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The nonequilibrium activity taking place in a living cell can be monitored with a tracer embedded in the medium.
While microrheology experiments based on optical manipulation of such probes have become increasingly
standard, we put forward a number of experiments with alternative protocols that, we claim, will provide insight
into the energetics of active fluctuations. These are based on either performing thermodynamiclike cycles in
control-parameter space or determining response to external perturbations of the confining trap beyond simple
translation. We illustrate our proposals on an active itinerant Brownian oscillator modeling the dynamics of a
probe embedded in a living medium.
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I. INTRODUCTION

A living cell is a nonequilibrium system which needs
to constantly maintain its activity to preserve an organized
structure. Major contributors to this activity are the molecular
motors which generate forces of the order of a piconewton
within the cell. This force generation is an essential process
for life as it is the basis of cell motility, wound healing, and
cell division. It is fueled by adenosine triphosphate hydrolysis,
thus being a nonequilibrium process commonly named an
active process. The force is applied by the motors on some
polar self-assembled filaments, such as the actin filaments for
myosin motors. The polarity of these filaments added to the
force generation enable the motors to perform a stochastic
directed motion. These phenomena have been experimentally
explored in vivo with living cells [1,2] and in vitro, with
reconstituted actin gels in which molecular motors density
can be externally controlled [3,4].

One of the major experimental techniques which has
uncovered the nonequilibrium behavior of living cells and
active gels is microrheology [2–6]. Thanks to the progress
of high resolution microscopy, it is now possible to track
micron sized probes injected into complex fluids, including
living organisms. In addition, by means of optical or magnetic
tweezers, one can apply a controlled force on these probes
and measure rheological properties such as complex shear
modulus [7–9] or creep function [10]. By combining these
two measurements, it has been possible to quantify the extent
to which the fluctuation-dissipation theorem (FDT) is violated
these systems [5,11]. So far, the central quantity that has been
investigated is a frequency-dependent effective temperature
[12–16], which serves as an all-purpose measurement of the
distance from thermal equilibrium.

Our aim in this paper is to put forward other quantities that
can reveal interesting properties of nonequilibrium activity and
that can be measured with the same experimental toolbox of
microrheology. In order to render the presentation of these
methods more concrete, their predictions are illustrated on a
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recent theoretical model [1] describing the dynamics of a probe
in an active medium.

We begin with giving the basic physical ingredients of our
model in Sec. II. We then discuss the simplest protocols in
which the spring constant of a harmonic external potential is
changed with time in Sec. III. In Sec. IV, we use a quartic
potential for which two parameters are changed in time to
mimic a thermodynamic cycle [17]. In Sec. V, we review an
already proposed method of extracting correlations between
active force and position [18] by exploiting the extended
fluctuation-dissipation relations [19]. In Sec. VI, we apply the
Harada-Sasa relation to quantify the dissipation rate arising
from the nonequilibrium behavior of the probe [20].

II. MODEL

We model the dynamics of the tracer’s position r by means
of an overdamped Langevin equation as described in [1].
From a physical viewpoint, the active medium has a complex
polymer cross-linked reticulated structure, surrounded by a
viscous Newtonian fluid. The complex structure of the network
confines the particle, and we model this as a harmonic
potential acting on the probe, centered at position r0. Active
forces which originate from surrounding molecular motors
continuously modify the network structure, thus spatially
translating the minimum of this potential. However, the bead
itself modifies the internal network dynamics: Arbitrarily
large local deformations are unlikely. To account for this
feedback mechanism, we introduce a small backaction force
on the potential location. Since the harmonic trap models
the confinement by the network, the characteristic size of
the trap is much larger than the particle size to avoid any
escape of the particle as shown in Fig. 1(a). The backaction
force is then necessarily small compared to the force applied
on the particle, a feature which we will have to verify in
actual experiments. In other words, the tracer dynamics has
only a small effect on the r0 dynamics, and was, in fact,
neglected in [1]. Moreover, the thermal fluctuations applied on
the potential center position r0 must be taken into account, and
the corresponding fluctuation amplitude should be negligible
compared with the ones of thermal force applied on the
tracers. Introducing a dimensionless parameter ε � 1, which,
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FIG. 1. (Color online) (a) Schematic representation of the en-
ergetic landscape rearrangement due to motor activity and its
modeling using the active burst applied on the local minimum.
In the passive case without motors, the tracer is confined within
a harmonic potential. When motors are introduced, their activity
modifies the network structure, thus leading to a displacement vAτ of
the potential local minimum x0. (b) Example trajectory of the active
burst projection vA. It equals zero over a random duration of average
τ0 and is a random value between −v and v during a random time of
order τ .

we anticipate, will be small, we arrive at the coupled set of
equations

dr
dt

= − 1

τd
(r − r0) +

√
2DTξ , (1a)

dr0

dt
= − ε

τd
(r0 − r) + vA +

√
2εDTξ 0, (1b)

where T is the bath temperature, γ is the friction coefficient of
the tracer particle with the surrounding environment, k is the
spring constant of the harmonic trap, DT = T/γ is a thermal
diffusion coefficient, and τd = γ /k is a microscopic time scale.
The Gaussian white noises ξ and ξ 0 accounting for thermal
fluctuations are uncorrelated, and vA is another noise term,
referred to as an active burst, describing the effect of molecular
motors on the network structure. It denotes the velocity at
which the potential is moving, and we model it as a stochastic
process inspired from the dynamics of individual motors:
There are quiescent periods of random duration of average
time τ0 alternating with active bursts of typical velocity v in a
random direction and for a random time of average τ . In the
absence of active forces, this is the itinerant oscillator model

introduced by Hill [21] and Sears [22] within the framework
of simple liquids dynamics (see [23] for a review) which has
equilibrium dynamics. Such dynamics for the tracer particles
is associated with a complex modulus of the form [24,25]

G∗(ω) = iωη
1 + ε + iωτd

ε + iωτd
. (2)

