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Abstract

In this chapter we review a variety of 3D sparse representations developed in
recent years and adapted to different kinds of 3D signals. In particular, we describe
3D wavelets, ridgelets, beamlets and curvelets. We also present very recent 3D sparse
representations on the 3D ball adapted to 3D signal naturally observed in spherical
coordinates. Illustrative examples are provided for the different transforms.
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1 Introduction

Sparse representations such as wavelets or curvelets have been very successful
for 2D image processing. Impressive results were obtained for many applica-
tions such as compression (see [1] for an example of Surflet compression; the
new image standard JPEG2000 is based on wavelets rather than DCT like
JPEG), denoising [2, 3, 4], contrast enhancement [5], inpainting [6, 7] or de-
convolution [8, 9]. Curvelets [3, 10], Bandelets [11] and Contourlets [12] were
designed to well represent edges in an image while wavelets are especially
efficient for isotropic feature analysis.

With the increasing computing power and memory storage capabilities of com-
puters, it has become feasible to analyze 3D data as a volume and not only
slice-by-slice, which would mistakingly miss the 3D geometrical nature of the
data. Among the most simple transforms extended to 3D are the separable
Wavelet transform (decimated, undecimated, or any other kind) and the Dis-
crete Cosine transform, as these are separable transforms and thus the exten-
sion is straightforward. The DCT is mainly used in video compression, but
has also been used in denoising [13]. As for the 3D wavelets, they have already
been used in denoising applications in many domains [14, 15, 16].

However these separable transforms lack the directional nature which has
made the success of 2D transforms like curvelets. Consequently, a lot of ef-
fort has been made in the last years to build sparse 3D data representations,
which better represent geometrical features contained in the data. The 3D
beamlet transform [17] and the 3D ridgelet transform [18] were respectively
designed for 1D and 2D features detection. Video denoising using the ridgelet
transform was proposed in [19]. These transforms were combined with 3D
wavelets to build BeamCurvelets and RidCurvelets [20] which are extensions
of the first generation curvelets [3]. Whereas most 3D transforms are adapted
to plate-like features, the BeamCurvelet transform is adapted to filaments of
different scales and different orientations. Another extension of the curvelets
to 3D is the 3D fast curvelet transform [21] which consists in paving the
Fourier domain with angular wedges in dyadic concentric squares using the
parabolic scaling law to fix the number of angles depending on the scale, and
has atoms designed for representing surfaces in 3D. The Surflet transform [22]
– a d-dimensional extension of the 2D wedgelets [23, 24] – has been studied
for compression purposes [1]. Surflets are an adaptive transform estimating
each cube of a quad-tree decomposition of the data by two regions of constant
value separated by a polynomial surface. Another possible representation uses
the Surfacelets developed by Do and Lu [25]. It relies on the combination of
a Laplacian pyramid and a d-dimensional directional filter bank. Surfacelets
produce a tiling of the Fourier space in angular wedges in a way close to
the curvelet transform, and can be interpreted as a 3D adaptation of the 2D
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contourlet transform. This transformation has also been applied to video de-
noising [26]. More recently, Shearlets [27] have also been extended to 3D [28]
and subsequently applied to video denoising and enhancement.

All these 3D transforms are developed on Cartesian grids and are therefore
appropriate to process 3D cubes. However, in fields like geophysics and as-
trophysics, data is often naturally accessible on the sphere. This fact has led
to the development of sparse representations on the sphere. Many wavelet
transforms on the sphere have been proposed in the past years. [29] proposed
an invertible isotropic undecimated wavelet transform (UWT) on the sphere,
based on spherical harmonics. A similar wavelet construction [30, 31, 32] used
the so-called needlet filters. [33] also proposed an algorithm which permits to
reconstruct an image from its steerable wavelet transform. Since reconstruc-
tion algorithms are available, these tools have been used for many applications
such as denoising, deconvolution, component separation [34, 35, 36] or inpaint-
ing [37, 38]. However they are limited to 2D spherical data.

Some signals on the sphere have an additional time or energy dependency
independent of the angular dimension. They are not truly 3D but rather 2D-
1D as the additional dimension is not linked to the spatial dimension. An
extension of the wavelets on the sphere to this 2D-1D class of signals has been
proposed in [39] with an application to Poisson denoising of multichannel data
on the Sphere. More recently, fully 3D invertible wavelet transforms have been
formulated in spherical coordinates [40, 41]. These transforms are suited to
signals on the 3D ball (i.e. on the solid sphere) which arise for instance in
astrophysics in the study of large scale distribution of galaxies when both
angular and radial positions are available.

The aim of this chapter is to review different kinds of 3D sparse represen-
tations among those mentioned above, providing descriptions of the different
transforms and examples of practical applications. In Section 2, we present
several constructions of separable 3D and 2D-1D wavelets. Section 3 describes
the 3D Ridgelet and Beamlet transforms which are respectively adapted to
surfaces and lines spanning the entire data cube. These transforms are used
as building blocks of the first generation 3D curvelets presented in Section 4
which can sparsely represent either plates or lines of different sizes, scales
and orientations. In Section 5, the 3D Fast Curvelet is presented along with
a modified Low-Redundancy implementation to address the issue of the pro-
hibitively redundant original implementation. Section 6 introduces wavelets
on the sphere and their extension to the 2D-1D case while providing some of
the background necessary to build the wavelet on the 3D ball described in 7.
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2 3D Wavelets

In this section we present two 3D discrete wavelet constructions based on
filter banks to enable fast transform (in O(N3) where N3 is the size of the
data cube). These transforms, namely the 3D biorthogonal wavelet and the
3D Isotropic Undecimated Wavelet Transform, are built by separable tensor
products of 1D wavelets and are thus simple extensions of the 2D transforms.
They are complementary in the sense that the biorthogonal wavelet has no
redundancy which is especially appreciable in 3D at the cost of low perfor-
mance in data restoration purposes while the Isotropic Undecimated Wavelet
Transform is redundant but performs very well in restoration applications.
We also present a 2D-1D wavelet transform in Cartesian coordinates. In the
final part of this section, this 2D-1D transform is demonstrated in an appli-
cation to time-varying source detection in the presence of Poisson noise.

2.1 3D biorthogonal wavelets

2.1.1 Discrete Wavelet Transform

The Discrete Wavelet Transform is based on Multiresolution analysis [42]
which results from a sequence of embedded closed subspaces generated by
interpolations at different scales.

We consider dyadic scales a = 2j for increasing integer values of j. From the
function, f(x) ∈ L2(R), a ladder of approximation subspaces is constructed
with the embeddings

. . . ⊂ V3 ⊂ V2 ⊂ V1 ⊂ V0 . . . (1)

such that, if f(x) ∈ Vj then f(2x) ∈ Vj+1.

The function f(x) is projected at each level j onto the subspace Vj. This
projection is defined by the approximation coefficient cj[l], the inner product
of f(x) with the dilated-scaled and translated version of the scaling function
φ(x):

cj[l] =
〈
f, φj,l

〉
=
〈
f, 2−jφ(2−j.− l)

〉
. (2)

φ(t) is a scaling function which satisfies the property

1

2
φ
(
x

2

)
=
∑

k

h[k]φ(t− k) , (3)
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or equivalently in the Fourier domain

φ̂(2ν) = ĥ(ν)φ̂(ν) where ĥ(ν) =
∑

k

h[k]e−2πikν . (4)

Expression (3) allows the direct computation of the coefficients cj+1 from
cj. Starting from c0, all the coefficients (cj[l])j>0,l can be computed without
directly evaluating any other inner product:

cj+1[l] =
∑

k

h[k − 2l]cj[k] . (5)

At each level j, the number of inner products is divided by 2. Step-by-step the
signal is smoothed and information is lost. The remaining information (details)
can be recovered from the subspace Wj+1, the orthogonal complement of Vj+1

in Vj. This subspace can be generated from a suitable wavelet function ψ(t)
by translation and dilation:

1

2
ψ
(
t

2

)
=
∑

k

g[k]φ(t− k) , (6)

or by taking the Fourier transform of both sides

ψ̂(2ν) = ĝ(ν)φ̂(ν) where ĝ(ν) =
∑

k

g[k]e−2πikν . (7)

The wavelet coefficients at level j + 1 are computed from the approximation
at level j as the inner products

wj+1[l] =
〈
f, ψj+1,l

〉
=
〈
f, 2−(j+1)ψ(2−(j+1).− l)

〉

=
∑

k

g[k − 2l]cj[k] .
(8)

From (5) and (8), only half the coefficients at a given level are necessary to
compute the wavelet and approximation coefficients at the next level. There-
fore, at each level, the coefficients can be decimated without loss of informa-
tion. If the notation [·]↓2 stands for the decimation by a factor 2 (i.e. only even
samples are kept), and h̄[l] = h[−l], the relation between approximation and
detail coefficients between two successive scales can be written:

cj+1 = [h̄ ? cj]↓2
wj+1 = [ḡ ? cj]↓2.

(9)

This analysis constitutes the first part of a filter bank [43]. In order to recover
the original data, we can use the properties of orthogonal wavelets, but the
theory has been generalized to biorthogonal wavelet bases by introducing the
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filters h̃ and g̃ [44], defined to be dual to h and g such that (h, g, h̃, g̃) is
a perfect reconstruction filter bank i.e. the filters h̃ and g̃ must verify the
biorthogonal conditions of dealiasing and exact reconstruction [45]:

• Dealiasing:

ĥ∗
(
ν +

1

2

)
ˆ̃h(ν) + ĝ∗

(
ν +

1

2

)
ˆ̃g(ν) = 0 . (10)

• Exact reconstruction:

ĥ∗(ν)ˆ̃h(ν) + ĝ∗(ν)ˆ̃g(ν) = 1 . (11)

Note that in terms of filter banks, the biorthogonal wavelet transform becomes
orthogonal when h = h̃ and g = g̃, in which case h is a conjugate mirror filter.

The reconstruction of the signal is then performed by

cj[l] = 2
∑

k

(
h̃[k + 2l]cj+1[k] + g̃[k + 2l]wj+1[k]

)

= 2(h̃ ? [cj+1]↑2 + g̃ ? [wj+1]↑2)[l] ,
(12)

where [cj+1]↑2 is the zero-interpolation of cj+1 defined by zero insertions

[cj+1]↑2[l] =




cj+1[m] if l = 2m

0 otherwise.
, (13)

Equations (9) and (12) are used to define the fast pyramidal algorithm as-
sociated with the biorthogonal wavelet transform, illustrated by Fig. 1. In
the decomposition (9), cj+1 and wj+1 are computed by successively convolv-
ing cj with the filters h̄ (low pass) and ḡ (high pass). Each resulting channel
is then downsampled (decimated) by suppression of one sample out of two.
The high frequency channel wj+1 is left, and the process is iterated with the
low frequency part cj+1. This is displayed in the upper part of Fig. 1. In the
reconstruction or synthesis side, the coefficients are up-sampled by inserting
a 0 between each sample, and then convolved with the dual filters h̃ and g̃,
the resulting coefficients are summed and the result is multiplied by 2. The
procedure is iterated up to the smallest scale as depicted in the lower part of
Fig. 1.

This fast pyramidal algorithm for the biorthogonal discrete wavelet transform
is computationally very efficient, requiring O(N) operations for data with N
samples as compared to O(N logN) of the FFT.
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Fig. 1. Fast pyramidal algorithm associated with the biorthogonal wavelet trans-
form. Top: Fast analysis transform with a cascade of filtering with h̄ and ḡ followed
by factor 2 subsampling. Bottom: Fast inverse transform by progressively inserting
zeros and filtering with dual filters h̃ and g̃.

2.1.2 Three-Dimensional Decimated Wavelet Transform

The above DWT algorithm can be extended to any dimension by separable
(tensor) products of a scaling function φ and a wavelet ψ.

In the three-dimensional algorithm, the scaling function is defined by φ(x, y, z) =
φ(x)φ(y)φ(z), and the passage from one resolution to the next is achieved by:

cj+1[k, l,m] =
∑

p,q,r

h[p− 2k]h[q − 2l]h[r − 2m]cj[p, q, r]

= [h̄h̄h̄ ? cj]↓2,2,2[k, l,m] ,
(14)

where [.]↓2,2,2 stands for the decimation by factor 2 along all x-, y- and z- axes
(i.e. only even pixels are kept) and h1h2h3 ? cj is the 3D discrete convolution
of cj by the separable filter h1h2h3 (i.e. convolution first along the x-axis by
h1, then convolution along the y-axis by h2 and finally convolution allong the
z-axis by h3).
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The detail coefficients are obtained from seven wavelets:

• x wavelet: ψ1(x, y, z) = ψ(x)φ(y)φ(z),
• x-y wavelet: ψ2(x, y, z) = ψ(x)ψ(y)φ(z),
• y wavelet: ψ3(x, y, z) = φ(x)ψ(y)φ(z),
• y-z wavelet: ψ4(x, y, z) = φ(x)ψ(y)ψ(z),
• x-y-z wavelet: ψ5(x, y, z) = ψ(x)ψ(y)ψ(z),
• x-z wavelet: ψ6(x, y, z) = ψ(x)φ(y)ψ(z),
• z wavelet: ψ7(x, y, z) = φ(x)φ(y)ψ(z),

which leads to seven wavelet subcubes (subbands) at each resolution level (see
Fig. 2):

w1
j+1[k, l,m] =

∑

p,q,r

g[p− 2k]h[q − 2l]h[r − 2m]cj[p, q, r] = [ḡh̄h̄ ? cj]↓2,2,2[k, l,m]

w2
j+1[k, l,m] =

∑

p,q,r

g[p− 2k]g[q − 2l]h[r − 2m]cj[p, q, r] = [ḡḡh̄ ? cj]↓2,2,2[k, l,m]

w3
j+1[k, l,m] =

∑

p,q,r

h[p− 2k]g[q − 2l]h[r − 2m]cj[p, q, r] = [h̄ḡh̄ ? cj]↓2,2,2[k, l,m]

w4
j+1[k, l,m] =

∑

p,q,r

h[p− 2k]g[q − 2l]g[r − 2m]cj[p, q, r] = [h̄ḡḡ ? cj]↓2,2,2[k, l,m]

w5
j+1[k, l,m] =

∑

p,q,r

g[p− 2k]g[q − 2l]g[r − 2m]cj[p, q, r] = [ḡḡḡ ? cj]↓2,2,2[k, l,m]

w6
j+1[k, l,m] =

∑

p,q,r

g[p− 2k]h[q − 2l]g[r − 2m]cj[p, q, r] = [ḡh̄ḡ ? cj]↓2,2,2[k, l,m]

w7
j+1[k, l,m] =

∑

p,q,r

h[p− 2k]h[q − 2l]g[r − 2m]cj[p, q, r] = [h̄h̄ḡ ? cj]↓2,2,2[k, l,m] .

For a discrete N ×N ×N data cube X, the transform is summarized in Al-
gorithm 1.

In a similar way to the 1D case in (12) and with the proper generalization to
3D, the reconstruction is obtained by

cj = 8(h̃h̃h̃ ? [cj+1]↑2,2,2 + g̃h̃h̃ ? [w1
j+1]↑2,2,2 + g̃g̃h̃ ? [w2

j+1]↑2,2,2

+ h̃g̃h̃ ? [w3
j+1]↑2,2,2 + h̃g̃g̃ ? [w4

j+1]↑2,2,2 + g̃g̃g̃ ? [w5
j+1]↑2,2,2

+ g̃h̃g̃ ? [w6
j+1]↑2,2,2 + h̃h̃g̃ ? [w7

j+1]↑2,2,2) .

(15)

2.2 3D Isotropic Undecimated Wavelet Transform

The main interest of the biorthogonal wavelet transform introduced in the
previous section is its non redundancy: the transform of an N ×N ×N cube
is a cube of the same size. This property is particularly appreciable in three
dimensions as the resources needed to process a 3D signal scale faster than in
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Fig. 2. Decomposition of initial data cube into pyramidal wavelet bands. The bottom
left cube cJ is the smoothed approximation and the wij are the different wavelet
subbands at each scale j.

lower dimensions. However, this DWT is far from optimal for applications such
as restoration (e.g. denoising or deconvolution), detection or more generally,
analysis of data. Indeed, modifications of DWT coefficients introduce a large
number of artefacts in the signal after reconstruction, mainly due to the loss
of the translation-invariance in the DWT.

For this reason, for restoration and detection purposes, redundant transform
are generally preferred. Here, we present the 3D version of the Isotropic Undec-
imated Wavelet Transform (IUWT) also known as the starlet wavelet trans-
form because its 2D version is well adapted to the more or less isotropic
features found in astronomical data [46, 47].

The starlet transform is based on a separable isotropic scaling function

φ(x, y, z) = φ1D(x)φ1D(y)φ1D(z) , (16)

where φ1D is a 1D B-spline of order 3:

φ1D(x) =
1

12

(
|x− 2|3 − 4|x− 1|3 + 6|x|3 − 4|x+ 1|3 + |x+ 2|3

)
. (17)

The separability of φ is not a required condition but it allows to have fast
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Algorithm 1: The 3D biorthogonal wavelet transform

Data: An N ×N ×N data cube X
Result: W = {w1

1, w
2
1, ..., w

7
1, w

1
2, ..., w

1
J , ..., w

7
J , cJ} the 3D DWT of X.

begin
c0 = X, J = log2N
for j = 0 to J − 1 do

Compute cj+1 = h̄h̄h̄ ? cj, down-sample by a factor 2 in each
dimension.
Compute w1

j+1 = ḡh̄h̄ ? cj, down-sample by a factor 2 in each
dimension.
Compute w2

j+1 = ḡḡh̄ ? cj, down-sample by a factor 2 in each
dimension.
Compute w3

j+1 = h̄ḡh̄ ? cj, down-sample by a factor 2 in each
dimension.
Compute w4

j+1 = h̄ḡḡ ? cj, down-sample by a factor 2 in each
dimension.
Compute w5

j+1 = h̄ḡḡ ? cj, down-sample by a factor 2 in each
dimension.
Compute w6

j+1 = ḡh̄ḡ ? cj, down-sample by a factor 2 in each
dimension.
Compute w7

j+1 = h̄h̄ḡ ? cj, down-sample by a factor 2 in each
dimension.

computation which is especially important for large scale data sets in three
dimensions.

The wavelet function is defined as the difference between the scaling functions
of two successive scales:

1

8
ψ(
x

2
,
y

2
,
z

2
) = φ(x, y, z)− 1

8
φ(
x

2
,
y

2
,
z

2
). (18)

This choice of wavelet function will allow for a very simple reconstruction
formula where the original data cube can be recovered by simple co-addition
of the wavelet coefficients and the last smoothed approximation. Furthermore,
since the scaling function is chosen to be isotropic, the wavelet function is
therefore also isotropic. Figure 3 shows an example of such 3D isotropic wavelet
function.

The implementation of the starlet transform relies on the very efficient à trous
algorithm, where this French term means “with holes” [48, 49]. Let h be the
filter associated to φ:

h[k, l,m] = h1D[k]h1D[l]h1D[m] , (19)

h1D[k] = [1, 4, 6, 4, 1]/16, k ∈ J−2, 2K , (20)
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Fig. 3. 3D Isotropic wavelet function.

and g the filter associated to the wavelet ψ:

g[k, l,m] = δ[k, l,m]− h[k, l,m] . (21)

The à trou algorithm defines for each j a scaled versions h
(j)
1D of the 1D filter

h1D such that:

h
(j)
1D[k] =




h1D[k] if k ∈ 2jZ
0 otherwise .

(22)

For example, we have

h
(1)
1D = [. . . , h1D[−2], 0, h1D[−1], 0, h1D[0], 0, h1D[1], 0, h1D[2], . . . ] . (23)

Due to the separability of h, for each j we can also define

h(j)[k, l,m] = h
(j)
1D[k]h

(j)
1D[l]h

(j)
1D[m] (24)

g(j)[k, l,m] = δ[k, l,m]− h(j)
1D[k]h

(j)
1D[l]h

(j)
1D[m] . (25)

From the original data cube c0, the wavelet and approximation coefficients
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can now be recursively extracted using the filters h(j) and g(j):

cj+1[k, l,m] = (h̄(j) ? cj)[k, l,m] (26)

=
∑

p,q,r

h1D[p]h1D[q]h1D[r]cj[k + 2jp, l + 2jq,m+ 2jr]

wj+1[k, l,m] = (ḡ(j) ? cj)[k, l,m] (27)

= cj[k, l,m]−
∑

p,q,r

h1D[p]h1D[q]h1D[r]cj[k + 2jp, l + 2jq,m+ 2jr] .

