
HAL Id: hal-00947234
https://u-paris.hal.science/hal-00947234v4

Preprint submitted on 24 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Source-specific routing
Matthieu Boutier, Juliusz Chroboczek

To cite this version:

Matthieu Boutier, Juliusz Chroboczek. Source-specific routing. 2015. �hal-00947234v4�

https://u-paris.hal.science/hal-00947234v4
https://hal.archives-ouvertes.fr

Source-specific routing
Matthieu Boutier and Juliusz Chroboczek

Univ Paris Diderot, Laboratoire PPS
Sorbonne Paris Cité, PPS, UMR 7126, CNRS, F-75205 Paris, France

Abstract—Source-specific routing (not to be confused with
source routing) is a routing technique where routing decisions de-
pend on both the source and the destination address of a packet.
Source-specific routing solves some difficult problems related to
multihoming, notably in edge networks, and is therefore a useful
addition to the multihoming toolbox. In this paper, we describe
the semantics of source-specific packet forwarding, and describe
the design and implementation of a source-specific extension to
the Babel routing protocol as well as its implementation — to
our knowledge, the first complete implementation of a source-
specific dynamic routing protocol —, including a disambiguation
algorithm that makes our implementation work over widely
available networking APIs. We further discuss interoperability
between ordinary next-hop and source-specific dynamic routing
protocols. Our implementation has seen a moderate amount of
deployment, notably as a testbed for the IETF Homenet working
group.

I. INTRODUCTION

The routing paradigm deployed on the Internet is next-hop
routing. In next-hop routing, per-packet forwarding decisions
are performed by examining a packet’s destination address
only, and mapping it to a next-hop router. Next-hop routing is
a simple, well understood paradigm that works satisfactorily
in a large number of cases.

The use of next-hop routing restricts the flexibility of the
routing system in two ways. First, since a router only controls
the next hop, a route A · B · C · · ·Z can only be selected by
the router A if its suffix B ·C · · ·Z has already been selected
by a neighbouring router B, which makes some forms of
optimisation difficult or impossible. Other routing paradigms,
such as circuit switching, label switching and source routing,
do not have this limitation. (Source routing, in particular, has
been proposed multiple times as a suitable routing paradigm
for the Internet [11], but has been discouraged due to claimed
security reasons [1]).

Second, the only decision criterion used by a router is the
destination address: two packets with the same destination are
always routed in the same manner. Yet, there are other data in
the IP header that can reasonably be used for making a routing
decision — the TOS octet, the IPv6 flow-id, and, of course,
the source address.

We call source-specific routing the modest extension of
classical next-hop routing where the forwarding decision is
allowed to take into account the source of a packet in addition
to its destination. Source-specific routing gives a modest
amount of control over routing to the sending host, which
can choose among different routes by picking different source
addresses. The higher layers (transport or application) are
therefore able to choose a route using standard networking

APIs (collecting the host’s local addresses and binding a socket
to a specific address). Unlike source routing, however, source-
specific routing remains a hop-by-hop mechanism, and there-
fore leaves local forwarding decisions firmly in the control of
the routers.

Two things are needed in order to make source-specific rout-
ing practical: a forwarding mechanism that can discriminate on
both source and destination addresses, and a dynamic routing
protocol that is able to distribute source-specific routes. In
this paper, we describe our experiences with the design and
implementation of a source-specific extension to the Babel
routing protocol [6], including a disambiguation algorithm
that allows implementing source-specific routing over existing
forwarding mechanisms.

II. APPLICATIONS

The main application of source-specific routing is the im-
plementation of multihoming.

A. Classical multihoming

A multihomed network is one that is connected to the
Internet through two or more physical links. This is usually
done in order to improve a network’s fault tolerance, but can
also be done in order to improve throughput or reduce cost.

Classically, multihoming is performed by assigning Pro-
vider-Independent addresses to the multihomed network and
announcing them globally (in the Default-Free Zone (DFZ))
over the routing protocol. The dynamic nature of the routing
protocol automatically provides for fault-tolerance; improve-
ments in throughput and reductions in cost can be achieved
by careful engineering of the routing protocol.

While classical multihoming works reasonably well in the
network core, it does not apply to the edge. In order to
perform classical multihoming, a network needs to be allocated
a “Provider-Independent” prefix that is reannounced by some
or all of a network’s peers. This setup is usually impossible
to achieve for home and small business networks.

Note that it is not in general possible to implement classical
multihoming using a single “Provider-Dependent” prefix. If a
network is connected to two providers A and B, a packet with
a source address in an address range allocated to A will usually
not be accepted by B, which will treat it as a packet with a
spoofed source address and discard it [8]. What is more, A’s
prefix will not be reannounced by B, and hence destinations
in A’s prefix will not be reachable over the link to B.

There is some concern that classical multihoming, even
when restricted to the large networks of the core, is causing

uncontrolled growth of the “default-free routing table”. Since
we have only experimented with source-specific routing in
edge networks, we hold no opinion on the usefulness of
our techniques in the network core, and in particular on the
desirability of adding it to the BGP external routing protocol.

B. Multihoming with multiple source addresses

Since announcing the same Provider-Dependent (PD) prefix
to multiple ISPs is not always possible, it is a natural propo-
sition to announce multiple PD prefixes, one per provider. In
this approach, every host is assigned multiple addresses, one
per provider, and extra mechanisms are needed (i) to choose
a suitable source and destination address for each packet, and
(ii) to properly route each outgoing packet according to both its
source and its destination. In a sense, using multiple addresses
splits the difficult problem of multihoming into two simpler
problems that are handled at different layers of the network
stack.