The viscosity η is related to the friction coefficient γ via
Stokes’ law: γ = 6πaη, where a is the tracers’ radius. Within
this minimal rheology, we assume the material behaves like a
fluid at short and large time scales, with associated viscosity
η and η/ε, respectively, to leading order in ε. Thus, this
material behaves like a much more viscous fluid at large
time scale compared with the short time scale behavior. In
experimental measurements, one has direct access to one
dimensional projections of the position. We shall thus look
at the one dimensional projection of Eq. (1) on the scalar
position x,

dx

dt
= − 1

τd
(x − x0) +

√
2DTξ, (3a)

dx0

dt
= − ε

τd
(x0 − x) + vA +

√
2εDTξ0, (3b)

where 〈ξ (t)ξ (t ′)〉 = δ(t − t ′) = 〈ξ0(t)ξ0(t ′)〉 are still Gaussian
noises, and vA equals 0 over a random duration of order
τ0 and is a uniform random value between −v and v over
the duration of average τ , as depicted in Fig. 1(b). The
active burst projection vA is a non-Gaussian process [26,27],
and the two-time correlation function reads 〈vA(t)vA(0)〉 =
TAe−|t |/τ /(τγ ). The energy scale TA defines an effective active
temperature in terms of the duty ratio pon = τ/(τ + τ0):

TA = γ v2τpon

3
. (4)

This temperature is frequency independent, and we describe
in this paper several methods to measure this quantity. It
quantifies the amplitude of the active fluctuations, as defined
by the active force correlations, and we will see later that
it characterizes the tracer’s statistics at large time scale.
We postpone to Appendix A the derivation of the n-time
correlation function of the active burst vA. We derive the
analytic expressions of the physical observables to leading
order in ε.

To describe the phenomenology of this model, we focus
on the mean square displacement (MSD) 〈
x2〉(ti,tf) =
〈(x(ti) − x(tf))2〉. Even though the MSD depends on two
time variables, in the limit where the initial time ti is large
enough compared to the microscopic relaxation time scale
τd it becomes effectively a function of the only time lag
t = tf − ti. This is the case we consider in this paper, as we
only consider quasistatic transformations. Using the Fourier
transform of Eq. (3), we compute the position autocorrelation
function C(t) = 〈x(t)x(0)〉, from which we deduce the MSD
as 〈
x2〉(t) = 2[C(0) − C(t)]. We denote the thermal contri-
bution to the MSD by 〈
x2

T〉 and the MSD when the particle is
only subjected to motor activity by 〈
x2

A〉. We compute these
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two contributions to leading order in ε:

〈

x2

T

〉
(t) = 2T

k

(
1 − e−t/τd + ε

t

τd

)
, (5a)

〈

x2

A

〉
(t) = 2TA/k

1 − (τ/τd)2

[
e−t/τd + t

τd
− 1

+
(

τ

τd

)3 (
1 − e−t/τ − t

τ

)]
. (5b)

The expression without any assumption made on ε is presented
in Appendix B 1. In the active case, the time evolution of
the MSD exhibits a two step growth with an intermediate
plateau. The first growth and saturation correspond to the
equilibriumlike behavior of a probe caged in a fixed trap.
The initial growth is diffusive with a standard diffusion
coefficient DT, and the plateau value is given by 2T/k. The
evolution of the MSD at larger time scales, reflecting the
nonequilibrium features of the system, is a diffusive growth
with a diffusion coefficient εDT + DA, where DA = TA/γ is
an “active” diffusion coefficient. In the passive case, the tracer
particle can also escape the confinement at time scales larger
τd/ε, and the large time scale diffusion coefficient εDT is small
compared to the short time scale one, as shown in Fig. 2(a).

×

FIG. 2. (Color online) (a) Mean square displacement as a func-
tion of the scaled time t/τ for active (red solid line) and passive
(blue dot-dashed line) systems. (b) Mean square displacement as
a function of the scaled time t/τ with (green dashed line) and
without (red solid line) an external potential, in this case a harmonic
optical trap. The evolution is qualitatively similar for time scale
smaller than τt/ε. At large time scale, there is a plateau due to the
confinement within the optical trap, which value diverges with ε.
{T ,ε,k,τd,τt,TA,τ } = {102,10−4,2,10−2,2×102,1,1}.

The expression of the thermal diffusion coefficient at large time
scale agrees with the fluidlike behavior of the material with the
associated viscosity η/ε. The backaction reflects the ability of
the particle to modify its environment. The local minimum
motion is not only affected by activity within the network, but
also by the interaction of the bead with the network. The large
time scale diffusion in the passive case is in agreement with
experimental observations of tracers embedded in living cells
[1,3]. Assuming τd � 1 ms and given that a large time scale
diffusion appears for t > 10 s in [1], we deduce ε � 10−4 in
agreement with ε � 1.

III. VARYING THE SPRING CONSTANT

One of the most fruitful approaches to gather information
in living cells has been achieved by applying external forces to
probe particles. This has been carried out by different methods,
such as optical or magnetic tweezers [5,28], resulting in an
effective external potential UP acting on the probe. To our
knowledge, the general protocol has always been to apply the
potential and then to execute a space translation, typically with
an oscillation, to measure quantities such as the complex shear
modulus. Here we would like to pursue a different route, where,
instead of translating the potential well, we consider a time-
dependent change in other parameters of the external potential.
Our main goal is to design a protocol with time-dependent
parameters and to estimate the work extracted over the whole
protocol. Optical tweezers effects are well approximated by
a harmonic potential, though more complex energy landscape
can be crafted [29].

