their destination

only. Source-sensitive solves a number of difficult problems

in multihomed edge networks as well as in the presence of

tunnels.

This paper describes our experience with the design and

implementation of a source-sensitive extension to a distance-

vector routing protocol (the Babel protocol). First, we de-

fine the behaviour of our source-sensitive routers, and show

that mixing different behaviours in a single routing domain

causes persistent routing loops. We then describe two imple-

mentation techniques for source-sensitive routing, and show

how source-sensitive routers can interoperate with ordinary

next-hop routers in a single routing domain. We conclude

with experimental data obtained with our implementation.

1. INTRODUCTION

The main routing paradigm deployed on the Global In-

ternet is next-hop routing. In next-hop routing, forwarding

decisions are performed per-packet, and consist in examin-

ing a packet’s destination address only, and mapping it to a

next-hop router.

The use of next-hop routing restricts the flexibility of the

routing system in two ways. First, since a router only controls

the next hop, a route A ¨ B ¨C ¨ ¨ ¨ Z can only be selected by the

router A if its suffix B ¨ C ¨ ¨ ¨ Z has already been selected by a

neighbouring router B, which makes some forms of global

optimisation difficult or impossible. Other routing paradigms,

such as circuit switching, label switching and source routing,

do not have this limitation. (Source-routing, in particular, has

been proposed multiple times as a suitable routing paradigm

for the Global Internet [SRC80]), but has been forbidden due

to claimed security reasons [ASNN07].

Second, the only decision criterion used by a router is the

destination address. This implies that two packets with the

same destination are routed identically, which is not always

desirable. There are other data in the IP header that can

reasonably be used for making a routing decision – the TOS

octet, the IPv6 flow-id, and, of course, the source address.

We call source-sensitive routing the modest extension of

classical next-hop routing where the forwarding decision is

allowed to take into account the source of a packet in addition

to its destination. Source-sensitive routing gives a modest

amount of control over routing to the sending host, which can

choose among potentially many routes by picking a specific

source address. The higher layers (transport or application)

are therefore able to choose a route using standard networking

APIs (collecting the host’s local addresses and binding a

socket to a specific address). Unlike source routing, however,

source-sensitive routing remains a hop-to-hop mechanism,

and therefore leaves local forwarding decisions firmly in the

control of the routers.

Outline of this paper.
In Section 2 of this paper, we describe in more detail some

of the applications of source-sensitive routing. In Section 3,

we describe the structure of source-sensitive routing tables,

and the related technical difficulties. In Section 4, we describe

two implementation techniques for source-sensitive routing

tables. In Section 5, we generalise the familiar Bellman-Ford

family of routing algorithms to source-sensitive routing, and

study the interoperability issues between the classical and

the source-sensitive variants of the algorithm. Finally, in

Section 6, we present some experimental results obtained

with our experimental source-sensitive variant of the Babel

routing protocol [Chr11].

2. APPLICATIONS

Source-sensitive routing allows a weak form of multihom-

ing, particularly suited to multihomed edge networks where

the upstream ISPs are not actively supporting multihoming.

It also solves some accessibility problems in the presence of

tunnels or VPNs.

2.1 Multihomed networks

A multihomed network is a network that is connected

to two or more providers. There are two principal reasons

for multihoming an edge network: reliability — a multi-

homed network doesn’t lose its connectivity when one of its

providers fails —, and performance — a multihomed net-
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work is able to send its traffic through the fastest of many

providers, or, in ideal conditions, to load-balance between

multiple providers.

A multihomed network has multiple routes to each destina-

tion, one through each upstream; in particular, a multihomed

network typically has multiple default routes.

Classical multihoming.
Classically, multihoming is performed by assigning a provi-

der-independent (PI) addresses to the hosts in the multihomed

network, and announcing and receiving routes over a dynamic

routing protocol (typically BGP) to all of the upstream net-

works. Reliability is a natural consequence of the dynamic

nature of the routing protocol, which will route around a

failed upstream provider. Load-balancing can usually be

achieved by manually tweaking route priorities, using mech-

anisms such as BGP prepends, the BGP local preference or

the MED.

Multihoming with multiple source addresses.
Classical multihoming relies on the upstream providers

accepting routes to the PI prefix and routing packets sourced

within the PI prefix. Edge networks, however, and especially

home networks, are typically provisioned with addresses orig-

inally allocated to one of the upstream providers — provider

dependent (PD) addresses. The other providers will not typ-

ically accept routes to a foreign PD prefix; additinally, they

will drop packets sourced within a foreign prefix (this is

called BCP-38 filtering [FS00]).

