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[1] In this paper, we show that a linear, continuously
stratified ocean model reproduces observed wind-driven
intraseasonal sea level variability in the coastal waveguide of
the Northern Indian Ocean (NIO). Sensitivity experiments
with intraseasonal wind forcing selectively applied in the
equatorial region, Bay of Bengal, and Arabian Sea show that
a large part of the basin-scale sea level variations are
driven by zonal wind fluctuations along the equator. Within
the NIO coastal waveguide, the contribution of remote
equatorial forcing decreases from ~80–90% in the Andaman
Sea to ~50% northeast of Sri Lanka and then increases to
~60–70% along the west coast of India. During the southwest
monsoon, intraseasonal wind variations become stronger over
the NIO, resulting in a larger contribution of local wind
forcing to sea level variability along the west (up to 60%)
and east (up to 40%) coasts of India. Citation: Suresh, I.,
J. Vialard, M. Lengaigne, W. Han, J. McCreary, F. Durand, and
P. M. Muraleedharan (2013), Origins of wind-driven intraseasonal
sea level variations in the North Indian Ocean coastal waveguide,
Geophys. Res. Lett., 40, doi:10.1002/2013GL058312.

1. Introduction

[2] The Asian continent bounds the Indian Ocean to the
north. This distinct geographical setting drives the strongest
monsoon on Earth, associated with seasonally reversing
winds. These wind variations drive seasonal equatorial
Kelvin and Rossby wave responses. The seasonal equatorial
Kelvin waves propagate into the North Indian Ocean (hereaf-
ter NIO) as coastal Kelvin waves [McCreary et al., 1993]. As
a result, both local and remote forcing shape the seasonal
variations of the East India Coastal Current [Shankar et al.,
1996; McCreary et al., 1996]. A similar remote influence of
equatorial wind forcing on the NIO sea level variability has also
been demonstrated at interannual [e.g.,Han andWebster, 2002]
and decadal [Nidheesh et al., 2013] timescales.
[3] Indian Ocean winds also exhibit strong variability at

intraseasonal timescales. In boreal winter, those wind variations

are the strongest between the equatorial strip and southern
tropics. They are associated with the Madden-Julian oscillation
(hereafter MJO) [Zhang, 2005], a basin-scale atmospheric
convective perturbation with ~30–80 day timescales. In boreal
summer, intraseasonal variability (hereafter ISV) shifts
northward and is associated with active and break phases of
the Indian summer monsoon with ~30–60 day timescales
[e.g., Goswami, 2005].
[4] The MJO and active/break monsoon phases both have

equatorial signatures, inducing ISV in the equatorial zonal
wind field throughout the year. The equatorial oceanic
response to that wind variability has been described in many
articles [e.g., Masumoto et al., 2005; Sengupta et al., 2007;
Iskandar and McPhaden, 2011; Nagura and McPhaden,
2012]. On the other hand, only a few papers have focused
on NIO oceanic ISV. Durand et al. [2009] attributed ISV
along the east coast of India to mesoscale eddies, which
indeed contribute to variability in the interior Bay of
Bengal [e.g., Cheng et al., 2013]. Using satellite observa-
tions, Vialard et al. [2009] showed that the intraseasonal
equatorial Kelvin waves propagate into the NIO in the form
of coastal Kelvin waves. This study established a clear link
between the equatorial and coastal waveguides in the NIO
at intraseasonal timescales, as was earlier demonstrated at
lower frequencies. Analysis of current meter measurements
on the west coast of India indicated that remote forcing con-
tributes significantly to the variability of observed currents at
intraseasonal timescales [Shetye et al., 2008; Amol et al.,
2012]. Girishkumar et al. [2013] further suggested that
remote equatorial winds could also significantly influence
intraseasonal thermocline variations observed in the interior
of the Bay of Bengal, especially in the low-frequency tail
of the intraseasonal band. These studies, however, did not
precisely quantify the relative effects of remote and local
forcing, particularly within the NIO coastal waveguide.
[5] In this paper, our objective is to quantify the relative

contributions of remote forcing from the equator and local
forcing in the Bay of Bengal and Arabian Sea to intraseasonal
sea level variations in the NIO coastal waveguide. In section
2, we describe the linear ocean model and the sensitivity
experiments that allow us to evaluate the aforementioned
contributions. We quantify these contributions in section 3
and discuss their seasonality along the Indian coast. Section
4 provides a summary and discussion.