The simplest protocol is thus to slowly vary the spring
constant kP in time (this is sometimes called a “capture
experiment” [30]). We consider that an external potential
UP = kPx

2/2 is applied to the tracer as presented in Fig. 3,
so that an additional term −kPx/γ is to be inserted in the
x dynamics in Eq. (3a). We postpone the derivation of the
MSD to Appendix B 2. Within our model, when we apply this
external force, the evolution of the MSD for time scales smaller
than τt/ε, where τt = γ (k + kP)/(kkP) to leading order in ε, is
qualitatively similar to the case without optical trap. At large
time scale, the MSD saturates, meaning the tracer is confined
within the optical trap. After a relaxation time τt/ε, the system
reaches a steady state characterized by active fluctuations,
the optical trap stiffness, and the properties of the network
via k as presented in Fig. 2(b). Note that the plateau value

Optical trap
Confinement by
actin networks

x0x

Optical Confinement
potential potential

FIG. 3. (Color online) Schematic representation of the energetic
landscape when a quadratic optical trap is applied on the tracers, in
addition to the harmonic confinement potential.
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2TAk/[εkP(k + kP)] does not depend on the bath temperature
T to leading order in ε, and it diverges with ε so that the
backaction is necessary to model the confinement of the bead
by the optical trap. We show that the stationary displacement
probability density function is a Gaussian distribution to
leading order in ε, so that the non-Gaussian nature of the active
process vA does not affect the steady-state tracer’s distribution
to that order of the calculation. Likewise, the leading term
in ε of the tracer’s stationary distribution is unchanged when
considering a white noise for vA, be it Gaussian or not. The
time scales τ and τ0 do appear to the next orders in ε of the
steady-state distribution, though. To quantify the deviation of
the stationary distribution from a Gaussian distribution, we
determine the non-Gaussian parameter (NGP),

κ = 〈x4〉SS

3〈x2〉2
SS

− 1, (6)

where 〈·〉SS denotes the steady-state average. The NGP is
zero for a Gaussian distribution and is often used to quantify
deviations to the Gaussian distribution [31]. We compute this
quantity to leading order in ε, as presented in Appendix B 2:

κ = 2ε

5(1 + k/kP)

9τ 2
0 + 3ττ0 − τ 2

(τ + τ0)τd
. (7)

The NGP is proportional to ε, as another evidence that the
tracer’s statistics is Gaussian to leading order in ε. As far as
the active temperature TA is concerned, it can be determined
independently of the active time scales by applying a quadratic
external potential on the tracer and by measuring its stationary
distribution of displacement. It can also be measured from the
large time scale diffusion in the absence of external potential.
The method we propose is more convenient because the tracer
does not experience large excursions, which would otherwise
make it hard to keep in focus, as it remains confined within the
optical trap.

The backaction reflects the ability of the tracer to act on the
surrounding network, thus affecting the dynamics of the local
minimum. In the present case, it exerts a force on the network
which compensates the driving force due to the active burst,
so that a work is applied by the tracer on the network. We see
that the measurement of this work enables one to characterize
activity within the system. We consider a protocol where kP is
slowly varied from ki to kf ; that is, the time evolution of the
protocol is much longer than τt/ε and the time variation of kP is
negligible compared to the inverse duration of the protocol in
terms of ε. The average quasistatic work WH done by applying
the external potential to the probe is [32,33]

WH = 1

2

∫
dkP〈x2〉SS, (8)

where the 〈·〉SS means that the average is taken in the
steady state with a fixed optical trap, in the present case a
harmonic trap of constant kP. We determine the expression
of this quasistatic work in Appendix B 2. It takes the form

WH = EH(kf) − EH(ki), where EH reads

EH(kP) = TA

2ε
ln

[
kP

k + kP

]
− kTA

2(k + kP)
+ T

2
ln [kP]

+ TA

2

(
τ

τd

)2

ln

[
kPτ + k(τ + τd)

k + kP

]

− TA

2
ln

[
kP

k + kP

]
+ O(ε). (9)

This energy scale is defined up to a constant which should
render the argument of the logarithms dimensionless. It
diverges with ε, meaning that if the backaction mechanism
were neglected it would take an infinite work to confine the
tracer in a harmonic well. This result does not depend on
the non-Gaussian nature of the active noise, since WH is only
affected by the second moment of the tracers’ statistics, and
the dynamics of the tracer’s position x is linear in x. We have
run numerical simulations to determine the accuracy of the
above formula. There is perfect agreement with our prediction
for small values of ε. When ε � 0.15, the term of order ε in
Eq. (9) is no longer negligible. We compute the expression of
the O(ε) correction term, and we show it indeed explains for
the deviation of numerical results with Eq. (9), as presented
in Fig. 4. Note that in the passive case, without active bursts,
the work does not vanish but reduces to the difference of
the Helmholtz free energies, as it should for an isothermal
transformation. This contribution enters in the O(1) term of
the above formula. An interesting feature of formula (9) is that
the work is independent of T to leading order in ε, meaning
that it should be possible to directly access TA with a rather
simple protocol. For example, one could measure the average

FIG. 4. (Color online) Study of the influence of the O(ε) cor-
rection term in Eq. (9). The quasistatic work WH is obtained
numerically from simulations of the dynamics in Eq. (3), where
ε = {0.3,0.25,0.2,0.15}. We extract the correction term as WH −
W

(−1)
H − W

(0)
H , where the expression of W

(n)
H = O(εn) is given by

Eq. (9). The analytic expression of the O(ε) correction term is
plotted in a cyan dotted line as a function of kf , and it agrees with
numerical simulations for ε = 0.15. For larger values of ε, the next
order terms should be taken into account to explain the deviation
of the simulated quasistatic work from the prediction in Eq. (9).
{T ,k,ki,γ,τ0,τ,v} = {0,1,1,1,5,0.6,4}.
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work with different values of ki and kf to deduce values for
k, ε, and TA. However, one should be aware that the protocol
has to be operated over large time scales to remain quasistatic.
If the operator reduces the volume accessible by the bead by
setting kf > ki, the work is positive, in agreement with the fact
that the probe “cools down” when kP increases. Considering a
circular protocol for which kf = ki, the extracted work is zero
as for an equilibrium process. The nonequilibrium properties
remain hidden for a circular protocol when a harmonic trap is
applied to a tracer.