The edge network multihoming issue can be solved by

assigning multiple addresses to each host, one for each up-

stream ISP. A hosts chooses one of the exit routers by se-

lecting one of its source addresses — hence the need for

source-sensitive routing.

There are multiple places where the selection of the source

address may happen. Ideally, the failure of one of the edge

routers might cause the relevant addresses to be unassigned,

for example because of an IPv6 route announcement or a

DHCP lease timing out. More realistically, the upper layers

could send probe traffic from each of the source addresses,

and use an address that happens to work — this is done at the

transport layer by MPTCP, which we describe in Section 6.2.

As to load-balancing, it could be achieved either by choos-

ing source addresses randomly or by applying RFC 3484

rules. Again, MPTCP solves the problem quite nicely at the

transport layer.

2.2 Overlay networks

Tunnels and VPNs are commonly used to establish a net-

work-layer topology that is different from the physical topol-

ogy, notably for security reasons. In many tunnel or VPN

deployments, the end network uses its native default route,

and only routes some set of prefixes through the tunnel or

VPN.

In some deployments, however, the default route points at

the tunnel. If this is done naively, the network stack attempts

to route the encapsulated packets through the tunnel itself,

which causes the tunnel to break. Many workarounds are

possible, the simplest being to point a host route towards the

tunnel endpoint through the native interface.

Source-sensitive routing provides a clean solution to that

problem. The native default route is kept unchanged, while

a source-specific default route is installed through the tun-

nel. The source-specific route being more specific than the

native default route, packets from the user network are routed

through the tunnel, while the encapsulated packets sourced at

the edge router follow the native, non-specific route.

3. SOURCE-SENSITIVE ROUTING

As mentioned before, in next-hop routing a next hop router

is chosen by considering the destination address of a packet.

This is implemented by using a data strcuture known as the

routing table (or sometimes the FIB), which is conceptually

a set of pairs pP,NHq where P is the description of a set of

packets and NH the address of a next-hop router.

3.1 Classical next-hop routing tables

In classical next-hop routing, packets are forwarded con-

sidering their destination addresses only, so the packet pat-

tern is a destination prefix, and the routing table a set of

pairs pD,NHq, where D is a destination prefix. However, a

packet can match multiple routing entries, since an address

can be included in multiple different prefixes. For example,

the address 2001:DB8:0:1::4 is both in 2001:DB8::/56 and

2001:DB8:0:1::/64. In practice, we select the entry satisfying

the most specific prefix rule.

A prefix can be seen as a the set of addresses which, trun-

cated at the length of the prefix, are equal to the prefix. That

is, a prefix p of length n is the set of all addresses a such

that the first n bits of a are the same than the first n bits of p.

Equipped with the inclusion ordering, the set of prefixes is a

tree: any two prefixes p and p1 are either disjoint or ordered.

Hence, any set of prefixes of nonempty intersection is a chain

(a total order), and therefore has a minimum element – the

most specific prefix. The most specific prefix rule says that

the routing table entry pD,NHq used for routing a prefix des-

tined for a destination d is the one whose prefix is the most

specific among the set of prefixes containing d within the

routing table.

3.2 Source-sensitive routing tables

In source-sensitive routing, packets are forwarded consid-

ering both their destination and source addresses. The packet

pattern is a pair pD,Sq, and the source-sensitive routing ta-

ble a set of triples pD,S,NHq. As for classical next-hop,

a packet can match multiple patterns. However, there is

no obvious analogue to the most specific prefix rule, since

the inclusion ordering is no longer a tree. For example,

a packet p2001:DB8:0:1::4, 2001:DB8:0:2::2q matches both

p2001:DB8::{56, 2001:DB8:0:2::{64q and p2001:DB8:0:1::
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{64, 2001:DB8::{56q, but neither of the two entries is more

specific than the other.

We say that a routing table is ambiguous if it contains two

patterns of non-empty intersection that are not comparable.

We say that two such uncomparable routing entries are in

conflict, and we call conflict zone the set of addresses matched

by both theses entries.

3.3 Behaviour of routing with ambiguous ta-
bles

In the presence of ambiguity, multiple behaviours could

be implemented by routers. For example, a router could

choose the first installed matching entry, which is a kind of

non-determinism, by the most specific source, or simply treat

conflict zones as unreachable.

