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FINE COSTS FOR THE EUCLID ALGORITHM ON POLYNOMIALS

AND FAREY MAPS

VALÉRIE BERTHÉ, HITOSHI NAKADA, RIE NATSUI, AND BRIGITTE VALLÉE

Abstract. This paper studies digit-cost functions for the Euclid algorithm on polynomials with
coefficients in a finite field, in terms of the number of operations performed on the finite field Fq .
The usual bit-complexity is defined with respect to the degree of the quotients; we focus here
on a notion of ‘fine’ complexity (and on associated costs) which relies on the number of their
non-zero coefficients. It also considers and compares the ergodic behavior of the corresponding
costs for truncated trajectories under the action of the Gauss map acting on the set of formal
power series with coefficients in a finite field. The present paper is thus mainly interested in the

study of the probabilistic behavior of the corresponding random variables: average estimates
(expectation and variance) are obtained in a purely combinatorial way thanks to classical meth-
ods in combinatorial analysis (more precisely, bivariate generating functions); some of our costs
are even proved to satisfy an asymptotic Gaussian law.

We also relate this study with a Farey algorithm which is a refinement of the continued
fraction algorithm for the set of formal power series with coefficients in a finite field: this
algorithm discovers ‘step by step’ each non-zero monomial of the quotient, so its number of
steps is closely related to the number of non-zero coefficients. In particular, this map is shown
to admit a finite invariant measure in contrast with the real case. This version of the Farey map
also produces mediant convergents in the continued fraction expansion of formal power series
with coefficients in a finite field.

Keywords. Laurent formal power series, finite field, continued fractions, Farey map, bit-
complexity, cost function, combinatorial analysis, bivariate generating functions

1. Introduction

We fix a positive integer q which is a power of a prime number p, and we consider the field Fq

of cardinality q. It is well-known that the theory of continued fractions extends in a natural way
the classical real framework to polynomials and formal power series with coefficients in the finite
field Fq. See for instance the survey [2]. Similarly as in the real case, we have in this framework
an intimate correspondence between the Euclidean algorithm and continued fraction expansions.
We study and compare here digit-cost functions for the Euclidean algorithm, on the one hand,
and for truncated trajectories for the Gauss map acting on the set of formal power series, on the
other hand.

1.1. Euclid’s algorithm on polynomials. Let us first recall the Euclidean algorithm for poly-
nomials in Fq[X]. For P and Q ∈ Fq[X] with degQ > degP ≥ 0, the Euclidean division computes
a pair (A,R) with R = 0 or degR < degP for which Q = AP +R. The Euclidean algorithm is a
sequence of Euclidean divisions; by setting R0 := Q, R1 := P, one gets

R0 = A1R1 +R2, R2 = 0 or degR2 < degR1.

If R2 �= 0, then we can find, again, a pair of polynomials (A2, R3) such that

R1 = A2R2 +R3, R3 = 0 or degR3 < degR2.

We can continue this procedure of divisions Rk−1 = AkRk + Rk+1 until the �-th step where
we obtain a remainder R�+1 = 0. The last non-zero remainder R� is a largest common divisor
(polynomial) of R0 and R1. In particular, R0 and R1 are coprime when degR� = 0 (i.e., R� ∈ Fq
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with R� �= 0). The Euclidean algorithm builds the continued fraction expansion of the fraction
R1/R0, that is,

R1

R0
=

1

A1

+
1

A2

+ · · ·+ 1

A�

.

Remark that the fraction Rk+1/Rk is defined by the ending part of the continued fraction expan-
sion, namely

Rk+1

Rk
=

1

Ak+1

+
1

Ak+2

+ · · ·+ 1

A�

.

We will use the notation L(P,Q) = L(R1, R0) = � for the length (i.e., the number of polynomial
divisions) of the Euclidean algorithm. We also set L(0, Q) := 0.

Extended gcd and Bezout’s coefficients. We similarly recall basic facts concerning the ex-
tended Euclidean algorithm. Let P and Q in Fq[X], with 0 ≤ degP < degQ. Let � := L(P,Q).
The extended Euclidean algorithm produces a pair of polynomials (S, T ) such that

(1) gcd(P,Q) = SQ− TP

with the help of the sequences (Pk, Qk) defined as

(2) P−1 = 1, P0 = 0, Pk+1 = Ak+1Pk+Pk−1, Q−1 = 0, Q0 = 1, Qk+1 = Ak+1Qk+Qk−1.

Indeed, since the sequence (Rk)0≤k≤� produced by the Euclidean algorithm satisfies

R0 = Q, R1 = P, Rk+2 = Rk −Ak+1 ·Rk+1, for 0 ≤ k ≤ �,

the equality (−1)kRk = Pk−1Q−Qk−1P holds for any k with 0 ≤ k ≤ � and yields (1) for k = �,
with S = (−1)�P�−1, T = (−1)�Q�−1 .

Then, the computation (2) of the Bezout pair (S, T ) follows exactly the same lines as the
computation of the fraction P�−1/Q�−1, which defines the (�− 1)-th convergent of P/Q, that is,

P�−1

Q�−1
=

1

A1

+
1

A2

+ · · ·+ 1

A�−1

.

Cost of a division. We are interested in the cost of the Euclidean algorithm, where the cost is
the total number of operations performed in Fq. Since the algorithm is a sequence of divisions,
we first focus on the cost of a single division on the pair (P,Q) with degP < degQ of the form
Q = AP + R, with R = 0 or degR < degP . One has degQ = degA + degP . Such a division is
performed with various operations on the field Fq (divisions, products, subtractions, shifts). The
number of most of the operations needed depends on the number of monomials which are present
in the divisor P and the quotient Q. For any non-zero polynomial P , ν(P ) stands for the number
of non-zero coefficients of P , i.e., the number of non-zero monomials in P . Of course, one has
ν(P ) ≤ 1+degP , but, we wish to evaluate more precisely the number of operations over Fq which
are performed during the division Q = AP +R, as summarized in the following table.

Number of divisions in Fq ν(A)
Number of products in Fq ν(A) · ν(P )
Number of subtractions in Fq ν(A) · ν(P )
Upper bound for the number of shifts ν(A) · (degQ+ 1)
Total number of operations in the field Fq O(ν(A) · (degQ+ 1))

The realistic bit-complexity of the Euclidean division would completely take into account the
sparse representation of polynomials and would be related to the product ν(A)·ν(P ). Nevertheless,
we have not succeeded to deal with this quantity in our cost estimates, as detailed in Remark 1
below.
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Costs in the polynomial case. When the set of inputs is

Ω = {(P,Q) ∈ Fq[X]2 : Qmonic, P = 0 or degP < degQ},
the execution of the (extended) Euclid Algorithm on the input pair (P,Q) ∈ Ω is defined by the
number of steps � := L(P,Q), and the three finite sequences of quotients (Ak)1≤k≤�, remainders
(Rk)0≤k≤� and denominators (Qk)1≤k≤�, with

Qk := den

�
1

A1

+
1

A2

+ . . .+
1

Ak

�
, degQk =

k�

j=1

degAj ,

Rk = den

�
1

Ak+1

+
1

Ak+2

+ · · ·+ 1

A�

�
· gcd(P,Q),

degRk =
��

j=k+1

degAj + deg gcd(P,Q), 0 ≤ k ≤ �− 1, R� = gcd(P,Q).

We have now gathered all the required material in order to define our costs for both the
Euclidean and the extended Euclidean algorithm on the input (P,Q).

Definition 1 (Costs in the polynomial case).

(i) The total number of non-zero monomials in the set of the quotients is

N(P,Q) =
��

k=1

ν(Ak).

(ii) The usual bit–complexity B (as defined e.g. in [13]) and the fine bit-complexity φ of the
Euclid algorithm on the input (P,Q) are

B(P,Q) =

��

k=1

(1 + degAk) · (1 + degRk), φ(P,Q) =

��

k=1

ν(Ak) · (1 + degRk).

(iii) The costs B and φ of the extended Euclid algorithm correspond to the the extra bit–
complexity for computing Bezout’s coefficients, in their usual or fine versions

B(P,Q) =

�−1�

k=1

(1 + degAk) · (1 + degQk−1), φ(P,Q) =

�−1�

k=1

ν(Ak) · (1 + degQk−1).

(iv) The costs B + B, and φ + φ are the costs of the extended Euclidean algorithm, in their
usual or fine version. They are called total costs.

1.2. Continued fractions. We let denote by

Fq(X), Fq((X
−1)), L

the set of rational fractions, the set of Laurent formal series of the variable 1/X, and the subset
of Fq((X

−1)) of series of negative degree, respectively. Here the degree of a non-zero element
f ∈ Fq((X

−1)) with

f = anX
n + an−1X

n−1 + · · · , an �= 0

is defined as deg f = n. We also define the degree of 0 ∈ Fq by deg 0 = −∞ as usual. The norm
of f is then defined as |f | = qdeg f .

The analog of the Gauss map T on L is defined as

T (f) =
1

f
−

�
1

f

�
for f �= 0, T (0) = 0,
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where [ · ] stands for the polynomial part for formal power series. In all that follows, the map
T will be referred to as the Gauss map, by abuse of language. Then, the Gauss map builds the
continued fraction expansion of f , that is,

f =
1

A1

+
1

A2

+ · · · with Ak =

�
1

T k−1(f)

�
, k ≥ 1.

The analog of the Gauss measure is the Haar measure µL (normalized to 1 on L): it is ergodic
and T -invariant.