1) Choosing addresses: The choice of source and desti-
nation addresses is typically left to the application layer. All
destination addresses are stored within the DNS (or explicitly
carried by the application protocol), and the sending host tries
them all, either in turn [7] or in parallel [12]; similarly, all
possible source addresses are tried in turn. Once a flow is
established, it is no longer possible to change the source and
destination addresses — from the user’s point of view, all TCP
connections are broken whenever a link outage forces a change
of address. Address selection can be implemented in the
operating system’s kernel and libraries, or by the application
itself, which is notably done by most modern web browsers.

A different approach is to use a transport layer that has
built-in support for multiple addresses and for dynamically
renegotiating the set of source and destination addresses.
One such transport layer is MPTCP [10]; we describe our
experience with MPTCP in Section VII-B.

2) Source-specific routing: As mentioned above, a provider
will discard packets with a source address that is in a different
provider’s prefix. In a network that is connected to multiple
providers, each outgoing packet must therefore be routed
through the link corresponding to its source address.

When the outgoing links are all connected to a single router,
it is feasible to set up traffic engineering rules to ensure that
this happens. There can be good reasons, however, why it
is desirable to connect each provider to a different router
(Figure 1): avoiding a single point of failure, load balancing,
or simply that the various links use different link technologies
that are not available in a single piece of hardware. In a
home networking environment, the edge routers might be
provided by the different service providers, with no possibility
to consolidate their functionality in a single device.

With multiple edge routers, it is necessary that the routing
protocol itself be able to route according to source addresses.
We say that a routing protocol performs source-specific routing
when it is able to take both source and destination addresses
into account in its routing decisions.

ISP 1 ISP 2

Fig. 1. A network connected to two providers

C. Other applications

In addition to multihoming with multiple addresses, we are
aware of two problematic networking problems that source-
specific routing solves cleanly and elegantly.

1) Overlay networks: Tunnels and VPNs are commonly
used to establish a network-layer topology that is different
from the physical topology, notably for security reasons. In
many tunnel or VPN deployments, the end network uses its
native default route, and only routes some set of prefixes
through the tunnel or VPN.

In some deployments, however, the default route points at
the tunnel. If this is done naively, the network stack attempts to
route the encapsulated packets through the tunnel itself, which
causes the tunnel to break. Many workarounds are possible,
the simplest being to point a host route towards the tunnel
endpoint through the native interface.

Source-specific routing provides a clean solution to that
problem. The native default route is kept unchanged, while
a source-specific default route is installed through the tunnel.
The source-specific route being more specific than the native
default route, packets from the user network are routed through
the tunnel, while the encapsulated packets sourced at the edge
router follow the native, non-specific route.

2) Controlled anycast: Anycast is a technique by which a
single destination address is used to represent multiple network
endpoints. A packet destined to an anycast address is routed
to whichever endpoint is nearest to the source according to the
routing protocol’s metric. Anycast is useful for load balancing
— for example, the DNS root servers are each multiple
physical servers, represented by a single anycast address.

For most applications of anycast, all of the endpoints are
equivalent and it does not matter which endpoint is accessed by
a given client. Some applications, however, require that a given
user population access a well-defined endpoint — for example,
in a Content Distribution Network (CDN), a provider might
not want to serve nodes that are not its customers. Ensuring
that this is the case by tweaking the routing protocol’s metric
(or “prepending” in BGP parlance) is fragile and error-prone.

Source-specific routing provides an elegant solution to this
problem. With source-specific routing, each instance of the
distributed server is announced using a source-specific route,
and will therefore only receive packets from a given network
prefix.

III. RELATED WORK

Multihoming is a difficult problem, and, unsurprisingly,
there are many techniques available to implement it, none of

which are fully general. In addition to classical network-layer
multihoming, already mentioned above, there are a number of
lower-layer techniques, the use of which is usually completely
transparent to the network layer; we are aware of Multi-Link
PPP, of Ethernet link aggregation (port trunking), of the use
of MPLS to provide multiple paths across a rich link layer,
as well as of proprietary techniques used by vendors of cable
modems. Since these techniques work at the link layer, they
are usually restricted to multihoming with a single provider.

All of these techniques are compatible, in the sense that they
can be used at the same time. We imagine a home network
where source-specific routing is used to access two providers,
each of which is classically multihomed, over links that consist
of multiple physical links combined at the link layer.

Source-specific packet forwarding itself is not a new idea
[3], and implementing it manually on a single router using
traffic engineering interfaces is a well-documented technique
[9]. Implementing source-specific routing within the routing
protocol has been proposed by Bagnulo et al. [2], but the
techniques used differ significantly from ours. First, the au-
thors only deal with the non-overlapping case — where the
different possible sources are disjoint —, which avoids the
need for the disambiguation algorithm which is one of our
main concerns. Second, they use a more general facility of
an existing routing protocol (BGP Communities) rather than
explicitly implementing source-specific routing. We find our
more direct approach to be more intuitive, and expect it to be
more reliable, since it doesn’t require out-of-band agreement
on the meaning of the labels carried by the routing protocol.

More generally, there are other applications of routing based
on more information from the packet header than just the
destination address. The traffic-engineering community has
been experimenting with routing based on the TOS octet of
the IPv4 header for many years, and the ability to do that is
part of the OSPFv2 protocol. TOS-based routing is somewhat
analoguous to source-specific routing, and many of the issues
raised are similar; both can be seen as particular cases of
“multi-dimensional routing”.

