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Abstract

In this article, we propose a post-processing of the planewave solution of the Kohn–Sham
LDA model with pseudopotentials. This post-processing is based upon the fact that the exact
solution can be interpreted as a perturbation of the approximate solution, allowing us to compute
corrections for both the eigenfunctions and the eigenvalues of the problem in order to increase the
accuracy. Indeed, this post-processing only requires the computation of the residual of the solution
on a finer grid so that the additional computational cost is negligible compared to the initial cost of
the planewave-based method needed to compute the approximate solution. Theoretical estimates
certify an increased convergence rate in the asymptotic convergence range. Numerical results
confirm the low computational cost of the post-processing and show that this procedure improves
the energy accuracy of the solution even in the pre-asymptotic regime which comprises the target
accuracy of practitioners.

1. Introduction

First-principle molecular simulation is nowadays a major tool in different fields such as chem-
istry, condensed matter physics and materials science. Its use is motivated by the fact that it
enables one to understand and predict the properties of a molecular system, without any empir-
ical parameter except a few fundamental constants of physics (the reduced Planck constant ~,
the Boltzmann constant kB, the mass of the electron me, the elementary charge e, the dielectric
permittivity of the vacuum ε0) and the masses and atomic numbers of the nuclei contained in the
system under investigation.

At this level, matter is described as a system of interacting nuclei and electrons. Within
the Born-Oppenheimer approximation [1] (made in almost all molecular simulations), nuclei are
considered as classical point-like particles and electrons are assumed to be, at each time t, in their
ground state. As a consequence, the nuclei dynamics is governed by a classical Hamiltonian

H ({Rk}1≤k≤M , {Pk}1≤k≤M) =
M∑
k=1

|Pk|2

2mk

+W (R1,R2, · · · ,RM),

where mk, Rk ∈ R3 and Pk ∈ R3 are respectively the mass, the position and the momentum
of the kth nucleus, where M is the total number of nuclei and where W is an effective potential
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taking into account the presence of the electrons. The bottleneck in first-principle molecular
simulation is the evaluation of the potential W for a given nuclear configuration which requires
computing the ground state energy of the electrons in the electrostatic potential generated by
the nuclei. This quantity can, in principle, be computed by solving the electronic Schrödinger
equation. However, as this equation is a (linear) 3N -dimensional partial differential equation,
where N is the number of electrons in the system, this cannot be done by brute force numerical
methods when N exceeds two or three due to the curse of dimensionality. Different approaches
have been proposed to compute the electronic ground state energy. The most popular of them
can be classified in three groups:

o wavefunction methods, among which the Hartree-Fock and multiconfiguration self-consistent-
field (MCSCF) models (see [4] for a mathematical introduction);

o methods originating from the density functional theory (DFT), namely orbital-free and Kohn–
Sham models, that are used and presented in details hereafter;

o quantum Monte Carlo methods [12, 13].

The Kohn–Sham models [7, 11] are the most popular approach to date as they offer a good
compromise between accuracy and computational cost; they are among the most widely used
models in physics and chemistry [2].

The purpose of this article is to present a new post-processing method for periodic Kohn–
Sham calculations in planewave bases, leading to a significant gain in accuracy at a very limited
extra computational cost. This method is based on the observation that the exact Kohn–Sham
ground state can be considered as a perturbation of the approximate Kohn–Sham ground state
computed in a finite basis set, and in applying first and second-order perturbation theory to the
eigenvectors and eigenvalues of the Kohn–Sham operator respectively, in order to improve their
accuracies. The specific structure of the problem and the a priori error estimates in [3] allow us
to identify the leading terms in these first and second-order contributions, which turn out to be
easy to evaluate, and discard the other terms, which are very costly or impossible to evaluate,
but negligible since proven to be small.

Our approach strongly relies on the fact that the kinetic energy operator which, from a math-
ematical point of view, is the leading term in the Kohn-Sham Hamiltonian commutes with the
orthogonal projection on the discretization space. This is not the case for atomic orbital basis
sets methods, but this is the case for other discretizations such as some wavelet methods. The ex-
tension of our approach to approximation settings that do not satisfy this commutation property
requires additional theoretical investigations and is work in progress.

This article is organized as follows. We first recall in Section 2.1 the mathematical formulation
of the Kohn–Sham models for isolated molecular systems. We then present the supercell Kohn–
Sham model used in condensed phase modeling and simulation (Section 2.2), and the concept of
pseudopotential (Section 2.3). The planewave discretization method for the supercell Kohn–Sham
model with pseudopotential is discussed in Section 3.1 and the iterative algorithms used to solve
the resulting Kohn–Sham equations are detailed in Section 3.2. The a priori error estimates our
analysis is based upon are reviewed in Section 3.3. We then introduce the post-processing in
Section 4. For pedagogical reasons, we derive the expressions of the post-processed eigenfunc-
tions and eigenvalues under the assumptions that all the eigenvalues of the Kohn–Sham operator
are non-degenerate. The general case, as well as the proof of Theorem 4.1, which quantifies
the improvement of the Kohn–Sham ground state energy obtained by the post-processing in the
asymptotic regime, will be detailed in a mathematical analysis oriented paper [5]. In Section 5, we
report numerical simulations on a simple system, an alanine molecule, obtained with the KSSOLV
package [19], showing that our post-processing method leads to significant gain in accuracy (typ-
ically one order of magnitude on the energy) for a small extra cost (a few percent of the overall
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cost). Numerical simulations with the CO2 and the benzene molecules were also performed and
led to very similar results, and therefore are not presented in this paper.

2. DFT Kohn–Sham models

2.1. Introduction to Kohn–Sham models

Throughout this article, we adopt the system of atomic units for which ~ = 1, me = 1, e = 1,
4πε0 = 1. In this system of units, the charge of the electron is −1 and the charges of the nuclei
are positive integers.