Total costs on L. When f is a rational fraction P/Q of Fq(X) with degP < degQ, it can be
viewed as an element of L, and the iteration of the Gauss map on P/Q exactly coincides with the
Euclid Algorithm on (P,Q): the trajectory of P/Q under the action of T arrives at 0 in a finite
number of steps and stops there. In the general case of an element f , the trajectory is infinite, but
we are interested by the truncated trajectories which are stopped at depth n, i.e., after n steps:

Tn(f) := (f, T (f), . . . Tn(f)).

The truncated continued fraction at depth n leads to a finite continued fraction expansion and
produces a fraction equal to the n-th convergent of f , that is,

Pn

Qn
=

1

A1

+
1

A2

+ · · · 1

An

.

The computation of the pair (Pn, Qn) follows the general recurrence already seen in (2), and we are
interested in evaluating the cost of this computation in L (assuming that the sequence of partial
quotients (Ak) has already been computed).

We thus let denote by Nn(f) the total number of non-zero monomials in the sequence of partial
quotients (A1, A2, . . . , An), and we also consider the bit-complexity costs needed for computing
the n-th convergent, in their two versions. These costs are to be compared respectively to the
costs introduced in (i) and (iii) above for the polynomial case.

Definition 2 (Costs in the continued fraction case).

(i) The total number of non-zero monomials in the sequence of partial quotients (A1, A2, . . . , An)
is

Nn(f) :=

n�

k=1

ν(Ak).

(ii) The usual bit-complexity Bn and the fine bit complexity φ
n
are

Bn(f) =

n�

k=1

(1 + degAk) · (1 + degQk−1), φ
n
(f) =

n�

k=1

ν(Ak) · (1 + degQk−1).

1.3. Probabilistic models. We deal within two models, namely a discrete and a continuous one.

• The discrete model is defined by the sequence of finite sets Ωm of polynomials, with

(3) Ωm = {(P,Q) ∈ Fq[X]2 : P = 0 or 0 ≤ degP < degQ = m, Q : monic},

endowed with the uniform probability denoted as Pm. The expectation and the variance
in this model are respectively denoted as Em and Vm. We are interested there by the
probabilistic behavior of costs N,B, φ,B, φ, in the finite set Ωm, for m tending to infinity.

• The continuous model deals with the set L endowed with its Haar measure µL. We study
some costs which are relative to the truncated trajectory of f ∈ L at depth n, i.e., the costs
Nn, Bn and φn. We consider in this case almost everywhere behavior when the truncation
degree n tends to infinity.
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Methodology. In the discrete model, the study of the fine costs uses classical methods from
analytic combinatorics developed in [13] (such as recalled in Section 2). In the continuous model
(see Section 4), we use the ergodic theorem, together with a suitable extension of the function ν
(that counts the number of non-zero monomials) to the set L. Note that the ergodic theorem,
which is well-suited for the study of truncated trajectories, does not provide any error term. We
introduce in this paper (Section 5) an additive (also said subtractive in the continued fraction
literature) version of the Gauss map, called here Farey map by analogy with the real case, which
discovers the non-zero monomials of each quotient one by one. Then, this map can be used to
study the function ν. The main difficulty relies in the fact that we need a transformation that gives
a particular role to the constant term of the polynomial. We stress the fact that the definition of
this map is not canonical, and there are indeed two natural definitions. We provide an explicit
expression of an invariant measure for this map (see Theorem 8) which is absolutely continuous
with respect to the Haar measure, and we show that it is a finite measure, in contrast to the
original Farey map, which has an infinite absolutely continuous invariant measure with respect to
Lebesgue measure. We then deduce metric results that can be applied to the study of the cost
functions we are considering here. This map is also interesting per se because it gives rise to a
notion of mediant convergents for Fq((X)) (see Section 6).

A brief overview of the literature. Many costs describing the execution of the Euclidean
algorithm (in the discrete model), and of the continued fraction algorithm (in the continuous
model), have been widely studied, in the classic number case, and also in the polynomial case.
The reader can find an historical account of the literature on the number case, both for the average
and distributional analysis of costs, in [13] or [20, 21, 17] and in the references therein. It is in
particular known since [3, 4, 8] that the average length of the Euclidean algorithm is linear with
respect to the logarithm of the numbers taken as input, with the multiplicative constant being equal
to the inverse of the entropy of the Gauss map multiplied by 2, with the factor 2 corresponding
to the dimension, i.e., the number of parameters under consideration. For results in distribution
concerning the length (i.e., for an asymptotic Gaussian law), see [9], and also [1, 13, 20, 21] for a
detailed distributional analysis, also involving more general cost functions.

We focus here on the polynomial case, where the study is simpler. Indeed there are no carries
and the topology is ultrametric. Over Fq[X], the length L of the Euclidean algorithm for polyno-
mials is very precisely studied: on the set of polynomials with degree at most m, its mean and its
variance are linear with respect to the degree m (see for instance [6, 14, 15] and [13]). Its distribu-
tion is discussed in [12, 7], where it is proven to be binomial. Note in particular that the mean of
L is exactly (q − 1)/q ·m on the set of polynomials with degree less than m; the constant (q − 1)/q
equals 2/h where h is the entropy of the Gauss map, that is, 2q/(q − 1). Furthermore, the usual
bit-complexities B,B,B + B are studied in [13], where they are proven to obey an asymptotic
Gaussian law. In particular,

Em[B] = m2 2q − 1

2q
+O(m), Vm[B] = m3 q − 1

3q2
+O(m2), Pm

�����
1

m2
B − 2q − 1

2q

���� ≥ 1/ε

�
= O

�
ε2

m

�
.

However, the fine bit-complexity φ has not been previously handled.

The results in the polynomial case are obtained via analytic combinatorics (see [6]), with the
direct study of bivariate generating functions. In the integer case, the non-ultrametricity of the
topology prevents the direct use of generating functions, which are replaced by Dirichlet series.
However there is a strong parallelism between the two studies. It is indeed observed in [13] that
results in the polynomial case could be obtained via the use of transfer operators (as in the integer
case) within the framework of dynamical analysis, which is the central tool in the number case.
This is due to the common framework between the integer and the polynomial case, given by
the underlying dynamical system, namely the Gauss map, with the branches of the dynamical
systems being affine for the polynomial case leading to a dynamical system without memory. For
a detailed discussion on the parallelism between the integer and the polynomial case, both for the
results and the methods, see Section 6 in [13].
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There is a further parallelism that occurs, both in the integer and in the polynomial case,
between the probabilistic behavior for costs in the discrete model and in the continuous model,
that is, for orbits of rational entries and for truncated trajectories under the action of the Gauss
map. As highlighted in [1, 21], executions of the Euclidean algorithm behave on average similarly
to the way truncated real trajectories behave on average (this also extends to distributions), and
the probabilistic behavior of gcd algorithms related to rational trajectories is quite similar to the
behavior of their continuous counterparts, related to generic trajectories.

We stress the fact that concerning the ultrametric version of the Farey map, its invariant
measure is finite, unlike in the usual real case.

Description of the results. Here, we wish to study the costs N,φ, φ in the discrete model, and
Nn, φn

in the continuous model.
As in the previously described studies, we deal in the discrete model with the probabilistic

behavior of finite trajectories on the set of pairs of polynomials Ωm (see (3)), and in the continuous
model, we deal with truncated trajectories and obtain results which hold almost everywhere.

For finite trajectories in the discrete model, we obtain (namely in Theorems 1, 3, below), first
for the cost N ,

Em[N ] = m · 2(q − 1)

q
, Vm[N ] = m

2(q − 1)

q2
+O(1), Pm

�����
1

m
N − 2

q − 1

q

���� ≥ 1/ε

�
= O

�
ε2

m

�

and both for costs φ or φ,

Em[φ] = m2 q − 1

q
+O(m), Vm[φ] = m3 2(q − 1)

3q2
+O(m2), Pm

�����
1

m2
φ− q − 1

q

���� ≥ 1/ε

�
= O

�
ε2

m

�
.

We obtain also asymptotic Gaussian laws for the costs L,D,N and φ+φ (namely in Theorems
2, 4, below).

For truncated trajectories, we obtain the following results that hold for a.e. f ∈ L:

lim
n→∞

Nn

degQn
(f) = 2 · q − 1

q
and lim

n→∞

1

deg2 Qn

φ
n
(f) =

q − 1

q
,

which correspond respectively to Theorem 5 and 6 below.
There results confirm the fact that the probabilistic behavior of gcd algorithms related to

rational trajectories is quite similar to the behavior of their continuous counterparts, related to
generic trajectories, which was already observed for the bit-complexity [13].

Remark 1. A more realistic bit-complexity of the Euclidean division would be provided by the
study of the product ν(A) · ν(P ). Nevertheless, we have not succeeded to deal with this quantity
in our cost estimates. Indeed, we know how to handle each factor ν(Ak), or degAk. However, we
do not know how to handle ν(Rk) or ν(Qk), whereas it is easy to deal with their degrees, equal
to the sum of the degrees of Aj . Our fine complexity φ can be considered as an intermediate

complexity, between the usual bit complexity and the complexity
��

k=1 ν(Ak) · ν(Rk), that is,

��

k=1

(degAk + 1)(degRk + 1) ≤ φ(P,Q) ≤
��

k=1

ν(Ak) · ν(Rk).