IV. THERMODYNAMIC CYCLES
WITH QUARTIC POTENTIALS

By combining multiple optical tweezers it is possible
to confine the tracer in a more complex potential such as
a double well [29]. The corresponding quartic optical trap
UP = kPx

2/2 + bPx
4/4 depends on two parameters that are

both tunable by the operator. In particular, the parameter kP

can take negative values, as long as the condition k + kP > 0
is fulfilled. We regard the potential anharmonicity as a small
perturbation with respect to the harmonic case: bP = O (εn).
Our picture is that ε is a material-dependent quantity, but the
shape of the trap, namely the parameter n, is fully controlled
by the operator. We consider a quasistatic protocol where kP

varies as before and bP is set constant. The associated work is
expressed as WQ = ∫

dkP〈x2〉SS/2. The steady-state average
is different from the value presented before due to the quartic
term in the optical trap. By using a perturbation method with
respect to bP, we derive the expression of this steady-state
average to order bP. It follows that the average quasistatic
work from an initial value ki to a final one kf is expressed as
WQ = WH + EQ1(kf,bP) − EQ1(ki,bP) + O(b2

P), where EQ1 is
linear in bP. We compute the expression of EQ1 to leading
order in ε, as presented in Appendix B 3:

EQ1(kP,bP)

bP
=

(
TA

2kε

)2 {
2k4

k2
P(k + kP)2

+ 3k2τ

k2
P(τ + τd)

− 6kτ

[
3τ + 2τd

kP(τ + τd)2
+ 1

τd(k + kP)

]

+ 6τ 5

τ 2
d (τ + τd)3

ln [k(τ + τd) + kPτ ]

− 6τ
(
6τ 2 + 8ττd + 3τ 2

d

)
(τ + τd)3

ln [kP]

− 6τ (τ − 3τd)

τ 2
d

ln [k + kP]

}
+ O(1/ε). (10)

As for EH, it is defined up to constant. The contribution EQ1

of the quartic term in the quasistatic work is of order εn−2

to leading order in ε. Given that this contribution should
be negligible with respect to WH, we deduce that n should
fulfill the condition n > 1. The energy scale EQ1 is affected
by the non-Gaussian statistics of the active noise. Given that
the tracers’ dynamics is nonlinear in x, the second moment
of the tracers’ statistics now depends on higher moments of
the active noise which reveal the non-Gaussian nature of the
dynamics.

FIG. 5. (Color online) Schematic representation of cycle C. The
optical trap parameters undergo the transformations (A) to (D):

{bi,ki} (A)−→ {bi,kf} (B)−→ {bf,kf} (C)−→ {βf,ki} (D)−→ {bi,ki}. The shape
of the external potential tuned by the operator is depicted as a function
of the position for the four parameter sets, where kf = 2ki < 0 and
bf = 2bi.

We consider a circular protocol C where both kP and bP

are modified in time. The simplest protocol is then given
by four elementary transformations during which a single
parameter is varied, the other one remaining constant. The
cycle is illustrated in Fig. 5. It connects four points in the
{kP,bP} plane:

{bi,ki} (A)→ {bi,kf} (B)→ {bf,kf} (C)→ {bf,ki} (D)→ {bi,ki}. (11)

The associated average quasistatic work is defined as

WC = 1

2

∮
C
dkP〈x2〉SS + 1

4

∮
C
dbP〈x4〉SS. (12)

To leading order in bP, the steady-state average 〈x4〉SS in the
above formula is evaluated for a quadratic optical trap, as we
compute it in Appendix B 2. It follows the quasistatic work
associated with the protocol C is expressed to leading order in
bi and bf as

WC = EQ1(kf,bi) − EQ1(ki,bi) + EQ2(kf,bf ) − EQ2(kf,bi)

+ EQ1(ki,bf ) − EQ1(kf,bf )

+ EQ2(ki,bi) − EQ2(ki,bf ), (13)

where EQ2 is linear in bP:

EQ2(kP,bP)

bP
= 3

[
kTA

2kP(k + kP)ε

]2

+ O(1/ε). (14)

The formula (13) reveals that one can measure some work
for a circular protocol if the external potential applied on
the tracer contains an anharmonic component [17]. The
equilibrium counterpart of this work vanishes, namely, for
the itinerant oscillator case when TA = 0, and a nonzero
work can thus be regarded as a signature of nonequilibrium
activity within the system. The work applied during such
a protocol is of order εn−2 to leading order in ε. Being n

necessarily greater than 1, we deduce this work is negligible
compared with the work associated to the protocol presented
in Sec. III. Thus, the anharmonicity of the external potential
leads to a nonzero quasistatic work for a circular protocol,
but its small value may be hard to measure experimentally.
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Assuming an experimental apparatus can actually detect such
a work, the active temperature can then be extracted from
this measurement, given that the backaction strength ε has
been estimated by another method and the parameter n is
controlled by the operator. A simple method to fix n is to tune
the anharmonicity so that it gives a nonzero contribution to
WQ − TA ln [kf(k + ki)/ki/(k + kf)] /(2ε) by detecting when
the value of this work differs from the order ε0 in WH. In such
a case, the contribution of EQ1 is to be taken into account,
so that it corresponds to the case n = 2. Note that neither
EQ1 nor EQ2 depends on τ0 to leading order in ε. Then,
the expressions we present would remain unchanged in the
limit τ0 → 0, where the active noise is a symmetric two-state
process usually referred to as a random telegraphic noise
[34]. The waiting time scale τ0 affects the next order in ε

of the work associated with the cycle C. Moreover, the work
applied during such a protocol does not vanish in the limit
where the active process vA becomes a white noise, namely
when {τ,τ0,v} → {0,0,∞} with fixed TA. In such a limit and
assuming T = 0, the dynamics presented in Eq. (3) describes
the evolution of a particle subjected to a white non-Gaussian
noise, so that one can indeed extract work from a cycle as
already noticed in [17].

V. EFFECTIVE TEMPERATURE AND
FORCE-POSITION CORRELATIONS

Active microrheology experiments on living cells measure
the response χ to an external stress, and its temporal Fourier
transform χ̃(ω) = ∫

dte−iωtχ (t). The latter is, up to a constant,
the inverse of the complex modulus G∗ [35]: G∗ = 1/ [6πaχ̃ ],
where χ̃ is the response function in the Fourier domain. We
assume that motor activity does not affect the rheological
properties of the network, so that we deduce the response
function from the expression of the complex modulus in a
passive system as presented in Eq. (2). Following Lau et al.
[36], the tracer’s evolution in a viscous fluid is modeled as