First, routers must have the exact same behaviour, lest

persistent routing loops occur. Indeed, consider the follow-

ing topology, and suppose that the routing table at B con-

tains a source-sensitive default route through A, and a non-

source-sensitive route towards 2001:DB8:0:1::/64 through

C. If router B implements a “destination first” rule, while

router C implements a “source first” rule, then C will send

B’s packets back to B, which in turn will send it back to C,

etc.

::/0 A B C 2001:DB8:0:1::/64

A consequence of this observation is that no non-determi-

nistic behaviour is allowable: the disambiguation rule must

be designed to make the set of routes into a tree. Routing by

destination or source first are the two natural linearisations of

the ordering.

Consider again the previous example. The correct be-

haviour here is clearly to send a packet destined to 2001:DB8:

0:1::{64 through C – this is the only choice that has a chance

of getting the packet to the right destination. We have been

unable to find any practical situation where a different be-

haviour would be desirable.

We therefore claim that the correct behaviour is to route

by destination first. More formally, given two conflicting

routing entries pD1,S1,NH1q and pD2,S2,NH2q, a packet in

the conflict zone is sent to NH1 if and only if D1 is strictly

more specific than D2, or D1 and D2 are equal and S1 is more

specific than S2. It is easily checked that this rule makes the

set of source-sensitive patterns into a tree.

4. DISAMBIGUATING ROUTING TABLES

Ideally, we would like the lower layers of the system (the

OS kernel, the line cards, etc.) to implement source-sensitive

routing tables out of the box, with the right disambiguation

behaviour already present. In practice, however, while many

systems have a facility for source-sensitive traffic engineering,

this lower-layer support often has a behaviour different from

the one that we require.

For example, all recent versions of the Linux kernel have

the ability to manipulate multiple routing tables, and to select

a given routing table depending on the source address of

a packet. Since the selection of the routing table happens

before the destination address is considered, the behaviour

that is implemented is that of source-first routing, as opposed

to the destination-first routing that we advocate.

This section is structured as follows. We first describe the

native API that exists in some Linux kernels; then we describe

a disambiguation algorithm that, we claim, can be used to

implement destination-first source-sensitive routing on any

system that has some facility for source-sensitive routing,

whatever its exact behaviour, as long as it is compatible with

the pointwise ordering (Section 4).

4.1 Native source-sensitive FIB

In an ideal world, destination-first source-sensitive routing

would be directly implemented by the lower layers (e.g. the

OS kernel). Such native support for source-sensitive routing

is preferable to the algorithm described below, since no addi-

tional routes will be installed in the FIB. Our investigations

of such native support yielded disappointing results.

The Linux kernel, when compiled with the relevant options

(“ipv6-subtrees”), claims to support source-sensitive FIBs

natively, albeit for IPv6 only. Unfortunately, we found the

support to be buggy — source-sensitive routes were treated

as unreachable routes. This was fixed in Linux 3.11, and

the netlink interface is now able to accept a source-sensitive

route and implements the destination-first behaviour. In the

case of IPv4, on the other hand, the “source” datum is silently

ignored by netlink, and other techniques must be used.

All versions of Linux, and some versions of FreeBSD, im-

plement the ability to manipulate multiple routing tables and

to select a particular one depending on the source address of

a packet. Since the table is selected before the destination

address is examined, this API implements the source-first

behaviour — the algorithm described below is therefore nec-

essary.

4.2 Disambiguation of a routing table

In this section, we describe a disambiguation algorithm

that can be used to maintain a routing table that is free of

ambiguities, and will therefore yield the same behaviour as

long as the underlying forwarding mechanism implements a

behaviour that is compatible with the point-to-point ordering

over pairs pD,Sq. All the forwarding mechanisms known to

us satisfy this very mild hypothesis.

Recall that a routing is ambiguous if there exists a packet

that is matched by at least one entry in the table and such that

there is no most-specific entry among the matching entries. A

necessary and sufficient property for a routing table to be non-

ambiguous is that every conflict zone is equal to the union of

more specific route entries.

The algorithm that we propose maintains, for each conflict,

exactly one route entry that covers exactly the conflict zone.