Equal Cost Multipath (ECMP) is somewhat different. A
router performing ECMP has multiple routes to the same
destination, and chooses among them according to the value
of a hash of the packet header. While ECMP does route on
multiple header fields, the choice of fields used to choose a
route in ECMP is a purely local matter, and does not need to
be carried by the routing protocol.

IV. SOURCE-SPECIFIC ROUTING

A. Next-hop routing tables

Ordinary next-hop routing consists in mapping a destination
address to a next-hop. Obviously, it is not practical to maintain
a mapping for each possible destination address, so the map-
ping table must be compressed in some manner. The standard
compressed data structure is the routing table (or Forwarding
Information Base, FIB), which ranges over prefixes, ranges of
addresses the size of which is a power of two. The routing

table can be constructed manually, but is usually populated by
a routing protocol.

Since prefixes can overlap, the routing table is an ambigu-
ous data structure: a packet’s destination address can match
multiple routing entries. This ambiguity is resolved by the so-
called longest-prefix rule: when multiple routing table entries
match a given destination address, the most specific matching
entry is the one that is used.

More precisely, a prefix is a pair P = p/plen , where p is
the first address in the prefix and plen is the prefix length.
An address a is in P when the first plen bits of a match the
first plen bits of p. We say that a prefix P = p/plen is more
specific than a prefix P ′ = p′/plen ′, written P ≤ P ′, when
the set of addresses in P is included in the set of addresses
in P ′. Clearly, P ≤ P ′ if and only if plen ≥ plen ′, and the
first plen ′ bits of p and p′ match.

The specificity ordering defined above has an important
property: given two prefixes P and P ′, they are either disjoint
(P ∩P ′ = ∅), or one is more specific than the other (P ≤ P ′

or P ′ ≤ P).
A routing table is a set of pairs (P,nh), where P is a prefix

and nh , the next hop, is a pair of an interface and a (link-
local) address; we further require that all the prefixes in a
routing table be distinct. Because of the particular structure of
prefixes, given an address a, either the set of prefixes in the
routing table containing a is empty, or it is a chain (a totally
ordered set); hence, there exists a most specific prefix P in
the routing table containing a. The longest-prefix rule specifies
that the next hop chosen for routing a packet with destination
a is the one corresponding to this most specific prefix, if any.

B. Source-specific routing tables

Source-specific routing is an extension to next-hop routing
where both the destination and the source of a packet can
be used to perform a routing decision. Source-specific routers
use a source-specific routing table, which is a set of triples
(d, s,nh), where d is a destination prefix, s a source prefix,
and nh is a next hop (note the ordering — destination comes
first). Such an entry matches a packet with destination address
ad and source address as if ad is in d and as is in s.
The specificity ordering generalises easily to pairs: a pair of
prefixes (d, s) is more specific than a pair (d′, s′) when all
pairs of addresses (ad, as) which are in (d, s) are also in
(d′, s′); clearly, (d, s) ≤ (d′, s′) when d ≤ d′ and s ≤ s′.

Unfortunately, the set of destination-source pairs of prefixes
equipped with the specificity ordering does not have the same
structure as the set of single prefixes: given a pair of addresses
(ad, as), the set of pairs of prefixes containing (ad, as) might
not be a chain. Consider the pairs (2001:db8:1::/48, ::/0)
and (::/0, 2001:db8:2::/48). Clearly, these two pairs are not
disjoint (the pair of addresses (2001:db8:1::1, 2001:db8:2::1)
is matched by both), but neither is one more specific than the
other — the pair (2001:db8:1::1, 2001:db8:3::1) is matched
by the first but not the second, and, symmetrically, the pair
(2001:db8:4::1, 2001:db8:2::1) is matched by just the second.

From a practical point of view, this means that a source-
specific routing table can contain multiple most-specific en-
tries, and thus fail to unambiguously specify a forwarding
behaviour.

We say that a source-specific routing table is ambiguous
when it contains multiple non-disjoint most-specific entries.
Two entries r1 and r2 that are neither disjoint nor ordered
are said to be conflicting, written r1 # r2. If r1 = (d1, s1)
and r2 = (d2, s2), then this is equivalent to saying that either
d1 < d2 and s1 > s2 or d1 > d2 and s1 < s2. We call the
conflict zone of r1 and r2 the set of (ad, as) that are matched
by both r1 and r2.

C. Forwarding behaviour

In the presence of an ambiguous routing table, there exist
packets that are matched by distinct most-specific entries. An
arbitrary choice must be made in order to decide how to route
such a packet.

Let us first remark that all routers in a single routing domain
must make a consistent choice — having different routers
follow different policies within conflict zones may lead to
persistent routing loops. Consider the topology in Figure 2,
with two source-specific routes indexed by the pairs (d1, s1)
and (d2, s2) respectively, where packets matching (d1, s1) are
sent towards the left of the diagram, and packets matching
(d2, s2) are sent towards the right. If the two pairs are in
conflict, and router A chooses (d2, s2) while B chooses
(d1, s1), then a packet matching both pairs will loop between
A and B indefinitely.

A

(d1, s1)

(d2, s2)

B

(d1, s1)

(d2, s2)

Fig. 2. A routing loop due to incoherent orderings

It is therefore necessary to choose a disambiguation rule that
is uniform across the routing domain. There are two natural
choices: discriminating on the destination first, and comparing
sources if destinations are equal, or discriminating on source
first. More precisely, the destination-first ordering is defined
by:

(d, s) � (d′, s′) if d < d′ or d = d′ and s ≤ s′,

while the source-first ordering is defined by

(d, s) �s (d′, s′) if s < s′ or s = s′ and d ≤ d′.

These orderings are isomorphic — hence, there is no theo-
retical argument that allows us to choose between them. An
engineering choice must be made, based on usefulness alone.