Finally, due to the choice of wavelet function, the reconstruction is obtained
by a simple co-addition of all the wavelet scales and the final smooth subband:

c0[k, l,m] = cJ [k, l,m] +
J∑

j=1

wj[k, l,m] . (28)

The algorithm for the 3D starlet transform is provided in Algorithm 2.

At each scale j, the starlet transform provides only one subband wj, instead
of the 7 subbands produced by the biorthgonal transform. However, since the
subbands are not decimated in this transform, each wj as exactly the same
number of voxels as the the input data cube. The redundancy factor of the 3D
starlet transform is therefore J + 1 where J is the number of scales. Although
higher than the redundancy factor of the biorthogonal transform (equal to 1),
the starlet transform offers a far reduced redundancy compared to a standard
Undecimated Wavelet Transform (undecimated version of the DWT intro-
duced in the previous section, see [50]) which would have a redundancy factor
of 7J + 1.

2.3 2D-1D Wavelet Transform

So far, the 3D wavelet transforms we have presented are constructed to han-
dle full 3D signals. However, in some situations the signals of interest are not
intrinsically 3D but constructed from a set of 2D images where the third di-
mension is not spatial but can be temporal or in energy. In this case, analysing
the data with the previous 3D wavelets makes no sense and a separate treat-
ment of the third dimension, not connected to the spatial domain, is required.
One can define an appropriate wavelet for this kind of data by tensor product
of a 2D spatial wavelet and a 1D temporal (or energy) wavelet:

ψ(x, y, z) = ψ(xy)(x, y)ψ(z)(z) . (29)

where ψ(xy) is the spatial wavelet and ψ(z) the temporal wavelet (resp energy).
In the following, we will consider only isotropic spatial scale and dyadic scale,
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Algorithm 2: 3D Starlet transform algorithm.

Data: An N ×N ×N data cube X
Result: W = {w1, w2, ..., wJ , cJ} the 3D starlet transform of X.
begin

c0 = X, J = log2N ,h1D[k] = [1, 4, 6, 4, 1]/16, k = −2, . . . , 2.
for j = 0 to J − 1 do

for each k, l = 0 to N − 1 do
Carry out a 1D discrete convolution of the cube cj with periodic
or reflexive boundary conditions, using the 1D filter h1D. The
convolution is an interlaced one, where the h

(j)
1D filter’s sample

values have a gap (growing with level, j) between them of 2j

samples, giving rise to the name à trous (“with holes”).

α[k, l, ·] = h
(j)
1D ? cj[k, l, ·] .

for each k,m = 0 to N − 1 do
Carry out a 1D discrete convolution of α, using 1D filter h1D:

β[k, ·,m] = h
(j)
1D ? α[k, ·,m].

for each l,m = 0 to N − 1 do
Carry out a 1D discrete convolution of β, using 1D filter h1D:

cj+1[·, l,m] = h
(j)
1D ? β[·, l,m].

From the smooth subband cj, compute the IUWT detail coefficients,

wj+1 = cj − cj+1.

and we note j1 the spatial scale index (i.e. scale = 2j1), j2 the time (resp
energy) scale index,

ψ
(xy)
j1,kx,ky

(x, y) =
1

2j1
ψ(xy)(

x− kx
2j1

,
y − ky

2j1
) (30)

ψ
(z)
j2,kz

(z) =
1√
2j2
ψ(z)(

z − kz
2j2

) . (31)

Hence, given a continuous data set D, we derive its 2D-1D wavelet coefficients
wj1,j2(kx, ky, kz) (kx and ky are spatial indices and kz is a time (resp energy)
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index) according to:

wj1,j2(kx, ky, kz) =
1

2j1
1√
2j2

∫∫∫ +∞

−∞
D(x, y, z) ψ(z)∗

(
z − kz

2j2

)

× ψ(xy)∗
(
x− kx

2j1
,
y − ky

2j1

)
dxdydz

=
〈
D,ψ

(xy)
j1,kx,ky

ψ
(z)
j2,kz

〉
. (32)

2.3.1 Fast Undecimated 2D-1D Decomposition/Reconstruction

In order to have a fast algorithm, wavelet functions associated to a filter bank
are preferred. Given a discrete data cube D[k, l,m] this wavelet decomposition
consists in applying first a 2D isotropic wavelet transform for each frame
m. Using the 2D version of the Isotropic Undecimated Wavelet Transform
described in the previous section, we have:

∀m, D[·, ·,m] = cJ1 [·, ·,m] +
J1−1∑

j1=1

wj1 [·, ·,m] , (33)

where J1 is the number of spatial scales. Then, for each spatial location [k, l]
and for each 2D wavelet scale scale j1, an undecimated 1D wavelet trans-
form along the third dimension is applied on the spatial wavelet coefficients
wj1 [k, l, ·]

∀k, l, wj[k, l, ·] = wj1,J2 [k, l, ·] +
J2−1∑

j2=1

wj1,j2 [k, l, ·] , (34)

where J2 is the number of scales along the third dimension. The same pro-
cessing is also applied on the coarse spatial scale cJ1 [k, l, ·], and we have:

∀k, l, cJ1 [k, l, ·] = cJ1,J2 [k, l, ·] +
J2−1∑

j2=1

wJ1,j2 [k, l, ·] . (35)

Hence, we have a 2D-1D undecimated wavelet representation of the input data
D:

D[k, l,m] = cJ1,J2 [k, l,m] +
J2−1∑

j2=1

wJ1,j2 [k, l,m]

+
J1−1∑

j1=1

wj1,J2 [k, l,m] +
J1−1∑

j1=1

J2−1∑

j2=1

wj1,j2 [k, l,m] . (36)

In this decomposition, four kinds of coefficients can be distinguished:
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• Detail-Detail coefficient (j1 < J1 and j2 < J2).

wj1,j2 [k, l, ·] = (δ − h1D) ?
(
h

(j2−1)
1D ? cj1−1[k, l, ·]− h(j2−1)

1D ? cj1 [k, l, ·]
)
.

• Approximation-Detail coefficient (j1 = J1 and j2 < J2).

wJ1,j2 [k, l, ·] = h
(j2−1)
1D ? cJ1 [k, l, ·]− h(j2)

1D ? cJ1 [k, l, ·] .

• Detail-Approximation coefficient (j1 < J1 and j2 = J2).

wj1,J2 [k, l, ·] = h
(J2)
1D ? cj1−1[k, l, ·]− h(J2)

1D ? cj1−1[k, l, ·] .

• Approximation-Appoximation coefficient (j1 = J1 and j2 = J2).

cJ1,J2 [k, l, ·] = h
(J2)
1D ? cJ1 [k, l, ·] .

As this 2D-1D transform is fully linear, a Gaussian noise remains Gaussian
after transformation. Therefore, all thresholding strategies wich have been de-
veloped for wavelet Gaussian denoising are still valid with the 2D-1D wavelet
transform. Denoting δ, the thresholding operator, the denoised cube is ob-
tained by:

D̃[k, l,m] = cJ1,J2 [k, l,m] +
J1−1∑

j1=1

δ(wj1,J2 [k, l,m])

+
J2−1∑

j2=1

δ(wJ1,j2 [k, l,m]) +
J1−1∑

j1=1

J2−1∑

j2=1

δ(wj1,j2 [k, l,m]) . (37)

A typical operator is the hard threshold, i.e. δT (x) = 0 is |x| is below a given
threshold T , and δT (x) = x is |x| ≥ T . The threshold T is generally chosen
between 3 and 5 times the noise standard deviation [47].

2.4 Application: Time-varying source detection

An application of the 2D-1D wavelets presented in the previous section has
been developed in [51] in the context of source detection for the Large Area
Telescope (LAT) instrument aboard the Fermi Gamma-ray Space Telescope.
Source detection in the high-energy gamma-ray band observed by the LAT
is made complicated by three factors: the low fluxes of point sources relative
to the celestial foreground, the limited angular resolution and the intrinsic
variability of the sources.

The fluxes of celestial gamma rays are low, especially relative to the ∼1 m2

effective area of the LAT (by far the largest effective collecting area ever in the
GeV range). An additional complicating factor is that diffuse emission from the
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Milky Way itself (which originates in cosmic-ray interactions with interstellar
gas and radiation) makes a relatively intense, structured foreground emission.
The few very brightest gamma-ray sources provide approximately 1 detected
gamma ray per minute when they are in the field of view of the LAT while the
diffuse emission of the Milky Way typically provide about 2 gamma rays per
second. Furthermore, in this energy band, the gamma-ray sky is quite dynamic,
with a large population of sources such as gamma-ray blazars (distant galaxies
whose gamma-ray emission is powered by accretion onto supermassive black
holes), episodically flaring. The time scales of flares, which can increase the
flux by a factor of 10 or more, can be minutes to weeks; the duty cycle of
flaring in gamma rays is not well determined yet, but individual blazars can
go months or years between flares and in general we will not know in advance
where on the sky the sources will be found.

For previous high-energy gamma-ray missions, the standard method of source
detection has been model fitting — maximizing the likelihood function while
moving trial point sources around in the region of the sky being analyzed.
This approach has been driven by the limited photon counts and the relatively
limited resolution of gamma-ray telescopes.

Here, we present the different approach adopted in [51] which is based on a
non parametric method combining a MutliScale Variance Stabilization Trans-
form (MS-VST) proposed for Poisson data denoising by [52] and a 2D-1D
representation of the data. Using the time as the 1D component of the 2D-1D
transform, the resulting filtering method is particularly adapted to the rapidly
varying time varying low-flux sources in the Fermi LAT data.

Extending the MS-VST developed for the Isotropic Undecimated Wavelet
Transform in [52], the 2D-1D MS-VST is implemented by applying a square
root Variance Stabilization Transform (VST) Aj1,j2 to the approximation co-
efficients cj1,j2 before computing the wavelet coefficients as the difference of
stabilized approximation coefficients. The VST operator Aj1,j2 is entirely de-
termined by the filter h used in the wavelet decomposition and by the scales
j1, j2 (see [52] for complete expression).

Plugging the MS-VST into the 2D-1D transform, yields four kinds of coeffi-
cients:

• Detail-Detail coefficient (j1 < J1 and j2 < J2).

wj1,j2 [k, l, ·] = (δ − h1D)?
(
Aj1−1,j2−1

[
h

(j2−1)
1D ? cj1−1[k, l, ·]

]
−Aj1,j2−1

[
h

(j2−1)
1D ? cj1 [k, l, ·]

])
.
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• Approximation-Detail coefficient (j1 = J1 and j2 < J2).

wJ1,j2 [k, l, ·] = AJ1,j2−1

[
h

(j2−1)
1D ? cJ1 [k, l, ·]

]
−AJ1,j2

[
h

(j2)
1D ? cJ1 [k, l, ·]

]
.

• Detail-Approximation coefficient (j1 < J1 and j2 = J2).

wj1,J2 [k, l, ·] = Aj1−1,J2

[
h

(J2)
1D ? cj1−1[k, l, ·]

]
−Aj1−1,J2

[
h

(J2)
1D ? cj1−1[k, l, ·]

]
.

• Approximation-Appoximation coefficient (j1 = J1 and j2 = J2).

cJ1,J2 [k, l, ·] = h
(J2)
1D ? cJ1 [k, l, ·] .

All wavelet coefficients are now stabilized, and the noise on all wavelet coeffi-
cients w is Gaussian. Denoising is however not straightforward because there
is no reconstruction formulae as the stabilizing operators Aj1,j2 and the con-
volution operators along (x, y) and z do not commute. To circumvent this
difficulty, this reconstruction problem can be solved by defining the multires-
olution support [53] from the stabilized coefficients, and by using an iterative
reconstruction scheme.

As the noise on the stabilized coefficients is Gaussian, and without loss of
generality, we let its standard deviation equal to 1, we consider that a wavelet
coefficient wj1,J2 [k, l,m] is significant, i.e., not due to noise, if its absolute value
is larger k, where k is typically between 3 and 5. The multiresolution support
will be obtained by detecting at each scale the significant coefficients. The
multiresolution support for j1 ≤ J1 and j2 ≤ J2 is defined by:

Mj1,j2 [k, l,m] =





1 if wj1,j2 [k, l,m] is significant

0 if wj1,j2 [k, l,m] is not significant .
(38)

We denote W the 2D-1D isotropic wavelet transform, R the inverse wavelet
transform and Y the input data. We want our solution X to reproduce exactly
the same coefficients as the wavelet coefficients of the input data Y , but only
at scales and positions where significant signal has been detected in the 2D-
1D MS-VST (i.e. MWX = MWY ). At other scales and positions, we want
the smoothest solution with the lowest budget in terms of wavelet coefficients.
Furthermore, as Poisson intensity functions are positive by nature, a positivity
constraint is imposed on the solution. Therefore the reconstruction can be
formulated as a constrained sparsity-promoting minimization problem that
can be written as follows

min
X
‖ WX ‖1 subject to




MWX = MWY

X ≥ 0 ,
(39)
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where ‖ . ‖1 is the `1-norm playing the role of regularization and is well known
to promote sparsity [54]. This problem can be efficiently solved using the
hybrid steepest descent algorithm [55, 52], and requires around 10 iterations.

Fig. 4. Simulated time-varying source. From left to right, simulated source, temporal
flux, and co-added image along the time axis of noisy data.

This filtering method is tested on a simulated a time varying source in a cube of
size 64×64×128, as a Gaussian centered at (32, 32, 64) with a spatial standard
deviation equals to 1.8 (pixel unit) and a temporal standard deviation equal
to 1.2. The total flux of the source (i.e. spatial and temporal integration) is
100. A background level of 0.1 is added to the data cube and Poisson noise
is generated. Figure 5 shows respectively from left to right an image of the
source, the flux per frame and the integration of all frames along the time
axis. As it can be seen, the source is hardly detectable in the co-added image.

By running the 2D MS-VST denoising method on the co-added frame, the
source cannot be recovered whereas the 2D-1D MS-VST denoising method is
able to recover the source at 6σ from the noisy 3D data set. Figure 5 left shows
one frame (frame 64) of the denoised cube, and Figure 5 right shows the flux
of the recovered source per frame.

Fig. 5. Revovered time-vaying source after 2D-1D MS-VST denoising. Left, one
frame of the denoised cube and right, flux per frame.
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3 3D Ridgelets and Beamlets

Wavelets rely on a dictionary of roughly isotropic elements occurring at all
scales and locations. They do not describe well highly anisotropic elements,
and contain only a fixed number of directional elements, independent of scale.
Despite the fact that they have had wide impact in image processing, they
fail to efficiently represent objects with highly anisotropic elements such as
lines or curvilinear structures (e.g. edges). The reason is that wavelets are
non-geometrical and do not exploit the regularity of the edge curve. Following
this reasoning, new constructions in 2D have been proposed such as ridgelets
[56] and beamlets [57]. Both transforms were developed as an answer to the
weakness of the separable wavelet transform in sparsely representing what
appears to be simple building-block atoms in an image, that is, lines and
edges.

In this section, we present the 3D extension of these transforms. In 3D, the
ridgelet atoms are sheets while the beamlet atoms are lines. Both transforms
share a similar fast implementation using the projection-slice theorem [58]
and will constitute the building blocks of the first generation 3D curvelets
presented in Section 4. An application of ridgelets and beamlets to the statis-
tical study of the spatial distribution of galaxies is presented in the last part
of this section.

3.1 The 3D Ridgelet Transform

3.1.1 Continuous 3D Ridgelet Transform

The continuous ridgelet transform can be defined in 3D as a direct extension of
the 2D transform following [56]. Pick a smooth univariate function ψ : R→ R
with vanishing mean

∫
ψ(t)dt = 0 and sufficient decay so that it verifies the

3D admissibility condition:

∫
|ψ̂(ν)|2|ν|−3dν <∞ . (40)

Under this condition, one can further assume that ψ is normalized so that∫ | ˆψ(ν)|2|ν|−3dν = 1. For each scale a > 0, each position b ∈ R and each
orientation (θ1, θ2) ∈ [0, 2π[×[0, π[, we can define a trivariate ridgelet function
ψa,b,θ1,θ2 : R3 → R by

ψa,b,θ1,θ2(x) = a−1/2ψ

(
x1 cos θ1 sin θ2 + x2 sin θ1 sin θ2 + x3 cos θ2 − b

a

)
,

(41)
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where x = (x1, x2, x3) ∈ R3. This 3D ridgelet function is now constant along
the planes defined by x1 cos θ1 sin θ2 + x2 sin θ1 sin θ2 + x3 cos θ2 = const. How-
ever, transverse to these ridges, it is a wavelet.
While the 2D ridgelet transform was adapted to detect lines in an image, the
3D ridgelet transform allows us to detect sheets in a cube.

Given an integrable trivariate function f ∈ L2(R3), its 3D ridgelet coefficients
are defined by:

Rf (a, b, θ1, θ2) := 〈f, ψa,b,θ1,θ2〉 =
∫

R3

f(x)ψ∗a,b,θ1,θ2(x)dx . (42)

From these coefficients we have the following reconstruction formula:

f(x) =

π∫

0

2π∫

0

∞∫

−∞

∞∫

0

Rf (a, b, θ1, θ2)ψa,b,θ1,θ2(x)
da

a4
db
dθ1dθ2

8π2
, (43)

which is valid almost everywhere for functions that are both integrable and
square integrable. This representation of ”any” function as a superposition
of ’ridge’ functions is furthermore stable as it obeys the following Parseval
relation,

|f |22 =

π∫

0

2π∫

0

∞∫

−∞

∞∫

0

|Rf (a, b, θ1, θ2)|2da
a4
db
dθ1dθ2

8π2
. (44)

Just like for the 2D ridgelets, the 3D ridgelet analysis can be constructed as a
wavelet analysis in the Radon domain. In 3D, the Radon transform R(f) of f is
the collection of hyperplane integrals indexed by (θ1, θ2, t) ∈ [0, 2π[×[0, π[×R
given by

R(f)(θ1, θ2, t) =
∫

R3

f(x)δ(x1 cos θ1 sin θ2 + x2 sin θ1 sin θ2 + x3 cos θ2 − t)dx ,

(45)
where x = (x1, x2, x3) ∈ R3 and δ is the Dirac distribution. Then the 3D
ridgelet transform is exactly the application of a 1D wavelet transform along
the slices of the Radon transform where the plane angle (θ1, θ2) is kept constant
but t is varying:

Rf (a, b, θ1, θ2) =
∫
ψ∗a,b(t)R(f)(θ1, θ2, t)dt , (46)

where ψa,b(t) = ψ((t− b)/a)/
√
a is a 1-dimensional wavelet.

Therefore, the basic strategy for calculating the continuous ridgelet transform
in 3D is again to compute first the Radon transform R(f)(θ1, θ2, t) and second
to apply a 1-dimensional wavelet to the slices R(f)(θ1, θ2, ·).
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3.1.2 Discrete 3D Ridgelet transform

A fast implementation of the Radon transform can be proposed in the Fourier
domain thanks to the projection-slice theorem. In 3D, this theorem states that
the 1D Fourier transform of the projection of a 3D function onto a line is equal
to the slice in the 3D Fourier transform of this function passing by the origin
and parallel to the projection line.

R(f)(θ1, θ2, t) = F−1
1D (u ∈ R 7→ F3D(f)(θ1, θ2, u)) . (47)

The 3D Discrete Ridgelet Transform can be built in a similar way to the Rec-
toPolar 2D transform (see [50]) by applying a Fast Fourier Transform to the
data in order to extract lines in the discrete Fourier domain. Once the lines
are extracted, the ridgelet coefficient are obtained by applying a 1D wavelet
transform along these lines. However, extracting lines defined in spherical co-
ordinates on the Cartesian grid provided by the Fast Fourier Transform is
not trivial and requires some kind of interpolation scheme. The 3D ridgelet is
summarised in Algorithm 3 and in the flowgraph in Figure 6.