While a more economic solution might be possible, it would

appear to be overly complex.
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Prefixes as set of addresses.
Recall that a prefix P of length n is a sequence of n bits

b1b2...bn. An address a matches P if the first n bits of a are

equal to the n bits of P. A prefix P can be identified with the

set of addresses that it matches. The inclusion relation on sets

of addresses induces an ordering on prefixes; we say that a

prefix P1 is more specific than P2, written P1 ď P2, when the

set of addresses matched by P1 is a subset of the addresses

matched by P2.

An important property of prefixes is that they form a tree:

given two prefixes P1 and P2, they are either disjoint (there

is no address that they both match), or one is more specific

than the other (P1 ď P2 or P1 ď P2).

Pairs of prefixes.
Taken pointwise, the partial order on prefixes induces the

product ordering on pairs of prefixes. Given two pairs of

prefixes A1 “ pP1,Q1q and A2 “ pP2,Q2q, we write A1 ď A2

if P1 ď P2 and Q1 ď Q2. Equipped with this ordering, the

set of pairs of prefixes is not a tree; we say that A1 conflicts

with A2, written A1 # A2, when A1 and A2 are neither ordered

nor disjoint.

A routing table is ambiguous if there exists a pair of ad-

dresses pd, sq that matches a set of entries among which there

is no most specific one. Note that the only way for an address

to not have a most specific matching entry is when it matches

two most specific entries in conflict.

Weak completeness.
We say that a routing table is weakly complete if each con-

flict zone is covered by more specific entries. More formally,

T is weakly complete if @r1, r2 P T, r1 X r2 “
Ť

tr P T |r ď
r1 X r2u.

Theorem 1. A routing table is non-ambiguous if and only

if it is weakly complete.

Proof. Let U
y
x “

Ť

tr P T |r ď x X yu. We need to show

that T is non-ambiguous iff @r1, r2 P T, r1 X r2 “ U
r2
r1

.

(ð) Suppose T is weakly complete, and consider two

route entries x, y P T in conflict. By weak completeness,

U
y
x “ x X y, so for all addresses a P x X y, there exists a route

r P U
y
x such that a P U

y
x. Since r P x X y, we have r ă x and

r ă y, and r is more specific than x X y. Since this is true for

all conflicts, the table is not ambiguous.

(ñ) Suppose T non-ambiguous and not weakly complete.

Then there exist two entries x, y P T in conflict such that

x X y ‰ U
y
x. Consider an address a P x X y r U

y
x, and an

entry r P T matching a. Clearly, r Ľ x X y, and so either

r # x or r # y, or r ą x and r ą y. In all cases, r is not more

specific than both x and y, so there is no minimum for the set

of entries matching a. This contradicts the hypothesis, so if

T is not ambiguous, it is weakly complete.

Disambiguation with weak completeness is not convenient,

since it may require adding multiple route entries to solve

a single conflict, and the disambiguation routes added may

generate additional conflicts. Suppose for example that the

FIB first contains two entries r1 ą r2, and we add r3 ą r2

which conflicts with r1 (see figure below). Since r2 ă r3,

there is no conflict within r2, but we need disambiguation

routes d1 and d2. The FIB is now weakly complete.

Suppose now that we add r4 ă r3 in conflict both with

r1 and the disambiguation route d2. We install a new disam-

biguation entry d3. Note also that since r4 ă r3, we need

to use the next-hop of r4 for the former region covered by

d1: we need to change the currently installed disambiguation

route entry.

r1

r2
Ñ

r1

r2 r3

d1
d2

Ñ

r1

r2 r3

r4d1 d3

Some of this complexity can be avoided by requiring a

stronger notion of completeness.

Completeness.
We say that a routing table is (strongly) complete if each

conflict zone is covered by one route entry. More formally, T

is complete if @r1, r2 P T, r1 Xr2 P T . This obviously implies

week-completeness, and therefore complete routing table is

not ambiguous.

Our algorithm maintain the completeness of the routing

table. An important property of completeness is that adding

routes to achieve completeness does not lead to another con-

flict.

Proof. Suppose that r1 “ pd1, s1q and r2 “ pd2, s2q are

two route entries in conflict, where d1 ă d2 and s1 ą s2. Con-

sider the disambiguation entry rsol “ pd1, s2q which disam-

biguates this conflict. Suppose now that rsol is in conflict with

another route entry r3 “ pd3, s3q. We have either d1 ă d3

and s1 ą s2 ą s3, in which case r3 # r1 ; or d2 ą d1 ą d3

and s2 ă s3, in which case r3 # r2. In either case, the conflict

existed beforehand, and must therefore already have been

resolved.