γ
dx

dt
= Fcell(t), (15)

where Fcell describes all the forces arising from the medium.
Within this minimal assumption several works have measured
the nonequilibrium properties of the force Fcell [11,16].
These were quantified by looking at the deviation from such
equilibrium relations as the FDT. For example, the correlation-
to-response ratio leads to a frequency-dependent “effective
temperature” as [12–14] Teff(ω) = −ωC̃(ω)/[2χ̃ ′′(ω)], where
χ̃ ′′ is the imaginary part of the response Fourier transform
and C̃ is the position autocorrelation function in the Fourier
domain. Of course, this effective temperature is not a bona
fide temperature, in the sense that even in a stationary
regime it is generally observable-dependent, but the fact that
its high frequency value collapses to the bath temperature
in the absence of nonequilibrium processes constitutes a
useful benchmark. This is the simplest manner to evaluate
the distance from equilibrium. In the absence of external
potential as described in Eq. (3), we compute analytically this
temperature to leading order in ε:

Teff(ω) = T + 1

ε + (ωτd)2

TA

1 + (ωτ )2 . (16)

FIG. 6. (Color online) (a) Effective temperature as a function of
the scaled frequency ωτ . The plateau value at low frequency equals
T + TA/ε (red solid line), and it equals T at high frequency as for
the passive case (blue dot-dashed line). Between the two saturations,
it scales successively like 1/ω2 and 1/ω4, provided the time scales
τ and τd/

√
ε are well separated. (b) Evolution of the force-position

correlation function with the scaled time t/τ in the passive (blue dot-
dashed line) and active (red solid line) cases. The correlation function
is negative at short time scale with an initial value −T . It remains
negative in the passive case. There is a linear growth regime in the
active case (black dashed line), and the correlation function saturates
to a plateau value TA. (a) {T ,ε,τd,TA,τ } = {1,10−8,1,102,102}. (b)
{T ,τd,TA,τ } = {5,0.2,10,5×102}.

At high frequencies, the effective temperature coincides with
the bath temperature T , meaning thermal fluctuations are
predominant with respect to motor activity in this regime,
in agreement with the MSD short time behavior. The plateau
value T + TA/ε at low frequency represents an alternative
measurement of the active fluctuation amplitude. Between the
two plateaus, the effective temperature successively scales
like 1/ω4 and 1/ω2 given that the two time scales τ and
τd/

√
ε are well separated as shown in Fig. 6(a), thus providing

a way to determine these time scale values from the slope
variation. When we neglect the backaction effect, the effective
temperature diverges at low frequencies. It results from the
fact that the active MSD diffuses at large time scale, whereas
it saturates to the equilibrium value for a passive system. The
introduction of the backaction changes the rheology of the
material, so that the passive MSD also diffuses at a large
time scale, from which we deduce the effective temperature
saturates at low frequency.

A generalization of usual microrheology measurements
relies on applying an arbitrary perturbation on the tracers and
measuring their response function. The external stimulus is
generally a homogeneous force. We address here the case
where an arbitrary potential VP = −aP(t)V (x(t)) is applied
on the tracers. The generalized tracers’ response χG quantifies
the effect of the perturbation on an arbitrary observable A:

χG(s,u) = δ 〈A(s)〉
δaP(u)

∣∣∣∣
aP=0

. (17)

Causality ensures that the response function is zero when the
measurement is performed before the perturbation, at u < s.
Since the thermal noise has Gaussian statistics, the probability
weight P associated with a given realization of the thermal
noise is defined asP [ξ ] ∝ e−S[ξ ], whereS [ξ ] = ∫

dt ′ξ 2(t ′)/2
is the Onsager-Machlup (or action) functional, in which ξ
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determines the dynamics of the probe [18,19]. The application
of the external potential VP results in a variation δS of the
action functional, so that the response function is expressed as

χG(s,u) = −
〈
A(s)

δS
δaP(u)

∣∣∣∣
aP=0

〉
. (18)

To determine the response function, we only need to compute
the action functional to leading order in aP,

S = −
∫

dt ′
aP(t ′)
2γ T

[
γ

dx

dt ′
− FN(t ′)

]
dV (x(t ′))

dx
+ O

(
a2

P

)
,

(19)

where FN = −k(x − x0) is the force reflecting the interaction
of the tracer with the surrounding actin network. We deduce
the response function in terms of the probe’s statistics and the
network force,

χG(s,u) = 1

2γ T

[
γ

∂CAV(s,u)

∂u
−

〈
A(s)

dV (x(u))
dx

FN(u)

〉 ]
,

(20)

where CAV(s,u) = 〈A(s)V (u)〉. This expression reveals that
one can gain information about the correlation between the
network force and the tracers’ statistics by independently
measuring χG and CAV.

In the case where aP is a homogeneous force, when
VP = −aPx, the response function is measured by usual
microrheology methods. If we choose the observable A to be
the tracers’ position x, it is possible to access the force-position
correlation 〈x(s)FN(u)〉 [18]. After an exponentially fast initial
transient regime which we neglect, this correlation function
depends only on the lag time t = s − u. The expression for
this correlation is not invariant under time reversal, and we
compute it for the case t > 0 to leading order in ε:

〈x(t)FN(0)〉 = −T e−t/τd + TA

1 − (τ/τd)2

×
[

1 − e−t/τd −
(

τ

τd

)2

(1 − e−t/τ )

]
. (21)

The initial value −T is negative and equals the thermal fluc-
tuation amplitude in agreement with [18]. This anticorrelation
between the network force and the tracers’ displacement is
another evidence of the short time scale confinement. In the
active case, the correlation function can take positive values,
showing that the active burst allows the tracer to overcome
the short time scale confinement. When τ � τd, there is a
linear growth with coefficient TA/τ/[1 − (τd/τ )2], and then it
reaches a plateau value TA as presented in Fig. 6(b). The linear
regime is observed in [18], but the plateau is not present. We
speculate that a larger time window would allow one to observe
the saturation of the correlation function. The existence of
the plateau calls for new experiments as it would provide yet
another way of measuring the amplitude of active fluctuations.
Note that this amplitude is also accessible via the linear growth
coefficient if τ and τd are already known. Moreover, a positive
value of the force-position correlation function is a signature of
nonequilibrium activity within the system as it would remain
negative for an equilibrium process.