Algorithm 3: The 3D Ridgelet Transform

Data: An N ×N ×N data cube X.
Result: 3D Ridgelet Transform of X
begin

− Apply a 3D FFT to X to yield X̂[kx, ky, kz]. ;
− Perform Cartesian-to-Spherical Conversion using an interpolation
scheme to sample X̂ in spherical coordinates X̂[ρ, θ1, θ2]. ;
− Extract 3N2 lines (of size N) passing through the origin and the
boundary of X̂. ;
for each line [θ1, θ2] do
− apply an inverse 1D FFT ;
− apply a 1D wavelet transform to get the Ridgelet coefficients ;

3.1.3 Local 3D Ridgelet Transform

The ridgelet transform is optimal to find sheets of the size of the cube. To
detect smaller sheets, a partitioning must be introduced [59]. The cube c is
decomposed into blocks of lower side-length b so that for a N×N×N cube, we
count N/b blocks in each direction. After the block partitioning, the tranform
is tuned for sheets of size b × b and of thickness aj, aj corresponding to the
different dyadic scales used in the transformation.
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Fig. 6. Overview of the 3D Ridgelet transform. At a given direction, sum over the
normal plane to get a • point. Repeat over all its parallels to get the (θ1, θ2) line
and apply a 1D wavelet transform on it. Repeat for all the directions to get the 3D
Ridgelet transform.

3.2 The 3D Beamlet Transform

The X-ray transform Xf of a continuous function f(x, y, z) with (x, y, z) ∈ R3

is defined by

(Xf)(L) =
∫

L

f(p)dp , (48)

where L is a line in R3, and p is a variable indexing points in the line. The
transformation contains all line integrals of f . The Beamlet Transform (BT)
can be seen as a multiscale digital X-ray transform. It is a multiscale transform
because, in addition to the multiorientation and multilocation line integral
calculation, it integrated also over line segments at different length. The 3D
BT is an extension to the 2D BT, proposed by Donoho and Huo [57].

The transform requires an expressive set of line segments, including line seg-
ments with various lengths, locations and orientations lying inside a 3D vol-
ume.

A seemingly natural candidate for the set of line segments is the family of all
line segments between each voxel corner and every other voxel corner, the set
of 3D beams. For a 3D data set with n3 voxels, there are O(n6) 3D beams. It
is infeasible to use the collection of 3D beams as a basic data structure since
any algorithm based on this set will have a complexity with lower bound of
n6 and hence be unworkable for typical 3D data size.

3.2.1 The Beamlet System

A dyadic cube C(k1, k2, k3, j) ⊂ [0, 1]3 is the collection of 3D points

{(x1, x2, x3) : [k1/2
j, (k1 + 1)/2j]× [k2/2

j, (k2 + 1)/2j]× [k3/2
j, (k3 + 1)/2j]} ,

23



where 0 ≤ k1, k2, k3 < 2j for an integer j ≥ 0, called the scale.

Such cubes can be viewed as descended from the unit cube C(0, 0, 0, 0) = [0, 1]3

by recursive partitioning. Hence, the result of splitting C(0, 0, 0, 0) in half
along each axis is the eight cubes C(k1, k2, k3, 1) where ki ∈ {0, 1}, splitting
those in half along each axis we get the 64 subcubes C(k1, k2, k3, 2) where
ki ∈ {0, 1, 2, 3}, and if we decompose the unit cube into n3 voxels using a
uniform n-by-n-by-n grid with n = 2J dyadic, then the individual voxels are
the n3 cells C(k1, k2, k3, J), 0 ≤ k1, k2, k3 < n.

Fig. 7. Dyadic cubes

Associated to each dyadic cube we can build a system of line segments that
have both of their end-points lying on the cube boundary. We call each such
segment a beamlet. If we consider all pairs of boundary voxel corners, we get
O(n4) beamlets for a dyadic cube with a side length of n voxels (we actually
work with a slightly different system in which each line is parametrized by a
slope and an intercept instead of its end-points as explained below). However,
we will still have O(n4) cardinality. Assuming a voxel size of 1/n we get J + 1
scales of dyadic cubes where n = 2J , for any scale 0 ≤ j ≤ J there are 23j

dyadic cubes of scale j and since each dyadic cube at scale j has a side length
of 2J−j voxels we get O(24(J−j)) beamlets associated with the dyadic cube and
a total of O(24J−j) = O(n4/2j) beamlets at scale j. If we sum the number of
beamlets at all scales we get O(n4) beamlets.

This gives a multi-scale arrangement of line segments in 3D with controlled
cardinality of O(n4), the scale of a beamlet is defined as the scale of the
dyadic cube it belongs to so lower scales correspond to longer line segments
and finer scales correspond to shorter line segments. Figure 8 shows 2 beamlets
at different scales.

To index the beamlets in a given dyadic cube we use slope-intercept coordi-
nates. For a data cube of n× n× n voxels consider a coordinate system with
the cube center of mass at the origin and a unit length for a voxel. Hence,
for (x, y, z) in the data cube we have |x|, |y|, |z| ≤ n/2. We can consider three
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Fig. 8. Examples of Beamlets at two different scales. (a) Scale 0 (coarsest scale) (b)
Scale 1 (next finer scale).

kinds of lines: x-driven, y-driven, and z-driven, depending on which axis pro-
vides the shallowest slopes. An x-driven line takes the form




z = szx+ tz

y = syx+ ty ,
(49)

with slopes sz,sy, and intercepts tz and ty. Here the slopes |sz|, |sy| ≤ 1. y-
and z-driven lines are defined with an interchange of roles between x and y or
z, as the case may be. The slopes and intercepts run through equispaced sets:

sx, sy, sz ∈ {2`/n : ` = −n/2, . . . , n/2− 1},
tx, ty, tz ∈ {` : −n/2, . . . , n/2− 1}.

Beamlets in a data cube of side n have lengths between n/2 and
√

3n (the
main diagonal).

Computational aspects

Beamlet coefficients are line integrals over the set of beamlets. A digital 3D
image can be regarded as a 3D piece-wise constant function and each line inte-
gral is just a weighted sum of the voxel intensities along the corresponding line
segment. Donoho and Levi [60] discuss in detail different approaches for com-
puting line integrals in a 3D digital image. Computing the beamlet coefficients
for real application data sets can be a challenging computational task since
for a data cube with n× n× n voxels we have to compute O(n4) coefficients.
By developing efficient cache aware algorithms we are able to handle 3D data
sets of size up to n = 256 on a typical desktop computer in less than a day
running time. We will mention that in many cases there is no interest in the
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coarsest scales coefficient that consumes most of the computation time and in
that case the over all running time can be significantly faster. The algorithms
can also be easily implemented on a parallel machine of a computer cluster
using a system such as MPI in order to solve bigger problems.

3.2.2 The FFT-based transformation

Let ψ ∈ L2(R2) a smooth function satisfying the admissibility condition:
∫
|ψ̂(ν)|2|ν|−3dν <∞ . (50)

In this case, one can further assume that ψ is normalized so that
∫ |ψ̂(ν)|2|ν|−3dν =

1. For each scale a, each position b = (b1, b2) ∈ R2 and each orientation
(θ1, θ2) ∈ [0, 2π[×[0, π[, we can define a trivariate beamlet function ψa,b1,b2,θ1,θ2 :
R3 → R by:

ψa,b,θ1,θ2(x1, x2, x3) = a−1/2 · ψ((−x1 sin θ1 + x2 cos θ1 + b1)/a,

(x1 cos θ1 cos θ2 + x2 sin θ1 cos θ2 − x3 sin θ2 + b2)/a) . (51)

The three-dimensional continuous beamlet transform of a function f ∈ L2(R3)
is given by:

Bf :R∗+ × R2 × [0, 2π[×[0, π[→ R

Bf (a,b, θ1, θ2) =
∫

R3

ψ∗a,b,θ1,θ2(x)f(x)dx. (52)

Figure 9 shows an example of beamlet function. It is constant along lines of
direction (θ1, θ2), and a 2D wavelet function along plane orthogonal to this
direction.

The 3D beamlet transform can be built using the “Generalized projection-
slice theorem” [58]. Let f(x) be a function on Rn; and let Rmf denote the
m-dimensional partial Radon transform along the first m directions, m < n.
Rmf is a function of (p,µm;xm+1, ..., xn), µm a unit directional vector in Rn

(note that for a given projection angle, the m dimensional partial Radon trans-
form of f(x) has (n−m) untransformated spatial dimensions and a (n-m+1)
dimensional projection profile). The Fourier transform of the m dimensional
partial radon transform Rmf is related to Ff the Fourier transform of f by
the projection-slice relation

{Fn−m+1Rmf}(k, km+1, ..., kn) = {Ff}(kµm, km+1, ..., kn) . (53)

Since the 3D Beamlet transform corresponds to wavelets applied along planes
orthogonal to given directions (θ1, θ2), one can use the 2D partial Radon trans-
form to extract planes on which to apply a 2D wavelet transform. Thanks to
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Fig. 9. Example of a beamlet function.

the projection-slice theorem this partial Radon transform in this case can
be efficiently performed by taking the inverse 2D Fast Fourier Transforms
on planes orthogonal to the direction of the Beamlet extracted from the 3D
Fourier space. The FFT based 3D Beamlet transform is summarised in Algo-
rithm 4.

Algorithm 4: The 3D Beamlet Transform

Data: An N ×N ×N data cube X.
Result: 3D Beamlet Transform of X
begin

− Apply a 3D FFT to X to yield X̂[kx, ky, kz]. ;
− Perform Cartesian-to-Spherical Conversion using an interpolation
scheme to sample X̂ in spherical coordinates X̂[ρ, θ1, θ2]. ;
− Extract 3N2 planes (of size N ×N) passing through the origin,
orthogonal to the lines used in the 3D ridgelet transform. ;
for each plane defined by [θ1, θ2] do
− apply an inverse 2D FFT ;
− apply a 2D wavelet transform to get the Beamlet coefficients ;
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Figure 10 gives the 3D beamlet transform flowgraph. The 3D beamlet trans-
form allows us to detect filaments in a cube. The beamlet transform algorithm
presented in this section differs from the one presented in [61]; see the discus-
sion in [60].

(θ1, θ2)

Sum over the lines at a
given direction

Partial
radon

transform 2D Wavelet
transform

(θ 1
, θ

2
)
di
re
ct
io
n

(θ 1
, θ

2
)
di
re
ct
io
n

Fig. 10. Schematic view of a 3D Beamlet transform. At a given direction, sum over
the (θ1, θ2) line to get a ◦ point. Repeat over all its parallels to get the dark plane
and apply a 2D wavelet transform within that plane. Repeat for all the directions to
get the 3D Beamlet transform. See the text (section 4.3) for a detailed explanation
and implementation clues.

3.3 Application: Analysis of the Spatial Distribution of Galaxies

To illustrate the two transforms introduced in this section, we present an ap-
plication of 3D ridgelets and beamlets to the statistical study of the galaxy
distribution which was investigated in [62]. Throughout the universe, galax-
ies are arranged in interconnected walls and filaments forming a cosmic web
encompassing huge, nearly empty, regions between the structures. The distri-
bution of these galaxies is of great interest in cosmology as it can be used to
constrain cosmological theories. The standard approach for testing different
models is to define a point process which can be characterized by statistical
descriptors. In order to compare models of structure formation, the different
distribution of dark matter particles in N-body simulations could be analyzed
as well, with the same statistics.

Many statistical methods have been proposed in the past in order to describe
the galaxy distribution and discriminate the different cosmological models.
The most widely used statistic if the two-point correlation function ξ(r) which
is a primary tool for quantifying large-scale cosmic structure [63].

To go further than the two-point statistics, the 3D Isotropic Undecimated
Wavelet Transform (see Section 2.2), the 3D ridgelet transform and the 3D
beamlet transform can used to build statistics which measure in a coherent and
statistically reliable way, the degree of clustering, filamentarity, sheetedness,
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and voidedness of a dataset.

3.3.1 Structure detection
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Fig. 11. Simulation of cubes containing a cluster (top), a plane (middle) and a line
(bottom).

Three data sets are generated containing respectively a cluster, a plane and a
line. To each data set, Poisson noise is added with eight different background
levels. After applying wavelets, beamlets and ridgelets to the 24 resulting data
sets, the coefficient distribution from each transformation is normalized using
twenty realizations of a Poisson noise having the same number of counts as in
the data.

Figure 11 shows, from top to bottom, the maximum value of the normal-
ized distribution versus the noise level for our three simulated data set. As
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expected, wavelets, ridgelets and beamlets are respectively the best for de-
tecting clusters, sheets and lines. A feature can typically be detected with a
very high signal-to-noise ratio in a matched transform, while remaining inde-
tectible in some other transforms. For example, the wall is detected at more
than 60σ by the ridgelet transform, but less than 5σ by the wavelet trans-
form. The line is detected almost at 10σ by the beamlet transform, and with
worse than 3σ detection level by wavelets. These results show the importance
of using several transforms for an optimal detection of all features contained
in a data set.

3.3.2 Process discrimination using higher order statistics

�le1: Voronoi

�le2: �{CDM GIF simulations
�le3: Cox proess
�le4: Soneira & Peebles

�le1: Voronoi

�le2: �{CDM GIF simulations
�le3: Cox proess
�le4: Soneira & Peebles

Fig. 12. Simulated data sets. Top, the Voronoi vertices point pattern (left) and the
galaxies of the GIF Λ-CDM N-body simulation (right). The bottom panels show
one 10 h−1 width slice of the each data set.

For this experiment, two simulated data sets are used to illustrate the dis-
criminative power of multiscale methods. The first one is a simulation from
stochastic geometry. It is based on a Voronoi model. The second one is a mock
catalog of the galaxy distribution drawn from a Λ-CDM N-body cosmological
model [64]. Both processes have very similar two-point correlation functions
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at small scales, although they look quite different and have been generated
following completely different algorithms.

• The first comes from Voronoi simulation: We locate a point in each of the
vertices of a Voronoi tessellation of 1.500 cells defined by 1500 nuclei dis-
tributed following a binomial process. There are 10085 vertices lying within
a box of 141.4 h−1 Mpc side.
• The second point pattern represents the galaxy positions extracted from

a cosmological Λ-CDM N-body simulation. The simulation has been car-
ried out by the Virgo consortium and related groups 1 . The simulation is
a low-density (Ω = 0.3) model with cosmological constant Λ = 0.7. It is,
therefore, an approximation to the real galaxy distribution[64]. There are
15445 galaxies within a box with side 141.3 h−1 Mpc. Galaxies in this cat-
alog have stellar masses exceeding 2× 1010 M�.

Figure 12 shows the two simulated data sets, and Figure 13(a) left shows the
two-point correlation function curve for the two point processes. The two point
fields are different, but as can be seen in Figure 13(a), both have very similar
two-point correlation functions in a huge range of scales (2 decades).
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Fig. 13. The two-point correlation function and skewness and kurtosis of the Voronoi
vertices process and the GIF Λ-CDM N-body simulation. The correlation functions
are very similar in the range [0.02,2] h−1 Mpc while skewness and kurtosis are very
different.

After applying the three transforms to each data set, the skewness vector
S = (sjw, s

j
r, s

j
b) and the kurtosis vector K = (kjw, k

j
r, k

j
b) are calculated at

each scale j. sjw, s
j
r, s

j
b are respectively the skewness at scale j of the wavelet

1 see http://www.mpa-garching.mpg.de/Virgo
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coefficients, the ridgelet coefficients and the beamlet coefficients. kjw, k
j
r, k

j
b are

respectively the kurtosis at scale j of the wavelet coefficients, the ridgelet
coefficients and the beamlet coefficients. Figure 13(b) shows the kurtosis and
the skewness vectors of the two data sets at the two first scales. In contrast
to the case with the two-point correlation function, this figure shows strong
differences between the two data sets, particularly on the wavelet axis, which
indicates that the second data contains more or higher density clusters than
the first one.

4 First Generation 3D Curvelets

In image processing, edges are curved rather than straight lines and ridgelets
are not able to effectively represent such images. However, one can still deploy
the ridgelet machinery in a localized way, at fine scales, where curved edges
are almost straight lines. This is the idea underlying the first generation 2D
curvelets [65]. These curvelets are built by first applying an isotropic wavelet
decomposition on the data followed by a local 2D ridgelet transform on each
wavelet scale.

In this section we describe a similar construction in the 3D case [20]. In 3D,
the 2D ridgelet transform can either be extended using the 3D ridgelets or
3D beamlets introduced in the previous section. Combined with a 3D wavelet
transform, the 3D ridgelet gives rise to the RidCurvelet while the 3D beamlet
will give rise to BeamCurvelets.

We begin by presenting the frequency-space tiling used by both transforms
before describing each one. In the last part of this section, we present denoising
applications of these transforms.

4.1 Frequency-space tiling

Following the strategy of the first generation 2D curvelet transform, both 3D
curvelets presented in this section are based on a tiling of both frequency space
and the unit cube [0, 1]3.

Partitioning of the frequency space can be achieved using a filter-bank in order
to separate the signal into spectral bands. From an adequate smooth function
ψ ∈ L2(R3) we define for all s in N∗, ψ2s = 26sψ(22s·) which extracts the
frequencies around |ν| ∈ [22s, 22s+2], and a low-pass filter ψ0 for |ν| ≤ 1. We
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get a partition of unity in the frequency domain :

∀ν ∈ R3, |ψ̂0(ν)|2 +
∑

s>0

|ψ̂2s(ν)|2 = 1 . (54)

Let P0f = ψ0 ∗ f and ∆sf = ψ2s ∗ f , where ∗ is the convolution product. We
can represent any signal f as (P0f,∆1f,∆2f, ...).

In the spatial domain, the unit cube [0, 1]3 is tiled at each scale s with a finite
set Qs of ns ≥ 2s regions Q of size 2−s:

Q = Q(s, k1, k2, k3) =

[
k1

2s
,
k1 + 1

2s

]
×
[
k2

2s
,
k2 + 1

2s

]
×
[
k3

2s
,
k3 + 1

2s

]
⊂ [0, 1]3.

(55)
Regions are allowed to overlap (for ns > 2s) to reduce the impact of block
effects in the resulting 3D transform. However, the higher the level of overlap-
ping, the higher the redundancy of the final transform. To each region Q is as-
sociated a smooth window wQ so that at any point x ∈ [0, 1]3,

∑
Q∈Qs

w2
Q(x) =

1, with

Qs =
{
Q(s, ki1, k

i
2, k

i
3)| ∀i ∈ J0, nsK, (ki1, k

i
2, k

i
3) ∈ [0, 2s[3

}
. (56)

Each element of the frequency-space wQ∆s is transported to [0, 1]3 by the
transport operator TQ : L2(Q)→ L2([0, 1]3) applied to f ′ = wQ∆sf

TQ :L2(Q)→ L2([0, 1]3)

(TQf
′)(x1, x2, x3) = 2−sf ′

(
k1 + x1

2s
,
k2 + x2

2s
,
k3 + x3

2s

)
.

(57)

For each scale s, we have a space-frequency tiling operator gQ, the output of
which lives on [0, 1]3

gQ = TQwQ∆s. (58)

Using this tiling operator, we can now build the 3D BeamCurvelet and 3D
RidCuvelet transform by respectively applying a 3D Beamlet and 3D Ridgelet
transform on each space-frequency block.

4.2 The 3D BeamCurvelet Transform

Given the frequency-space tiling defined in the previous section, a 3D Beamlet
transform [17, 66] can now be applied on each block of each scale. Let φ ∈
L2(R2) a smooth function satisfying the following admissibility condition

∑

s∈Z
φ2(2su) = 1, ∀u ∈ R2. (59)
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For a scale parameter a ∈ R, location parameter b = (b1, b2) ∈ R2 and
orientation parameters θ1 ∈ [0, 2π[, θ2 ∈ [0, π[, we define βa,b,θ1,θ2 the beamlet
function (see Section 3.2) based on φ :

βa,b,θ1,θ2(x1, x2, x3) = a−1/2φ((−x1 sin θ1 + x2 cos θ1 + b1)/a,

(x1 cos θ1 cos θ2 + x2 sin θ1 cos θ2 − x3 sin θ2 + b2)/a). (60)

The BeamCurvelet transform of a 3D function f ∈ L2([0, 1]3) is

BCf = {〈(TQwQ∆s) f, βa,b,θ1,θ2〉 : s ∈ N∗, Q ∈ Qs} . (61)

As we can see, a BeamCurvelet function is parametrized in scale (s, a), position
(Q,b), and orientation (θ1, θ2). The following sections describe the discretiza-
tion and the effective implementation of such a transform.

4.2.1 Discretization

For convenience, and as opposed to the continuous notations, the scales are
now numbered from 0 to J , from the finest to the coarsest. As seen in the
continuous formulation, the transform operates in four main steps.