Take the previous example again. When adding r3, we add

one route entry to cover the area d1 (r1 X r3). Since r2 is more

specific, the new route entry does not affect routing decision

for addresses in r2. When adding r4, it is in conflict with both

r1 and the disambiguation route d1, but for the same conflict

zone r4 X r1. In that sense, the disambiguation route entry

inserted is not an additional conflict.

r1

r2
Ñ

r1

r2 r3

d1

Ñ

r1

r2 r3d1

r4d2
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Disambiguation routes.
Disambiguation route entries do not appear on the wire,

and in our implementation are not even inserted into the

RIB; they are computed and inserted into the FIB on the

fly, at route selection time. From the point of view of the

routing protocol, disambiguation routes are a lower level

implementation detail. Interestingly enough, we have found

that we do not need to maintain a list of disambiguation routes

that we have installed: when removing a route from the FIB,

the set of disambiguation routes that need to be removed can

be computed on the fly, similarly to what happens during

route insertion.

The algorithm presented here is fully general, and can be

generalised to different disambiguation orderings. We write

ĺ for the desired disambiguation ordering, in our case the

lexicographic ordering on pd, sq pairs:

pd, sq ĺ pd1
, s1q when d ă d1

or d “ d1 and s ď s1

Relevant conflicts.
Consider a route entry R, and a set E of routing entries in

conflict with R for the same conflict zone; all of these conflicts

will have the same resolution. Moreover, if the resolution

was caused by a route in E, then that was necessarily the

more specific of the entries in E. Note that the minimum

exist because elements of E have either the same destination,

either the same source, and match at least one address in R.

Given a route entry r, we define the equivalence „r by

r1„rr2 ô r1 Xr “ r2 Xr, i.e. two route entries are equivalent

for „r if they have the same intersection with r. If two

equivalent route entries are in conflict with r, this means that

they have the same conflict zone.

Quotienting a set of routing entries in conflict with r with

this equivalence, and taking the minimum of each of the class

of equivalence gives us exactly the routes that we care about.

4.2.1 Adding a route entry

Installing a new route entry in the FIB may make it ambigu-

ous. For this reason, we must install the most specific routing

entries first. In particular, we must install disambiguation

entries before we install the route itself.

Let R be the route to install, and C the set of route entries

in conflict with R, for which there is no natural solution,

i.e. C “ tR1 P T |R1 # R and R1 X R R Tu. We divide this

set into two subsets, by conflict type, with only the relevant

conflicts: Că “ tminpEq|E P ptR1 P C|R1
ă Ru{„R

qu and

Cą “ tminpEq|E P ptR1 P C|R1
ą Ru{„R

qu.

For each route entry R1 P Cą (considering the most spe-

cific first), we first search, if it exists, the minimum route

entry R2 such that R2 # R1 and R2 X R1 “ R X R1. If R2 ex-

ists, then a disambiguation route is installed for that conflict,

with NH2 as next-hop: if R ă R2, then we must replace this

next-hop by NH, otherwise the installed solution is the right

one. If R2 does not exist, we must add ppR1 X Rq,NHq in the

FIB.

For each route entry R1 P Că (considering the most spe-

cific first), if there exists a route entry R2 such that R2 # R1

and R2 X R1 “ R X R, then there is already the rigth

disambiguation route installed. Otherwise, we must add

ppR1 X Rq,NH1q in the FIB.

Finally, we must search if there exists two route entries in

conflict for the zone of R. In that case, a disambiguation route

entry has been installed, so R must replace it. Otherwise, R

can be added normally. We end the procedure by adding R in

our local RIB.

4.2.2 Removing a route entry

This time, we must first remove the less specific route first

to keep the routing table unambiguous. Again, we write R for

the route to be removed. First, remove R from the RIB. As

for the addition, perhaps R is solving a conflict, in which case

we cannot just remove it, but must first search for the entry

covering that conflict, and replace R’s next-hop. Otherwise,

we just remove R from the FIB.

We consider Că and Cą as previously defined.

For each route entry R1 P Cą (considering the less specific

first), we first search, as we did for the adding process, for

the minimum route entry R2 such that D2 “ D and S2 ą S1.

If R2 exists and is more specific than R, there is nothing to

do: the next-hop installed for this conflict is R2. If it exists

but is less specific than R, then NH is currently installed as

a next-hop in the FIB, and must be change for NH2. If R2

doesn’t exists, we must remove pD,S1,NHq from the FIB.