The current consensus, both within the IETF Homenet
group and outside it, appears to be that the destination-
first ordering is the more useful of the two. Consider the
(fairly realistic) topology in Figure 3, where an edge router
A announces a source-specific route towards the Internet, and

a stub network N announces a (non-specific) route to itself.
A packet matching both routes must follow the route towards
N , since it is obviously the only route that can reach the
destination, which implies that A must use the destination-first
ordering. On the other hand, we know of no such compelling
examples of the usefulness of the source-first ordering.

Internet A

(::/0, s)

(N, ::/0)
N

Fig. 3. A stub network behind a source-specific router

In the following sections, we describe our experience with
source-specific routing using the destination-first ordering.
However, nothing in this article depends on the particular
ordering being used, and our techniques would apply just as
well to any structure that is a refinement of the specificity
ordering and that is totally ordered on route entries containing
a given address.

V. IMPLEMENTING SOURCE-SPECIFIC ROUTING

In the previous sections, we have described source-specific
routing and shown how all routers in a routing domain must
make the same choices with respect to ambiguous routing
tables, and have argued in favour of the destination-first se-
mantics. Whichever particular choice is made by an implemen-
tation of a routing protocol, however, must be implementable
in terms of the primitives made available by the lower layers
(the operating system kernel and the hardware).

In this section, we describe the two techniques that we have
used to implement a source-specific extension to the Babel
routing protocol [4]. We first describe the technique that we
use when running over a lower layer that natively implements
destination-first source-specific routing (Section V-A). We
then describe our so-called “disambiguation” algorithm (Sec-
tion V-B) which we use to implement destination-first source-
specific routing over any source-specific facility provided by
the lower layers, as long as it is compatible with the specificity
ordering — a very mild hypothesis that is satisfied by a number
of widely available implementations.

A. Native source-specific FIB
Ideally, we would like the lower layers of the system (the

OS kernel, the line cards, etc.) to implement destination-first
source-specific routing tables out of the box. Such native
support for source-specific routing is preferable to the algo-
rithm described below, since no additional routes will need to
be installed. In practice, while many systems have a facility
for source-specific traffic engineering, this lower-layer support
often has a behaviour different from the one that we require.

The Linux kernel, when compiled with the relevant options
(“ipv6-subtrees”), supports source-specific FIBs natively, al-
beit for IPv6 only. Unfortunately, this support is only func-
tional since Linux 3.11 (source-specific routes were treated as

unreachable in earlier versions), and only for IPv6 (for IPv4,
the “source” datum is silently ignored). We know of no other
TCP/IP stacks with native support for destination-first source-
specific routing — other techniques must be used on most
systems.

B. Disambiguation of a routing table

All versions of Linux, some versions of FreeBSD, and a
number of other networking stacks implement a facility to
manipulate multiple routing tables and to select a particular
one depending on the source address of a packet. Since the
table is selected before the destination address is examined,
these API implement the source-first behaviour, which is not
what we aim to implement.

In this section, we describe a disambiguation algorithm
that can be used to maintain a routing table that is free of
ambiguities, and will therefore yield the same behaviour as
long as the underlying forwarding mechanism implements
a behaviour that is compatible with the specificity ordering
(Section IV-B). All the forwarding mechanisms known to us
satisfy this very mild hypothesis.

Recall that a routing table is ambiguous if there exists a
packet that is matched by at least one entry in the table and
such that there is no most-specific entry among the matching
entries. A necessary and sufficient property for a routing table
to be non-ambiguous is that every conflict zone is equal to the
union of more specific route entries.

The algorithm that we propose maintains, for each conflict,
exactly one route entry that covers exactly the conflict zone.
While a more parsimonious solution would be possible in
some cases, it would greatly complicate the algorithm.

a) Weak completeness: We say that a routing table is
weakly complete if each conflict zone is covered by more
specific entries. More formally, T is weakly complete if
∀r1, r2 ∈ T, r1 ∩ r2 =

⋃
{r ∈ T | r ≤ r1 ∩ r2}.

Theorem 1. A routing table is non-ambiguous if and only if
it is weakly complete.

Proof: Let Uy
x =

⋃
{r ∈ T | r ≤ x∩y}. We need to show

that T is non-ambiguous iff ∀r1, r2 ∈ T, r1 ∩ r2 = Ur2
r1 .

(⇐) Suppose T is weakly complete, and consider two route
entries x, y ∈ T in conflict. By weak completeness, Uy

x =
x ∩ y, so for all addresses a ∈ x ∩ y, there exists a route
r ∈ Uy

x such that a ∈ Uy
x . Since r ∈ x ∩ y, we have r < x

and r < y, and r is more specific than x∩y. Since this is true
for all conflicts, the table is not ambiguous.

(⇒) Suppose T is non-ambiguous and not weakly complete.
Then there exist two entries x, y ∈ T in conflict such that
x ∩ y 6= Uy

x . Consider an address a ∈ x ∩ y r Uy
x , and an

entry r ∈ T matching a. Clearly, r) x ∩ y, and so either
r#x or r# y, or r > x and r > y. In all cases, r is not more
specific than both x and y, so there is no minimum for the
set of entries matching a. This contradicts the hypothesis, so
if T is not ambiguous, it is weakly complete.

Disambiguation with weak completeness is not convenient,
since it may require adding multiple route entries to solve

a single conflict, and the disambiguation routes added may
generate additional conflicts. Suppose for example that the FIB
first contains two entries r1 > r2, and we add r3 > r2 which
conflicts with r1 (see figure below). Since r2 < r3, there is
no conflict within r2, but we need disambiguation routes d1
and d2. The FIB is now weakly complete.