Contents. Let us briefly describe the contents of the paper. We first consider the discrete model
associated with polynomials in Section 2 by recalling the methods of analytic combinatorics based
on generating functions. Elementary costs are considered (the cost N in particular) as a warm-up.
We then discuss in more details the average behavior of the fine-bit complexity costs φ and φ+ φ
in Section 3. Section 4 is devoted to the continuous model. We obtain, via the ergodic theorem,
the almost everywhere behavior of the total number of non-zero coefficients Nn(f) and of the fine
bit-complexity φ

n
(f). In Section 5 we introduce and discuss two versions for a Farey map, and

we show how to apply the corresponding metric results to recover the statistical study of cost
functions. The Farey map is lastly seen to produce mediant convergents in the continued fraction
expansion in the Appendix (Section 6).
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2. Probabilistic estimates of cost functions via analytic combinatorics

methodology

In this section, we show how to deduce information concerning the probabilistic behavior of
cost functions in the discrete model. Here, we use classical methods in analytic combinatorics.
We first recall in Section 2.1, 2.2 and 2.3 the basic approach used for the study of additive costs,
such as developed e.g. in [6, 13, 21]. Then, Section 2.4 is devoted to the study of some basic costs
defined on polynomials, whereas Section 2.5 and 2.6 analyse the corresponding simple additive
costs related to the execution of the Euclidean algorithm for pairs of polynomials.

2.1. Basic generating functions. Recall that

Ω = {(P,Q) ∈ Fq[X]2 : Qmonic, P = 0 or degP < degQ }.
The size of a pair (P,Q) ∈ Ω is equal by definition to degQ, and the subset Ωm formed by the
elements of Ω of size m (with m ≥ 0) has cardinality |Ωm| = q2m. Then, the generating function
TΩ(z) of Ω is

TΩ(z) :=
�

m≥0

|Ωm|zm =
1

1− q2z
.

As it is well known (see for instance [6], Example IX.15), an element (P,Q) of Ω is uniquely
determined, through Euclid’s algorithm, by the finite sequence of the quotients (A1, · · · , A�) (where
each Ai is of degree at least one), together with its gcd (which is here monic). (If P = 0, then the
sequence (A1, · · · , A�) is empty.) We thus introduce the sets

G = {P ∈ Fq[X] : degP ≥ 1} and U = {P ∈ Fq[X] : P is monic},
where G is the set of possible quotients, and U is the set of possible gcd’s. Euclid’s algorithm thus
provides the following bijection

(4) Ω = Seq(G) · U ,
where Seq(G) stands for the set of finite sequences of elements of G.
The generating functions of the sets G and U are easily determined, namely

U(z) =
1

1− qz
, G(z) = (q − 1)

�
1

1− qz
− 1

�
=

(q − 1)qz

1− qz
.

Note that
1

1−G(z)
=

1− qz

1− q2z
.

We thus check the indentity

(5) TΩ(z) =
1

1−G(z)
· U(z)

which ‘copies’ the bijection (4).

2.2. The general approach. Our general approach follows the main following lines, that are
classical in analytic combinatorics. For more details, see also [6, 13, 21].

Let c be a cost defined on the set G ⊂ Fq[X], and define the following additive cost C relative
to the execution of the Euclidean algorithm on the input (P,Q) ∈ Ω

(6) C(P,Q) :=

L(P,Q)�

i=1

c(Ai),

where Ai = Ai(P,Q) are the quotients and L(P,Q) is the number of steps of Euclid’s algorithm.
We wish to obtain probabilistic estimates for the cost C on the set Ω, for instance evaluate its

expectation Em[C] and its variance Vm[C] on the subset Ωm, or else, determine its asymptotic
distribution on Ωm when m → ∞. Then, we aim at relating the behavior of cost C on Ω to
the behavior of the basic cost c on G. Let us note that, by abuse of notation, we use the same
notation Em[ . ] and Vm[ . ], both for costs c and C defined respectively on Gm and Ωm. It is
natural for instance to compare the expectation Em[C] and its variance Vm[C] on the subset Ωm
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with their counterparts on the subset Gm of G made of the polynomials with degree m, namely
the expectation Em[c] and the variance Vm[c] of the cost c on the subset Gm.

We introduce the bivariate generating functions Sc(z, u), TC(z, u) respectively relative to the
cost c on the set G, and to the cost C on the set Ω. Their general terms are

[zmuk]Sc(z, u) = |{P ∈ G : degP = m and c(P ) = k}| ,

[zmuk]TC(z, u) = |{(P,Q) ∈ Ω : degQ = m and C(P,Q) = k}| .
As the cost C is an additive cost associated with the cost c defined on the set G, we then deduce
from (5) a relation between these generating functions, namely

(7) TC(z, u) =
1

1− Sc(z, u)
· U(z).

We are interested in three costs of type C, namely the cost L, the cost D and the cost N
respectively related to the following costs c equal to

(8) 1, d := 1 + deg, ν.

Section 2.4 provides a simple expression of the generating functions of type Sc associated with these
three costs, then we will handle the costs C = L,C = D,C = N , via their generating functions
of type TC , in Section 2.5 and 2.6, where their asymptotic Gaussian law will be established. But
before handling these cases, we will recall in the next section how to deduce estimates for the
expectation and the variance from the generating functions.

2.3. Cumulative generating functions. We now deal with the cumulative generating functions.
The first one, denoted by S(c)(z), is relative to the cost c on the set G, and the second one, denoted
by T(C)(z), is relative to the cost C on the set Ω. Their general terms are respectively equal to

�

P∈G,
deg P=m

c(P ),
�

(P,Q)∈Ω,
deg Q=m

C(P,Q).

The series S(c)(z), T(C)(z) are obtained by taking the derivative of Sc(z, u), TC(z, u) with respect
to u, at u = 1, i.e.,

(9) S(c)(z) =
∂

∂u
Sc(z, u)|u=1, T(C)(z) =

∂

∂u
TC(z, u)|u=1.

We thus deduce from (7) that

(10) T(C)(z) = S(c)(z) ·
�

1

1−G(z)

�2

· U(z).

The expectations Em[c], Em[C] are now obtained via the extraction of the coefficient of zm in the
generating functions S(c) and T(C), that is,

Em[c] =
[zm]S(c)(z)

(q − 1)qm
, Em[C] =

[zm]T(c)(z)

q2m
.

In the same vein, the series S(c2)(z), T(C2)(z) are related to the second derivative, via the
equalities

(11) S(c2)(z)− S(c)(z) =
∂2

∂2u
Sc(z, u)|u=1, T(C2)(z)− T(C)(z) =

∂2

∂2u
TC(z, u)|u=1.

The expectations Em[c2], Em[C2] are now obtained via the extraction of the coefficient of zm in
the generating functions S(c2) and T(C2).

8



2.4. Costs c on G. We now consider the three costs c defined in (8).

Lemma 1. The generating functions Sc(z, u) for the three costs of interest are

S1(z, u) = uG(z), Sd(z, u) = u G(zu), Sν(z, u) = uG

�
z

�
u
q − 1

q
+

1

q

��
.

The cumulative generating functions are

S(1)(z) = G(z), S(d)(z) = G(z) + zG�(z) S(ν)(z) = G(z) +
q − 1

q
zG�(z).

Proof. Let us recall that [zmuk]Sc(z, u) = |{P ∈ G : degP = m and c(P ) = k}| . The variable u
in S1(z, u) occurs with power 1 for every polynomial of G, which yields S1(z, u) = uG(z). For
the cost d = 1 + deg, one gets Sd(z, u) = uG(zu), where the multiplication of the term G(zu) by
u corresponds to 1, and the mutiplication by u in G(uz) corresponds to the degree. Lastly, for
the cost ν that counts the number of non-zero monomials, the multiplication of the G term by u

corresponds to the leading term (which is non-zero), whereas the multipication of z by
�
u q−1

q + 1
q

�

in the G term takes into account the remaining monomials. Recall that G(z) = (q−1) · ( 1
1−qz −1).

For each polynomial of a given degree, there are (q− 1)/q choices for the non-zero terms, and one
choice over q for the zero terms. �

We then deduce from (9) and (11) the following on Gm:

Em[1] = 1, Em[d] = m+ 1, Em[ν] = 1 +
q − 1

q
·m, Vm[ν] =

q − 1

q2
·m.

Note that these costs are easy to study in a direct way. For instance, the variable ν − 1 is the
sum of m Bernoulli variables of parameter (q− 1)/q, that is, the distribution of ν − 1 is binomial.

2.5. Expectation and variance for costs C on Ω. Here, the costs of interest are of the form

C(P,Q) =

�(P,Q)�

i=1

c(Ai),

and involve the value of the cost c on the quotients Ai = Ai(P,Q) of the Euclidean algorithm.
The following theorem is a direct application of (10) and (11).

Theorem 1. On the set Ωm, the expectation and the variance of the costs L,D,N satisfy

Em[L] = m
�

q−1
q

�
, Vm[L] = m

�
q−1
q2

�

Em[D] = m
�

2q−1
q

�
+O(1), Vm[D] = m

�
q−1
q2

�
+O(1)

Em[N ] = 2m
�

q−1
q

�
+O(1), Vm[N ] = 2m

�
q−1
q2

�
+O(1).

Furthermore, for C ∈ {L,D,N}

(12) Pm

�����
1

m
(C − Em[C])

���� ≥ 1/ε

�
= O

�
ε2

m

�
.

Proof. We deduce (12) from a direct application of Chebyshev inequality. �

2.6. Asymptotic normal laws for costs C on Ω. We follow here Definition 1 of [13].

Definition 3 (Asymptotic Gaussian law). Let R be a cost defined on Ω. The cost R is said to
follow an asymptotic Gaussian law if there exist two sequences of real numbers (am)m, (bm)m, and
a sequence (rm)m of functions rm : R → R, with limm→∞ sup{rm(y) : y ∈ R} = 0, for which

Pm

�
(P,Q) ∈ Ωm :

R(P,Q)− am√
bm

≤ y

�
=

1√
2π

� y

−∞

e−t2/2dt+ rm(y).