(1) First the frequency decomposition is obtained by applying a 3D wavelet
transform on the data with a wavelet compactly supported in Fourier
space like the pyramidal Meyer wavelets with low redundancy [67], or
using the 3D isotropic à trou wavelets (see Section 2.2).

(2) Each wavelet scale is then decomposed in small cubes of a size following
the parabolic scaling law, forcing the block size Bs with the scale size Ns

according to the formula
Bs

Ns

= 2s/2
B0

N0

, (62)

where N0 and B0 are the finest scale’s dimension and block size.
(3) Then, we apply a partial 3D Radon transform on each block of each

scale. This is accomplished by integrating the blocks along lines at every
direction and position. For a fixed direction (θ1, θ2), the summation gives
us a plane. Each point on this plane represents a line in the original cube.
We obtain projections of the blocks on planes passing through the origin
at every possible angle.

(4) At last, we apply a two-dimensional wavelet transform on each Partial
Radon plane.

Steps 3 and 4 represent the Beamlet transform of the blocks. The 3D Beamlet
atoms aim at representing filaments crossing the whole 3D space. They are
constant along a line and oscillate like φ in the radial direction. Arranged
blockwise on a 3D isotropic wavelet transform, and following the parabolic
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scaling, we obtain the BeamCurvelet transform.
Figure 9 summarizes the beamlet transform, and Figure 14 the global Beam-
Curvelet transform.
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Fig. 14. Global flow graph of a 3D BeamCurvelet transform.

4.2.2 Algorithm summary

As for the 2D Curvelets, the 3D BeamCurvelet transform is implemented ef-
fectively in the Fourier domain. Indeed, the integration along the lines (3D
partial Radon transform) becomes a simple plane extraction in Fourier space,
using the d-dimensional projection-slice theorem, which states that the Fourier
transform of the projection of a d-dimensional function onto an m-dimensional
linear submanifold is equal to an m-dimensional slice of the d-dimensional
Fourier transform of that function through the origin in the Fourier space
which is parallel to the projection submanifold. In our case, d = 3 and m = 2.
Algorithm 5 summarizes the whole process.

4.2.3 Properties

As a composition of invertible operators, the BeamCurvelet transform is in-
vertible. As the wavelet and Radon transform are both tight frames, so is the
BeamCurvelet transform.

Given a Cube of size N × N × N , a cubic block of length Bs at scale s, and
J + 1 scales, the redundancy can be calculated as follows :
According to the parabolic scaling, ∀s > 0 : Bs/Ns = 2s/2B0/N0. The redun-
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Algorithm 5: The BeamCurvelet Transform

Data: A data cube X and an initial block size B
Result: BeamCurvelet transform of X
begin

Apply a 3D isotropic wavelet transform ;
for all scales from the finest to the second coarsest do

Partition the scale into small cubes of size B ;
for each block do

Apply a 3D FFT ;
Extract planes passing through the origin at every angle (θ1, θ2) ;
for each plane (θ1, θ2) do

apply an inverse 2D FFT ;
apply a 2D wavelet transform to get the BeamCurvelet
coefficients ;

if the scale number is even then
according to the parabolic scaling : ;
B = 2B (in the undecimated wavelet case) ;
B = B/2 (in the pyramidal wavelet case) ;

dancy induced by the 3D wavelet tansform is

Rw =
1

N3

J∑

s=0

N3
s , (63)

with Ns = 2−sN for pyramidal Meyer wavelets, and thus Bs = 2−s/2B0 ac-
cording to the parabolic scaling (see equation 62).
The partial Radon transform of a cube of size B3

s has a size 3B2
s×B2

s to which
we apply 2D decimated orthogonal wavelets with no redundancy. There are
(ρNs/Bs)

3 blocks in each scale because of the overlap factor (ρ ∈ [1, 2]) in
each direction. So the complete redundancy of the transform using the Meyer
wavelets is

R =
1

N3

J−1∑

s=0

(
ρ
Ns

Bs

)3

3B4
s +

N3
J

N3
= 3ρ3

J−1∑

i=0

Bs2
−3s + 2−3J (64)

= 3ρ3B0

J−1∑

s=0

2−7s/2 + 2−3J (65)

= O
(
3ρ3B0

)
when J →∞ (66)

R(J = 1) = 3ρ3B0 +
1

8
(67)

R(J =∞) ≈ 3.4ρ3B0 (68)
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For a typical block size B0 = 17, we get for J ∈ [1,∞[ :

R ∈ [51.125, 57.8[ without overlapping (69)

R ∈ [408.125, 462.4[ with 50% overlapping (ρ = 2). (70)

4.2.4 Inverse BeamCurvelet Transform

Because all its components are invertible, the BeamCurvelet transform is in-
vertible and the reconstruction error is comparable to machine precision. Al-
gorithm 6 details the reconstruction steps.

Algorithm 6: The Inverse BeamCurvelet Transform

Data: An initial block size B, and the BeamCurvelet coefficients : series of
wavelet-space planes indexed by a scale, angles (θ1, θ2), and a 3D
position (Bx,By,Bz)

Result: The reconstructed data cube X
begin

for all scales from the finest to the second coarsest do
Create a 3D cube the size of the current scale (according to the 3D
wavelets used in the forward transform) ;
for each block position (Bx,By,Bz) do

Create a block B of size B ×B ×B ;
for each plane (θ1, θ2) indexed with this position do
− Apply an inverse 2D wavelet transform ;
− Apply a 2D FFT ;
− Put the obtained Fourier plane to the block, such that the
plane passes through the origin of the block with normal angle
(θ1, θ2)

;
− Apply a 3D IFFT ;
− Add the block to the wavelet scale at the position (Bx,By,Bz),
using a weighted function if overlapping is involved;

if the scale number is even then
according to the parabolic scaling : ;
B = 2B (in the undecimated wavelet case) ;
B = B/2 (in the pyramidal wavelet case) ;

Apply a 3D inverse isotropic wavelet transform ;

An example of a 3D BeamCurvelet atom is represented in Figure 15. The
BeamCurvelet atom is a collection of straight smooth segments well localized
in space. Across the transverse plane, the BeamCurvelets exhibit a wavelet-like
oscillating behavior.
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Fig. 15. Examples of a BeamCurvelet atoms at different scales and orientations.
These are 3D density plots : the values near zero are transparent, and the opacity
grows with the absolute value of the voxels. Positive values are red/yellow, and
negative values are blue/purple. The right map is a slice of a cube containing these
three atoms in the same position as on the left. The top left atom has an arbitrary
direction, the bottom left is in the slice, and the right one is normal to the slice.

4.3 The 3D RidCurvelet Transform

As referred to in 4.2, the second extension of the curvelet transform in 3D is
obtained by using the 3D Ridgelet transform [68] defined in Section 3 instead
of the Beamlets.

The continuous RidCurvelet is thus defined in much the same way as the
BeamCurvelet. Given a smooth function φ ∈ L2(R) verifying the following
admissibility condition:

∑

s∈Z
φ2(2su) = 1, ∀u ∈ R , (71)

a three-dimensional ridge function (see Section 3) is given by :

ρσ,κ,θ1,θ2(x1, x2, x3) = σ−1/2φ
(

1

σ
(x1 cos θ1 cos θ2 + x2 sin θ1 cos θ2 + x3 sin θ2 − κ)

)
,

(72)
where σ and κ are respectively the scale and position parameters.

Then the RidCurvelet transform of a 3D function f ∈ L2([0, 1]3) is

RCf = {〈(TQwQ∆s) f, ρσ,κ,θ1,θ2〉 : s ∈ N∗, Q ∈ Qs} . (73)

4.3.1 Discretization

The discretization is made the same way, the sums over lines becoming sums
over the planes of normal direction (θ1, θ2), which gives us a line for each di-
rection. The 3D Ridge function is useful for representing planes in a 3D space.
It is constant along a plane and oscillates like φ in the normal direction. The
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main steps of the Ridgelet transform are depicted in figure 6.

4.3.2 Algorithm summary

The RidCurvelet transform is also implemented in Fourier domain, the inte-
gration along the planes becoming a line extraction in the Fourier domain.
The overall process is shown in Figure 16, and Algorithm 7 summarizes the
implementation.
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Fig. 16. Global flow graph of a 3D RidCurvelet transform.

4.3.3 Properties

The RidCurvelet transform forms a tight frame. Additionally, given a 3D cube
of size N ×N ×N , a block of size-length Bs at scale s, and J + 1 scales, the
redundancy is calculated as follows :
The Radon transform of a cube of size B3

s has a size 3B2
s × Bs, to which

we apply a pyramidal 1D wavelet of redundancy 2, for a total size of 3B2
s ×

2Bs = 6B3
s . There are (ρNs/Bs)

3 blocks in each scale because of the overlap
factor (ρ ∈ [1, 2]) in each direction. Therefore, the complete redundancy of the
transform using many scales of 3D Meyer wavelets is

R =
J−1∑

s=0

6B3
s

(
ρ
Ns

Bs

)3

+ 2−3J = 6ρ3
J−1∑

s=0

2−3s + 2−3J (74)

R = O(6ρ3) when J →∞ . (75)

R(J = 1) = 6ρ3 + 1/8 (76)

R(J =∞) ≈ 6.86ρ3 . (77)
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Algorithm 7: The RidCurvelet Transform

Data: A data cube x and an initial block size B
Result: RidCurvelet transform of X
begin

Apply a 3D isotropic wavelet transform ;
for all scales from the finest to the second coarsest do

Cut the scale into small cubes of size B ;
for each block do

Apply a 3D FFT ;
Extract lines passing through the origin at every angle (θ1, θ2) ;
for each line (θ1, θ2) do

apply an inverse 1D FFT ;
apply a 1D wavelet transform to get the RidCurvelet
coefficients ;

if the scale number is even then
according to the parabolic scaling : ;
B = 2B (in the undecimated wavelet case) ;
B = B/2 (in the pyramidal wavelet case) ;

4.3.4 Inverse RidCurvelet Transform

The RidCurvelet transform is invertible and the reconstruction error is com-
parable to machine precision. Algorithm 8 details the reconstruction steps.

An example of a 3D RidCurvelet atom is represented in Figure 17. The Rid-
Curvelet atom is composed of planes with values oscillating like a wavelet in
the normal direction, and well localized due to the smooth function used to
extract blocks on each wavelet scale.

Fig. 17. Examples of RidCurvelet atoms at different scales and orientation. The ren-
dering is similar to that of figure 15. The right plot is a slice from a cube containing
the three atoms shown here.
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Algorithm 8: The Inverse RidCurvelet Transform

Data: An initial block size B, and the RidCurvelet coefficients : series of
wavelet-space lines indexed by a scale, angles (θ1, θ2), and a 3D
position (Bx,By,Bz)

Result: The reconstructed data cube X
begin

for all scales from the finest to the second coarsest do
Create a 3D cube the size of the current scale (according to the 3D
wavelets used in the forward transform) ;
for each block position (Bx,By,Bz) do

Create a block B of size B ×B ×B ;
for each line (θ1, θ2) indexed with this position do
− Apply an inverse 1D wavelet transform ;
− Apply a 1D FFT ;
− Put the obtained Fourier line to the block, such that the line
passes through the origin of the block with the angle (θ1, θ2)

;
− Apply a 3D IFFT ;
− Add the block to the wavelet scale at the position (Bx,By,Bz),
using a weighted function if overlapping is involved;

if the scale number is even then
according to the parabolic scaling : ;
B = 2B (in the undecimated wavelet case) ;
B = B/2 (in the pyramidal wavelet case) ;

Apply a 3D inverse isotropic wavelet transform ;

4.4 Application: Structure Denoising

In sparse representations, the simplest denoising methods are performed by
a simple thresholding of the discrete curvelet coefficients. The threshold level
is usually taken as three times the noise standard deviation, such that for an
additive gaussian noise, the thresholding operator kills all noise coefficients
except a small percentage, keeping the big coefficients containing information.
The threshold we use is often a simple κσ, with κ ∈ [3, 4], which corresponds
respectively to 0.27% and 6.3·10−5 false detections. Sometimes we use a higher
κ for the finest scale [3]. Other methods exist, that estimate automatically the
threshold to use in each band like the False Discovery Rate (see [69, 70]). The
correlation between neighbor coefficients intra-band and/or inter-band may
also be taken into account (see [71, 72]). In order to evaluate the different
transforms, a κσ Hard Thresholding is used in the following experiments.

A way to assess the power of each transform when associated to the right
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structures is to denoise a synthetic cube containing plane- and filament-like
structures. Figure 18 shows a cut and a projection of the test cube contain-
ing parts of spherical shells and a spring-shaped filament. Then this cube is
denoised using wavelets, RidCurvelets and BeamCurvelets.

Fig. 18. From left to right : a 3D view of the cube containing pieces of shells and
a spring-shaped filament, a slice of the previous cube, and finally a slice from the
noisy cube.

As shown in figure 19, the RidCurvelets denoise correctly the shells but poorly
the filament, the BeamCurvelets restore the helix more properly while slightly
underperforming for the shells, and wavelets are poor on the shell and give
a dotted result and misses the faint parts of both structures. The PSNRs
obtained with each transform are reported in Table 1. Here, the Curvelet
transforms did very well for a given kind of features, and the wavelets were
better on the signal power. In the framework of 3D image denoising, it was
advocated in [2] to combine several transforms in order to benefit from the
advantages of each of them.

Fig. 19. From left to right : a slice from the filtered test-cube (orignial in figure
18) by the wavelet transform (isotropic undecimated), the RidCurvelets and the
BeamCurvelets.

42



Wavelets RidCurvelets BeamCurvelets

Shells & spring 40.4dB 40.3dB 43.7dB

Table 1
PSNR of the denoised synthetic cube using wavelets, RidCurvelets or Beam-
Curvelets

5 Fast Curvelets

Despite their interesting properties, the first generation curvelet constructions
presents some drawbacks. In particular, the spatial partitioning uses overlap-
ping windows to avoid blocking effects. This leads to an increased redundancy
of the transforms which is a crucial factor in 3D. In contrast, the second gener-
ation curvelets [73, 74], exhibit a much simpler and natural indexing structure
with three parameters: scale, orientation (angle) and location, hence simpli-
fying mathematical analysis. The second generation curvelet transform also
implements a tight frame expansion [73] and has a much lower redundancy.
Unlike the first generation, the discrete second generation implementation will
not use ridgelets yielding a faster algorithm [73, 74].

The 3D implementation of the fast curvelets was proposed in [21, 75] with a
public code distributed (including the 2-D version) in Curvelab, a C++/Matlab
toolbox available at www.curvelet.org. This 3D fast curvelet transform has
found applications mainly in seismic imaging, for instance for denoising [76]
and inpainting [77]. However, a major drawback of this transform is its high
redundancy factor, of approximately 25. As a straightforward and somewhat
naive remedy to this problem, the authors in [21, 75] suggest to use wavelets
at the finest scale instead of curvelets, which indeed reduces the redundancy
dramatically to about 5.4 (see Section 5.3 for details). However, this comes
at the price of the loss of directional selectivity of fine details. On the practi-
cal side, this entails poorer performance in restoration problems compared to
the full curvelet version. Note that directional selectivity was one of the main
reasons curvelets were built at the first place.

In this section, we begin by describing the original 3D Fast Curvelet transform
[21, 75]. The FCT of a 3D object consists of a low-pass approximation subband,
and a family of curvelet subbands carrying the curvelet coefficients indexed
by their scale, position and orientation in 3D. These 3D FCT coefficients are
formed by a proper tiling of the frequency domain following two steps (see
Figure 22):

• Cartesian coronization or multiscale separation: first decompose the object
into (Cartesian) dyadic coronae in the Fourier domain based on concentric
cubes;
• Angular separation: each corona is separated into anisotropic wedges of
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trapezoidal shape obeying the so-called parabolic scaling law (to be de-
fined shortly). The 3D FCT coefficients are obtained by an inverse Fourier
transform of applied to each wedge appropriately wrapped to fit into a 3D
rectangular parallelepipeds.

After detailing these two steps, we express the redundancy factor of the orig-
inal 3D FCT which will motivate the Low-Redundancy implementation [78]
presented afterwards.

In the last part of this section, we present a few application of the 3D Fast
Curvelet transform.

5.1 Cartesian coronization

The multiscale separation is achieved using a 3D Meyer wavelet transform
[67, 79], where the Meyer wavelet and scaling functions are defined in Fourier
domain with compactly supported Fourier transforms.

Let’s denote ψj as the Meyer wavelet at scale j ∈ {0, · · · , J−1}, and φJ−1 the

scaling function at the coarsest scale. The Meyer wavelets ψ̂(ξ) are defined in
Fourier domain as follows :

ψ̂(ξ) =





exp−i2πξ sin(π
2
ν(6|ξ| − 1)), if 1/6 < |ξ| ≤ 1/3

exp−i2πξ cos(π
2
ν(3|ξ| − 1)), if 1/3 < |ξ| ≤ 2/3

0 elsewhere

,

where ν is a smooth function, that goes from 0 to 1 on [0, 1] and satisfies
ν(x) + ν(1− x) = 1. Associated to this wavelet is the Meyer scaling functions
defined by

φ̂(ξ) =





1, if |ξ| ≤ 1/6

cos(π
2
ν(6|ξ| − 1)), if 1/6 < |ξ| ≤ 1/3

0 if |ξ| > 1/3

.

Figure 20 displays in solid lines the graphs of the Fourier transforms of the
Meyer scaling and wavelet functions at three scales.

There is a pair of conjugate mirror filters (h, g) associated to (φ, ψ) whose
Fourier transforms (ĥ, ĝ) can be easily deduced from (φ̂, ψ̂). ĥ and ĝ are thus
compactly supported. As a consequence, the Meyer wavelet transform is usu-
ally implemented in the Fourier domain by a classical cascade of multipli-
cations by ĥ and ĝ. However, the wavelet at the finest scale is supported on
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Frequencies
−2/3 2/31/2−1/2 −1/4 1/40

0

1
|ψ̂0||ψ̂1||ψ̂2||φ̂2|

|ψ̂j | = |ψ̂(2jξ)||φ̂j | = |φ̂(2jξ)|

Fig. 20. Meyer scaling and wavelets functions in Fourier domain. In the discrete case,
we only have access to the Fourier samples inside the Shannon band [−1/2, 1/2],
while the wavelet corresponding to the finest scale (solid red line) exceeds the Shan-
non frequency band to 2/3. In the original Fast Curvelet implementation, the Meyer
wavelet basis is periodized in Fourier, so that the exceeding end of the finest scale
wavelet is replaced with the mirrored dashed line on the plot.

[−2/3,−1/6[∪]1/6, 2/3], hence exceeding the Shannon band. This necessitates
to know signal frequencies that we do not have access to.

As the FCT makes central use of the FFT, it implicitly assumes periodic
boundary conditions. Moreover, it is known that computing the wavelet trans-
form of a periodized signal is equivalent to decomposing the signal in a periodic
wavelet basis. With this in mind, the exceeding end of the finest scale wavelet
is replaced with its mirrored version around the vertical axis at |ξ| = 1/2, as
shown in dashed line on Figure 20. Consequently, the support of the data to
treat is 4/3 larger than the original one, hence boosting the redundancy by a
factor (4/3)d in d-D.

Denote Mj = ψ̂j = 2−3j/2ψ̂(2−j·) and MJ = φ̂J−1 = 2−3(J−1)/2φ̂(2−(J−1)·) their
Fourier transforms. MJ is a lowpass and the wavelet functions {Mj}0≤j<J is
a family of bandpass frequency localized windows that form a uniform par-
tition of the unity. Applied to a 3D object, the family {Mj}0≤j<J separates
it into Cartesian coronae (annuli), and MJ selects its low frequency content
(see Figure 21). This coarsest subband is kept unaltered, and after an inverse
Fourier transform, provides us with the first curvelet coefficients, which corre-
sponds to coarse scale isotropic atoms. Only the next detail scales, i.e. those
corresponding to {Mj}0≤j<J , have to be processed further.