Suppose now that we add r4 < r3 in conflict both with r1
and the disambiguation route d2. We install a new disambigua-
tion entry d3. Note also that since r4 < r3, we need to use the
next-hop of r4 for the former region covered by d1: we need
to change the currently installed disambiguation route entry.

r1

r2 →

r1

r2 r3

d1
d2

→

r1

r2 r3

r4d1 d3

Some of this complexity can be avoided by requiring a
stronger notion of completeness.

b) Completeness: A routing table is (strongly) complete
if each conflict zone is covered by one route entry. More
formally, T is complete if ∀r1, r2 ∈ T, r1 ∩ r2 ∈ T . This
obviously implies weak-completeness, and therefore a com-
plete routing table is not ambiguous. Our algorithm maintains
the completeness of the routing table.

Theorem 2. Adding routes to achieve completeness does not
lead to another conflict.

Proof: Suppose that r1 = (d1, s1) and r2 = (d2, s2) are
two route entries in conflict, where d1 < d2 and s1 > s2.
Consider the disambiguation entry rsol = (d1, s2) which
disambiguates this conflict. Suppose now that rsol is in conflict
with another route entry r3 = (d3, s3). We have either d1 < d3
and s1 > s2 > s3, in which case r3 # r1 ; or d2 > d1 > d3
and s2 < s3, in which case r3 # r2. In either case, the
conflict existed beforehand, and must therefore already have
been resolved.

Take the previous example again. When adding r3, we add
one route entry to cover the area d1 (r1 ∩ r3). Since r2 is
more specific, the new route entry does not affect the routing
decision for addresses in r2. When adding r4, it is in conflict
with both r1 and the disambiguation route d1, but for the same
conflict zone r4∩r1. The disambiguation route inserted is thus
not an additional conflict.

r1

r2 →

r1

r2 r3

d1

→

r1

r2 r3d1

r4d2

c) Preliminaries: We write min(r1, r2) for the minimum
according to �. We define two auxiliary functions. The func-
tion min conflict(zone, r) (Algorithm 1) returns, if it exists,

the minimum route entry in conflict with r for the conflict zone
zone . The function conflict solution(zone) (Algorithm 2)
returns, if it exists, the minimum route entry participating in
a conflict for the zone zone .

1 Function min conflict(zone, r)
2 min ← ⊥
3 for all r1 ∈ T
4 s.t. r# r1 and r ∩ r1 = zone
5 min ← min(r1,min)

6 return min

Algorithm 1: search for mininum conflicting route

1 Function conflict solution(zone)
2 min ← ⊥
3 for all r1, r2 ∈ T
4 s.t. r1 # r2 and r1 ∩ r2 = zone and r1 ≺ r2
5 min ← min(r1,min)

6 return min

Algorithm 2: Search for conflict solution

We write nh(r) for the next hop of a route r.
We use three primitives for manipulating the routing ta-

ble. Let r = (d, s,nh) be a route entry, and nh ′ a nex-
thop. Then install(r,nh ′) adds the route entry (d, s,nh ′),
uninstall(r,nh ′) removes the route entry (d, s,nh ′), and
switch(r,nh ′,nh ′′) changes the FIB’s route entry (d, s,nh ′) to
(d, s,nh ′′). Calling switch(r,nh ′,nh ′′) is equivalent to calling
uninstall(r,nh ′) followed by install(r,nh ′′).

d) Relevant conflicts: Consider a route entry r, and a set
E of routing entries in conflict with r for the same conflict
zone; all of these conflicts will have the same resolution.
Moreover, if the resolution was caused by a route in E, then
that was necessarily the more specific of the entries in E. Note
that the minimum exists because elements of E have either the
same destination, or the same source, and match at least one
address in r.

Given a route entry r, we define the equivalence ∼r by
r1∼rr2 ⇔ r1∩r = r2∩r, i.e. two route entries are equivalent
for ∼r if they have the same intersection with r. If two
equivalent route entries are in conflict with r, this means that
they have the same conflict zone.

Quotienting a set of routing entries in conflict with r by
this equivalence, and taking the minimum of each of the class
of equivalence gives us exactly the routes that we care about.

e) Adding a route entry (Algorithm 3): Installing a new
route entry in the FIB may make it ambiguous. For this
reason, we must install the most specific routing entries first.
In particular, we must install disambiguation entries (lines 2
to 9) before the route itself (lines 10 to 14).

Let r be the route to install, and C the set of route entries
in conflict with r, for which there is no natural solution, i.e.
C = {r′ ∈ T | r′ # r and r′ ∩ r 6∈ T} (line 3). We only

consider the relevant conflicts upon this set (line 4): C ′ =
{min(E) | E ∈ C/∼r

}.
For each route entry r1 ∈ C ′ (considering the most specific

first), we first search (line 5), if it exists, the minimum route
entry r2 such that r2 # r1 and r2 ∩ r1 = r ∩ r1. If r2 does
not exist, then there was no conflict for this zone before, and
we must add ((r1 ∩ r),nh) to the FIB (line 7). Otherwise, a
routing entry has been installed for this conflict, and we must
decide if the new route entry r is or not the new candidate,
which is true if it is more desirable (�) than both r2 and r1
(line 8). If it is the case, then the previous next-hop installed
was the one of r2: we replace ((r1∩r),nh2) by ((r1∩r),nh)
(line 9).

Finally, we must search if there exists two route entries in
conflict for the zone of r (line 10). In that case, a disambigua-
tion route entry has been installed, so r must replace it (line
12). Otherwise, r can be added normally (line 14). We end
the procedure by adding r to our local RIB (line 15).