The expectation Em[R] and the variance Vm[R] then satisfy

Em[R] ∼ am, Vm[R] ∼ bm.

9



Theorem 2. The three costs L,D,N follow an asymptotically Gaussian law on Ω.

Proof. We consider here a cost C ∈ {L,D,N}. The expectation of the random variable uC (for u
a complex number close to 1) on the set Ωm satisfies

Em[uC ] =
[zm]TC(z, u)

[zm]TC(z, 1)
=

1

q2m
[zm]TC(z, u) with TC(z, u) =

U(z)

1− Sc(z, u)
.

By Lemma 1, we know that, for any of the three costs c, the generating function Sc(z, u) is always
of the form Sc(z, u) = uG(zρ), with

ρ = 1 (for c = 1), ρ = u (for c = d = 1 + deg), ρ = u · q − 1

q
+

1

q
(for c = ν).

One then checks that TC(z, u) can be written in the form

TC(z, u) =
U(z)

1− uG(zρ)
=

1− qzρ

(1− qz) (1− qzρ(u(q − 1) + 1))
.

Then, in each case, as a function of the variable z, the generating function TC(z, u) has two poles,
namely

zc =
1

qρ(u(q − 1) + 1)
, and z =

1

q
.

When u is close to 1, the first pole zc (which depends on the cost c via the value of ρ) is close to
1/q2: it is thus the dominant one, and

[zm]TC(z, u) = (qρ(u(q − 1) + 1))
m ·

�
1− qzcρ

1− qzc

�
· (1 +O ((qzc)

m)) .

Then, uniformly on a complex neighborhood of u = 1, one has

Em[uC ] = Ac(u) ·Bc(u)
m

�
1 +O

�
1

κm
c

��

where A(u), B(u) are analytic at u = 1, and

Bc(u) = ρ

�
u
q − 1

q
+

1

q

�
, κc ∼

1

q
.

It remains to apply the quasi-power theorem (see [10] and Theorem IX-8 in [6]) which gives a
central limit theorem with speed of convergence for random variables whose moment generating
function has a ‘quasi-power’ structure. It thus applies to each random variable C provided that the
coefficient of the variance Vm[C] is not zero, which is true for the three cases under consideration.

�

3. Study of the fine-bit complexity in the discrete model

3.1. Expectation and variance of the fine bit-complexity. Now we consider the average
and the variance of the fine bit-complexity.

Theorem 3. On the set Ωm, the expectation and the variance of the fine complexity φ satisfy

Em[φ] =

�
q − 1

q

�
·m2 +O(m) Vm[φ] =

2

3

�
q − 1

q2

�
·m3 +O(m2).

Furthermore

(13) Pm

�����
1

m2
φ− q − 1

q

���� ≥ 1/ε

�
= O

�
ε2

m

�
.

The same estimates hold for the fine complexity φ.

We recall the similar results which have been previously obtained in [13] for the classical bit
complexity B

Em[B] =

�
2q − 1

2q

�
·m2 +O(m) Vm[B] =

�
q − 1

3q2

�
·m3 +O(m2).

10



Proof. Remark first that the estimates of Theorem 3 also hold for φ and for φ since the two
fractions

1

A1

+
1

A2

+ · · ·+ 1

A�

and
1

A�

+
1

A2

+ · · ·+ 1

A1

have the same denominator.
For a general additive cost C (associated with the cost c as in (6)), we can adopt a viewpoint

that is different from the one developed in Section 2, first in order to recover (10).
We first fix a length L, that is, we work with finite sequences of L quotients in GL. We consider

the cost Ci := c(Ai), defined on the set GL, for a given i with 1 ≤ i ≤ L. The cumulative
generating function of the cost Ci on the class Ω[L] := GL × U is

Gi−1(z) · S(c)(z) ·GL−i(z) · U(z),

by recalling that S(c)(z) is the cumulative generating function of cost c on the set G. Finally, the
cumulative generating function T(C)(z) of the cost C on the class Ω is obtained by taking the sum
over all the indices (i, L) with i ≤ L, which yields

(14) T(C)(z) =
1

1−G(z)
· S(c)(z) ·

1

1−G(z)
· U(z),

and we recover (10). This will be the viewpoint we now adopt in the present proof.
Recall that

φ(P,Q) =

L(P,Q)�

i=1

ν(Ai) · (1 + degRi), degRi =

L(P,Q)�

j=i+1

degAj + deg gcd(P,Q).

For a given integer i with 1 ≤ i ≤ L, the generating function of the cost ν(Ai) · u1+degRi on
the class GL × U is as previously (compare with (14))

Gi−1(z) · S(ν)(z) · u ·GL−i(uz) · U(uz).

Then, the generating function of the cost

L(P,Q)�

i=1

ν(Ai) · u1+degRi

on the class Ω is obtained by taking the sum over all the indices (i, L) with 1 ≤ i ≤ L, which
yields

1

1−G(z)
· S(ν)(z) · u ·

�
1

1−G(uz)

�
· U(uz).

Finally, the cumulative generating function T(φ)(z) of the cost φ on Ω is obtained by taking the
derivative with respect to u at u = 1, which yields

Em[φ] =
1

q2m
[zm]T(φ)(z) =

q − 1

q
·m2 +

q − 2

q
·m+O(1).

For the variance, we follow an extension of the previous approach which is proposed for instance
in [13, 21] in the framework of the study of additive costs associated with Euclidean algorithms
for integers, when handling the expectation Em[φ2] in order to produce an estimate concerning
the variance. The cost φ2 is written as

φ2 = 2
�

i<j≤L

ν(Ai)(1 + degRi) · ν(Aj)(1 + degRj) +
�

i≤L

ν(Ai)
2(1 + degRi)

2.

We will distinguish two cases, namely pairs i < j, then pairs i = j.
11



Non-diagonal terms. We first fix a length L and consider for any pair i < j ≤ L an intermediate
cost of the form

ν(Ai) · u1+degRi · ν(Aj) · v1+degRj ,

whose generating function on the class Ω[L] = GL × U is equal to

Gi−1(z) · S(ν)(z) · u ·Gj−i−1(uz) · S(ν)(uz) · v ·GL−j(uvz) · U(uvz).

Taking the sum over all the indices (i, j, L) with 1 ≤ i < j ≤ L gives

1

1−G(z)
· S(ν)(z) ·

u

1−G(uz)
· S(ν)(uz) ·

v

1−G(uvz)
· U(uvz).

Then, the cumulative generating function of the part of the cost φ2 relative to the pairs i �= j
is obtained by taking the derivative with respect to u and v at u = 1 and v = 1, and then by
multiplying by 2. Its general term in [zm] satisfies

(q − 1)2

q2
· q2mm4 +

2

3q2
(q − 6)(q − 1) ·m3q2m +O(m2).

Diagonal terms. For the diagonal pairs i = j, we consider the cost ν2(Ai) · u1+degRi on the class
Ω[L], for 1 ≤ i ≤ L, and we take the sum over all the pairs (i, L) with i ≤ L, that is,

1

1−G(z)
· S(ν2)(z) · u · 1

1−G(uz)
· U(uz).

Then, the cumulative generating function of the part of the cost φ2 relative to the pairs i = j
is obtained by taking the sum of the first derivative and the second derivative of the previous
expression with respect to u at u = 1, and its general term in [zm] satisfies

2

3q2
(2q + 1)(q − 1) ·m3q2m +O(m2q2m).

We deduce that

Vm[φ] =
2(q − 1)

3q2
·m3 +O(m2).

Lastly, (13) is a direct consequence of Chebyshev inequality.
�

3.2. Asymptotic Gaussian law for the total fine complexity. The asymptotic normal laws
for costs φ or φ seem to be more difficult to obtain. Nevertheless the total fine complexity φ+ φ
can be proven to be asymptotically Gaussian.

Theorem 4. On the set Ω, the cost φ+ φ is asymptotically Gaussian.

We will prove below that the cost φ+φ decomposes as the sum of several costs. The main part
will be provided by the cost X := N(P,Q) · degQ, which is asymptotically Gaussian, according
to Theorem 2. We then will prove that the other terms are asymptotically more concentrated,
that is, their respective variances are negligible with respect to the variance of X. The proof of
Theorem 4 then relies on the following result.

Proposition 1. [13] Two costs X,Z defined on Ω are said to be variance equivalent with order
1/n if Vn[X −Z] = 1/n · (Vn[X]) when n tends to ∞. We assume furthermore that X admits an
asymptotic Gaussian law. Then Z admits also an asymptotic Gaussian law with a variance that
satisfies

Vn[Z] = Vn[X] · (1 +O(
�
1/n)).

Proof. Let us prove now Theorem 4. One has, according to Definition 1,

(φ+ φ)(P,Q) =

�−1�

k=1

ν(Ak) · (2 + degQk−1 + degRk) + ν(A�)(1 + degR�),

12



with � = L(P,Q). Consequently

(φ+ φ)(P,Q) =

��

k=1

ν(Ak) · (2 + degQk−1 + degRk)− ν(A�)(1 + degQ�−1).

The equality degQk−1 + degRk = degQ− degAk entails the relation

(φ+ φ)(P,Q) = N(P,Q) · degQ+ 2N(P,Q)−
��

k=1

ν(Ak) · degAk − ν(A�)(1 + degQ�−1).