5.2 Angular separation

The FCT isolates, in the frequency domain, oriented and localized 3D wedges.
There is a symmetry on a 3D Cartesian grid : the cube has six faces which
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X Y

Z

Fig. 21. Cartesian coronization in Fourier space using compactly supported Meyer
wavelets for J = 2. The central cube corresponds to the isotropic coarsest subband
MJ .

can be processed in a similar way. Let ω = (ω1, ω2, ω3) ∈ [−1/2, 1/2]3 be
a frequency in the 3D Shannon band. Exploiting the above symmetry, we
will only focus on the subspace {ω1 > 0, |ω2/ω1| < 1, |ω3/ω1| < 1} which is a
squared-based pyramid. The five other parts can be dealt with exactly in the
same way by symmetry around the origin and exchange of axes.

Let Na be the number of angles on one edge of one face of the finest scale,
for a total of N2

a angles on each face, and thus six times more bands for the
entire considered scale (see Figure 22). This number varies with the scale
because the number of angles decreases with the scales becoming coarser to
obey the parabolic scaling law of curvelets [75], with a parabolic scaling matrix
diag(2−j, 2−j/2, 2−j/2) (one short direction and two long ones). This property
is essential to ensure that the 3D curvelets are a basis for sparsely representing
smooth trivariate functions with 2-D smooth surface-like singularities.

The vector indexing the angular locations on a face at the jth scale may be
expressed with l = (l, l′) ∈ {0, · · · , 2b−j/2cNa − 1}2, where b·c is the integer
part of its argument 2 . Recall that a wedge is the trapezoidal region sharply
localized along a given angle at a given scale, see the dark gray area in Figure
22. The center of the wedge is on the line going from the origin to the point
(1, θl, θ

′
l′), with

θl =

(
−1 +

2l + 1

2b−j/2cNa

)
, θ′l′ =

(
−1 +

2l′ + 1

2b−j/2cNa

)
. (78)

2 On a Cartesian grid, the slopes are equispaced not the angles.
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We can now define the angular separation by multiplying the dyadic annuli
corresponding to the wavelet detail subbands by the smooth angular windows
Vj,l in the Fourier domain. The angular windows are built from a smooth real-
valued function V supported on [−1, 1] and satisfying the partition property

∞∑

l=−∞
V 2(t− 2l) = 1 ∀t ∈ R. (79)

The angular window at scale j and orientation l = (l, l′) is then constructed
as

Vj,l(ω) = V

(
2b−j/2cNa

ω2 − θlω1

ω1

)
· V

(
2b−j/2cNa

ω3 − θ′l′ω1

ω1

)
, (80)

where θl and θ′l′ are defined in (78). Note the scaling factor 2−j/2 as dictated
by the parabolic scaling. Owing to (79), the family of angular windows {Vj,l}l
makes a uniform partition of the dyadic annulus at scale j, i.e.

∑

l

V 2
j,l(ω) = 1 . (81)

However, because of the support constraint on V , this relation does not hold
for all ω, and a special care should be taken at the corners where only three
out of usually four windows overlap. We thus need to redefine them for (81)
to hold for any ω. Here is a simple remedy to this problem. Let la, lb, lc be
the indices of the three corner windows, we redefine them on their overlapping
domain Ω as

∀ω ∈ Ω,∀l ∈ {la, lb, lc}, Vj,l(ω)← Vj,l(ω)√
V 2
j,la

(ω) + V 2
j,lb

(ω) + V 2
j,lc

(ω)
. (82)

Piecing all ingredients together, the scale-angular wedge at scale-orientation
(j, l) is extracted by the frequency window

Wj,l(ω) = Mj(ω) · Vj,l(ω) , (83)

which is sharply localized near the trapezoid

{
(ω1, ω2, ω3) : 2j+1 < ω1 < 2j,

∣∣∣∣
ω2

ω1

− θl
∣∣∣∣ < 2bj/2c/Na,

∣∣∣∣
ω3

ω1

− θ′l′
∣∣∣∣ < 2bj/2c/Na

}
.

Once a wedge is extracted, an inverse Fourier transform must be applied in
order to get the curvelet coefficients at the corresponding scale and orientation.
Prior to this, the trapezoidal wedge has to be transformed to a convenient form
for which the 3D FFT algorithm applies. As it can be seen from Figure 22, the
wedge can be inscribed inside a 3D parallelepiped which is ∼ 2j/2 long on the
(ω2, ω3) coordinates (i.e. tangentially), and 2j on ω1, i.e. radially. Although this
expands the area including the wedge, we can still wrap it inside a rectangular
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parallelepiped of dimensions ∼ (2j, 2j/2, 2j/2) centered at the origin aligned
with the axes of the grid (see Section 5.4.2 for further details about wrapping).
With appropriate choice of the size of the rectangular parallelepiped, the data
does not overlap with itself after wrapping. With the wrapping trick, an inverse
3D FFT can be readily applied to the rectangular parallelepiped to obtain the
curvelet coefficients at the selected scale and orientation.

︸
︷︷
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2
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Fig. 22. Example in 3D of how the number of directions Na is defined along an edge,
(eight in this example), and showing the overlapping region around one wedge. The
dark gray area is the main part of the wedge, and the light one represents the
overlapping region.

Algorithm 9 summarizes the implementation of the 3D FCT and outlines its
main steps. In order to show an atom of the 3D FCT, we set to zero all the
FastCurvelet coefficients except one, and then perform the inverse transform.
We obtain a single FastCurvelet atom, which can be observed in the Fourier
domain as well. Figure 23 displays a 3D curvelet atom in the spatial and
Fourier domain.
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Algorithm 9: The 3D Fast Curvelet Transform

Data: A 3D data object X of size N = (Nx, Ny, Nz).
Input: Number of scales J , number of angles Na on each face at the finest

scale.
begin

(1) Multiscale separation: apply the 3D Meyer wavelet transform in
Fourier domain, get cubes of sizes N, N/2, ..., N/2J .;

(2) Angular separation:;
foreach scale j = 0 to J do

foreach orientation l = (l, l′) do
Multiply the wavelet cube at scale j with the angular window

Vj,l in Fourier;;
Wrapping: wrap the result in a rectangular parallelepiped

centered at the origin of minimal size
(2j3/8× 2j/2+1/Na × 2j/2+1/Na) ;;

Apply a 3D inverse FFT to the rectangular parallelepiped to
collect the curvelet coefficients ;;

Result: 3D FCT of X.

Fig. 23. Left : volume rendering of a 3D curvelet atom in the spatial domain corre-
sponding to our implementation, cut by a vertical plane to see its inner structure.
Right : the magnitude if its Fourier transform. The colorbar scale is valid only for
the left image.

5.3 Redundancy

Here, we quantify analytically the redundancy of the FCT in any dimension d.
Without loss of generality, we assume that the data object is a d-D hypercube
of unit side. Let Na be the number of angles along an edge on one face at the
finest scale, for a total of Nd−1

a orientations on each face. Let Nf = 2d be the
number of faces of the d-D data hypercube.
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The redundancy of the Cartesian coronization or multiscale separation assum-
ing a dyadic frequency tiling is given by

J∑

j=0

(
1

2d

)j
, (84)

which is upper-bounded by Rw = 2d

2d−1
. As explained in Section 5.1, an extra-

redundancy Radd comes into play in the Meyer wavelet transform with the
original FCT implementation:

Radd =
(

4

3

)d
. (85)

At the finest scale and on each face, there are Nd−1
a wedges, where the size of

each of them is
3

8
× 2

Na

× ...× 2

Na︸ ︷︷ ︸
d−1 times

. (86)

The factor 3/8 corresponds to the radial depth of the scale; see Section 5.1 and
Figure 20. In the other orthogonal directions, a wedge has a size of 1

Na
which

we double because of overlapping. The redundancy of a face at the finest scale
is then

Rf = Nd−1
a · 3

8

(
2

Na

)d−1

= 3 · 2d−4. (87)

As it can be seen, the Rf redundancy is independent of Na, and is therefore
valid at all scales. For a large enough number of scales, it can be reasonably
assumed that coarsest (wavelet) scale has the same redundancy as a curvelet
subband at the same scale. Consequently, the overall redundancy of the FCT
is upper-bounded by (see (84))

R = Nf ·Rf ·Rw ·Radd

= 3d
22d−3

2d − 1
·Radd.

(88)

In the case where wavelets are used instead of curvelets at the finest scale, the
redundancy upper-bound is changed to

R′ = (Nf ·Rf · (Rw − 1) + 1) ·Radd

=

(
3d

2d−3

2d − 1
+ 1

)
·Radd.

(89)

Table 2 compares numerically the redundancy of the original and the Low Re-
dundancy FCT introduced in the next section in 2D and 3D, when wavelets
(W) or curvelets (C) are implemented at the finest scale. It may be worth
mentioning that for the practitioner, the memory storage requirement of the
original FCT (as implemented in Curvelab) is twice larger than the one pre-
dicted by the redundancy formula. Indeed, the original curvelets are complex
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Original FCT LR-FCT

C W C W

2-D 7.11 3.56 4.00 2.00

3D 24.38 5.42 10.29 2.29

Table 2
Redundancy of the original FCT and the Low Redundancy one in 2-D and 3D, when
wavelets (W) or curvelets (C) are used at the finest scale.

and real curvelets are obtained by hermitian symmetry. This explains the
redundancy 40 3 claimed by [26] emphasizing the need of lower redundancy
curvelets.

5.4 Low redundancy implementation

In this section, we detail the Low Redundancy FCT (hereafter LR-FCT) in-
troduced in [80]. The overall implementation of this FCT differs from the
original one in several points. The main difference lays in the way to apply
the Meyer wavelet transform to the data. Other changes have been introduced
as described hereafter.

5.4.1 The multiscale separation

The extra redundancy of the curvelets as implemented in Curvelab originates
mainly from the way the radial window is implemented, especially at the
finest scale. As explained in Section 5.1, the Meyer wavelet at the finest scale
is supported on [−2/3,−1/6[∪]1/6, 2/3[, hence exceeding the Shannon band.
In the original FCT, the exceeding end of the finest scale wavelet is replaced
with its mirrored version around the vertical axis at |ξ| = 1/2.

In the LR-FCT implementation, a different approach is adopted. First, the
supports of the scaling and wavelet functions (hence filters) are shrank by a
factor of 4/3. Furthermore, to maintain the uniform partition of unity, which
plays an important role for isometry of the transform, following [67], the finest
scale wavelet is modified by suppressing its decreasing tail so that the wavelet
becomes a constant over ] − 1/2,−1/4]∪]1/4, 1/2] (see the dashed line on
Figure 24). The right part of Figure 25 shows the impact of the proposed
modifications on the 2-D curvelets in the frequency domain. This strategy
and the conclusions carry over to the 3D case.

This modification to the Meyer wavelets reduces the redundancy of the trans-

3 In fact, it should be ≈ 50 as can be read from Table 2.
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Frequencies

0

1

−2/3 2/31/2−1/2 −1/4 1/40

Fig. 24. Modified Meyer filters in Fourier domain. A scaling function is plotted
in black, and in plain lines are the amplitude of the three following wavelet func-
tions. In the Low Redundancy implementation,all the filters are shrunk to fit in the
[−1/2, 1/2] box, and the decreasing ends of the finest scale filters are replaced by a
constant (dashed red line) to keep all the information.

form. Indeed, as was shown in Section 5.3, the redundancy of the transform
is proportional to a factor Radd due to the Meyer wavelet transform. With
this modified version of the transform however, the wavelets do not add any
redundancy and Radd = 1 instead of (4/3)d for the original transform.

However, this comes at the cost of some changes undergone by the curvelet
atoms at the finest scale. First of all, they are less sharply supported in the
spatial domain than the original curvelets because of the discontinuity of their
Fourier transform, while the decay of the other curvelets remain unchanged.
Secondly, they obey a parabolic scaling but with a different constant compared
to the curvelets at the other scales.

5.4.2 Ensuring zero-mean subbands

In the original wrapping-based FCT [75, 81], the wedges are wrapped around
the origin using a simple modulo operator, which makes every point fit into
a well-sized rectangular parallelepiped centered at the origin whose size is de-
signed so as the data does not overlap with itself after wrapping. However,
nothing prevents the center of the parallelepiped from receiving a significant
non-zero wrapped Fourier coefficient. After an inverse FFT of the wrapped
wedge, it is likely to obtain curvelet coefficient subbands with non-zero means.
This is obviously unsuitable since curvelet coefficients are expected to repre-
sent high frequency content, and typical thresholding-based processing (e.g.
denoising) will be hampered in such a situation. Hopefully, the size and posi-
tion of the wedges are so that this misleading phenomenon is generally pre-
vented in practice. Nevertheless, this is not guaranteed in general.

Therefore, in order to ensure zero-mean curvelet subbands, a straightforward
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(a) (b)

Fig. 25. Top : Examples of 2-D (real) curvelets in Fourier domain at three consecu-
tive scales and different orientations, with the zero frequency at the center. From the
outermost edge to the inside, a finest scale curvelet and two lower scale curvelets.
(a) According to the Curvelab implementation, and (b) with our modified low-re-
dundancy implementation. Bottom : the corresponding Fourier transforms of 1-D
Meyer scaling and wavelet functions.

solution is to translate each rectangular parallelepiped where a wedge has to
be wrapped in such a way that the center (zero frequency) gets a true zero
coefficient, i.e. a point out of the wedge support, and then to wrap the data
around the translated box. Doing so, the curvelet subbands are ensured to be
zero-mean valued after wrapping. Figure 26 illustrates the difference between
the two wrapping strategies in 2-D for the sake of legibility. The technique
extends readily to the 3D case.

5.4.3 Properties

This section enumerates the main properties enjoyed by the LR-FCT imple-
mentation.

• Reduced redundancy: with a reduction factor of (4/3)d compared to the
original version. This is one of the distinctive properties of the LR-FCT,
and was the main goal underlying these modifications in the first place. For
example, the LR-FCT with full curvelets at all scales is (almost) as redun-
dant as the original one with wavelets at the finest scale. In 3D, redundancy
implied by this implementation is 2.5 times lower that the original FCT
with curvelets at all scales. In short, this implementation achieves a low
redundancy while maintaining the directional selectivity property at the
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(a) (aʼ) (b) (bʼ)

Fig. 26. (a) Representation of the influence of a wedge and its overlapping region.
The centered dotted rectangle corresponds to the minimal size in which the wedge
will be wrapped. (a’) The result of the wrapping. (b) The wrapping in a rectangle of
the same size, but whose center is chosen such that the zero frequency (big dot) falls
outside the support of the wedge. (b’) The corresponding wedge after translation
and wrapping.

finest scale unlike the original FCT where wavelets are advocated at the
finest scale to lower the redundancy [21, 75].
• Isometry and fast exact reconstruction: owing to the uniform parti-

tion property of the Meyer wavelets, and the coverage property (79) of the
angular window, the collection of curvelets in Fourier obtained by multipli-
cation of the scale and angular windows also ensures a uniform partition
of the unity. Therefore, with a proper normalization of the FFT (wrapping
is a simple reindexing), the proposed FCT corresponds to a Parseval tight
frame (PTF), i.e. the frame operator CC∗ = I, where C∗ is the FCT analysis
operator and C its adjoint. With the PTF property, C turns out to be also
the inverse transform operator associated to a fast reconstruction algorithm
(each step of the forward transform is easily invertible).
• Parabolic scaling: by construction, the curvelets obey the parabolic scal-

ing law with one short and two long sides ∼ (2−j, 2−j/2, 2−j/2). Although
at the finest scale, this property is less faithful to the continuous construc-
tion compared to the original FCT (see also the discussion at the end of
Section 5.4.1).
• Non-equal `2 norm atoms: although the LR-FCT implements a PTF,

the modified curvelets at the finest scale do not have the same `2 norm as
the curvelets in the other (coarsest) scales. These `2 norms can nonetheless
be calculated analytically so as to normalize the associated curvelets coef-
ficients, which is important for instance in every processing which involves
thresholding.
• Guaranteed zero-mean subbands: this is a consequence of the wise

translation trick prior to wrapping explained in Section 5.4.2. Of course,
this operation preserves isometry and `2 norms.
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5.4.4 LR-FCT denoising, a good tradeoff between efficiency and memory
storage

In this experiment, the denoising performance using the LR-FCT is compared
to several other 3D multiscale transforms on various types of datasets (3D
spatial data, hyperspectral images and videos). The noise is additive white
Gaussian (AWGN) and simple hard thresholding is used. The video datasets
included in this experiment are the standard videos mobile, tempete, and
coastguard CIF sequences available at www.cipr.rpi.edu. For hyperspectral
data, a dataset from the OMEGA spectrometer on Mars Express was used
(www.esa.int/marsexpress) with 128 wavelength from 0.93µm to 2.73µm.
Beside LR-FCT, the other transforms involved in this comparative study are:
the dual-tree complex wavelet transform [82, 83], the surfacelet transform
[26] and the orthogonal (decimated) and translation-invariant (undecimated)
wavelet transforms.

Dual Tree Wavelets (4.0)
Surfacelets (6.4)
Surfacelets (4.0)
Undecimated Wavelets (29)
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Fig. 27. Output PSNR as a function of the input PSNR for three video sequences.
(a) mobile, (b) tempete, and (c) coastguard CIF sequence. The redundancy of each
transform is indicated in parentheses on the legend.
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Figures 27 and 28 show the output PSNR after denoising as a function of
the input PSNR for each transform. Each point on each curve is the average
output PSNR on ten noise realizations. The reader may have noticed that the
wavelet results are much better here than those tabulated in [26]. The rea-
son behind this is that unlike those authors, the Cohen-Daubechies-Fauveau
7/9 filterbank is used here, which is much better for denoising. Figure28 dis-
plays the results for the hyperspectral data from Mars Express (see caption for
details). From these experiments, it can be clearly seen that the LR-FCT com-
pares very favorably to the other multiscale geometrical 3D transforms, and
is particularly better at the low PSNR regime. In a nutshell, it can be safely
concluded that LR-FCT provides a very good compromise between denoising
performance and memory/CPU requirements.
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Fig. 28. Top row: Mars Express observations at two different wavelengths. Bot-
tom-left: two spectra at two distinct pixels. Bottom-right: output PSNR as a func-
tion of the input PSNR for different transforms; see Figure 27 for legend of the
curves.
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5.5 Application: Inpainting of MRI data

Inpainting aims to restore missing data information based upon the still avail-
able (observed) cues from destroyed, occluded or deliberately masked subre-
gions of the data. Inpainting has received considerable interest and excitement
and has been attacked using diffusion and transport PDE/Variational prin-
ciples, non-local exemplar region fill-in and sparsity-based regularization; see
e.g. [6, 7] and references therein.

Let f ∈ RN be a vectorized form of the sought after 3D data cube which
is
√
N ×

√
N ×

√
N , and M ∈ {0, 1}P×N , P < N be a binary rectangular

matrix where each of its rows is zero except at the entry where a voxel is not
missing. The observed (incomplete) data g is then the result of applying the
lossy operator M to f :

g = Mf + ε .

where ε is some noise of finite variance σ2 that may contaminate the observed
values. Restoring f from g is an ill-posed which necessitates some form of
regularization to reduce the space of candidate solutions. Here, we promote
solutions that are sparse in some prescribed overcomplete dictionary of atoms
Φ ∈ RN×L, L ≥ N , meaning that x := Φα (a synthesis prior) can be sparsely
represented to a high accuracy by a few number of atoms in Φ. Put formally,
we are seeking to solve the following optimization problem :

min
α∈RL

‖α‖0 s.t. ‖g −MΦα‖2 ≤ ε(σ) , (90)

where ‖ · ‖0 is the `0 pseudo-norm that counts the number of nonzero entries
of its argument, and ε(σ) is the constraint radius that depends on the noise
variance. This is a very challenging NP-hard optimization problem, and one
has to resort to alternative formulations or greedy algorithms to attempt to
solve it. For instance, convex `1 relaxation could be used instead of the `0

penalty.

This application makes use of the algorithm devised in [6] which can be viewed
as a stagewise hybridization of matching pursuit with block-coordinate relax-
ation. The adjective ”stagewise” is because their algorithm exploits the fact
that the dictionary is structured (union of transforms Φ = [Φ1, · · · ,ΦK ]) with
associated fast analysis and synthesis operators ΦT

k and Φk; see [6, 84] for de-
tails. For the reader convenience, Algorithm 10 recalls the main steps of this
inpainting algorithm.

For the following experiment, this algorithm was used with a dictionary con-
taining two transforms: the LR-FCT and the undecimated discrete wavelet
transform (UDWT), in order to better take into account the morphological
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Algorithm 10: Inpainting Algorithm.