1 Function add route(r)
2 for all r1 ∈ T
3 s.t. r# r1 and r ∩ r1 6∈ T
4 and r1 = min conflict(r ∩ r1, r)
5 r2 ← min conflict(r ∩ r1, r1)
6 if r2 = ⊥
7 install(r ∩ r1,nh(min(r, r1)))

8 else if r ≺ r2 and r ≺ r1
9 switch(r ∩ r1,nh(r2),nh(r))

10 r1 ← conflict solution(r)
11 if r1 = ⊥
12 install(r, nh(r))

13 else
14 switch(r, nh(r1),nh(r))

15 T ← T ∪ {r}
Algorithm 3: Route addition

f) Removing a route entry (Algorithm 4): This time, we
must first remove the less specific route first to keep the routing
table unambiguous. Again, we write r for the route to be
removed. First, remove r from the RIB (line 2). As for the
addition, r may be solving a conflict, in which case we cannot
just remove it, but must first search for the entry covering that
conflict (line 3), and if it exists replace r’s next-hop (line 7).
Otherwise, we just remove r from the FIB (line 5).

We consider C ′ as previously defined (lines 9 and 10).
For each route entry r1 ∈ C ′ (considering the less specific
first), we first search, as we did for the adding process, for the
minimum route entry r2 such that r2 # r1 and r2∩r1 = r∩r1
(line 11). If r2 does not exist, we remove ((r1 ∩ r),nh) from
the FIB (line 13). Otherwise, for the same reasons above, if
r is more desirable than both r1 and r2, then we replace in
the FIB the next-hop of r assigned for r ∩ r1 by the one of
r2 (line 15).

1 Function delete route(r)
2 T ← T r {r}
3 r1 ← conflict solution(r)
4 if r1 = ⊥
5 uninstall(r, nh(r))

6 else
7 switch(r, nh(r),nh(r1))

8 for all r1 ∈ T
9 s.t. r# r1 and r ∩ r1 6∈ T

10 and r1 = min conflict(r ∩ r1, r)
11 r2 ← min conflict(r ∩ r1, r1)
12 if r2 = ⊥
13 uninstall(r ∩ r1,nh(min(r, r1)))

14 else if r ≺ r2 and r ≺ r1
15 switch(r ∩ r1,nh(r),nh(r2))

Algorithm 4: Route deletion

g) Changing a route entry (Algorithm 5): This is the
simplest case, since disambiguation routes must be maintained,
and changed only if the route that we want to change has been
selected for disambiguation. The order in which we change the
route entries does not matter. Let r the route entry to change
by rnew . Here, we choose to first replace r by rnew (line 2).

We consider C ′ as previously defined (lines 3 and 4). For
each route entry r1 ∈ C ′, we search for the minimum route
entry r2 such that r2 # r1 and r2 ∩ r1 = r ∩ r1. If both r ≺
r1 and r2 is r (line 6), then we replace the next-hop nh of
the corresponding disambiguation route entry by the new one
nhnew (line 7).

1 Function change route(r, rnew)
2 switch(r, nh(r),nh(rnew))
3 for all r1 ∈ T
4 s.t. r# r1 and r ∩ r1 6∈ T
5 and r1 = min conflict(r ∩ r1, r)
6 and r ≺ r1 and r = min conflict(r ∩ r1, r1)
7 switch(r ∩ r1,nh(r),nh(rnew))

Algorithm 5: Route modification

C. External changes to the routing table

In the description above, we have asssumed that only
our algorithm ever needs to manipulate the routing table. In
practice, however, the routing table is also manipulated by
other agents — other routing protocols or human operators. In
principle, the same algorithm should be applied to externally
changed routes; however, this is not implemented yet.

VI. SOURCE-SPECIFIC BELLMAN-FORD

The distributed Bellman-Ford algorithm is the foundation of
a number of more or less widely deployed routing protocols,
such as the venerable RIP, EIGRP, Babel and, arguably, BGP.
In order to experiment with source-specific routing, we have

implemented a source-specific variant of the Babel routing
protocol [6]; the exact details of the packet format of our
extension are described in [4]. Our implementation has seen
a moderate amount of deployment, most notably as a testbed
for the IETF Homenet working group [5].

Ordinary (next-hop) distributed Bellman-Ford maintains a
routing table which associates, to each known destination
prefix, a next-hop router and a metric; each prefix and metric
pair is advertised to neighbours in periodic update messages.
In source-specific Bellman-Ford, the routing table is indexed
by pairs of a destination prefix and a source prefix, and
(source-specific) updates advertise a triple of a destination
prefix, a source prefix, and a metric.

The source-specific extension to Babel adds a new kind
of source-specific update message in addition to the original,
non-specific update. Since Babel’s loop-avoidance mechanism
relies on two kinds of request messages, it also adds two new
kinds of source-specific requests. All of these are encoded as
new kinds of messages rather than extensions to existing mes-
sages, which causes them to be silently ignored by unextended
Babel routers, and ensures that our extension interoperates
with the original Babel protocol.

A. Bootstrapping

In distributed Bellman-Ford, a prefix is reannounced after it
has been learnt from a neighbour. This process is bootstrapped
by announcing prefixes learned from a different source (typi-
cally a different routing protocol or a static route); in Babel,
this is known as redistribution.

Just like ordinary routes, source-specific routes are origi-
nated by performing redistribution. In case a source-specific
route is already present, our implementation is able to re-
distribute it; more generally, the filtering language allows
attaching a source prefix to a non-specific route at redistri-
bution time. While careless use of this facility may cause
persistent routing loops to occur, this is expected with careless
redistribution.