2. The Linear Continuously Stratified
Ocean Model

[6] We use a modified version of the linear, continuously
stratified ocean model presented in detail in McCreary
et al. [1996]. Solutions are represented as a sum of vertical
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normal modes, and are obtained numerically on a 0.25° reg-
ular grid over the 30°S–30°N, 30°E–110°E domain, with a
coastline determined from the 200-m isobath. The model is
forced by intraseasonal (20–150 day filtered) daily Quick
Scatterometer (QuikSCAT) wind stresses (available from
http://cersat/ifremer.fr/data/) from August 1999 to October
2009. Several studies indicate that this wind stress product
yields a realistic intraseasonal oceanic response in the
equatorial Indian Ocean [e.g., Sengupta et al., 2007; Nagura
and McPhaden, 2012]. We show results obtained using five
baroclinic modes but find, as in Nagura and McPhaden
[2012] (see supporting information), that the first two vertical
modes dominate the equatorial sea level solution, while the first
mode dominates the sea level solution north of 15°N in the NIO
coastal waveguide. More details on the model are provided in
the accompanying supporting information.
[7] We refer to the above solution as the control (CTL)

experiment. To assess the relative importance of wind
forcing in the equatorial (EQ), Bay of Bengal (BoB), Arabian
Sea (AS), and southern Indian Ocean (SIO) regions, we
perform sensitivity experiments by applying intraseasonal wind
forcing only in each of those basins. The EQ region is

bounded by 5°N and 5°S; the BoB and AS are confined to the
north of 6°N and divided at 79.75°E; the SIO is confined to
the south of 6°S (see Figure 2). The forcing in each sensitivity
experiment is ramped down to zero within 1° of the borders
of the forcing region, and the sum of all the forcings (i.e.,
EQ +BoB +AS+ SIO) is equal to the forcing of CTL experi-
ment. The linearity of the model then ensures that the sum of
the sensitivity experiments is equal to theCTL solution.
[8] We use 0.25° weekly sea levels (obtained from www.

aviso.oceanobs.com/fr/accueil/index.html) to validate the
model. Intraseasonal signals are obtained by applying a
20–150 day band-pass filter, after removing the mean
seasonal cycle computed from the first four harmonics. All
analyses are based on 2001–2008 period (i.e., eight consec-
utive full years, after discarding the initial 1.5 years for ad-
justment of the model solutions).

3. Results

[9] An empirical orthogonal function (EOF) analysis
allows the main large-scale intraseasonal sea level pattern
to be extracted in the model and observations. The first
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Figure 1. Lag regression (Lags indicated on the middle column) of 20–150 day filtered QuikSCAT wind stress (first
column) and sea level to the normalized principal component of the first EOF of 20–150 day filtered sea level in (a–d)
observations (17% of total variance, second mode 6%), (e–h) CTL experiment (44% of total variance, second mode 14%),
and (i–l) EQ experiment (49% of total variance, second mode 15%). The regression at lag 0 in Figures 1b, 1f, and 1j shows
the spatial structure of the first EOF. Values that are not statistically significant at the 95% confidence level are masked
(significance tests in this figure and Figure 3 use a standard t test, with 1 degree of freedom per 70 days of data, as
determined from the lagged autocorrelation of the principal component used for the regression).
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EOF is well separated from the rest of the variability in both
observations (17% for first EOF shown in Figure 1b, 6% for
the second) and CTL experiment (44% for the first EOF
shown in Figure 1f, 14% for the second). Thus, this EOF
captures the dominant large-scale intraseasonal sea level sig-
nal throughout the basin. The explained variance is larger in
our linear model than in observations because the model does
not produce eddies. The correlation of the model and
observed sea level first principal component is 0.89, indicat-
ing that the linear model captures the phase of the observed
basin-scale sea level variability remarkably well.
[10] Figure 1 shows the wind stress and sea level patterns

obtained from a lag regression to the principal components
(time series) associated with the first EOF. These patterns
are remarkably similar to those shown in Vialard et al.
[2009] and Iskandar and McPhaden [2011] though we used
different method of analysis, indicating the robustness of

these patterns. Equatorial westerly wind stress anomalies force
an equatorial downwelling Kelvin wave (Figures 1a and 1b)
that reflects from the Sumatra coast as a downwelling equato-
rial Rossby wave (Figures 1c and 1d), with some of the energy
propagating into and around the Bay of Bengal (Figures 1b
and 1c) and up the west coast of India (Figure 1d) as coastal
Kelvin waves. Figures 1e–1h show that the CTL experiment
captures the observed patterns remarkably well, both near the
equator and in the coastal waveguide.
[11] Most of the basin-scale variability is due to equatorial