For each route entry R1 P Că (considering the less specific

first), if there exists a route entry R2 such that S2 “ S and

D2 ą D1, then we must keep the disambiguation route entry

in the FIB. Otherwise, we remove pD1,S,NH1q.

4.2.3 Changing a route entry

This is the simplest case, since disambiguation routes must

be maintained, and changed only if the route that we want to

change has been selected for disambiguation. We can change

first the disambiguation routes, or the route itself. Let R the

route entry to change by Rnew. We only consider Că, as

previously defined.

For each route entry R1 P Cą, if R is the minimum route

entry having D as destination and such that S2 ą S1, then we

replace pD, S1,NHq by pD, S1,NHnewq. Finally, we replace R

by Rnew.

4.3 External FIB changes

In the description above, we assume that only our algo-

rithm ever manipulates the FIB. In practice, however, the FIB

is manipulated by other agents — other routing protocols, or

human operators. The same algorithm should be applied to

externally changed routes1.

1This is not currently implemented.
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5. SOURCE-SENSITIVE BELLMAN-FORD

The distributed Bellman-Ford algorithm is the foundation

of a number of more or less widely deployed routing pro-

tocols, such as the venerable RIP, EIGRP, Babel and, to a

certain extent, BGP and the inter-area sub-protocol of OLSR.

In Bellman-Ford, each node broadcasts to its neighbours

the set of route identifiers that it can reach, with an asso-

ciated cost. In traditional next-hop routing, identifiers are

destination prefixes, and in source-sensitive next-hop routing,

identifiers are pairs of destination and source prefixes.

In this section, we consider a network composed of both

traditionnal and source-sensitive routers, and discuss how

they can interoperate.

5.1 Interoperability

We expect a single routing area to contain both source-sen-

sitive and traditional routers, either because source-sensitive

routers are deployed incrementally, avoiding a flag day, or

because some devices cannot be upgraded to implement full

source-sensitive routing, for technical, economic or political

reasons. For this reason, source-sensitive routers must be

able to communicate with traditional routers.

An non-specific update having only the destination prefix

pDq can be seen as a source-specific update for pD, {0q. There-

fore, source-sensitive routers should interpret non-sensitive

updates as source-specific updates with a {0 source prefix.

Conversely, non-sensitive routers should accept updates of

the form pD, {0q and treat them as non-specific updates; this

is most easily achieved by not sending specific updates with

a /0 source, and sending a non-specific update instead.

A more difficult issue is how a non-sensitive router should

interpret a source-specific update with a non-trivial source

prefix. There are two possibilities: the source can be dis-

carded and the update treated as non-specific, or the entire

update can be discarded. As we shall see, the first of these

possibilities doesn’t work, while the latter does.

What doesn’t work.
Discarding the source of a source-specific update and treat-

ing it as non-specific can cause persistent routing loops. In-

deed, consider two nodes A and B, with A source-sensitive

announcing a route to pD, Sq (with S ‰ {0). When B receives

the announcement, it ignores the source information, installs

and announces it as D. This is reannounced to A, which treats

it as pD, {0q. Packets destined to D but not sourced in S will

be forwarded by A to B, and by B to A.

A

pD,Sq

pD, {0q

B

pD, {0q

Discarding specific routes.
If non-source-sensitive nodes rejects source-sensitive up-

dates, but source-sensitive nodes accept non-source-sensitive

uptades with {0 source, then source-sensitive nodes can com-

municate entries of the form pD, {0q as pDq, and are com-

pletely compatible with non-source-sensitive nodes.Since

there is no identifier change, Bellman-Ford converges to a

loop-free set of routes.

In general, discarding source-sensitive routes by non-sen-

sitive will cause routing blackholes. Intuitively, unless there

are enough non-specific routes in the network, non-sensitive

routers will have to discard packets in some cases. A sim-

ple sufficient condition for avoiding blackholes is to build a

connected source-sensitive backbone including all the edge

routers, and announce a default route towards the backbone.

5.2 Implementation details

Routing protocols must implement source-sensitiveness

as an incompatible extension. In our implementation of the

Babel routing protocol [Chr11], this is achieved by the in-

troduction of a new TLV, which is silently ignored by other

Babel nodes. Source-sensitive nodes continue understanding

the previous TLV, and announce routes with {0 source as

non-source-sensitive, i.e. with the previous TLV.