Data: Observed data g and mask M.
Input: Dictionary Φ = [Φ1 · · ·ΦK ], number of iterations Titer, final threshold

τ (e.g. 3).
begin

Initial components f
(0)
k = 0, k = 1, · · · , K.;

Initial residual r(0) = g.;
Initial threshold: let k? = arg maxk ‖ΦT

k g‖∞, set λ0 = maxk 6=k? ‖ΦT
k g‖∞.;

for t = 1 to Titer do
for k = 1 to K do

Compute marginal residuals r
(t)
k = r(t−1) + f

(t−1)
k .;

Update kth component coefficients by thresholding
α

(t)
k = Threshλt−1

(
ΦT
k r

(t)
k

)
.;

Update kth component f
(t)
k = Φkα

(t)
k .;

Update the inpainted data f (t) =
∑K
k=1 f

(t)
k .;

Update the residuals r(t) = g −Mf (t).;
Update the threshold λt = λ0 − t (λ0 − τσ) /Titer.;

Result: The estimate f (Titer) of f .

diversity of the features contained in the data. Figure 29 shows the inpaint-
ing result on a synthetic cerebral MRI volume available on BrainWeb [85] at
http://www.bic.mni.mcgill.ca/brainweb/ with two masks: 80% random
missing voxels, and 10% missing z slices. We can see that even with 80% miss-
ing voxels, we can still see incredibly faint details in the restored anatomical
structures such as in the gyri and the cerebellum.

6 Sparsity on the Sphere

Many wavelet transforms on the sphere have been proposed in the past years.
Using the lifting scheme [86] developed an orthogonal Haar wavelet transform
on any surface, which can be directly applied on the sphere. Its interest is
however relatively limited because of the poor properties of the Haar function
and the problems inherent to orthogonal transforms.

More interestingly, many papers have presented new continuous wavelet trans-
forms [87, 88, 89, 90]. These works have been extended to directional wavelet
transforms [91, 92]. All these continuous wavelet decompositions are useful for
data analysis, but cannot be used for restoration purposes because of the lack
of an inverse transform. [93] and [94] proposed the first redundant wavelet
transform, based on the spherical harmonics transform, which presents an
inverse transform. [29] proposed an invertible isotropic undecimated wavelet
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Fig. 29. Top : a sagittal ((y, z)) slice of the original synthetic MRI volume from
BrainWeb[85]. Left column : the data with missing areas, random 80% missing
voxels, and 10% missing z slices. Right : inpainting results with a LF-FCT+UDWT
dictionary.

transform (UWT) on the sphere, also based on spherical harmonics, which has
the same property as the starlet transform, i.e. the sum of the wavelet scales
reproduces the original image. A similar wavelet construction [30, 31, 32] used
the so-called needlet filters. [33] also proposed an algorithm which permits to
reconstruct an image from its steerable wavelet transform. Since reconstruc-
tion algorithms are available, these new tools can be used for many applica-
tions such as denoising, deconvolution, component separation [34, 35, 36] or
inpainting [37, 38].
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Extensions to the sphere of 2D geometric multiscale decompositions such as
the ridgelet transform and the curvelet transform were presented in [29].

The aim of this Section is to introduce data representation on the sphere and
the Isotropic Undecimated Wavelet Transform on the Sphere (IUWTS). These
two elements will be useful to build the full 3D wavelets on the ball in the
next Section. We also present the extension of the IUWTS to 2D-1D data
following much the same approach as in Section 2.3. Such a transform can be
very useful for time varying or multichannel data on the sky.

In the last part of this section we illustrate the spherical 2D-1D transform on
an application to the deconvolution of multichannel data.

6.1 Data representation on the sphere

6.1.1 Discrete data representation on the sphere

Various pixelization schemes for data on the sphere exist in the literature.
These include the Equidistant Coordinate Partition (ECP), the Icosahedron
method [95], the Quad Cube [96], IGLOO [97], HEALPix [98], Hierarchical Tri-
angular Mesh (HTM) [99] or Gauss-Legendre Sky Pixelization (GLESP) [100].
Important properties to decide which one is the best for a given application
include the number of pixels and their size, fast computation of the spherical
harmonics transform, equal surface area for all pixels, pixel shape regularity,
separability of variables with respect to latitude and longitude, availability
of efficient software libraries including parallel implementation, etc. Each of
these properties has advantages and drawbacks. In this chapter, we use the
HEALPix representation which has several useful properties.

The HEALPix representation (Hierarchical Equal Area isoLatitude Pixeliza-
tion of a sphere) [98] 4 is a curvilinear hierarchical partition of the sphere into
quadrilateral pixels of exactly equal area but with varying shape. The base
resolution divides the sphere into 12 quadrilateral faces of equal area placed
on three rings around the poles and equator. Each face is subsequently di-
vided into N2

side pixels following a quadrilateral multiscale tree structure (see
Fig. 30). The pixel centers are located on iso-latitude rings, and pixels from
the same ring are equispaced in azimuth. This is critical for computational
speed of all operations involving the evaluation of the spherical harmonics
coefficients, including standard operations such as convolution, power spec-
trum estimation, and so on. HEALPix is a standard pixelization scheme in
astronomy.

4 http://healpix.jpl.nasa.gov.
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Fig. 30. The HEALPix sampling grid for four different resolutions.

6.1.2 Spherical Harmonics

The equivalent of the Fourier transform on the sphere is the spherical har-
monics transform. Any function f(θ, ϕ) ∈ L2(S2) on the sphere S2 in R3 can
be decomposed into spherical harmonics:

f(θ, ϕ) =
+∞∑

l=0

l∑

m=−l
flmYlm(θ, ϕ), (91)

where Ylm are the spherical harmonics defined by:

Ylm(θ, ϕ) =

√√√√2l + 1

4π

(l − |m|)!
(l + |m|)!Plm(cosϕ)eimθ, (92)

This definition, ensures the normalization of the spherical harmonics so that∫ |Ylm|2dΩ = 1. Plm are the associated Legendre functions (or polynomials)
defined by the following differential equation:

d

dt

[
(1− t2)

d

dt
Plm

]
+
(
l(l + 1)− m2

1− t2
)
Plm = 0. (93)

These functions are related to the Legendre polynomials Pl by

Plm(t) = (−1)m(1− t2)m/2
dm

dtm
Pl(t), (94)
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where Pl is:

Pl(t) =
1

2ll!

dl

dtl
(t2 − 1)l. (95)

An important property of the spherical harmonics is that they are orthonor-
mal:

∫ 2π

0

∫ π

0
Y ∗lm(θ, ϕ)Yl′m′(θ, φ) sin(θ)dθdϕ = δll′δmm′ . (96)

Since they form an orthonormal basis of L2(S2), the spherical harmonics coef-
ficients of f are uniquely determined by its projection onto {Ylm}lm using the
Hermitian product:

∀l ∈ N,∀m ∈ J−l, lK flm =
∫ 2π

0

∫ π

0
Y ∗lm(θ, ϕ)f(θ, ϕ) sin(θ)dθdϕ . (97)

In this section, many multiscale decompositions will be built based on the
spherical harmonics and/or the HEALPix representation.

6.2 Isotropic Undecimated Wavelet Transform on the Sphere

Here an undecimated isotropic transform (UWTS) is described which is simi-
lar in many respects to the starlet transform (see Section 2.2), and will there-
fore be a good candidate for restoration applications. Its isotropy is a favor-
able property when analyzing isotropic features. This isotropic transform is
obtained using a scaling function φlc(θ, ϕ) with cut-off frequency lc and az-
imuthal symmetry, meaning that φlc does not depend on the azimuth ϕ. Hence
the spherical harmonics coefficients φlclm of φlc vanish when m 6= 0 so that:

φlc(θ, ϕ) = φlc(θ) =
lc∑

l=0

φlcl0Yl0(θ, ϕ). (98)

Then, convolving a function f(θ, ϕ) ∈ L2(S2) with φlc is greatly simplified and
the spherical harmonics coefficients of the resulting map c0 are readily given
by

c0
lm =

[
φlc ∗ f

]
lm

=

√
2l + 1

4π
φlcl0flm. (99)
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6.2.1 From One Resolution to the Next

A sequence of smoother approximations of f on a dyadic resolution scale can
be obtained using the scaling function φlc as follows:

c0 = φlc ∗ f
c1 = φ2−1lc ∗ f
. . .

cj = φ2−j lc ∗ f,

(100)

where φ2−j lc is a rescaled version of φlc . The above multiresolution sequence
can actually be obtained recursively.

Define a low pass filter hj for each scale j by its spherical harmonics coefficients
as:

Hj
lm =

√
4π

2l + 1
hjlm

=





φ2
−(j+1)lc

lm

φ2
−j lc

lm

if l < lc
2j+1 and m = 0,

0 otherwise .
(101)

It is then easily shown that cj+1 derives from cj by convolution on the sphere
with hj: cj+1 = cj ∗ hj.

6.2.2 The Wavelet Coefficients

Given an axisymmetric wavelet function ψlc , we can derive in the same way a
high pass filter gj on each scale j:

Gj
lm =

√
4π

2l + 1
gjlm

=





ψ2−(j+1)lc
lm

φ2
−j lc

lm

if l < lc
2j+1 and m = 0,

1 if l ≥ lc
2j+1 and m = 0,

0 otherwise .

(102)

From this definition, the wavelet coefficients wj+1 at scale j + 1 are obtained
from the previous scaling coefficients cj by a simple convolution on the sphere
with gj: wj+1 = cj ∗ gj.

As in the starlet transform algorithm, the wavelet coefficients can be defined
as the difference between two consecutive resolutions, wj+1(θ, ϕ) = cj(θ, ϕ)−
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cj+1(θ, ϕ). This defines a zonal wavelet function ψlc as:

ψ2−j lc
lm = φ2−(j−1)lc

lm − φ2−j lc
lm . (103)

The high pass filters gj associated with this wavelet are expressed as:

Gj
lm =

√
4π

2l + 1
gjlm

= 1−
√

4π

2l + 1
hjlm = 1−Hj

lm.

(104)

Obviously other wavelet functions could be used just as well.

6.2.3 Choice of the Scaling Function

Any function with a cut-off frequency is a possible candidate. We retained
here a B-spline function of order 3 (as in Section 2.2):

φ̂lclm =
3

2
B3

(
2l

lc

)
, (105)

where B3(t) is the scaling function defined as:

B3(x) =
1

12

(
|x− 2|3 − 4|x− 1|3 + 6|x|3 − 4|x+ 1|3 + |x+ 2|3

)
. (106)

Fig. 31. On the left, spherical harmonics coefficients φl0 of the the scaling function
φ and, on the right, those of the wavelet function ψ.

In Fig. 31 the spherical harmonics coefficients of the scaling function derived
from a B3-spline, and those of the associated wavelet function (103), are plot-
ted as a function of l. Other functions such as the needlet function [30] can be
used as well.

The steps of the UWT on the sphere of a discrete image X sampled from f
are summarized in Algorithm 11. If the wavelet function corresponds to the
choice (103), Step 3 in this UWTS algorithm reduces to wj+1 = cj − cj+1.
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Algorithm 11: The Undecimated Wavelet Transform on the Sphere.

Task: Compute the UWTS of a discrete X.
Parameters: Data samples X and number of wavelet scales J .
Initialization:
• c0 = X.
• Compute the B3-spline scaling function and derive ψl0, Hl0 and Gl0

numerically.
• Compute the corresponding spherical harmonics transform of c0

lm.
for j = 0 to J − 1 do

(1) Compute the spherical harmonics transform of the scaling coefficients:
cj+1
lm = cjlmH

j
l0.

(2) Compute the inverse spherical harmonics transform of cj+1
lm to get cj+1.

(3) Compute the spherical harmonics transform of the wavelet coefficients:
wj+1
lm = cjlmG

j
l0.

(4) Compute the inverse spherical harmonics transform of wj+1
lm to get wj+1.

Output: W = {w1, w2, . . . , wJ , cJ} the UWTS of X.

Fig. 32 shows the Mars topographic map (top left) 5 and its wavelet transform,
using five scales (four wavelet scales + coarse scale). The sum of the five scales
reproduces exactly the original image.

6.2.4 Inverse Transform

If the wavelet is the difference between two resolutions, a straightforward
reconstruction of an image from its wavelet coefficients W = {w1, . . . , wJ , cJ}
is:

c0(θ, ϕ) = cJ(θ, ϕ) +
J∑

j=1

wj(θ, ϕ). (107)

This reconstruction formula is the same as with the starlet algorithm.

But since the transform is redundant there is actually no unique way to re-
construct an image from its coefficients. Indeed, using the relations:

ĉj+1
lm = Hj

l0c
j
lm

ŵj+1
lm = Gj

l0c
j
lm ,

(108)

a least-squares estimate of cj from cj+1 and wj+1 gives:

cjlm = cj+1
lm H̃j

l0 + wj+1
lm G̃j

l0 , (109)

5 The Mars Orbiter Laser Altimeter (MOLA) generated altimetry profiles used to
create global topographic maps. The MOLA instrument stopped acquiring altimetry
data on June 30, 2001, and after that operated in passive radiometry mode until
the end of the Mars Global Surveyor mission. MOLA data sets are produced by the
MOLA Science Team and archived by the PDS Geosciences Node.

65



Fig. 32. Mars topographic map and its UWTS (four wavelet detail scales and the
scaling (smooth) band).

Fig. 33. On the left, spherical harmonics coefficients h̃l0 the filter h̃, and on the
right, those of the filter g̃.

where the dual filters h̃ and g̃ satisfy:

H̃j
l0 =

√
4π

2l + 1
h̃jl0 =

H∗jl0∣∣∣Hj
l0

∣∣∣
2

+
∣∣∣Gj

l0

∣∣∣
2 ,

G̃j
l0 =

√
4π

2l + 1
g̃jl0 =

G∗jl0∣∣∣Hj
l0

∣∣∣
2

+
∣∣∣Gj

l0

∣∣∣
2 .

(110)
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For the scaling function which is a B3-spline function and a wavelet taken
as the difference between two resolutions, the corresponding conjugate low
pass and high pass filters H̃ and G̃ are plotted in Fig. 33. The reconstruction
algorithm is given in Algorithm 12.

Algorithm 12: Inverse UWT on the sphere.

Task: Reconstruct an image from its UWTS coefficients.
Parameters: UWTS coefficients W = {w1, w2, . . . , wJ , cJ}.
Initialization:
• Compute the B3-spline scaling function and derive ψl0, Hl0, Gl0, H̃l0 and
G̃l0 numerically.
• Compute the spherical harmonics transform of cJ to get cJlm.
for j = J − 1 to 0, with step = −1 do

(1) Compute the spherical harmonics transform of the wavelet coefficients
wj+1 to get wj+1

lm .
(2) Multiply cj+1

lm by H̃j
l0.

(3) Multiply wj+1
lm by G̃j

l0.
(4) Get the spherical harmonics of cjlm = cj+1

lm + wj+1
lm .

Compute The inverse Spherical Harmonics transform of c0
lm.

Output: c0 is the inverse UWT on the sphere.

Fig. 34 shows the reconstruction by setting all wavelet coefficients but one at
different scales and positions. Depending on the position and scale of the non-
zero coefficient, the reconstructed map shows an isotropic feature at different
scales and positions.

6.3 2D-1D Wavelet on the Sphere

Using the Isotropic Undecimated Wavelet Transform on the Sphere, one can
extend the 2D-1D formalism [51] presented in Section 2.3 to spherical data
with an additional dependency in either time or energy [39]. As before, since
the 2D spatial dimension and the 1D time or energy dimension do not have
the same physical meaning, it appears natural that the wavelet scale along
the third dimension should not be connected to the spatial scale. Hence, the
2D-1D wavelet function is defined by tensor product of a 2D wavelet and a
1D wavelet:

ψ(kθ, kϕ, kt) = ψ(θφ)(kθ, kϕ)ψ(t)(kt), (111)

where ψ(θφ) is the spherical spatial wavelet and ψ(t) the 1D wavelet along the
third dimension. Considering only isotropic and dyadic spatial scales the dis-
crete 2D-1D wavelet decomposition can be built by first taking an Isotropic
Undecimated Wavelet transform for each kt, followed by a 1D wavelet trans-
form (e.g. 1D starlet) for each resulting spatial wavelet coefficient along the
third dimension.

67



Fig. 34. Reconstruction from a single wavelet coefficient at different scales. Each
map is obtained by setting all wavelet coefficients to zero but one, and by applying
an inverse UWTS. Depending on the position and scale of the non-zero coefficient,
the reconstructed map shows an isotropic feature at different scales and positions.

Hence for a given multichannel data set on the sphere D[kθ, kϕ, kt], applying
first the IUWTS yields

∀kt, D[·, ·, kt] = cJ1 [·, ·, kt] +
J1∑

j1=1

wj1 [·, ·, kt], (112)

where J1 is the number of spatial scales, aJ1 is the (spatial) approximation
subband and {wj1}J1j1=1 are the (spatial) detail subbands. To lighten the no-
tations in the sequel, we replace the two spatial indices by a single index kr
which corresponds to the pixel index. Expression (112) reads now

∀kt, D[·, kt] = aJ1 [·, kt] +
J1∑

j1=1

wj1 [·, kt], . (113)

Then, for each spatial location kr and for each 2D wavelet scale j1, a 1D
wavelet transform can be applied along t on the spatial wavelet coefficients
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wj1 [kr, ·] such that

∀kt, wj1 [·, kt] = wj1,J2 [·, kt] +
J2∑

j2=1

wj1,j2 [·, kt], (114)

where J2 is the number of scales along t. The approximation spatial subband
cJ1 is processed in a similar way, hence yielding

∀kt, cJ1 [·, kt] = cJ1,J2 [·, kt] +
J2∑

j2=1

wJ1,j2 [·, kt] . (115)

Inserting (114) and (115) into (113), we obtain the 2D-1D spherical undeci-
mated wavelet representation of D:

D[kr, kt] = cJ1,J2 [kr, kt]+
J1∑

j1=1

wj1,J2 [kr, kt]+
J2∑

j2=1

wJ1,j2 [kr, kt]+
J1∑

j1=1

J2∑

j2=1

wj1,j2 [kr, kt] .

(116)

Just as in Section 2.3, four kinds of coefficients can be distinguished in this
expression:

• Detail-Detail coefficients (j1 6 J1 and j2 6 J2):

wj1,j2 [kr, ·] = (δ − h̄1D) ? (h
(j2−1)
1D ? aj1−1[kr, ·]− h(j2−1)

1D ? aj1 [kr, ·]).

• Approximation-Detail coefficients (j1 = J1 and j2 6 J2):

wJ1,j2 [kr, ·] = h
(j2−1)
1D ? cJ1 [kr, ·]− h(j2)

1D ? cJ1 [kr, ·].

• Detail-Approximation coefficients (j1 6 J1 and j2 = J2):

wj1,J2 [kr, ·] = h
(J2)
1D ? cj1−1[kr, ·]− h(J2)

1D ? cj1 [kr, ·].

• Approximation-Approximation coefficients (j1 = J1 and j2 = J2):

cJ1,J2 [kr, ·] = h
(J2)
1D ? cJ1 [kr, ·].

As this 2D-1D transform is fully linear, a Gaussian noise remains Gaussian
after transformation. Therefore, all thresholding strategies which have been
developed for wavelet Gaussian denoising are still valid with the 2D-1D wavelet
transform.

6.4 Application: Multichannel Poisson Deconvolution on the Sphere

In this section, we present an application of this 2D-1D spherical wavelet
to the deconvolution of multichannel data on the sphere in the presence of
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Poisson noise. This application [101] was developed in the context of the Fermi
Gamma-Ray Space Telescope, which studies the high-energy gamma-ray sky
through its main instrument, the Large Area Telescope (LAT).

As mentioned in the application of the Cartesian 2D-1D in Section 2.4 to
the same LAT data, the detection of point sources is complicated by the
Poisson noise inherent to the weakness of the fluxes of celestial gamma rays
and by the instrument’s point spread function (PSF). In particular, the PSF
is strongly energy-dependent, it varies from about 3.5 at 100 MeV to less than
0.1 (68% containment) at 10 GeV. Owing to large-angle multiple scattering
in the tracker, the PSF has broad tails, the 95%/68% containment ratio may
be as large as 3.

Using a direct extension of the Cartesian 2D-1D MS-VST presented in Sec-
tion 2.4 to Spherical data with an energy dependence it is possible to address
the multichannel PSF deconvolution problem on the sphere in the presence of
Poisson noise in a single general framework.