VI. ENERGY DISSIPATION AND
HARADA-SASA RELATIONS

The dissipation within the system is the work applied by the
tracer on the surrounding environment regarded as a heat bath
[33]. It has already been measured in colloidal systems [37,38]
and should be a good criterion to characterize nonequilibrium
activity in biological systems. We adopt a natural definition for
the mean rate of energy dissipation [32,33]: J = 〈ẋ(γ ẋ − ξ )〉,
where ẋ is the velocity of the tracer. It is the difference between
the mean power given by the particle to the heat bath via
the drag force γ ẋ and the one provided in average by the
thermostat to the particle via the thermal force ξ . It has been
demonstrated by Harada and Sasa that this quantity is related
to the correlation and response functions defined previously
[20]: J = γ

∫
dω[ωC̃(ω) + 2T χ̃ ′′(ω)]ω/(2π ). This relation

presents the heat current J as a quantification of the deviation
from the FDT valid for an equilibrium process. Within our
model, the energy dissipation rate equals the average power of
the network force: J = 〈ẋFN〉. We compute it in terms of the
microscopic ingredients:

J = TA

τ + τd
. (22)

It is not affected by the backaction to leading order in ε.
The energy dissipation rate is zero when no activity occurs
in the medium for an arbitrary value of ε, as expected for
an equilibrium process. The dissipation rate depends on the
coupling between the probe and its environment via τd. To
minimize the dissipation rate, the time scale of the quiescent
periods τ0 should be as large as possible, whereas the time scale
of the ballistic jumps τ should be very small, in agreement with
observations in biological systems for which τ0 > τ [3,11]. As
in the previous section, the definition and the expression of J

show that one can access the microscopic features of motor
activity via independent measurements of the correlation and
response functions.

The main drawback of this approach is that one should
measure C̃ and χ̃ over a large range of frequencies to
access the energy dissipation rate. Thus, it is interesting to
focus on the spectral density of the energy dissipation rate,
Ĩ (ω) = γω[ωC̃(ω) + 2T χ̃ ′′(ω)], which, when integrated over
the whole frequency range, equals the energy dissipation rate
[20,37]: J = ∫

dωĨ (ω)/(2π ). To give a physical interpretation
of this quantity, we introduce the operators θ± the effect of
which on an arbitrary function f (t) is to extract its even/odd
component: θ±[f (t)] = [f (t) ± f (−t)]/2. The Fourier trans-
form of the symmetrized force-velocity correlation function
is Ĩ [20,39], so that I (t) = θ+[〈ẋ(t)FN(0)〉]. This relation is
a reformulation of Eq. (21) when V = x = A, and we see in
which sense it enables one to easily access the characteristics
of motor activity. Note that the antisymmetrized force-position
correlation function defined previously is also related to
this quantity: I (t) = dθ−[〈x(t)FN(0)〉]/dt . We compute the
dissipation rate spectrum analytically to leading order in ε:

Ĩ (ω) = 1

1 + (ωτd)2

2TA

1 + (ωτ )2
. (23)

The low frequency plateau provides a direct measurement of
the active fluctuation amplitude TA. At high frequency, it scales
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FIG. 7. (Color online) (a) Evolution of the Fourier transform of
the spectral density of the energy dissipation rate with the scaled
frequency ωτ when τ � τd. The plateau value at low frequency
equals 2TA. It scales like 1/ω4 at high frequency, and there is a
crossover regime 1/τd � ω � 1/τ with another power law 1/ω2.
(b) Antisymmetric force-position correlation function as a function
of the scaled time t/τ . It is linear in time at short time scale with a
growth coefficient J and saturates to the value TA at large time scale.
{TA,τ,τd} = {2,10,0.1}.

like 1/ω4, and there is a crossover regime ω1 � ω � ω2,
where ω1,ω2 ∈ {1/τ,1/τd}, with a power law behavior 1/ω2.
Thus, one can determine τ and τd from the variation of the
slope, provided the two time scales are well separated, as
presented in Fig. 7(a). We derive the antisymmetric force-
position correlation function from Ĩ to leading order in ε:

θ− [〈x(t)FN(0)〉]

= TA

1 − (τ/τd)2

[
1 − e−t/τd −

(
τ

τd

)2

(1 − e−t/τ )

]
. (24)

It equals the force-position correlation function in Eq. (21)
when T = 0. At short time scale, growth is linear with a
coefficient J . Hence, it is possible to estimate the energy
dissipation rate by measuring its spectral density only in
the high frequency domain, which mostly facilitates the
experimental task with respect to the procedure proposed in
[20]. The correlation function saturates to a plateau value
TA at large time scale as presented in Fig. 7(b), showing
that it provides an alternative to directly measuring both the
energy dissipation rate and the amplitude of the tracer’s active
fluctuations.

VII. CONCLUSION

We offer theoretical predictions for energetic observables of
a system where both thermal fluctuations and nonequilibrium
activity coexist. We also propose a set of concrete experimental
methods and protocols so that our predictions may be tested
with existing experimental techniques. These new methods end
up in more stringent constraints on the theoretical modeling
which is employed in the studies of tracer dynamics, and
thus they should also be a crucial test for the robustness
of our own model. By applying such methods, we find that
one can access the microscopic features of motor activity
and fully characterize the nonequilibrium process arising in
the medium. The most natural step forward is to address the
analytic computation of the finite time extracted work, for
which one should find an optimal protocol maximizing the

extracted power [40]. Another interesting issue is the excess
heat and housekeeping heat produced by such a protocol, the
computation of which requires the determination of the steady-
state distribution of the process [41]. The bath temperature
could be regarded as another tunable parameter provided its
variation does not modify the microscopic features of the
system [42], which is not the case in biological systems but
could be conceivable in colloidal systems. Finally, the rheology
of living matter can be more complex than we propose in
this paper [43,44]. Memory effects arise from the interaction
of the particle with the environment, due to the integration
of some additional degrees of freedom, leading to a power
law behavior for the complex modulus. Dressing the tracers’
dynamics with a more realistic rheology should be included in
a future elaboration of the model.
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APPENDIX A: ACTIVE BURST STATISTICS

We denote Poff the transition probability to the state in
which vA is zero, and Pon the transition probability to the state
vA = pv, where p is a uniform random value between −1 and
1. The set of master equations describing the evolution of the
active burst one dimensional projection is

dtPoff(t) = 1

τ
− Poff(t)

(
1

τ
+ 1

τ0

)
, (A1a)