In our implementation, bootstrapping is achieved at redis-

tribution time, by allowing a redistribution filter to map a

non-specific route to a source-specific one. While this may

cause routing loops in general, it is not unusual in routing

protocols for careless redistribution to cause routing loops.

In order to allow traditional Babel nodes to participate to

multihomed networks, we have added an option allowing a

source-sensitive Babel node to map source-sensitive updates

pD,Sq to both a source-specific update and a non-specific

update for D while rejecting all updates for D. This is clearly

an unsafe hack, which is safe only if all source-sensitive

routers have this option activated (or employ filtering); how-

ever, we have found that it simplified the administration of

our network.

6. EXPERIMENTAL RESULTS

We have implemented both schemes described in Section 4

within babeld, our Linux implementation of Babel [Chr11],

a distance-vector protocol based on a loop-free variant of the

Bellman-Ford algorithm. This has allowed us to perform a

number of experiments which we desribe in this section.

Description of our testbed.
Our experimental network consists of a mesh network

consisting of a dozen OpenWRT routers and a single Debian

server. Two of the mesh routers have a wired connection to

the Global Internet, and are connected to the server through

VPNs (over IPv4). All of the routers run our modified version

of the Babel protocol.

IPv4 connectivity for the mesh is provided by the Debian

server, which acts as a NAT box. The IPv6 connectivity is

more interesting: there are two IPv6 prefixes, one of which

is a native prefix provided by our employer’s network, the

other one being a prefix specific to the Debian box and routed
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# ip rule show

0: from all lookup local

101: from 192.168.4.0/24 lookup 11

32766: from all lookup main

32767: from all lookup default

# ip route show

default via 172.23.47.254 dev eth1 proto static

172.23.32.0/20 dev eth1 proto kernel scope link src

172.23.36.138

192.168.4.20 via 192.168.4.20 dev tun-ariane proto 42

onlink

192.168.4.30 via 192.168.4.30 dev wlan1 proto 42 onlink

[...]

# ip route show table 11

default via 192.168.4.20 dev tun-ariane proto 42 onlink

192.168.4.20 via 192.168.4.20 dev tun-ariane proto 42

onlink

192.168.4.30 via 192.168.4.30 dev wlan1 proto 42 onlink

[...]

Figure 1: v4 routing table on a router using a VPN

through the VPN. The network therefore has two source-

specific default IPv6 routes.

6.1 Routing table, and VPN connectivity

Figure 1 shows an excerpt of the routing table of one of

the two wired routers. The modified babeld daemon has

allocated a non-default routing table, table 11, and inserted

routes (marked as proto 42) into both the default main table

and table 11. The former table contains non-specific routes,

both to the /20 announced by the Debian server and host

routes to individual mesh nodes, as well as a default route

through the VPN.

Table 11 contains routes for locally originated packets,

sourced in 192.168.4.0/24. The only “real” route in this table

is the default route, which prevents the VPN from attempt-

ing to “enter itself”. The other routes are disambiguation

routes, automatically generated by the algorithm described in

Section 4.

The 11 routing table is specific to addresses from our local

network: the default route it contains is also specific to that

network. The other routing entries we show are disambigua-

tion entries, added by our algorithm such that packets from

our local network to our local network will not leave the net-

work by following the default route. These entries are copies

of the one present in the main routing table.

By the default route of the 11 routing table, packets des-

tined to the Internet and from our local network are well

routed through our VPN. The encapsulated VPN packets,

sourced in our laboratory network, avoid table 11 and are

routed by the main routing table’s default route through our

network laboratory.

6.2 Multipath TCP

Multipath TCP [RPB`12] is an extension to TCP which

multiplexes a single application-layer flow over multiple net-

work layer sub-flows, and attempts to use as many distinct

routes as possible, and to either carry traffic over the most
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Figure 2: Download using MPTCP and traffic control

efficient one or to perform load balancing. An obvious appli-

cation would be a mobile node (a telephone) with permanent

connectivity to a cellular network and intermittent WiFi con-

nectivity. MPTCP is able to use the cellular link when WiFi

is not available, and switch to WiFi when available without

dropping already established connections.

Multipath TCP and source-sensitive routing turn out to

be a surprisingly good match. MPTCP is able to uses all of

the addresses of the local host, and to dynamically probe the

reliability and performance of packets sourced from each of

those which made it particularly straightforward for source

sensitive routing.