B. Interoperability

The Babel protocol has seen a moderate amount of de-
ployment in production networks, and is usually deployed
within cheap routers that can be difficult to update with a
source-specific version of the protocol. We have therefore paid
particular attention to the issue of interoperability between
routers running the source-specific and unextended protocols.

The extended version of the protocol uses both non-specific
and specific update messages. In principle, a non-specific route
could be announced in two manners: by using a non-specific
update carrying the destination prefix d , or by using a source-
specific update carrying the pair (d , ::/0). As we want non-
specific routes to be propagated between source-specific and
non-specific routers, source-specific routers interpret a non-
specific update as a source-specific update with a source prefix
of ::/0, and, conversely, source-specific routers never send
source-specific updates of the form (d , ::/0), preferring the
non-specific form instead.

A more difficult issue is how a non-specific router should
interpret a source-specific update. There are two possibilities:
the source can be discarded and the update treated as non-
specific, or the entire update can be discarded. The first of
these possibilities can cause persistent routing loops.

Consider two nodes A and B, with A source-specific
announcing a route to (d , s) (Figure 4). Suppose that B
ignores the source information when it receives the update,
and reannounces it as d . This is reannounced to A, which
treats it as (d , ::/0). Packets destined to d but not sourced in
s will be forwarded by A to B, and by B to A, causing a
persistent routing loop.

A

(d , s)

(d , ::/0)

B

(d , ::/0)

Fig. 4. Non-specific routers cannot accept specific routes

On the other hand, if non-source-specific nodes reject
source-specific updates, but source-specific nodes accept non-
specific updates, then source-specific nodes can communicate
entries of the form (d , ::/0) and are completely compatible
with non-source-specific nodes. In this case, Bellman-Ford
will eventually converge to a loop-free configuration.

In general, discarding of source-specific routes by non-
specific routers will cause routing blackholes. Intuitively,
unless there are enough non-specific routes in the network,
non-specific routers will suffer starvation, and discard packets
for destinations that are only announced by source-specific
routers. A simple yet sufficient condition for avoiding black-
holes is to build a connected source-specific backbone that
includes all of the edge routers, and announce a (non-specific)
default route towards the backbone.

VII. EXPERIMENTAL RESULTS

We have implemented both schemes described in Sec-
tions V-A and V-B within babeld, a Linux implementation
of the Babel routing protocol. This has allowed us to perform
a number of experiments which we describe in this section.

Our experimental network consists of a mesh network
consisting of a dozen OpenWRT routers and a single server
running Debian Linux. Two of the mesh routers have a wired
connection to the Internet, and are connected to the server
through VPNs (over IPv4). All of the routers run our modified
version of the Babel protocol.

IPv4 connectivity for the mesh is provided by the Debian
server, which acts as a NAT box. The IPv6 connectivity is
more interesting: there are two IPv6 prefixes, one of which is
a native prefix provided by our employer’s network, the other
one being routed through the VPN. The network therefore has
two source-specific default IPv6 routes.

A. Routing table for VPN connectivity
Figure 5 shows an excerpt of the routing tables of one of

the two wired routers. The modified babeld daemon has

ip rule show
0: from all lookup local
101: from 192.168.4.0/24 lookup 11
32766: from all lookup main
32767: from all lookup default
ip route show
default via 172.23.47.254 dev eth1 proto static
172.23.32.0/20 dev eth1 proto kernel src 172.23.36.138
192.168.4.20 via 192.168.4.20 dev tun-ariane proto 42 onlink
192.168.4.30 via 192.168.4.30 dev wlan1 proto 42 onlink
[...]
ip route show table 11
default via 192.168.4.20 dev tun-ariane proto 42 onlink
192.168.4.20 via 192.168.4.20 dev tun-ariane proto 42 onlink
192.168.4.30 via 192.168.4.30 dev wlan1 proto 42 onlink
[...]

Fig. 5. IPv4 routing table on a router using a VPN

allocated a non-default routing table, table 11, and inserted
routes (marked as proto 42) into both the default main
table and table 11. The former contains non-specific routes:
the default route and the /20 subnet announced by our local
DHCP server, and host routes to individual mesh nodes. The
encapsulated VPN packets are routed through the default route.

Table 11 contains routes for locally originated packets,
sourced in 192.168.4.0/24. The only “real” route in this table
is the default route, which prevents the VPN from attempting
to “enter itself”. The other routes are disambiguation routes,
automatically generated by the algorithm described in Sec-
tion V-B. These entries are copies of those present in the main
routing table, and prevent locally generated packets destined
to local subnets from leaving through the native default route.

B. Multipath TCP

Multipath TCP [10] is an extension to TCP which multi-
plexes a single application-layer flow over multiple network
layer sub-flows, and attempts to use as many distinct routes
as possible, and to either carry traffic over the most efficient
one or to perform load balancing. An obvious application is
a mobile node (a telephone) with permanent connectivity to a
cellular network and intermittent WiFi connectivity: MPTCP
is able to use the cellular link when WiFi is not available,
and switch to WiFi when available without dropping already
established connections.

Multipath TCP and source-specific routing turn out to be a
surprisingly good match. MPTCP is able to use all of the
addresses of the local host, and to dynamically probe the
reliability and performance of packets sourced from each.

We have performed two tests that both consist in download-
ing a 110 MB file over MPTCP from the MPTCP website.
In the first test (Figure 6), a desktop computer is directly
connected to the source-specifically routed wired network,
and is configured with two IPv4 addresses. The Linux tc
subsystem is used to limit each of the addresses to 100 kB/s
traffic; MPTCP is able to reliably download at 200 kB/s.