6.4.1 2D-1D MS-VST on the Sphere

The extension of the 2D-1D MS-VST to spherical data simply amounts to
replacing the Cartesian 2D-1D transform by the spherical transform defined
in the previous section. Again, four kind of coefficients can be identified:

• Detail-Detail coefficients (j1 6 J1 and j2 6 J2):

wj1,j2 [kr, ·] = (δ − h̄1D)?
(
Aj1−1,j2−1

(
h

(j2−1)
1D ? cj1−1[kr, ·]

)
−Aj1,j2−1

(
h

(j2−1)
1D ? cj1 [kr, ·]

))
.

• Approximation-Detail coefficients (j1 = J1 and j2 6 J2):

wJ1,j2 [kr, ·] = AJ1,j2−1

(
h

(j2−1)
1D ? cJ1 [kr, ·]

)
−AJ1,j2

(
h

(j2)
1D ? cJ1 [kr, ·]

)
.

• Detail-Approximation coefficients (j1 6 J1 and j2 = J2):

wj1,J2 [kr, ·] = Aj1−1,J2

(
h

(J2)
1D ? cj1−1[kr, ·]

)
−Aj1,J2

(
h

(J2)
1D ? cj1 [kr, ·]

)
.

• Approximation-Approximation coefficients (j1 = J1 and j2 = J2):

cJ1,J2 [kr, ·] = h
(J2)
1D ? cJ1 [kr, ·].

Aj1,j2 is the non-linear square root VST introduced in [102] (see Section 2.4). In
summary, all 2D-1D wavelet coefficients {wj1,j2}j16J1,j26J2 are now stabilized,
and the noise on all these wavelet coefficients is zero-mean Gaussian with
known variance that depends solely on h on the resolution levels (j1, j2). As
before, these variances can be easily tabulated.
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6.4.2 The multichannel deconvolution problem

Many problems in signal and image processing can be cast as inverting the
linear system:

Y = HX + ε , (117)

where X ∈ X is the data to recover, Y ∈ Y is the degraded noisy observation,
ε is an additive noise, and H : X → Y is a bounded linear operator which
is typically ill-behaved since it models an acquisition process that encounters
loss of information. When H is the identity, it is just a denoising problem
which can be treated with the previously described methods. Inverting (117)
is usually an ill-posed problem. This means that there is no unique and stable
solution.

In the present case, the objective is to remove the effect of the instrument’s
PSF. H is the convolution operator by a blurring kernel (i.e. PSF) whose
consequence is that Y lacks the high frequency content of X. Furthermore,
since the noise is Poisson, ε has a variance profile HX. The problem at hand
is then a deconvolution problem in the presence of Poisson noise. As the PSF
is channel-dependent, the convolution observation model is

Y [·, kt] = HktX[·, kt] + ε[·, kt] ,

in each channel kt, where Hkt is the (spatial) convolution operator in channel
kt with known PSF. In the case of the LAT, the PSF width depends strongly
on the energy, from 6.9 at 50 MeV to better than 0.1 at 10 GeV and above.
Figure 35 shows the normalized profiles of the PSF for different energy bands.

Fig. 35. Normalized profile of the PSF for different energy bands as a function of the
angle in degree. Black: 50 MeV - 82 MeV. Cyan: 220 MeV - 360 MeV. Orange:
960 MeV - 1.6 GeV. Blue: 4.2 GeV - 6.9 GeV. Green: 19 GeV - 31 GeV.
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This inversion can be performed using the well-known Richardson-Lucy al-
gorithm with an additional regularization constraint from a multiresolution
support [53]. Let H be the multichannel convolution operator, which acts on
a 2D-1D multichannel spherical data set X by applying Hkt on each chan-
nel X[·, kt] independently 6 . The regularized multichannel Richardson-Lucy
scheme proposed in [101] is

X(n+1) = P+

(
X(n) ⊗

(
HT

(
(HX(n) +R

(n)
)�HX(n)

)))
, (118)

where ⊗ (resp. �) stands for the element-wise multiplication (resp. division)
between two vectors, P+ is the orthogonal projector onto the positive orthant

and R
(n)

is the regularized (significant) residual

R
(n)

=W−1MW
(
Y −HX(n)

)
, (119)

with W being the IUWTS and M being the multiresolution support defined
similarly to (38) by selecting significant coefficient in the MS-VSTS of the
data. Figure 36 shows the performance of the multichannel MS-VSTS de-

Fig. 36. Spectrum of a single gamma-ray point source recovered using the multi-
channel MS-VSTS deconvolution algorithm. Top: Single gamma-ray point source
on simulated (blurred) Fermi data (energy band: 360 MeV - 589 MeV) (left: sim-
ulated blurred source; middle: blurred noisy source; right: deconvolved source).
Bottom: Spectrum profile of the center of the point source (cyan: simulated spec-
trum; black: restored spectrum from the deconvolved source.

convolution algorithm on a single point source. The deconvolution not only

6 If X were to be vectorized by stacking the channels in a long column vector, H
would be a block-diagonal matrix whose blocks are the circulant matrices Hkt .
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removes effectively the blur and recovers sharply localized point sources, but
it also allows to restore the whole spectral information.

Fig. 37. Result of the deconvolution algorithm in the 360 MeV - 589 MeV energy
band. The left images are single HEALPix faces covering the galactic plane. Top
Left: Simulated Fermi Poisson intensity. Top Right: Simulated Fermi noisy data.
Bottom: Fermi data deconvolved with multichannel MS-VSTS.

Figure 37 depicts the result of the multichannel MS-VSTS deconvolution al-
gorithm in one energy band on the whole sky and on a single HEALPix face
covering the galactic plane. The effect of the deconvolution is strikingly good.
The MS-VSTS multichannel deconvolution algorithm manages to remove a
large part of the blur introduced by the PSF.
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7 3D Wavelets on the ball

In the previous sections, we have described multiresolution transforms for data
provided in 3D Cartesian coordinates or on the 2D sphere. However, these
transforms are not adapted to three-dimensional signals which are naturally
expressed in spherical coordinates. Such signals arise for instance in astro-
physics in the study of the 3D distribution of galaxies [103]-[104] for which we
can have access to both angular position on the sky and distance along the
line of sight. Recently two different wavelet transform for data in spherical
coordinates (i.e. on the 3D ball) have been developed in [40] and [41]. These
two transforms differ mainly in the harmonic expansion used to develop data
on the ball.

The expansion introduced in [41] is based on exact sampling theorems in the
angular domain based on [105] and in the radial domain based the orthogonal-
ity of Laguerre polynomials. The resulting Fourier-Laguerre transform allows
for exact decomposition and reconstruction of band limited signals on the 3D
ball and is used to implement a wavelet transform (named flaglets) with exact
decomposition and reconstruction formulae. Due to the choice of independent
basis for the radial and angular domains, flaglets probe independently angular
and radial scales. However, separating angular and radial domains breaks the
3D translational invariance of the harmonic expansion. Indeed, depending on
the radial position of an object of a given physical size, the apparent angular
size will vary. Therefore, in the flaglet transform, the same object at different
radial positions will be represented by wavelet coefficients of different angular
scales.

In this section, we present the approach of [40] which is based on the nat-
ural harmonic expansion of data in spherical coordinate using the spherical
Fourier-Bessel transform. Using this transform, equivalent to a Fourier trans-
form in spherical coordinates, the link between angular and radial scales is
preserved. The drawback of this transform however is that no exact sampling
theorem exists in the radial domain [106]. Contrary to the Fourier-Laguerre
transform, the spherical Fourier-Bessel Transform cannot be computed ex-
actly for a discretely sampled band limited signal on the ball. To circumvent
this issue, a discrete spherical Fourier-Bessel Transform was introduced in [40]
which allows the evaluation of this transform to any desired accuracy. Using
the spherical Fourier-Bessel transform presented in the following section, an
Isotropic Undecimated Spherical 3D Wavelet Transform similar to the IUWT
on the sphere (see section 6.2) will be derived in section 7.3. This wavelet
transform is exact in the spherical Fourier-Bessel domain and wavelet coef-
ficients can be recovered in the direct domain using the discrete spherical
Fourier-Bessel transform that will be described in section 7.2.2.
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7.1 Spherical Fourier-Bessel expansion on the ball

7.1.1 The Spherical Fourier-Bessel Transform

In the same way that the natural expansion of a function on the sphere are
the spherical harmonics, the natural expansion of a function on the ball is the
spherical Fourier-Bessel transform. This transform consists in the projection
of a function f ∈ L2(R3) onto a set of orthogonal functions Ψlmk(r, θ, ϕ),
composed of Spherical Harmonics and Spherical Bessel functions:

∀l ∈ N,∀m ∈ J−l, lK,∀k ∈ R+, Ψlmk(r, θ, ϕ) =

√
2

π
jl(kr)Ylm(θ, ϕ) , (120)

where Ylm are the spherical harmonics introduced in Section 6.1.2 and jl are
spherical Bessel functions of the first kind. These functions can be expressed
in terms of the ordinary Bessel functions of the first kind Jν for all l ∈ N and
all r ∈ R+:

jl(r) =

√
π

2r
Jl+1/2(r) , (121)

where Jν is defined for z ∈ C and ν ∈ R as:

Jν(z) =
∞∑

k=0

(−1)kzν+2k

2ν+2kk!Γ(ν + k + 1)
. (122)

Just as the spherical harmonics verify the orthonormality relation (96), the
spherical Bessel functions are orthogonal:

∀k, k′ ∈ R+,
∫ ∞

0
jl(kr)jl(k

′r)r2dr =
π

2k2
δ(k − k′) . (123)

Using the orthogonality relations of both Spherical Harmonics and Spherical
Bessel functions, the orthogonality of the Ψlmk is easily derived:

∫
Ψ∗lmk(r)Ψl′m′k′(r)dr =

2

π

∫
jl(k

′r)jl(kr)r
2dr

∫

Ω
Y ∗lm(θ, ϕ)Yl′m′(θ, ϕ)dΩ

=
1

k2
δ(k − k′)δll′δmm′ . (124)

From this relation, the spherical Fourier-Bessel transform of f ∈ L2(R3) is
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uniquely defined by the projection of f on the {Ψlmk}:

f̃lm(k) = 〈f,Ψlmk〉 =
∫

Ψ∗lmk(r, θ, ϕ)f(r, θ, ϕ)r2 sin(θ)dθdϕdr

=
∫ 2π

0

∫ π

0



√

2

π

∫ ∞

0
f(r, θ, ϕ)jl(kr)r

2dr


Y ∗lm(θ, ϕ) sin(θ)dθdϕ (125)

=

√
2

π

∫ ∞

0

[∫ 2π

0

∫ π

0
f(r, θ, ϕ)Y ∗lm(θ, ϕ) sin(θ)dθdϕ

]
jl(kr)r

2dr . (126)

In this expression, one can recognize the commutative composition of two
transforms: a spherical harmonics transform in the angular domain and a
spherical Bessel transform (SBT) in the radial domain. We define the SBT
and its inverse as:

f̃l(k) =

√
2

π

∫
f(r)jl(kr)r

2dr (127a)

f(r) =

√
2

π

∫
f̃l(k)jl(kr)k

2dk . (127b)

In the following, the notation f̃l denotes the SBT of order l of a 1D function
f .

The inversion formula for the Spherical Fourier-Bessel Transform is as follows:

f(r, θ, ϕ) =

√
2

π

∞∑

l=0

l∑

m=−l

∫
f̃lm(k)k2jl(kr)dkYlm(θ, ϕ) . (128)

7.1.2 Convolution in the Spherical Fourier-Bessel domain

A key point to the spherical Fourier-Bessel transform is the existence of an
expression for the real space convolution h = f ∗ g of two functions f, g ∈
L2(R3) which reduces to a very simple formula in the case of an isotropic
function g. The convolution in the Spherical Fourier-Bessel domain can be
expressed from the well known expression in the Fourier domain:

ĥ(k, θk, ϕk) = F{f ∗ g}(k, θk, ϕk)
=
√

(2π)3f̂(k, θk, ϕk)ĝ(k, θk, ϕk) ,
(129)

using the following unitary convention for the Fourier Transform :

f̂(k) =
1√

(2π)3

∫
f(r)e−ik.rdr , f(r) =

1√
(2π)3

∫
f̂(k)eik.rdk . (130)
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To relate Fourier and spherical Fourier-Bessel coefficients, one can use the
expansion of the Fourier kernel in spherical coordinates:

e−ik.r = 4π
∞∑

l=0

l∑

m=−l
(−i)ljl(kr)Y ∗lm(θr, ϕr)Ylm(θk, ϕk) . (131)

When injected in the definition of the Fourier transform, this expression di-
rectly leads to the following relation between Fourier and spherical Fourier-
Bessel transforms:

f̂(k, θk, ϕk) =
∞∑

l=0

l∑

m=−l

[
(−i)lf̃lm(k)

]
Y m
l (θk, ϕk) . (132)

It is worth noticing that the spherical Fourier-Bessel transform f̃lm(k) is merely
a Spherical Harmonics transform applied on shells of radii k in Fourier space
(up to a factor (−i)l): f̂lm(k) = (−i)lf̃lm(k).

This expression for the Fourier transform combined with the convolution equa-
tion (129) yields the convolution formula in spherical Fourier-Bessel domain
(see Appendix A.2 [40] for the full derivation):

h̃lm(k) = (i)l
√

(2π)3
∞∑

l′=0

l′∑

m′=−l′
(−i)l′ f̃l′m′(k)

×
l+l′∑

l′′=|l−l′|
cl
′′
(l,m, l′,m′)(−i)l′′ g̃l′′m−m′(k) , (133)

where cl
′′
(l,m, l′,m′) are Slater integrals:

cl
′′
(l,m, l′,m′) =

∫∫
Y ∗lm(θ, ϕ)Yl′m′(θ, ϕ)Y m−m′

l′′ (θ, ϕ)dΩ . (134)

These integrals are only non-zero for |l − l′| ≤ l′′ ≤ l + l′.

As already mentioned, this expression reduces to a simple form when g is
isotropic. In this case, g has no angular dependence in the Fourier domain
therefore ĝ is constant on spherical shells and ĝlm(k) = 0 = g̃lm(k) for all
(l,m) 6= (0, 0). Then, knowing that c0(l,m, l,m) = 1/

√
4π equation (133)

becomes:

h̃lm(k) =
√

2πg̃00(k)f̃lm(k) . (135)

This expression can therefore be used to express in the spherical Fourier-Bessel
domain a convolution by any isotropic filter g.
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7.2 Discrete Spherical Fourier-Bessel Transform

The transform introduced so far yields a natural discretization in the angu-
lar domain thanks to the spherical harmonics, however in the radial domain,
the spherical Bessel transform is purely continuous. In order to implement
wavelets in the harmonic domain and to be able to compute wavelet coeffi-
cients in the direct domain, a discretization scheme for the spherical Bessel
transform is required. The main difficulty comes from the lack of an exact
quadrature formula for this radial transform and therefore the lack of an ex-
act sampling theorem. To circumvent this issue, we propose an approximated
discrete spherical Bessel transform for a radially limited signal, extension of
the discrete Bessel Transform introduced in [106]. Although this discrete trans-
form is not exact, it can be evaluated to any desired accuracy by increasing
the number of sampling points. Combined with the HEALpix [98] sampling
in the angular domain (see section 6.1.1) we build a sampling grid in spheri-
cal coordinates which allows for back and forth computation of the spherical
Fourier-Bessel transform.

7.2.1 The 1D Discrete Spherical Bessel Transform

The transform described here is an extension to the spherical Bessel transform
of the discrete Bessel transform from [106]. The discretization of the spherical
Bessel transform uses the well known orthogonality property of the Spherical
Bessel functions on the interval [0, R]. If f is a continuous function defined on
[0, R] which verifies the boundary condition f(R) = 0 then the spherical Bessel
transform defined Eq. (127) can be expressed using Spherical Fourier-Bessel
series:

f̃l(kln) =

√
2

π

∫ R

0
f(r)jl(klnr)r

2dr (136a)

f(r) =
∞∑

n=1

f̃l(kln)ρlnjl(klnr) . (136b)

In this expression, kln = qln
R

where qln is the nth zero of the Bessel function of
the first kind of order l and the weights ρln are defined as:

ρln =

√
2πR−3

j2
l+1(qln)

. (137)

Although this formulation provides a discretization of the inverse Spherical
Bessel Transform and of the k spectrum, the direct transform is still contin-
uous and another discretization step is necessary. Assuming that a boundary
condition of the same kind can applied to f̃l(k) so that f̃l(Kl) = 0, then by us-
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ing the same result, the spherical Fourier-Bessel expansion of f̃l(k) is obtained
by:

˜̃fl(rln) =

√
2

π

∫ K

0
f̃l(k)jl(rlnk)k2dk (138a)

f̃l(k) =
∞∑

n=1

˜̃fl(rln)κlnjl(rlnk) , (138b)

where rln = qln
Kl

and where the weights ρln are defined as:

κln =

√
2πK−3

l

j2
l+1(qln)

. (139)

The spherical Bessel transform being an involution, ˜̃f = f so that ˜̃fl(rln) =
f(rln). Much like the previous set of equations had introduced a discrete kln
grid, a discrete rln grid is obtained for the radial component. Since equations
(136b) and (138b) can be used to compute f and f̃l for any value of r and k,
they can in particular be used to compute f(rln) and f̃l(rl′n) where l′ does not
have to match l. The Spherical Bessel Transform and its inverse can then be
expressed only in terms of series:

f̃l(kl′n) =
∞∑

p=1

f(rlp)κlpjl(rlpkl′n) (140a)

f(rl′n) =
∞∑

p=1

f̃l(klp)ρlpjl(rl′nklp) . (140b)

Thanks to this last set of equations one can compute the Spherical Bessel
Transform and its inverse without the need of evaluating any integral. Fur-
thermore only discrete values of f and f̂ respectively sampled on rln and kln
are required.

However, this expression of the direct and inverse spherical Bessel transform
is only valid if f is band limited (f̃l(Kl) = 0) and radially limited (f(R) = 0)
at the same time. It is well known that these two conditions can never be
verified at the same time. The same problem arises for the Fourier transform,
a band limited signal necessarily has an infinite time support. In practice,
by increasing the band limit Kl to any arbitrary value, one can recover an
approximation of the exact transform to any required accuracy.
The second difficulty comes from the infinite sums over p in equations (140a)
and (140b). In practical applications, for a given value of l only a limited
number N of f̃l(kln) and f(rln) coefficients can be stored so that rlN = R and
klN = Kl. Since rln is defined by rln = qln

Kl
, for n = N , R and Kl are bound by

the following relation:

qlN = KlR . (141)
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Therefore, the value of Kl is fixed for a choice of N and R.
The main point is that any desired accuracy in the evaluation of the direct
and inverse transform can be reached by increasing the number of points N
and artificially increasing R above the actual radial limit of the signal.

The truncation of the direct and inverse series to N coefficients yields a con-
venient matrix formulation for the discrete spherical Bessel transform and its
inverse. Defining a transform matrix T ll

′
as:

T ll
′

pq =

( √
2π

j2
l+1(qlq)

jl(
ql′pqlq
qlN

)

)

pq

. (142)

The direct transform can be expressed as:




f̃l(kl′1)

f̃l(kl′2)
...

f̃l(kl′N)




=
1

K3
l

T ll
′




f(rl1)

f(rl2)
...

f(rlN)




. (143)

Reciprocally, the inverse the values of f can be computed on any rl′n grid from
f̃l sampled on kl′n using the exact same matrix:




f(rl′1)

f(rl′2)
...

f(rl′N)




=
1

R3
T ll
′




f̃l(kl1)

f̃l(kl2)
...

f̃l(klN)




. (144)

The Discrete Spherical Bessel Transform is defined by the set of equations
(143) and (144).

Finally, it can be shown [40] that spherical Bessel transforms of different orders
can be related through the following equation:

f̃l(kln) =
∞∑

m=1

f̃l0(kl0m)
2

j2
l0+1(ql0m)

W l0l
nm . (145)

where the weights W ll′
nm are defined as:

W l0l
nm =

∫ 1

0
jl0(ql0mx)jl(qlnx)x2dx . (146)

Therefore, the Spherical Bessel Transform of a given order can be expressed
as the sum of the coefficients obtained for a different order of the transform,
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with the appropriate weighting. It is also worth noticing that the weights W ll′
nm

are independent of the problem and can be tabulated. Using this relationship
between orders, it will be possible to convert the Spherical Bessel coefficients
of order l0 into coefficients of any other order l, which will prove useful for the
implementation of the full discrete spherical Fourier-Bessel transform.