We have performed two tests that both consist in download-

ing a 110 MB file over MPTCP from the MPTCP website.

In the first test (Figure 2), a desktop computer is directly

connected to the wired network, and is configured with two

IPv4 addresses. The Linux tc subsystem is used to limit each

of the addresses to 100 kB/s traffic; MPTCP is able to reliably

download at 200 kB/s.

In the second test (Figure 3, a laptop’s WiFi interface is

configured with three addresses (one IPv4 and two IPv6).

MPTCP multiplexes the traffic across the three routes, and

balances their throughput dynamically.

7. RELATED WORK

Source-sensitive routing is somewhat related to TOS rout-

ing, as found for example in OSPFv2. In both cases, multiple

routes are provided by the network layer, and upper layers

have a limited choice of routes. In the case of the TOS routing,

the higher layers set the TOS field to choose a particular met-

ric to optimise (bandwidth, latency, etc.). In [AGKT98], the

authors note that TOS routing [LHH95] attempts to improve

network utilisation by providing multiple routes, similarly

to what happens with source-sensitive routing. However,

contrary to source-sensitive routing, measuring the relative

performance of the different routes is the network layer’s

reposibility.

The first mention of source-sensitive routing that we are
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Figure 3: Download using MPTCP

aware of is from early 2004 [BS04]. The notion of ambiguity

appears years later: in [Bak11], Baker notes that two entries

of the routing table can match the same address without bee-

ing comparable. The solution he proposes is to disambiguate

using the route’s metric: similar to our algorithm, he proposes

adding an additional route entry at the intersection of the two

incomparable entries, but chooses the next-hop of the lowest

metric one.

In early 2013, four IETF Internet Drafts were published

on the subject of source-sensitive routing. In the first version

of [Bak13], Baker speaks about ambiguity of routing tables,

this time without specifying a suggested behaviour. The last

revision of the draft proposes the destination first behaviour,

similar to the present paper.

Approximately at the same time, Troan et al. [TC13] also

remarked that routing tables can be ambiguous, and pro-

posed a behaviour that is equivalent to the destination-first

behaviour of the present paper. Xu et al. [XYWW13] were

more protocol oriented: they proposed an overview and some

notes about how should be implemented a variant of OSPF

for source-sensitive routing. They notice the problems of

ambiguity, and cite Baker’s draft [Bak11] as a solution.

A few months later, Boutier and al. [BC13], proposed us-

ing the disambiguation algorithm presented in this paper, but

without defining it formally. They also noticed the interoper-

ability issues.

The first automated implementation of source-sensitive

routing known to us was done by Markus Stenberg2, and

works by injecting source-specific default routes determined

from IPv6 router advertisements directly into the RIB, inde-

pendently from the routing protocol. We believe our imple-

mentation to be the first full implementation of the source-

sensitive scheme.

8. CONCLUSION AND FURTHER WORK

Source-sensitive routing is a modest extension to next-hop

routing that keeps the forwarding decisions firmly within

2https://github.com/fingon/hnet-core

control of the routers while allowing end hosts a moderate

and clearly defined amount of control over the choice of

routes. Since source-sensitive routing can cause ambiguous

routing tables, we have defined the behaviour that we believe

source-sensitive routers should have, and shown how com-

bining different behaviours in the same network can cause

persistent routing loops. Similar care must be taken when

combining non-sensitive with source-sensitive routers in the

same network. We have proposed two ways to implent source-

sensitive routing, and obtained experimental results that prove

that source-sensitive routing can be usefully exploited by the

transport layer protocol MPTCP.

While we enjoy working with distance-vector protocols,

much of the networking community appears to have con-

verged on using the OSPF protocol for internal routing. OSPF

is a rich and complex protocol, and while many of our tech-

niques should apply without difficulty to it, actually imple-

menting a full source-sensitive variant of OSPF without sac-

rificing any of its flexibility remains a challenging endeavour.

It was a pleasant surprise to discover that unmodified

MPTCP can use source-specific routes without any manual

configuration. However, we claim that source-sensitive rout-

ing can also be exploited at the application layer without any

changes to the transport layer; we are therefore planning to

modify the Mosh [WB12] remote shell replacement to make

use of multiple local addresses.

9. SOFTWARE AVAILABILITY

The source-sensitive variant of the babeld implementation

of the Babel routing protocol is available from to be added in

the final version.
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