∂tPon(t,p) = Poff(t)

2τ0
− Pon(t,p)

τ
. (A1b)

We derive the expression of the transition probability Pon from
these equations. For symmetry reasons, only the 2n-time cor-
relation functions of the active burst are nonzero. Given that the
active burst is in the steady state at the initial time, the 2n-time
correlation function KA ({ti}) = 〈vA(t2n)vA(t2n−1) . . . vA(t1)〉
reads

KA({ti})
v2n

=
∫

d2npP ss
on(p1)p1

2n∏
i=2

Pon(ti − ti−1,pi |pi−1)pi,

(A2)

where Pon(t,pb|pa) is the transition probability from pa to pb,
and P ss

on is the steady-state transition probability. We deduce
the explicit expression of KA,

KA ({ti}) = φ(t2 − t1)
n−2∏
i=1

φ(t2i+2 − t2i+1)ψ(t2i+1 − t2i),

(A3)
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where t2n � t2n−1 � · · · � t1. The functions φ and ψ are
defined as

φ(t) = v2pon

3
e−|t |/τ , (A4a)

ψ(t) = 1 + 4

5

(
1 + τ0

τ

)
e−|t |/τ + τ0

τ
e−|t |(1/τ+1/τ0). (A4b)

APPENDIX B: TRACER STATISTICS

1. Without optical trap

We compute the expression of the MSD for the dynamics
without optical trap in Eq. (3) for an arbitrary value of ε,

〈

x2

T

〉
(t) = 2T/k

(1 + ε)2

(
1 − e−t/τε + ε

t

τε

)
, (B1a)

〈

x2

A

〉
(t) = 2TA/[k(1 + ε)3]

1 − (τ/τε)2

[
e−t/τε + t

τε

− 1

+
(

τ

τε

)3 (
1 − e−t/τ − t

τ

) ]
, (B1b)

where τε = τd/(1 + ε).

2. Quadratic optical trap

The dynamics of x and x0 is given by the set of equations

dx

dt
= − 1

τd
(x − x0) − 1

τP
x +

√
2DTξ, (B2a)

dx0

dt
= − ε

τd
(x0 − x) + vA +

√
2εDTξ0, (B2b)

where τP = γ /kP. Given that we are interested in the regime
where the dynamics is time translational invariant, it should
not depend on initial condition, so that we can choose
x(0) = 0 = x0(0). Using the Fourier transform of Eq. (B2), we
express the tracer’s position in terms of the stochastic noises
in the Fourier domain as

x̃ = γ [χ̃
√

2DTξ̃ + χ̃A(ṽA +
√

2εDTξ̃0)], (B3)

where the functions χ̃ and χ̃A are defined as

χ̃(ω) = (ε + iωτd)/k

iωτd (1 + ε + iωτd) + kP (ε + iωτd) /k
, (B4a)

χ̃A(ω) = 1/k

iωτd (1 + ε + iωτd) + kP (ε + iωτd) /k
. (B4b)

Alternatively, the tracer’s position is expressed in the time
domain as

x(t) = γ

∫ t

dt ′{χ (t − t ′)
√

2DTξ (t ′)

+ χA(t − t ′)[vA(t ′) +
√

2εDTξ0(t ′)]}. (B5)

By using the residue theorem, we compute from Eq. (B4) the
expression of χ and χA in the time domain,

χ (t) = 1

γ (c+ − c−)
(c+e−t/τ+ − c−e−t/τ− ), (B6a)

χA(t) = 1

γ (c+ − c−)
(e−t/τ+ − e−t/τ− ), (B6b)

where τ± = τd/(ε − c±), and the coefficients c± read

c± = ε − 1 − kP/k

2

[
1 ±

√
1 + 4ε

(ε − 1 − kP/k)2

]
. (B7)

We determine the position autocorrelation function in the
Fourier domain for an arbitrary ε:

C̃(ω) = 2(τ+τ−)2
/(

kτ 3
d

)
[1 + (τ+ω)2][1 + (τ−ω)2]

×
{

[ε + ε2 + (ωτd)2]T + TA

1 + (ωτ )2

}
. (B8)

We then deduce the expression of the MSD, without any
assumption made on ε,

〈

x2

T

〉
(t) = 2T/k

(c+ − c−)(c− + c+ − 2ε)

×
[
c2
− − ε(1 + 2c−)

c− − ε
(1 − e−t/τ− )

−c2
+ − ε(1 + 2c+)

c+ − ε
(1 − e−t/τ+ )

]
, (B9a)

〈

x2

A

〉
(t) = 2TA/k

[(τ/τ−)2 − 1][(τ/τ+)2 − 1](c+ − c−)

×
[

(c+ − c−)(1 − e−t/τ )

(
τ

τd

)3

+ (τ/τ+)2 − 1

c+ + c− − 2ε
(1 − e−t/τ− )

− (τ/τ−)2 − 1

c− + c+ − 2ε
(1 − e−t/τ+ )

]
. (B9b)

From the saturation value of the MSD at large time scale, we
deduce the expression of the steady-state average:

〈x2〉SS = TAk

εkP(k + kP)

+ T

kP
− TAk

(k + kP)2

[
τ

τd
+ k2(τ + τd)

kP(k + kP)τ + kkPτd

]
+O(ε). (B10)

The expression of EH is given by the primitive of the above
formula with respect to kP, thus being defined up to a constant.
To determine the non-Gaussian parameter, we compute the
steady-state average 〈x4〉SS. Given that the tracer’s statistics is
Gaussian to leading order in ε, we can easily deduce 〈x4〉SS to
first order in ε from the above formula:

〈x4〉SS = 3

[
kTA

εkP(k + kP)

]2

+ O(1/ε). (B11)
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The computation of the next order requires to develop the expression of x4 in terms of χ and χA. From Eq. (B5), we split the
steady-state average in two contributions:

〈x4〉SS = lim
t→∞(κ1 + 6κ2)(t). (B12)

The functions κ1 and κ2 read

κ1(u) =
∫ u∫∫∫

du1du2du3du4
[
χA1χA2χA3χA4 〈vA(u1)vA(u2)vA(u3)vA(u4)〉

+ 4(εDT)2χA1χA2χA3χA4 〈ξ0(u1)ξ0(u2)ξ0(u3)ξ0(u4)〉 + 4D2
Tχ1χ2χ3χ4〈ξ (u1)ξ (u2)ξ (u3)ξ (u4)〉], (B13a)

