Room temperature broadband coherent terahertz emission induced by dynamical photon drag in graphene - Université Paris Cité Accéder directement au contenu
Article Dans Une Revue Nano Letters Année : 2014

Room temperature broadband coherent terahertz emission induced by dynamical photon drag in graphene

S. Huppert
F. Wang
S. Maero
  • Fonction : Auteur
Claire Berger
W. de Heer
  • Fonction : Auteur
L. A. de Vaulchier
S. Dhillon
J. Tignon
J. Mangeney

Résumé

Nonlinear couplings between photons and electrons in new materials give rise to a wealth of interesting nonlinear phenomena. This includes frequency mixing, optical rectification or nonlinear current generation, which are of particular interest for generating radiation in spectral regions that are difficult to access, such as the terahertz gap. Owing to its specific linear dispersion and high electron mobility at room temperature, graphene is particularly attractive for realizing strong nonlinear effects. However, since graphene is a centrosymmetric material, second-order nonlinearities a priori cancel, which imposes to rely on less attractive third-order nonlinearities. It was nevertheless recently demonstrated that dc-second-order nonlinear currents as well as ultrafast ac-currents can be generated in graphene under optical excitation. The asymmetry is introduced by the excitation at oblique incidence, resulting in the transfer of photon momentum to the electron system, known as the photon drag effect. Here, we show broadband coherent terahertz emission, ranging from about 0.1-4 THz, in epitaxial graphene under femtosecond optical excitation, induced by a dynamical photon drag current. We demonstrate that, in contrast to most optical processes in graphene, the next-nearest-neighbor couplings as well as the distinct electron-hole dynamics are of paramount importance in this effect. Our results indicate that dynamical photon drag effect can provide emission up to 60 THz opening new routes for the generation of ultra-broadband terahertz pulses at room temperature.

Dates et versions

hal-01002956 , version 1 (07-06-2014)

Identifiants

Citer

J. Maysonnave, S. Huppert, F. Wang, S. Maero, Claire Berger, et al.. Room temperature broadband coherent terahertz emission induced by dynamical photon drag in graphene. Nano Letters, 2014, 14 (10), pp.5797-5802. ⟨10.1021/nl502684j⟩. ⟨hal-01002956⟩
141 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More