7.2.2 The 3D Discrete Spherical Fourier-Bessel Transform

As presented in section 7.1, the Spherical Fourier-Bessel Transform is the com-
position of a Spherical Harmonics Transform for the angular component and
a Spherical Bessel Transform for the radial component. Since these two trans-
forms can commute, they can be treated independently and by combining
discrete algorithms for both transforms, one can build a Discrete Spherical
Fourier-Bessel Transform. A convenient choice for the angular part of the
transform is the HEALPix [98] pixelization scheme. The radial component
can be discretized using the Discrete Spherical Bessel Transform algorithm
presented in the previous section. The choice of these two algorithms intro-
duces a discretization of the Fourier-Bessel coefficients as well as a pixelization
of the 3D space in spherical coordinates.

The Spherical Fourier-Bessel coefficients f̃lm(k) are defined by Equation (125)
for continuous values of k. Assuming a boundary condition on the density field
f , the Discrete Spherical Bessel Transform can be used to discretize the values
of k. The Discrete Spherical Fourier-Bessel coefficients are therefore defined
as:

almn = f̃lm(kln) , (147)

for 0 ≤ l ≤ Lmax, −l ≤ m ≤ l and 1 ≤ n ≤ Nmax. These discrete coefficients
are simply obtained by sampling the continuous coefficients on the kln grid
introduced in the previous section.

To this discretized Fourier-Bessel spectrum corresponds a dual grid of the 3D
space defined by combining the HEALPix pixelization scheme and the Discrete
Spherical Bessel Transform.

In the angular domain, for a given value of r, the field f(r, θ, ϕ) can be sam-
pled on a finite number of points using HEALPix. The radial component of
the transform is conveniently performed using the Discrete Spherical Bessel
Transform. Indeed, this algorithm introduces a radial grid compatible with the
discretized kln spectrum. Although this radial grid rln depends on the order l
of the Spherical Bessel Transform, it will be justified in the next section that
only one grid rl0n is required to sample the field along the radial dimension.
The value of l0 is set to 0 because in this case the properties of the zeros of
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the Bessel function ensure that r0n will be regularly spaced between 0 and R:

r0n =
n

Nmax

R . (148)

For given values of θi and ϕj, the field f(r, θi, ϕj) can now be sampled on
discrete values of r = r0n.

Combining angular and radial grids, the 3D spherical grid is defined as a set of
Nmax HEALPix maps equally spaced between 0 and R. An illustration of this
grid is provided on Fig.38 where only one quarter of the space is represented
for clarity.

Fig. 38. Representation of the spherical 3D grid for the Discrete Spherical Fouri-
er-Bessel Transform (R = 1 and Nmax = 4)

Using this 3D grid it becomes possible to compute back and forth the Spherical
Fourier-Bessel Transform between a density field and its Spherical Fourier-
Bessel coefficients. Here, a detailed description of the algorithm for both the
direct and inverse Discrete Spherical Fourier-Bessel Transform is provided
below.

Inverse Transform Let almn be the coefficients of the Spherical Fourier-
Transform of the density field f . The reconstruction of f on the spherical 3D
grid requires two steps:

1) First, from the almn, the inverse Discrete Spherical Bessel Transform is
computed for all l and m. This transform can be easily evaluated thanks to
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a matrix product:




∀ 0 ≤ l ≤ Lmax

∀ −l ≤ m ≤ l
,




flm(rl01)

flm(rl02)
...

flm(rl0Nmax)




=
T ll0

R3




alm1

alm2

...

almNmax




. (149)

Here, it is worth noticing that the matrix T ll0 allows the evaluation of the
Spherical Bessel Transform of order l and provides the results on the grid
of order l0.

2) From the spherical harmonics coefficients flm(rl0n) given at specific radial
distances rl0n it is possible to compute the inverse Spherical Harmonics
Transform. For each n between 1 and Nmax the HEALPix inverse Spherical
Harmonics Transform is performed on the set of coefficients {flm(rl0n)}l,m.
This yields Nmax HEALPix maps which constitute the sampling of the re-
constructed density field on the 3D spherical grid.

Direct Transform Given a density field f sampled on the spherical 3D grid,
the Spherical Fourier-Bessel coefficients almn are computed in three steps:

1) For each n between 1 and Nmax the Spherical Harmonics Transform of the
HEALPix map of radius rl0n is computed. This yields flm(rl0n) coefficients.

2) The next step is to compute the Spherical Bessel Transform of order l0 from
the flm(rl0n) coefficients for every (l,m). Again, this operation is a simple
matrix product:




∀ 0 ≤ l ≤ Lmax

∀ −l ≤ m ≤ l
,




f̃ l0lm(kl01)

f̃ l0lm(kl02)
...

f̃ l0lm(kl0Nmax)




=
T l0l0

K3




flm(rl01)

flm(rl02)
...

flm(rl0Nmax)




. (150)

This operation yields f̂ l0lm(kl0n) coefficients which are not yet Spherical Fourier-
Bessel coefficients because the order of the Spherical Bessel transform l0 does
not match the order of the Spherical Harmonics coefficients l. An additional
step is necessary.

3) The last step required to gain access to the Spherical Fourier-Bessel coeffi-
cients almn is to convert the Spherical Bessel coefficients for order l0 to the
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correct order l that matches the Spherical Harmonics order. This is done by
using relation (145):





∀ 0 ≤ l ≤ Lmax

∀ −l ≤ m ≤ l

∀ 1 ≤ n ≤ Nmax

, f̃lm(kln) =
Nmax∑

p=1

f̃ l0lm(kl0p)
2W l0l

np

j2
l0+1(qlp)

, (151)

where W l0l
np are defined by Eq. (146). This operation finally yields the almn =

f̃lm(kln) coefficients.

7.3 Isotropic Undecimated Spherical 3D Wavelet Transform

The aim of this section is to transpose the ideas behind the Isotropic Undeci-
mated Wavelet Transform on the Sphere introduced in Section 6.2 to the case
of data in 3D spherical coordinates. Indeed, the isotropic wavelet transform
can be fully defined using isotropic filters which are simple to express in the
spherical Fourier-Bessel domain as seen in section 7.1.2. Furthermore, the issue
of the practical evaluation of the direct and inverse spherical Fourier-Bessel
transform was addressed in the previous section.

7.3.1 Wavelet decomposition

The Isotropic Undecimated Spherical 3D Wavelet Transform is based on a
scaling function ϕkc(r, θr, ϕr) with cut-off frequency kc and spherical sym-
metry. The symmetry of this function is preserved in the Fourier space and
therefore, its Spherical Fourier-Bessel Transform verifies ϕ̃kclm(k) = 0 as soon as
(l,m) 6= (0, 0). Furthermore, due to its cut-off frequency, the scaling function
verifies ϕ̃kc00(k) = 0 for all k ≥ kc. In other terms, the scaling function verifies:

φkc(r, θr, ϕr) = φkc(r) =

√
2

π

∫ kc

0
φ̃kc00(k)k2j0(kr)dkY 0

0 (θr, ϕr) . (152)

Using relation (135) the convolution of the original data f(r, θ, ϕ) with φkc

becomes very simple:

c̃0
lm(k) = ˜[φkc ∗ f ]lm(k) =

√
2πφ̃kc00(k)f̃lm(k) . (153)

Thanks to this scaling function, it is possible to define a sequence of smoother
approximations cj(r, θr, ϕr) of a function f(r, θr, ϕr) on a dyadic resolution
scale. Let φ2−jkc be a rescaled version of φkc with cut-off frequency 2−jkc.
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Then cj(r, θr, ϕr) is obtained by convolving f(r, θr, ϕr) with φ2−jkc :

c0 = φkc ∗ f
c1 = φ2−1kc ∗ f
· · ·

cj = φ2−jkc ∗ f .

Applying the Spherical Fourier-Bessel Transform to the last relation yields:

c̃jlm(k) =
√

2πφ̃2−jkc
00 (k)f̃lm(k) . (154)

This leads to the following recurrence formula :

∀k < kc
2j
, c̃j+1

lm (k) =
φ̃2−(j+1)kc

00 (k)

φ̃2−jkc
00 (k)

c̃jlm(k) . (155)

Just like for the starlet algorithm (see section 2.2), the wavelet coefficients
{wj} can be defined as the difference between two consecutive resolutions:

wj+1(r, θr, ϕr) = cj(r, θ, ϕ)− cj+1(r, θ, ϕ) . (156)

This choice for the wavelet coefficients is equivalent to the following definition
for the wavelet function ψkc :

ψ̃2−jkc
lm (k) = φ̃2−(j−1)kc

lm (k)− φ̃2−jkc
lm (k) , (157)

so that :

w0 = ψkc ∗ f
w1 = ψ2−1kc ∗ f
· · ·

wj = ψ2−jkc ∗ f .

By applying the Spherical Fourier-Bessel Transform to the definition of the
wavelet coefficients and using the recurrence formula verified by the cjs yields:

∀k < kc
2j
, w̃j+1

lm (k) =


1− φ̃2−(j+1)kc

00 (k)

φ̃2−jkc
00 (k)


 c̃jlm(k) . (158)

Equations (158) et (155) which define the wavelet decomposition are in fact
equivalent to convolving the resolution at a given scale j with a low-pass and
a high-pass filter in order to obtain respectively the resolution and the wavelet
coefficients at scale j + 1.
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The low-pass filter hj can be defined for each scale j by :

h̃jlm(k) =





φ̃2
−(j+1)kc

00 (k)

φ̃2
−jkc

00 (k)
if k < kc

2j+1 and l = m = 0

0 otherwise .
(159)

Then the approximation at scale j + 1 is given by the convolution of scale j
with hj :

cj+1 = cj ∗ 1√
2π
hj . (160)

In the same way, a high pass filter gj can be defined on each scale j by:

g̃jlm(k) =





ψ̃2−(j+1)kc
00 (k)

φ̃2
−jkc

00 (k)
if k < kc

2j+1 and l = m = 0

1 if k ≥ kc
2j+1 and l = m = 0

0 otherwise .

(161)

Given the definition of ψ, gj can also be expressed in the simple form :

g̃jlm(k) = 1− h̃jlm(k) . (162)

The wavelet coefficients at scale j+1 are obtained by convolving the resolution
at scale j with gj:

wj+1 = cj ∗ 1√
2π
gj . (163)

To sum-up, the two relations necessary to recursively define the wavelet trans-
form are:

c̃j+1
lm (k) = h̃j00(k)c̃jlm(k)

w̃j+1
lm (k) = g̃j00(k)c̃jlm(k) .

(164)

7.3.2 Choice of a scaling function

Any function with spherical symmetry and a cut-off frequency kc would do
as a scaling function but in this work we choose to use a B-spline function of
order 3 to define our scaling function:

φ̃kclm(k) =
3

2
B3

(
2k

kc

)
δl0δm0 . (165)
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where

B3(x) =
1

12

(
|x− 2|3 − 4|x− 1|3 + 6|x|3 − 4|x+ 1|3 + |x+ 2|3

)
. (166)

The scaling function and its corresponding wavelet function are plotted in
Spherical Fourier-Bessel space for different values of j in Fig. 39

(a) Scaling function φ̃2−jkc
00 (k) for j =

0, 1, 2
(b) Wavelet function ψ̃2−jkc

00 (k) for
j = 0, 1, 2

Fig. 39. Scaling function and Wavelet function for kc = 1

Fig. 40. Comparaison between spline, needlet, and Meyer wavelet functions on the
sphere.

Other functions such as Meyer wavelets or the needlet function [30] can be
used as well. Needlet wavelet functions have a much better frequency local-
ization than the wavelet function derived from the B3-spline, and, as nothing
is perfect, the price to pay is more oscillations in the direct space. To illus-
trate this, we show in Figure 40 two different wavelet functions. Figure 40 left
shows 1D profile of the spline (continuous line) and the needlet wavelet func-
tion (dotted line) at a given scale. Figure 40 right shows the same function,
but we have plotted the absolute value in order to better visualize their respec-
tive ringing. As it can be seen, for wavelet functions with the same main lob,
the needlet wavelet oscillate much more than the spline wavelet. Hence, the
best wavelet choice certainly depends on the final applications. For statistical
analysis, detection or restoration applications, we may prefer to use a wavelet
which does not oscillate too much and with a smaller support, and the spline
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wavelet is clearly the correct choice. For spectral or bispectral analysis, where
the frequency localization is fundamental, then needlet shoud be preferred to
the spline wavelet.

The complete algorithm for the Isotropic Undecimated Spherical 3D Wavelet
Transform is provided in Algorithm 13. This algorithm makes use the discrete
Spherical Fourier-Bessel transform described in section 7.2.2. Using this trans-
form, the spherical Fourier-Bessel coefficients are now sampled at discrete kln
values and we note f̃lm(kln) = f̃lmn.

To illustrate this wavelet transform, a set of Spherical Fourier-Bessel Coef-
ficients was extracted from a 3D density field using the Discrete Spherical
Fourier-Bessel Transform described in the next section. The test density field
was provided by a cosmological n-body simulation which was carried out by
the Virgo Supercomputing Consortium using computers based at Computing
Centre of the Max-Planck Society in Garching and at the Edinburgh Par-
allel Computing Centre. The data is publicly available at http://www.mpa-
garching.mpg.de/Virgo/VLS.html.
The wavelet decomposition presented above can then be computed from the
Spherical Fourier-Bessel coefficients of the test density field and yields the
Spherical Fourier-Bessel coefficients of the various wavelet scales and smoothed
away density. Using the inverse Discrete Spherical Fourier-Bessel Transform,
the actual wavelet coefficients can be retrieved in the form of 3D density fields.
These density fields are shown on Figure 41.

Algorithm 13: The Isotropic Undecimated Spherical 3D Wavelet Transform.

Task: Compute the Isotropic Undecimated Spherical 3D Wavelet Transform
of a discrete X sampled on the spherical grid from section 7.2.2.
Parameters: Data samples X and number of wavelet scales J .
Initialization:
• c0 = X.
• Compute the B3-spline scaling function and derive ψ̃00n, h̃00n and g̃00n

numerically.
• Compute c̃0

lmn the discrete spherical Fourier-Bessel transform of c0.
for j = 0 to J − 1 do

(1) Compute the discrete spherical Fourier-Bessel transform of the scaling
coefficients: c̃j+1

lmn = c̃jlmnh̃
j
00n.

(2) Compute the discrete spherical Fourier-Bessel transform of the wavelet
coefficients: wj+1

lmn = cjlmng
j
00n.

(3) Compute the inverse spherical harmonics transform of wj+1
lmn to get wj+1.

• Compute the inverse spherical harmonics transform of cJlmn to get cJ .
Output: W = {w1, w2, . . . , wJ , cJ} the Isotropic Undecimated Spherical 3D
Wavelet Transform of X.

88



(a) Density from the ini-
tial spherical Fourier-
Bessel coefficients

(b) First wavelet scale (c) Second wavelet scale

(d) Third wavelet scale (e) Fourth wavelet scale (f) Smoothed density

Fig. 41. Isotropic Undecimated Spherical 3D wavelet decomposition of a density
field. Only a cube at the center of the spherical field is displayed.

7.3.3 Inverse Transform

Since the wavelet coefficients are defined as the difference between two resolu-
tions, the reconstruction from the wavelet decompositionW = {w1, . . . , wJ , cJ}
is straightforward and corresponds to the reconstruction formula of the à trous
algorithm:

c0(r, θr, ϕr) = cJ(r, θr, ϕr) +
J∑

j=1

wj(r, θr, ϕr) . (167)

However, given the redundancy of the transform, the reconstruction is not
unique. It is possible to take advantage of this redundancy to reconstruct cj

from cj+1 and wj+1 by using a least squares estimate.

From the recursive wavelet decomposition defined in (164), by respectively
multiplying these equations by h̃∗jlm(k) and g̃∗jlm(k) and then added together,
the following expression is obtained for the least squares estimate of cj from
cj+1 and wj+1:

c̃jlm(k) = c̃j+1
lm (k)H̃j

lm(k) + w̃j+1
lm G̃j

lm(k) , (168)
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where H̃j and G̃j are defined as follows:

H̃j
lm(k) =

h̃∗jlm(k)

|h̃jlm(k)|2 + |g̃jlm(k)|2
(169)

G̃j
lm(k) =

g̃∗jlm(k)

|h̃jlm(k)|2 + |g̃jlm(k)|2
. (170)

Among the advantages of using this reconstruction formula instead of the
raw sum over the wavelet coefficients is that there is no need to perform
an inverse and then direct spherical Fourier-Bessel transform to reconstruct
the coefficients of the original data. Indeed, both the wavelet decomposition
and reconstruction procedures only require access to spherical Fourier-Bessel
coefficients and there is no need to revert back to the direct space.

7.4 Application: Denoising of a ΛCDM simulation

In this section, we present a simple wavelet denoising application on a density
field in spherical coordinates using the Isotropic Undecimated Spherical 3D
Wavelet Transform of the previous section.

Denoising using sparse transforms can be performed very easily, by applying a
simple thresholding on the coefficients. One can use a soft or hard thresholding
according to whether we want more accuracy or less artifacts. The threshold
level is usually taken as three times the noise standard deviation, such that for
an additive gaussian noise, the thresholding operator kills all noise coefficients
except a small percentage, keeping the big coefficients containing information.
The threshold we use is often a simple κσ, with κ ∈ [3, 4], which corresponds
respectively to 0.27% and 6.3·10−5 false detections. Sometimes we use a higher
κ for the finest scale [3]. Other methods exist, that estimate automatically the
threshold to use in each band like the False Discovery Rate (see [69, 70]). The
correlation between neighbor coefficients intra-band and/or inter-band may
also be taken into account (see [71, 72]).

This experiment is performed on the same N-body simulation from the Virgo
Consortium as the one presented in the previous section on Figure 41. The
Virgo large box simulation 7 provides us with a Cartesian density cube. The
SFB coefficients of the test density field are first computed by sampling the
Virgo density field on the spherical 3D grid illustrated in Figure 38, for nside =
2048, lmax = 1023 and nmax = 512. In order to perform the SFB decomposition,
the observer is placed at the center of the box, and the SFB coefficients are

7 a ΛCDM simulation at z = 0, which was calculated using 5123 particles for the
following cosmology: Ωm = 0.3, ΩΛ = 0.7, Ho = 70kms−1Mpc−1,σ8 = 0.9. The data
cube provided is 479 h1Mpc in length.
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calculated out to R = 479/2 h−1Mpc, setting the density field to zero outside
of this spherical volume.

A Gaussian noise was then added to the SFB coefficients to produce a noisy
density field. Figures 42(a) and 42(b) show the central portion of slices taken
in the middle of respectively the original and noisy spherical density fields.
The level of the noise is comparable to the amplitude of the faint filamentary
structures that can be seen in the original density field on Figure 42(a). Using
Hard Thresholding of the wavelet coefficients, the noisy field is filtered to yield
the restored density displayed on Figure 42(c). The residuals after denoising
are shown on Figure 42(d). The artificially added noise is successfully removed,
without much loss to the large scale structure, though some of the smaller
filamentary structures are removed. This however is to be expected given the
isotropic nature of the wavelet transform used here, better suited to restore
more isotropic features such as clusters.

(a) Original field (b) Noisy field

(c) Denoised field (d) Residuals

Fig. 42. Isotropic Undecimated Spherical 3D wavelet Hard thresholding applied to
a test density field
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Software

A number of free software are available for different transforms described in
this chapter at http://www.cosmostat.org/software.html:

• MSVST-lab: Matlab code for Sparse representation-based image deconvo-
lution with Poisson noise.
• Fast 3D-Curvelets: Matlab code for 3D Fast curvelets.
• 3DEX: a code for Fast Fourier-Bessel Decomposition of Spherical 3D Survey.
• MRS3D: 3D Spherical Wavelet Transform on the Sphere.
• MS-VSTS: Multi-Scale Variance Stabilizing Transform on the Sphere.

Other resources include:

• http://www.flaglets.org: For the flaglet wavelet transform on the ball.
• http://www.curvelet.org: For the Curvelab Matlab/C++ toolbox imple-

menting the Fast Discrete Curvelet Transform.
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