The conclusion of the theorem follows from Proposition 1 applied to X = N(P,Q) · degQ by
noticing that Vm[N(P,Q) · degQ] = Ω(m3), and then successively to the terms of

Z −X = 2N(P,Q)−
��

k=1

ν(Ak) · degAk − ν(A�)(1 + degQ�−1),

by proving that their respective variance is in O(m2) (or even in O(m)).

• We first consider the main term which corresponds to the cost X = N(P,Q) · degQ. The
variance of X is equal to m2Vm(N), that is, by Theorem 1

Vm(X) = m2 · Vm[N ] = m3 · 2(q − 1)/q2 +O(m2).

Furthermore, the asymptotic Gaussian law holds for N (Theorem 2), which implies the
asymptotic Gaussian law for X.

• We recall from Theorem 1 that Vm[N ] = O(m).
• We then consider the additive cost associated with the cost ν(A) ·degA. By noticing that
ν(A) · degA ≤ (1 + degA)2, we get

Vm

���
k=1 ν(Ak) · degAk

�
≤ Em

��
i,j≤� ν(Ai) · degAi · ν(Aj) · degAj

�

≤ Em

��
i,j≤� (1 + degAi)

2 · (1 + degAj)
2
�

= 2Em

��
i<j≤� (1 + degAi)

2 · (1 + degAj)
2
�
+

+Em

��
i≤�(1 + degAi)

4
�
.

Similarly as in the proof of Theorem 3, if we fix a length � ≥ 1, the generating function
corresponding to the pairs i �= j is

Gi−1 · S(d2)(z) ·Gj−i−1 · S(d2)(z) ·G�−j · U(z).

Taking the sum overall the indices 1 ≤ i < j ≤ � yields the generating function
�

1

1−G(z)

�3

· (S(d2)(z))
2 · U(z).

Similarly, the cumulative generating function corresponding to the diagonal pairs i = j
is �

1

1−G(z)

�2

· S(d4)(z) · U(z).

In the first case, the expectation is in O(m2), and in the second case, it is in O(m).
• Finally, it remains to consider the cost = ν(Al)(1 + degQl−1). One has

Vm[ν(A�)(1 + degQl−1)] ≤ Em

�
(ν(Al)(1 + degQl−1))

2
�
≤ m2 · Em[ν2(A�)].

Similarly as in the proof of Theorem 3, if we fix a length � ≥ 1, the generating function of
the cost ν2(A�) is

G�−1 · S(ν2)(z) · U(z).

Taking the sum over � ≥ 1 yields the generating function

1

1−G(z)
· S(ν2)(z) · U(z),
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wich provides Em[ν2(A�)] = O(1) and Vm[ν(A�)(1 + degQ�−1)] = O(m2).

�

4. Study of the main cost functions of interest in the continuous model

We now consider the continuous model, that is, L endowed with the Haar measure µL, together
with the costs Nn and φn related to truncated trajectories Tn(f) under the action of the Gauss
map, with

Tn(f) = (f, T (f), · · · , Tn(f)).
In particular, we are interested in the behavior of the random variable ν that counts the number
of non-zero coefficients in partial quotients.

4.1. The Gauss map and the topology of the set L. We first need preliminary results
concerning the behavior of the Gauss map with respect to cylinders (see Definition 4 below).
These results will also be used in Section 5.3.

Recall that, for f ∈ Fq((X
−1)), the degree is equal to the opposite of the valuation of the series

f , namely,

deg f = −m if and only if f = bmX−m

�
1 +

1

X
· g

�
with b−m �= 0, deg g ≤ 0.

We also recall that the notation L stands for the subset of Fq((X
−1)) formed with elements f with

deg f < 0, and, for m ≥ 1, we set

Lm := {f ∈ L : deg f = −m}.

We now want to get a simple expression of the Gauss map T : L → L, f �→ 1
f −

�
1
f

�
([·] stands

for the polynomial part for formal power series) (see Proposition 2 below). For that purpose, we
introduce the following notation.

We fix � ≥ 1. For an element f ∈ Fq((X
−1)), let π = (π0, π1, . . . π�−1) be the element of

F�
q which defines, together with the dominant coefficient γ(f), the ‘beginning’ of f (of length �)

formed with the part of f with indices −k ∈ [deg f, deg f + �]. Note that π depends on f and �.
More precisely, if m = − deg f (m ≥ 1), then f can be written in the form

(15) f = γ(f)X−m

�
1 +

1

X
· π

�
1

X

��
+X−(m+�+1)g, deg g ≤ 0,

where π is the polynomial of degree at most �− 1 related to π,

π(X) = π0 + π1X + . . . π�−1X
�−1.

When f decomposes as in (15), its inverse 1/f satisfies

1

f
=

Xm

γ(f)




1

1 +
1

X
· π

�
1

X

�


+Xm−�−1h, with deg h ≤ 0.

Then the ‘beginning part’ of 1/f formed with its terms of index k ∈ [m,m − �] only involves
the powers πk of the polynomial π, with exponents k ≤ �, and more precisely the polynomials
π[k] := πk mod X�−k, i.e.,

1

f
=

Xm

γ(f)

�
1 +

��

k=1

(−1)kX−k · π[k](1/X)

�
+Xm−�−1h.

Note that the beginning part of 1/f formed with the terms with power k ∈ [m,m−�] only depends
on the pair (γ(f), π(f)). Hence, with π ∈ F�

q, we associate θ ∈ F�
q via its polynomial θ, which is

itself defined as

Xθ(X) =

��

k=1

(−1)k Xk · π[k](X).

14



For each �, the map

ψ : F�
q → F�

q, π �→ θ

defines an involutive bijection of F�
q onto itself. In particular, one has ψ(0�) = 0�.

There is a precise relation between the polynomial [1/f ] and the sequence π defined in (15) for
� = m = − deg f . When f decomposes as in (15), the integer part [1/f ] is completely defined by
the sequence ψ(π), namely,

�
1

f

�
=

Xm

γ(f)

�
1 +

�
1

X

�
ψ(π)

�
1

X

��
.

Definition 4 (Cylinders). For a ∈ F�
q , and for a sequence π ∈ F�

q, we consider the cylinder
E[−m,a,π] which gathers the elements f ∈ Lm which are written as in (15), with γ(f) = a.

The set Lm is the union of all the cylinders E[−m,a,π], when a varies in F�
q , π describes the set

F�
q, and � takes all values larger than or equal to 1. Moreover the measure of each cylinder is equal

to q−(m+�), and the measure of Lm equals (q − 1)q−m.

Proposition 2. For each m ≥ 1, the mapping defined on Lm with values in F�
q × Fm

q which
associates with f the polynomial [1/f ] is a surjection which is constant on each cylinder E[−m,a,π]

with π ∈ Fm
q and a ∈ F�

q .

Proof. It is a direct consequence of the equivalence

(16) f ∈ E[−m,a,π] ⇐⇒ 1

f
∈ E[m,1/a,ψ(π)].

�

4.2. Study of cost Nn. The cost Nn is defined as Nn(f) =
�n

k=1 ν
��

1
Tk−1(f)

��
. If we now define

ν on L by

(17) ν(f) := ν([1/f ]),

the cost Nn is defined as

Nn(f) =

n�

k=1

ν(T k−1f),

and this is just the total cost of the truncated trajectory Tn(f) = {f, T (f), · · · , Tn(f)} related to
the basic cost ν.

Theorem 5. For µL-a.e. f , one has

lim
n→∞

1

n
Nn(f) = 2, lim

n→∞

1

n
degQn(f) =

q

q − 1
, lim

n→∞

Nn

degQn
(f) = 2 · q − 1

q
.

Proof. With Proposition 2, and for each m ≥ 1, the distribution of ν − 1 on Lm is the same as
the distribution of ν on Fm

q which is a binomial distribution. In particular the expectation of ν
on Fm

q equals m(q − 1)/q. Then, the expectations of ν − 1 and ν on L satisfy

E[ν − 1] =
�

m≥1

q − 1

qm
m
q − 1

q
= 1, E[ν] = 2.

Remark that the expectation of − deg on L equals (see also [2])

E[− deg] =
�

m≥1

q − 1

qm
m =

q − 1

q
.

Then the ergodic theorem applied to the two functions ν − 1 and deg yields the result.
�
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4.3. Fine bit-complexity. We now consider the fine bit complexity φn relative to the computa-
tion of the n-th convergent of an element of L defined as

φ
n
(f) =

n�

k=1

ν(Ak) · (1 + degQk−1).

It can also be expressed with the degrees of the quotient Aj as

φ
n
(f) =

n�

k=1

ν(Ak) ·


1 +

k−1�

j=1

degAj


 =

n�

k=1

ν(Ak) +

n�

k=1

ν(Ak)

k−1�

j=1

degAj .

Then, we apply the following result:

Proposition 3. Let (Vn) and (Wn) be stationary and ergodic sequences of non-negative valued
random variables on a probability space (Ω,F , P ) with finite expectations µV and µW , respectively.
For P -a.e. ω ∈ Ω, we have

lim
N→∞

1

N2

N�

k=1

Vk

N�

j=k+1

Wj =
1

2
µV µW .

Proof. Let us fix ε > 0. From the individual ergodic theorem, there exists a positive integer M0

such that for any integer M ≥ M0, the following holds:
�����
1

M

M�

i=1

Vi − µV

����� < ε,

�����
1

M

M�

i=1

Wi − µW

����� < ε.