κ2(u) =
∫ u∫∫∫

du1du2du3du4
[
2εDTχA1χA2χA3χA4 〈vA(u1)vA(u2)〉 〈ξ0(u3)ξ0(u4)〉

+ 2DTχA1χA2χ3χ4 〈vA(u1)vA(u2)〉 〈ξ (u3)ξ (u4)〉 + 4εD2
TχA1χA2χ3χ4 〈ξ0(u1)ξ0(u2)〉 〈ξ (u3)ξ (u4)〉], (B13b)

where χi = χ (u − ui), χAi = χA(u − ui), and i ∈ {1,2,3,4}.
The non-Gaussianity of the active bursts plays a role in the
first term in the bracket of Eq. (B13a). Being ξ and ξ0 thermal
noises, their four-time correlation function is expressed in
terms of their two-time correlation function as

〈ξ (ta)ξ (tb)ξ (tc)ξ (td)〉 = 〈ξ (ta)ξ (tb)〉 〈ξ (tc)ξ (td)〉
+ 〈ξ (ta)ξ (tc)〉 〈ξ (td)ξ (tb)〉
+ 〈ξ (ta)ξ (td)〉 〈ξ (tc)ξ (tb)〉, (B14)

and the same property holds for the correlations of ξ0. By using
Eqs. (A3) and (B14), we finally deduce the next orders in the
expression of 〈x4〉SS.

3. Quartic optical trap

To compute the steady-state average 〈x2〉SS, we expand the
positions x and x0 in terms of bP as x = x(0) + x(1) + O(b2

P)
and x0 = x

(0)
0 + x

(1)
0 + O(b2

P), where x(1) and x
(1)
0 are of order

bP. The steady-state average is expressed as

〈x2〉SS = 〈(x(0))2〉SS + 2
〈
x(0)x(1)

〉
SS + O

(
b2

P

)
. (B15)

The leading order in bP equals the steady-state average
without quartic term in the optical trap, as we compute
it in Sec. III. Thus, we write the work associated with
the quasistatic protocol as WQ = WH + WP + O(b2

P), where
WP = ∫

dkP〈x(0)x(1)〉SS. The positions x(0) and x
(0)
0 follow the

dynamics in Eq. (B2), so that the expression of x(0) is given by
Eq. (B5). The positions x(1) and x

(1)
0 follow the coupled set of

equations

dx(1)

dt
= − 1

τd

(
x(1) − x

(1)
0

) − 1

τP
x(1) − bP

γ
(x(0))3, (B16a)

dx
(1)
0

dt
= − ε

τd

(
x

(1)
0 − x(1)

)
, (B16b)

from which we deduce

x(1)(t) = −bP

∫ t

dt ′χ (t − t ′)(x(0))3(t ′). (B17)

We split the correlation function in the definition of WP in
three contributions,

〈
x(0)x(1)

〉
SS = −γ bP lim

t→∞ (C1 + C2 + C3) (t), (B18)

where the functions C1, C2, and C3 read

C1(t) =
∫ t∫

dudsχ (t − u)χA(t − s)〈vA(s)(x(0))3(u)〉,
(B19a)

C2(t) =
∫ t∫

dudsχ (t−u)χA(t−s)
√

2εDT〈ξ0(s)(x(0))3(u)〉,
(B19b)

C3(t) =
∫ t∫

dudsχ (t − u)χ (t − s)
√

2DT〈ξ (s)(x(0))3(u)〉.
(B19c)

By using Eq. (B5), we deduce

C1(t) = γ 3
∫ t∫

duds

∫ u∫∫
du1du2du3χ (t − u)χA(t − s)

× [
χA1χA2χA3 〈vA(s)vA(u1)vA(u2)vA(u3)〉

+ 6εDTχA1χA2χA3 〈vA(s)vA(u1)〉 〈ξ0(u2)ξ0(u3)〉
+ 6DTχA1χ2χ3 〈vA(s)vA(u1)〉 〈ξ (u2)ξ (u3)〉 ]

,

(B20a)

C2(t) = γ 3
∫ t∫

duds

∫ u∫∫
du1du2du3χ (t − u)χA(t − s)

× [4 (εDT)2 χA1χA2χA3 〈ξ0(s)ξ0(u1)ξ0(u2)ξ0(u3)〉
+ 6εDTχA1χA2χA3 〈ξ0(s)ξ0(u1)〉 〈vA(u2)vA(u3)〉
+ 12εD2

TχA1χ2χ3 〈ξ0(s)ξ0(u1)〉 〈ξ (u2)ξ (u3)〉],
(B20b)

042724-10



ENERGETICS OF ACTIVE FLUCTUATIONS IN LIVING CELLS PHYSICAL REVIEW E 90, 042724 (2014)

C3(t) = γ 3
∫ t∫

duds

∫ u∫∫
du1du2du3χ (t − u)χ (t − s)

× [
4D2

Tχ1χ2χ3 〈ξ (s)ξ (u1)ξ (u2)ξ (u3)〉
+ 6DTχ1χA2χA3 〈ξ (s)ξ (u1)〉 〈vA(u2)vA(u3)〉
+ 12εD2

Tχ1χA2χ3 〈ξ (s)ξ (u1)〉 〈ξ0(u2)ξ0(u3)〉 ]
.

(B20c)

The non-Gaussianity of the active bursts plays a role in the
first term in the bracket of Eq. (B20a). From Eqs. (A3) and
(B14), we compute the three contributions of 〈x(0)x(1)〉SS,

and we deduce the expression of this steady-state average to
leading order in ε:

〈x(0)x(1)〉SS = −
(

TA

ε

)2
bPk

2τ

kP(k + kP)3[kPτ + k(τ + τd)]

×
[

2 +
(

k

kP

)2 5τ + 2τd

2τ
+ k

kP

9τ + 4τd

2τ

]
.

(B21)

Finally, the expression of EQ1 is given by the primitive of the
above formula with respect to kP, thus being defined up to a
constant.
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