wind forcing, as shown by the good match in the basin-scale
sea level pattern of the EQ solution with that of the observa-
tions and CTL (Figures 1i–1l). We further quantify the point-
wise contribution of forcing in each region by computing the
regression coefficient of sea level in each sensitivity experi-
ment to that in CTL (Figure 2). Note that this regression al-
lows a general evaluation of the contribution of forcing in
various regions to sea level ISV, not only to those associated
with the first EOF shown in Figure 1. The SIO solution is
negligible and hence not shown. With contributions of more
than 95% (Figure 2a; coefficient values> 0.95), EQ wind
forcing explains most of the sea level ISV within the equato-
rial waveguide, as has already been demonstrated in previous
studies [e.g., Nagura and McPhaden, 2012]. The ISV ampli-
tude of the EQ solution is larger than that of CTL near 5°N on
both sides of the Maldives archipelago (values slightly larger
than 1 in Figure 2a). This feature is due to spurious Ekman
pumping that occurs because ramping of the wind at 5°N in
EQ artificially increases the wind stress curl, but it has a neg-
ligible effect on our results (other solutions with a less abrupt
ramping at the edge of the equatorial waveguide show quali-
tatively similar contributions).
[12] The EQ contribution also dominates the solution in

most of the NIO coastal waveguide. Around the rim of the
Bay, the EQ contribution decreases from ~80–90% near
Myanmar and in the northern Bay down to ~50% north of
Sri Lanka (Figure 2a). EQ forcing contributes to ~60–70%
of the intraseasonal sea level variations along the west coast
of India.
[13] The EQ contribution expands westward offshore into

the Bay of Bengal and Arabian Sea up to ~15°N but is largely
confined to the coast farther northward (Figure 2a). This
trapping happens because first-baroclinic-mode Rossby
waves exist only at periods longer than ~95 days north of
15°N [Vialard et al., 2009], whereas the signals that originate
from the equator have shorter periods [Han, 2005]. The
progressive westward increase of the BoB and AS wind
forcing to sea level ISV in the basin interiors (Figures 2b
and 2c) is due to the contribution of local wind forcing to
the Rossby waves as they propagate westward.
[14] Wind stress variations within the Bay contribute to sea

level variations along the east coast of India through two
processes: (a) the arrival of Rossby waves generated in the
basin interior and (b) the forcing by alongshore winds in
the coastal waveguide. The southward increasing contribu-
tion of BoB forcing along the east coast of India (Figure 2b)
is likely due to a combination of those two processes. On
the other hand, wind variations in the AS can only contribute
to sea level ISV along the west coast of India through
alongshore winds. The relatively constant value (~30%) of
the AS contribution all along the west coast (Figure 2c)
suggests that most of this alongshore wind forcing occurs
near the southern tip of India.
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Figure 2. Contribution of wind forcing in the (a) equatorial
waveguide, (b) Bay of Bengal, and (c) Arabian Sea to
intraseasonal sea level variations, computed as the regression
coefficients of 20–150 day filtered sea level of EQ
(Figure 2a), BoB (Figure 2b), and AS (Figure 2c) experiments
to those of CTL experiment. The sum of the contributions is
equal to 1 by construction (the southern Indian Ocean contri-
bution is negligible in the NIO). The dotted lines indicate the
boundaries of the domain in which the EQ, BoB, and AS
forcing are applied.
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[15] Figure 3 shows the wind patterns associated with
Northern Hemisphere (a) winter and (b) summer basin-scale
sea level ISV. The patterns are remarkably similar to the
dominant modes of atmospheric variability: MJO in winter
[e.g., Zhang [2005]] and active/break monsoon phases in sum-
mer [e.g.,Goswami [2005]].While wind stress amplitude does
not change much at the equator between the two seasons, it
does become much larger over the NIO during summer
(Figures 3a and 3b). Wind stress curl is strong in the central
and southern Bay of Bengal, and the alongshore wind stress
is strong along the western rim of the Bay (Figure 3b). In the
Arabian Sea, the winds are generally oriented perpendicular
to the coast, except close to the southern tip of India and Sri
Lanka where they have a larger alongshore component, which
is also associated with larger curl (Figure 3b).
[16] The amplitude of the equatorial, remotely driven, sea

level ISV on both coasts of India does not change much
between winter and summer (red bars on Figures 3c and
3d). Along the west coast of India, there is a large increase
of wind-driven, sea level ISV in summer (blue bars,
Figure 3c), likely linked to the larger alongshore wind stress
and curl variations close to the southern tip of India
(Figure 3b). The WC box is representative of the west coast
of India: the relative contributions of EQ and AS forcing do
not vary much along this coast (not shown).
[17] On the east coast of India, there is also a summertime

increase of the contribution in the Bay of Bengal forcing to
sea level variations (green bars, Figure 3d). Alongshore wind
stresses (Figure 3b) force downwelling coastal Kelvin waves
that reinforce the remotely driven sea level tendency
(Figures 1i and 1j), while Ekman pumping in the central
and southern Bay (Figure 3b) forces upwelling Rossby
waves with the opposite contribution. Thus, the overall
positive contribution of BoB forcing is due to the dominance
of alongshore stresses along the western rim of the Bay.