In the second test (Figure 7), a laptop’s WiFi interface is
configured with three addresses (one IPv4 and two IPv6).
MPTCP multiplexes the traffic across the three routes, and
balances their throughput dynamically.

0 100 200 300 400 500 6000 100 200 300 400 500 600

0
20

40
60

80
10
0

12
0

0
20

40
60

80
10
0

12
0

eth0: 130.104.230.45 → 172.23.36.45
tun-ariane: 130.104.230.45 → 192.168.4.3

Time of experiment (s)

Th
ro

ug
hp

ut
 (k

B
/s

)

Fig. 6. Download using MPTCP and traffic control

0 20 40 60 80 1000 20 40 60 80 100

0
50
0

10
00

15
00

0
50
0

10
00

15
00

eth0: server 1 (v4) → host 1 (v4)
eth0: server 2 (v6) → host 2 (v6)
eth0: server 2 (v6) → host 3 (v6)

Time of experiment (s)

Th
ro

ug
hp

ut
 (k

B
/s

)

Fig. 7. Download using MPTCP

VIII. CONCLUSION AND FURTHER WORK

Source-specific routing is a modest extension to next-hop
routing that keeps the forwarding decisions firmly within
control of the routers while allowing end hosts a moderate
and clearly defined amount of control over the choice of
routes. Since source-specific routing can cause ambiguous
routing tables, we have defined the behaviour that we believe
source-specific routers should have, and shown how combining
different behaviours in the same network can cause persistent
routing loops. Similar care must be taken when combining
non-specific with source-specific routers in the same network.
We have proposed two ways to implement source-specific rout-
ing, and obtained experimental results that show that source-
specific routing can be usefully exploited by the transport layer
protocol MPTCP. Our implementation is of production quality,
and has seen a modest amount of deployment, notably as a
testbed for the ideas of the IETF Homenet working group.

While we enjoy working with distance-vector protocols,
much of the networking community appears to have converged
on using the OSPF protocol for internal routing. OSPF is a
rich and complex protocol, and while many of our techniques
should apply without difficulty to it, actually implementing a
full source-specific variant of OSPF without sacrificing any of

its flexibility remains a challenging endeavour.
It was a pleasant surprise to discover that unmodified

MPTCP can use source-specific routes without any manual
configuration. However, we claim that source-specific routing
can also be exploited at the application layer, and we are
currently working on an extension to the Mosh [13] UDP-
based remote shell that is able to dynamically balance over
multiple source-specific routes.

Finally, we have only considered the applicability of source-
specific routing to edge networks, which tend to carry only a
moderate number of distinct routes. However, there is nothing
in principle that would prevent source-specific routing from
being applicable to BGP and to core networks, where it could
perhaps be used for some forms of multihoming and traffic
engineering without the routing table growth due to classical
multihoming. Extending our results to core networks, with
their large routing tables, will require careful analysis of
the complexity of our techniques, and a carefully optimised
implementation.

CODE AVAILABILITY

The source-specific version of Babel is available from
https://github.com/jech/babeld.

ACKNOWLEDGEMENTS

We are grateful to Benoı̂t Valiron for his help with the
presentation of the disambiguation algorithm.

REFERENCES

[1] J. Abley, P. Savola, and G. Neville-Neil. Deprecation of Type 0 Routing
Headers in IPv6. RFC 5095, December 2007.

[2] Marcelo Bagnulo, Alberto Garcı́a-Martı́nez, Juan Rodrı́guez, Arturo Az-
corra. The Case for Source Address Dependent Routing in Multihoming.
Quality of Service in the Emerging Networking Panorama. Lecture
Notes in Computer Science Volume 3266, 2004, pp. 237-246.

[3] F. Baker and P. Savola. Ingress Filtering for Multihomed Networks. RFC
3704 and BCP 84, March 2004.

[4] M. Boutier and J. Chroboczek. Source-Specific Routing in Babel.
Internet Draft draft-boutier-babel-source-specific-00. Work in progress,
November 2014.

[5] T. Chown, Ed. IPv6 Home Networking Architecture Principles. RFC
7368. October 2014.

[6] J. Chroboczek. The Babel Routing Protocol. RFC 6126, April 2011.
[7] R. Draves. Default Address Selection for Internet Protocol version 6

(IPv6). RFC 3484, February 2003.
[8] P. Ferguson and D. Senie. Network Ingress Filtering: Defeating Denial

of Service Attacks which employ IP Source Address Spoofing. RFC
2827 and BCP 38, May 2000.

[9] Bert Hubert et al. Linux Advanced Routing and Traffic Control. Available
online at http://www.lartc.org/.

[10] Costin Raiciu, Christoph Paasch, Sébastien Barré, Alan Ford, Michio
Honda, Fabien Duchene, Olivier Bonaventure, and Mark Handley. How
Hard Can It Be? Designing and Implementing a Deployable Multipath
TCP. In USENIX Symposium of Networked Systems Design and Imple-
mentation (NSDI’12), San Jose (CA), 2012.

[11] Jerome H. Saltzer, David P. Reed, and David D. Clark. Source routing
for campus-wide internet transport. In Proc. IFIP WG 6.4 International
Workshop on Local Networks, 1980.

[12] D. Wing and A. Yourchenko. Happy Eyeballs: Success with Dual-Stack
Hosts. RFC 6555, April 2012.

[13] Keith Winstein and Hari Balakrishnan. Mosh: An Interactive Remote
Shell for Mobile Clients. In USENIX Annual Technical Conference,
Boston, MA, June 2012.