Let N ≥ M0 be a positive integer. One has

N�

t=1

Vt

t�

s=1

Ws =

M0−1�

t=1

Vt

t�

s=1

Ws +

N�

t=M0

Vt

t�

s=1

Ws.

We take now N large enough (with N ≥ M0) for

(18)

�����
1

N

M0−1�

t=1

Vt

����� ≤ ε and

�����
1

N2

M0−1�

t=1

Vt

t�

s=1

Ws

����� ≤ ε.

For t ≥ M0, one has

t (µW − ε) ≤
t�

s=1

Ws ≤ t (µW + ε).

Since the random variables take non-negative values, one gets

(19) (
N�

t=M0

tVt)(µW − ε) ≤
N�

t=M0

Vt

t�

s=1

Ws ≤ (
N�

t=M0

tVt)(µW + ε).

By applying Abel’s transform, one gets

N�

t=1

tVt = N(

N�

t=1

Vt)−
N−1�

t=1

t�

s=1

Vs.

One has

N(µv − ε) ≤
N�

t=1

Vt ≤ N(µv + ε).

We also take N large enough (with N ≥ M0) for

0 ≤
M0−1�

t=1

t�

s=0

Vs ≤ N2ε and 0 ≤
M0−1�

t=1

tVt ≤ N2ε.
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Hence we get

(N − 1)2 −M2
0

2
(µv − ε) ≤

N−1�

t=M0

t�

s=1

Vs ≤
N−1�

t=1

t�

s=1

Vs ≤
N(N − 1)

2
(µv + ε)−N2ε.

This yields that

N2ε− (N − 1)2 −M2
0

2
(µv + ε) +N2(µv − ε) ≤

N�

t=1

tVt ≤ N2(µv + ε)− (N − 1)2 −M2
0

2
(µv − ε).

Since
�N

t=1 tVt −N2ε ≤ �N
t=M0

tVt ≤
�N

t=1 tVt, this yields, together with (18) and (19), that

lim
N→∞

1

N2

N�

t=1

Vk

t�

s=1

Ws =
1

2
µV µW .

We then conclude by noticing that

lim
N→∞

1

N2

N�

k=1

Vk

k�

j=1

Wj + lim
N→∞

1

N2

N�

k=1

Vk

N�

j=k+1

Wj = lim
N→∞

1

N2

�
N�

k=1

Vk

�


N�

j=1

Wj


 = µWµV .

. �

Applying Proposition 3 to the sequences Vk = ν(Ak) (of non-zero coefficients of An) and
Wk = degAk with respective expectations 2 and q/q − 1 (by Theorem 5) leads to the result:

Theorem 6. For µL-a.e. f ∈ L, we have

lim
n→∞

1

n2
φ
n
(f) =

q

q − 1
, lim

n→∞

1

(degQn(f))2
· φ

n
(f) =

q − 1

q
.

This result has to be compared to Theorem 3 to confirm the parallelism of the results in the
discrete model and in the continuous one. The following corollary is deduced from the fact that
a.e. convergence implies convergence in probability:

Corollary 1. For any ε > 0 and η > 0, there exists a positive integer n0 such that for any n ≥ n0

we have

µL{f ∈ L :

����
1

(degQn(f))2
· φ

n
(f)− q − 1

q

���� > ε} < η.

The previous results confirm the analogy between the behavior of generic truncated trajectories
and rational trajectories. Furthermore, we can also consider the costs applied to the pair of

polynomials (Pn, Qn). More precisely, for f ∈ L, let �Pn := Pn

γ(Pn)
and �Qn := Qn

γ(Qn)
for n ≥ 1. We

have �Qn monic and (�Pn, �Qn) ∈ Ωm with deg(�Qn) = m. One has

φ(�Pn, �Qn) = φn(f).

One proves similarly as previously the following results concerning φ(�Pn, �Qn) by noticing that �Pn

and �Qn are coprime.

Theorem 7. For µL-a.e. f ∈ L, we have

lim
n→∞

1

n2
φ(�Pn, �Qn) =

q

q − 1
, limn→∞

1

(degQn(f))2
· φ(�Pn, �Qn) =

q − 1

q
.

Corollary 2. For any ε > 0 and η > 0, there exists a positive integer n0 such that for any n ≥ n0

we have

µ

�
{f ∈ L :

����
1

(degQn(f))2
· φ(�Pn, �Qn)−

q − 1

q

���� > ε}
�

< 1− η.
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Remark 2. The analogy between the discrete and the continuous models can also be illustrated
as follows. For any fixed polynomial A in G and for any fixed i ≥ 1, one has

1

q2m
· |{(P,Q) ∈ Ωm : Ai(P,Q) = A}| →m→∞ µL({f ∈ L : Ai(f) = A}),

that is, for a.e. f ∈ L,
Ai(f) = lim

m→∞
Pm[Ai(P,Q) = A].

Indeed, {f ∈ L : Ai(f) = A} = T−i+1({f ∈ L : A1(f) = A}). By T -invariance of the Haar
measure, one has µL(T

−i+1({f ∈ L : A1(f) = A})) = q2 deg(A). Now, we take the cost ci,A
defined on Ω as follows: ci,A(P,Q) = 1 if and only if Ai(P,Q) = A. The corresponding cumulative
generating function is

1

1−G(z)
· zdeg(A) · U(z) = TΩ(z) · zdeg(A),

which yields that Em[ci,A] =
1

q2m · |{(P,Q) ∈ Ωm : Ai(P,Q) = A}| = 1
q2 deg(A) .

5. Farey maps

The aim of this section is to relate the function ν with a Farey type algorithm: this algorithm
can be considered as a refinement of the continued fraction algorithm; it discovers step by step
each non-zero monomial of partial quotients; its number of steps is thus closely related to the
parameter ν. More precisely, we will consider two Farey algorithms (see Section 5.2 and 5.3)
because of the particular role played by the constant term of polynomial terms.

5.1. General Farey maps. In the number case (see e.g. [5]), the Farey map is defined on the
unit interval as

FR(x) =





x

1− x
0 ≤ x ≤ 1

2

1− x

x
1
2 < x ≤ 1.

It satisfies FR[0, 1/2] = FR(1/2, 1] = [0, 1]: the map FR is complete on each of its two branches.
If we denote, for x ∈ (0, 1), by t(x) the first time where x leaves the interval ( 12 , 1] to enter the
interval [0, 1/2], namely

t(x) = min{n ≥ 1 : Fn−1
R

(x) ∈ (
1

2
, 1]},

we obtain

F
t(x)
R

(x) =
1

x
−
�
1

x

�

which is the Gauss map (in the number case). Furthermore, the equality j(x) = [1/x] holds, and
shows that the number of steps j(x) performed by FR is equal to the partial quotient [1/x]: the
Farey map FR goes [1/x]− 1 times through the first branch defined on [0, 1/2], and goes through
the second branch only during the last step.

There are two possibilities for defining a Farey map on Fq((X
−1)) according to the way the

constant term of the polynomial [1/f ] is handled (see Section 5.2 and 5.3 below for more details).
Note that the set L on which the Gauss map T is naturally defined does not contain series with
non-zero constant terms. We thus will work with the two following subsets of Fq((X

−1))

J = {f ∈ Fq((X
−1)) : deg f ≤ 0}, L = {f ∈ Fq((X

−1)) : deg f < 0}
with their respective normalized Haar measures µJ and µL (both sets are compact abelian groups
with respect to the addition law ‘+’) which are related by

µL(A) = q · µJ(A)

for any Borel subset A of L. Their difference set J \ L is the subset J(0) defined as

J(0) = {f ∈ Fq((X
−1)) : deg f = 0}

which is of positive measure in J.
18



Remark 3. The situation is different in the real case, since the counterparts of J, namely the
interval [0, 1], and of L, the interval [0, 1), differ from a subset of zero measure. Here, the Gauss
map T could be defined on J, but T (J) = L. This is one of the reasons that makes us work with
J and L.

5.2. Farey map on J. We first define a map FJ, defined on J, which handles constant monomials
as other monomials, and that thus counts them. As its real counterpart FR, it has two branches,
defined on two subsets denoted as J1 and J2: the choice of the branch depends on whether the
number ν(f) = µ([1/f ]) of non-zero monomials which remain to be computed in the polynomial
[1/f ] is yet larger than 1, or equal to 1.

We use here the notation of Section 4.1. The Farey map FJ discovers the monomials of [1/f ]
one by one. The first one is the monomial (1/γ(f))X− deg f , and when we subtract this monomial
to 1/f , we obtain the series

(20) G(f) =
1

f
− X− deg f

γ(f)
,

with γ(f) being the dominant coefficient of f , and there are two possibilities for degG(f). Indeed,
if degG(f) ≥ 0, the quotient [1/f ] is not completely computed, and we continue the computation
with 1/G(f). In this case, the quotient [1/f ] contains at least two monomials, and thus ν(f) ≥ 2.
Otherwise, if degG(f) < 0, the quotient [1/f ] is complete; this means that ν(f) = 1, and we apply
the map T for computing the following quotient. We thus let:

J1 := {f ∈ J : ν(f) ≥ 2} = {f ∈ J : degG(f) ≥ 0}

J2 := {f ∈ J : ν(f) = 1} = {f ∈ J : degG(f) < 0}

F (f) =





1

G(f)
if degG(f) ≥ 0

1

f
−
�
1

f

�
if degG(f) < 0.