Similar analysis at other locations in the BoB coastal wave-
guide also indicates larger contribution of local forcing in
summer. This contribution, however, diminishes when
moving clockwise around the rim of the Bay.
[18] The larger wind forcing results in larger variability (stan-

dard deviation) in NIO sea level during summer on both coasts
of India (Figures 3c and 3d), with the proportion of regionally
forced to total sea level variability increasing from ~20% to
~40% on the west coast and up to ~60% on the east coast.

4. Discussion

[19] The observed intraseasonal, basin-scale sea level
patterns in the NIO identified by Vialard et al. [2009] are
well reproduced by our wind-driven linear model. This
validation gives us confidence to use the model to investigate
the origins of wind-driven intraseasonal oceanic variations in
the NIO, particularly in the coastal waveguide. Sensitivity
experiments indicate that wind-forced sea level variations
in the NIO coastal waveguide are dominated by the contri-
bution of equatorial wind forcing. Around the rim of the
Bay, this contribution decreases from ~80 to 90% in the
Andaman Sea, to ~50% northeast of Sri Lanka and is
~60–70% along the west coast of India. The sea level
variations along the coasts of Myanmar, Bangladesh, and west
coast of India can therefore be predicted several weeks in
advance from sea level in the eastern equatorial Indian
Ocean. Along the east coast of India, eddy-induced ISV is
large [e.g., Durand et al., 2009] and can sometimes dominate
the wind forced signal.
[20] Our results further illustrate that the equatorial wind

contribution to NIO sea level variations is modulated season-
ally. The northward shift of the atmospheric ISV in summer
induces larger fluctuations of alongshore wind stress on the
western rim of the Bay and close to the southern tip of

Figure 3. The 20–150 day filtered QuikSCATwind stress (vectors) and wind stress curl (colors) regressed to the normalized first
principal component of 20–150 day filtered observed sea level at 14 day lead, for (a) December–March and (b) June–September.
Decomposition of 20–150 day sea level standard deviation (cm, also indicated as a %) in the (c) WC (west coast; 73.5°E–74.5°E,
12°N–13°N, cf. Figure 3a) and (d) EC (east coast; 80.5°E–81.5°E, 13°N–14°N; cf. Figure 3b) boxes into contributions from
equatorial (red), Bay of Bengal (green), Arabian Sea (blue), and South Indian Ocean (orange) wind forcing, for DJFM and JJAS.
The �14 day lag was selected for this plot, because it is associated with the largest wind stress and wind stress curl perturbations.
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India. This increase results in larger sea level ISV, and a
larger contribution of BoB and AS winds to this ISV, on both
coasts of India during boreal summer.
[21] Several previous studies [e.g., Han, 2005; Iskandar

and McPhaden, 2011; Girishkumar et al., 2013] have
noted that the ocean’s response to ISV forcing amplifies
at longer periods (near 90 day) than the forcing itself (near
30–60 day). In this study, we chose to analyze these two
frequencies together by using a 20–150 day filter, but the
contributions of the various basins remain qualitatively
similar when those two periods are considered separately
(see supporting information).
[22] In the Bay of Bengal interior,Girishkumar et al. [2013]

andCheng et al. [2013] suggested a significant contribution of
equatorial remote forcing. We consistently find that the
equatorial solution contributes between 40 and 60% of the
sea level ISV at the locations analyzed by Girishkumar et al.
[2013] (see supporting information). Our results are also
consistent with those of Shetye et al. [2008] and Amol et al.
[2012], who suggested that remote forcing from farther south
influences current variations along the west coast of India.
[23] To our knowledge, the present study is the first one to

quantify the relative contributions of intraseasonal forcing in
various regions of the Indian Ocean to wind-driven sea level
ISV in the NIO coastal waveguide. Some issues, however,
remain unresolved. Is alongshore wind stress ISV near the
southern tip of India and along the western rim of the BoB
the main source of coastal sea level local forcing in summer,
as suggested by this study? Is there vertical propagation of
energy at intraseasonal timescales in the coastal waveguide,
as suggested by Nethery and Shankar [2007] and Amol et al.
[2012]? These topics will be investigated in a future study.
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