Proposition 4. Let f ∈ J. We set

t(f) = min
�
i ≥ 1 : F i−1

J
(f) ∈ J2

�

the first time when the trajectory of f under the map F leaves the set J1 to enter the set J2. Then,
t(f) equals the number of non-zero monomials contained in the polynomial [1/f ].

5.3. Farey map on L. The relation

F
t(f)
J

(f) = T (f) =
1

f
−
�
1

f

�
,

together with the fact that T is Haar measure preserving (i.e., µL-invariant), prove that FJ has
an absolutely continuous invariant measure with respect to µJ, which is ergodic. This measure
will be denoted as �µJ . Indeed, this follows from the fact that an invariant measure for a jump
transformation gives an invariant measure for the original transformation, and the ergodicity of
these two transformations are equivalent to each other (see [16]). However, this measure is not
equal to µJ since

µJ(J
(0)) =

q − 1

q
, F−1

J
(J(0)) � L, and µJ(L) =

1

q
.

The map FJ is thus not µJ-preserving. In order to give an explicit expression for the ergodic
absolutely continuous invariant measure �µFJ

for FJ (see Theorem 2 below), we now introduce the
induced map of FJ on L, denoted as FL, for which µL will be proved to be invariant (see Proposition
5). This will lead us to consider the constant term of the partial quotient in a separate way. Let
us recall that that we have initially defined the map F on the set J (and not on its subset L)
because of the need to deal with the constant term (of zero degree) when producing in an additive
way the monomials of [1/f ].
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We now define another Farey map FL on the set L as follows

FL(f) =





1

G(f)
if degG(f) > 0

1

f
−
�
1

f

�
if degG(f) ≤ 0.

Then,

FL(f) =





FJ(f) if FJ(f) ∈ L

F 2
J
(f) if FJ(f) ∈ J(0).

One checks that FL is the induced transformation of FJ to L. Indeed, if FJ(f) ∈ J(0), with f ∈ L,
this implies that FJ(f) ∈ J2, and F 2

J
(f) = T (f) ∈ L.

As in the previous section, we then relate this map to the number �ν(f) of non-constant mono-
mials in [1/f ] (the difference between �ν(f) and ν(f) is that �ν(f) does not take into account the
constant term of [1/f ]). One has degG(f) ≤ 0 if and only if there exists b in Fq such that
[1/f ] = X− deg f + b. This means �ν(f) = 1. We then set

L1 := {f ∈ L : degG(f) > 0} = {f ∈ L : �ν(f) ≥ 2},

L2 := {f ∈ L : degG(f) ≤ 0} = {f ∈ L : �ν(f) = 1},

F1,L(f) = FL(f) =
1

G(f)
for f ∈ L1, F2,L(f) = FL(f) =

1

f
−
�
1

f

�
for f ∈ L2.

The map FL is now related to �ν(f). We have also:

L2 =
�

i≥1

�

a∈F∗
q

�

b∈Fq

{f ∈ L : [1/f ] = aXi + b}.

Proposition 5. The map FL is µL-preserving.

To prove this proposition, we need Lemma 2 and 3 below which deal respectively with the two
possible types of preimage of a given cylinder set (see Definition 4). We use here the notation of
Section 4.1.

Lemma 2. The measure of the inverse transform of any cylinder E[−k,a,π] (with k ≥ 0) by the
first branch F1,L satisfies

µL(F
−1
1,L(E[−k,a,π])) =

1

q + 1
· µL(E[−k,a,π]), for k ≥ 1,

µL(F
−1
1,L(E[0,a,π])) =

q

q + 1
· µJ(E[0,a,π]).

Proof. Observe first that, here, E[−k,a,π] is a cylinder of L or of J(0), according to the value k.

Let f ∈ Lm with γ(f) = b and 1/G(f) ∈ E[−k,a,π], with k ≥ 0 and π ∈ F�
q. Then, by (16),

G(f) ∈ E[k,1/a,ρ] with ρ = ψ(π), the inequality m ≥ k + 1 holds and

1

f
=

Xm

γ(f)
+G(f) =

Xm

b
+

1

a
Xk

�
1 +

�
1

X

�
ρ

�
1

X

��
+X−(k+�+1)g, deg g ≤ 0

=
Xm

b

�
1 +

b

a

�
1

X

��
1

X

�m−k−1 �
1 +

�
1

X

�
ρ

�
1

X

���
+X−(k+�+1)g.

If we define the sequence θ via its polynomial θ defined as

θ(X) =
b

a
Xm−k−1

�
1 +Xρ(X)

�
,
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the sequence θ depends on ρ (and then on π) together with (m, b) and it belongs to Fm−k+�
q .

Furthermore, 1/f belongs to the cylinder E[m,b,θ] and f belongs to the cylinder E[−m,1/b,ψ−1(θ)].
Finally, we have proven that

F−1
1,L(E[−k,a,π]) =

�

b∈F�
q

∞�

m=k+1

E[m,b,ψ−1(θ)]

is a disjoint union of cylinders where the polynomials ψ−1(θ) are of degree m − k − 1 + �. Since
there are q − 1 possible choices for b ∈ Fq, we deduce that

µL

�
F−1
1,L(E[−k,a,π])

�
= (q − 1)

∞�

i=1

1

qk+2i+�
=

q − 1

qk+�
· 1

q2 − 1
=

1

q + 1
· 1

qk+�

which yields the assertion of the lemma. �

Remark 4. For any pair (a,π), the equalityF−1
L

(E[0,a,π]) = F−1
1,L(E[0,aπ]) holds.

Lemma 3. For k ≥ 1, the measure of the inverse transform of any cylinder E[−k,a,π] by the first
branch F2,L satisfies

µL(F
−1
2,L(E[−k,c,π])) =

q

q + 1
· µL(E[−k,c,π]).

Proof. Recall that, in this case, there exist i ≥ 1, a, b ∈ Fq with a �= 0 such that [1/f ] = aXi + b.
Let us fix a ∈ F�

q , b ∈ Fq and i ≥ 1. Then

1

f
= (aXi + b) +

X−k

c

�
1 +

�
1

X

�
π

�
1

X

��
+X−(k+�+1)g, deg g ≤ 0

= aXi

�
1 +

�
1

X

��
b

a

�
1

X

�i−1

+
1

ac

�
1

X

�k+i−1 �
1 +

�
1

X

�
π

�
1

X

����
+X−(k+�+1)g.

If we define the sequence θ via its polynomiall θ as

θ(X) =
b

a
Xi−1 +

1

ca
Xk+i−1 (1 +Xπ(X)) ,

the sequence θ depends on (c,π) together with (i, a, b) and belongs to Fk+i+�
q . Moreover, when

(c,π, i) is fixed, the sequences θ associated with different values of the pair (a, b) are distinct.
Furthermore, 1/f belongs to the cylinder E[i,a,θ] and f belongs to the cylinder E[−i,1/a,ψ(θ)]. We
thus have

F−1
2,L(E[−k,a;π]) =

�

a∈F�q ,

b∈Fq

∞�

i=1

E[−i,1/a,ψ−1(θ)].

This is a disjoint union. Since there are q − 1 possible choices for a and q possibilities for b, we
deduce that

µL

�
F−1
2,L(E[−k,c,π])

�
= q(q − 1)

∞�

i=1

1

qk+2i+�
=

q(q − 1)

qk+�
· 1

q2 − 1
=

q(q − 1)

q2 − 1
µL(E[−k,c,π])

which yields the assertion of the lemma. �

Proof. Let us prove Proposition 5. It is enough to show that

µL(F
−1
L

(E[k,a,π])) = µL(E[k,a,π])

for any cylinder set E[k,a,π] of L. According to Lemma 2 and Lemma 3, we get

µL(F
−1
L

(E[k,a,π])) =
1

q + 1
µL(E[k,a,π]) +

q

q + 1
µL(E[k,a,π]) = µL(E[k,a,π]),

which shows the assertion of Proposition 5. �
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5.4. Metric theory of the Farey map FJ. So far, we have obtained the invariant measure for
the induced map FL. We now want to give an explicit expression for the invariant measure of FJ.

Remark 5. One has F−1
J

A = F−1
L

A for any Borel subset A of J(0). Lemma 2 implies

µL(F
−1
J

A) = q · µJ(A) · 1

q + 1

for any Borel subset A of J(0). In particular, we see that

µL(F
−1
J

J(0)) =
q

q + 1
· µJ(J

(0)) =
q

q + 1

q − 1

q
=

q − 1

q + 1
.

Theorem 8. Let �µJ be the measure defined on J by

�µJ(A) =
q + 1

2q

�
µL(A ∩ L) +

q

q + 1
µJ(A ∩ J(0))

�

for any Borel subset A of J. The measure �µJ is an invariant probability measure for FJ. Further-
more, it is finite and the map FJ is ergodic w.r.t. �µFJ

. In particular, �µJ(J2) = 1/2.

Proof. Obviously q+1
2q is the normalizing constant. Indeed one checks that

�µJ(J) = µL(L) +
q

q + 1
µJ(J

(0)) = 1 +
q

q + 1

q − 1

q
=

2q

q + 1
.

It is thus enough to show that

µL(F
−1
J

A ∩ L) +
q

q + 1
µJ(F

−1
J

A ∩ J(0)) = µL(A ∩ L) +
q

q + 1
µJ(A ∩ J(0))

for any Borel subset A of J.
Assume first A ⊂ J(0). One has F−1

J
A = F−1

1,J A ⊂ L. Furthermore, F−1
J

A = F−1
L

A (since

A ⊂ J(0)). According to Remark 5, one gets µL(F
−1
J

A) = q · µJ(A) · 1
q+1 . Hence

µL(F
−1
J

A∩L)+
q

q + 1
µJ(F

−1
J

A∩J(0)) = µL(F
−1
J

A) =
q

q + 1
µJ(A) = µL(A∩L)+

q

q + 1
µJ(A∩J(0)).

Suppose now that A ⊂ L. In this case, we have, according to Remark 5

µL(F
−1
J

A ∩ L) +
q

q + 1
µJ(F

−1
J

A ∩ J(0))

= µL(F
−1
J

A ∩ L) + µL(F
−1
J

(F−1
J

A ∩ J(0)))

= µL(F
−1
J

A ∩ L) + µL(F
−2
J

A ∩ F−1
J

J(0))

Since (F−1
J

A ∩ L) ∩ F−1
J

J(0) = ∅, we have

µL(F
−1
J

A ∩ L) + µL(F
−2
J

A ∩ F−1
J

J(0)) = µL(F
−1
L

A) = µL(A)

which shows the desired assertion concerning the invariance of �µJ.

Let us prove now that �µJ(J2) = 1/2. We have

J2 = J(0) ∪ (J2 \ J(0)) with J2 \ J(0) =
∞�

m=1

{f ∈ Lm : degG(f) < 0} ,

and �µJ(J
(0)) = (q − 1)/(2q).

We now compute the the measure of each set {f ∈ Lm : degG(f) < 0}. If f ∈ Lm, with γ(f) = a
and degG(f) < 0, its inverse 1/f satisfies

1

f
=

Xm

a
+G(f) with degG(f) < 0

Then 1/f belongs to the cylinder E[m,1/a,0m] whose measure equals q−2m. Hence

�µJ(J2 \ J(0)) =
q + 1

2q

∞�

m=1

q − 1

q2m
=

1

2q
.
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�

Remark 6 (Non-zero coefficients of partial quotients). Observe that we can use the previous
results, and in particular the finiteness of the invariant measure �µJ, for recovering the estimate of
Theorem 5 concerning the behavior of the total number of non-zero coefficients of partial quotients
in the continued fraction expansion of f , that is, for µL-a.e. f , one has

lim
n→∞

1

n
Nn(f) = 2.

Indeed, consider the trajectory Q(f) of f under the action of FJ, that is,

Q(f) = (f, FJ(f), F
2
J (f), . . . , F

n
J (f), . . .),

and let Qm(f) = (f, FJ(f), F
2
J
(f), . . . , Fm

J
(f)).

We let denote by t1(f) the first time where the trajectory Q(f) of f under the action of FJ goes
out of J2, that is,

t1(f) = min{m ≥ 1 : Fm−1
J

(f) ∈ J2},
and by tk(f) the k-th time where the trajectory Q(f) of f goes out of J2. One has

Nn(f) =

n�

i=1

ti(f).

Consider a fixed integer n, an integer m which belongs to the interval [tn(f), tn+1(f)− 1]. Then,
the trajectory Qm(f) goes n times through J2 at times N1(f), N2(f), . . . Nn(f), so that

n =

m�

i=1

1J2(FJ
if).

Because FJ is ergodic w.r.t. �µJ and according to Theorem 5, we see that

lim
m→∞

n

m
= lim

m→∞

1

m

m�

i=1

1J2(F
i
Jf) = µFJ

(J2) = 1/2

for �µJ-a.e. f , which also means for µL-a.e. f . Finally, the inequality Nn(f) ≤ m < Nn+1(f)
entails the equality limm→∞(1/n)Nn(f) = 2.

6. Appendix: Mediant convergents of formal power series

The aim of this section is to show that the map FJ produces the mediant convergents in the
continued fraction expansion. For connections between the Farey map and mediant convergents
in the classical case, see e.g. [11]. Let us first recall what is meant by mediant convergents in the
classical case. Let x be an irrational number, 0 < x < 1, with simple continued fraction of the
form

x =
1

a1
+

1

a2
+ · · · ,

where ai, i ≥ 1, are positive integers. The principal convergents pn

qn
, n ≥ 1, are defined by


pn−1 pn

qn−1 qn


 =


0 1

1 a1


 · · ·


0 1

1 an


 , n ≥ 1,

with 
p−1 p0

q−1 q0


 =


1 0

0 1


 .

One has
pn
qn

=
1

a1
+ · · ·+ 1

an
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and �
pn+1 = an+1pn + pn−1

qn+1 = an+1qn + qn−1

for n ≥ 1. The mediant convergents (also called intermediate convergents) are defined by
�
un,j = jpn + pn−1

vn,j = jqn + qn−1

for 1 ≤ j < an+1. A simple calculation shows
����x− un,j

vn,j

���� <
an+1 + 1− j

qn+1(j · qn + qn−1)
, 1 ≤ j < an+1.

If we put j = an+1, the above formula gives
����x− pn+1

qn+1

���� <
1

q2n+1

.

Mediant convergents thus interpolate pn

qn
and pn+1

qn+1
.

We now define an analog of the notion of ‘mediant convergent’ for formal power series. Let
f ∈ L with continued fraction expansion

f =
1

A1

+
1

A2

+ · · · , Ai ∈ Fq[X] \ Fq, i ≥ 1.

Its principal convergents satisfy:

Pn−1 Pn

Qn−1 Qn


 =


0 1

1 A1


 · · ·


0 1

1 An


 , n ≥ 1,

and �
Pn+1 = An+1Pn + Pn−1

Qn+1 = An+1Qn +Qn−1.

We write

An+1 = bt(n+1,1)X
t(n+1,1) + bt(n+1,2)X

t(n+1,2) + · · ·+ bt(n+1,un+1)X
t(n+1,un+1),

t(n+ 1, 1) > · · · > t(n+ 1, un+1) ≥ 0, bt(n+1,i) �= 0, 1 ≤ i ≤ un+1.

In the process of calculation of An+1, the coefficients bt(n+1,1), . . . ,bt(n+1,un+1) are determined step
by step in decreasing order of powers. According to this point of view, we define the mediant
convergents by

(21)

�
Un,j = (bt(n+1,1)X

t(n+1,1) + · · ·+ bt(n+1,j)X
t(n+1,j))Pn + Pn−1

Vn,j = (bt(n+1,1)X
t(n+1,1) + · · ·+ bt(n+1,j)X

t(n+1,j))Qn +Qn−1

for 1 ≤ j < un+1. Note that �
degUn,j = degPn+1

deg Vn,j = degQn+1

for 1 ≤ j < un+1. This definition corresponds to the following matricial decomposition:

0 1

1 An+1


 =


 1 0

bt(n+1,1)X
t(n+1,1) 1


 · · ·


0 1

1 bt(n+1,un+1)X
t(n+1,un+1)


 ,

which can be compared to the analogous decomposition in the real case:

0 1

1 a


 =


1 0

1 1




n−1 
0 1

1 1


 .
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Proposition 6. For all n and for all j with 1 ≤ j < un+1, one has
����f − Un,j

Vn,j

���� =
qt(n+1,j+1)

|Qn+1|2
.

Proof. We put

Sn+1,j =

j�

i=1

bt(n+1,i)X
t(n+1,i),

and

fn+1 =
1

An+2

+
1

An+3

+ · · · .

One has deg fn+1 < 0. It is easy to see that

f =
Pnfn+1 + Pn+1

Qnfn+1 +Qn+1
.

Hence we have
���f − Un,j

Vn,j

��� =
��� Pnfn+1+Pn+1

Qnfn+1+Qn+1
− Un,j

Vn,j

���
=

��� (PnVn,j−QnUn,j)fn+1+(Pn+1Vn,j−Qn+1Un,j)
(Qnfn+1+Qn+1)Vn,j

��� .

Since degQn+1 = deg Vn,j , one has

|(Qnfn+1 +Qn+1)Vn,j | = |Qn+1|2.
Moreover, the norm of the numerator of the right hand side term is equal to

|Pn+1Vn,j −Qn+1Un,j |
= |(An+1Pn + Pn−1)(Sn+1,jQn +Qn−1)− (An+1Qn +Qn−1)(Sn+1,jPn + Pn−1)|
= |An+1(PnQn−1 −QnPn−1) + Sn+1,j(QnPn−1 − PnQn−1)|
= qt(n+1,j+1)

since

PnQn−1 − Pn−1Qn = −(Pn+1Qn − PnQn+1).

This completes the proof of the proposition. �

Remark 7. Since

t(n+ 1, 1) > t(n+ 1, 2) > · · · > t(n+ 1, un+1) ≥ 0

and

deg Vn,j = degQn+1,

we may say that (
Un,j

Vn,j
: 1 ≤ j < un+1) interpolate the principal convergents ( Pn

Qn
: n ≥ 1).

We also introduce the following associated matrices for f ∈ J

MJ(f) =






 1 0

X− deg f

γ(f) 1


 if f ∈ J1


0 1

1
�
1
f

�

 if f ∈ J2.

The following proposition (which is a direct consequence of Proposition 4) states that the map FJ

indeed produces the mediant convergents:
25



Proposition 7. Let

t1(f) = min
�
i ≥ 1 : F i−1

J
(f) ∈ J2

�
, tn(f) = t1(F

�n−1
i=1 ti

J
(f))

for n ≥ 1. For m =
�n

i=1 ti + j, 0 ≤ j < tn+1,

MJ(f) · · ·MJ(F
m
J (f)) =






Un,j Pn

Vn,j Qn


 if j �= 0


Pn−1 Pn

Qn−1 Qn


 if j = 0

for f ∈ L. Furthermore, for all n, un = ν(An).
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