Let us first consider an isolated molecular system in vacuo, consisting of M nuclei of charges
(z1, · · · , zM) ∈ (N \ {0})M located at the positions (R1, · · · ,RM) ∈ (R3)M of the physical space,
and of N electrons. The electrostatic potential generated by the nuclei and felt by the electrons
is then given by

Vnuc(r) = −
M∑
k=1

zk
|r−Rk|

. (1)

In the spin-restricted Kohn–Sham model, the electronic state of a closed-shell system with an
even number N = 2N of electrons is described by N Kohn–Sham orbitals Φ = (φ1, · · · , φN)T ∈[
H1(R3)

]N
satisfying the orthonormality conditions∫

R3

φiφj = δij, ∀ i, j = 1, . . . , N.

The associated electronic density

ρ[Φ](r) := 2
N∑
i=1

|φi(r)|2

plays a key-role in DFT. The factor 2 in the above expression accounts for the spin. Indeed, in
the spin-restricted Kohn–Sham model, each orbital is occupied by two electrons, one with spin
up and one with spin down. The Kohn–Sham ground state is then obtained by solving

inf

{
EKS

0 (Φ), Φ = (φ1, · · · , φN)T ∈
[
H1(R3)

]N
,

∫
R3

φiφj = δij

}
, (2)

where the Kohn–Sham energy functional reads

EKS
0 (Φ) :=

N∑
i=1

∫
R3

|∇φi|2 +

∫
R3

Vnuc ρ[Φ] +
1

2
D(ρ[Φ], ρ[Φ]) + Exc(ρ[Φ]). (3)

In the right-hand side of (3), the first term approximates the kinetic energy of the electrons, the
second term accounts for the interactions between nuclei and electrons, and the third term is a
(crude) approximation of the interaction between electrons. The bilinear form D(·, ·) is in fact
the Coulomb energy functional in vacuo:

D(ρ, ρ′) =

∫
R3

∫
R3

ρ(r) ρ′(r′)

|r− r′|
dr dr′, (4)

so that
1

2
D(ρ[Φ], ρ[Φ]) is the Coulomb energy of a classical charge distribution of density ρ[Φ]. The

fourth term in the right-hand side of (3), called the exchange-correlation functional, is a correction
term, which is essential to describe quantitatively, and sometimes even qualitatively, the physics
and chemistry of the system. The exchange-correlation functional collects the errors made in the
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approximations of the kinetic energy and of the interactions between electrons by respectively the
first and third terms of the Kohn–Sham functional. It follows from the Hohenberg–Kohn theo-
rem [10, 14, 15, 18] that there exists an exact exchange-correlation functional, that is a functional
of the electronic density ρ[Φ] for which solving (2) provides the ground state electronic energy
and density of the N -body electronic Schrödinger equation. Unfortunately, no mathematical ex-
pression of the exchange-correlation functional amenable to numerical simulations is known. It
therefore has to be approximated in practice. The local density approximation (LDA) consists in
approximating the exchange-correlation functional by

Exc(ρ[Φ]) =

∫
R3

eLDA
xc (ρ[Φ](r)) dr, (5)

where eLDA
xc (ρ) is an approximation of the exchange-correlation energy per unit volume in a ho-

mogeneous electron gas with density ρ.

2.2. Periodic Kohn–Sham models

In the sequel, we will focus on the periodic versions of the Kohn–Sham LDA model. In the
periodic setting, the nuclear configuration is supposed to be R-periodic, where R is a discrete
periodic lattice of R3, and the simulation domain, sometimes referred to as the supercell, no
longer consists of the whole space R3 (as in (2)–(3)) but is a unit cell, denoted here by Ω, of
the periodic lattice R. Periodic boundary conditions (PBC) are imposed to the Kohn–Sham
orbitals (Born–von Karman PBC) at the boundary ∂Ω of the simulation cell Ω. This is the
standard method to compute condensed phase properties with a limited number of atoms in the
simulation cell, hence at a moderate computational cost. In most applications in solid state
physics and materials science, the periodic Kohn–Sham models are discretized in Fourier modes,
more commonly referred to as planewave basis sets in the physics and chemistry literature. This
is the reason why we focus on this particular discretization method in the present work.

As a consequence, the domain of integration in (3) and (5) is now Ω instead of R3, and the
Coulomb energy is now defined as

DΩ(ρ, ρ′) =

∫
Ω

∫
Ω

GΩ(r, r′)ρ(r)ρ′(r′)drdr′ =

∫
Ω

ρ(r′)[Vcoul(ρ
′)](r′)dr′,

where the Green’s function GΩ and the periodic Coulomb potential Vcoul(ρ
′) are respectively

solutions to the following problems
−∆GΩ = 4π

(∑
k∈R

δk −
1

|Ω|

)
in R3,

GΩ R− periodic,∫
Ω

GΩ = 0,

and


−∆Vcoul(ρ

′) = 4π

(
ρ′ − 1

|Ω|

∫
Ω

ρ′
)

in R3,

Vcoul(ρ
′) R− periodic,∫

Ω

Vcoul(ρ
′) = 0.

The exchange-correlation functional in this periodic setting is given by

Exc,Ω(ρ) =

∫
Ω

eLDA
xc (ρ(r)) dr,

and the orthonormality constraints read ∫
Ω

φi φj = δij.
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2.3. Pseudopotentials

The core electrons of an atom are barely affected by the chemical environment. In pseu-
dopotential methods, the all-electron model is replaced by a reduced model explicitly dealing
with valence electrons only, while core electrons are frozen in some reference state. The valence
electrons are described by valence pseudo-orbitals, and the interaction between the valence elec-
trons and the ionic cores (an ionic core consists of a nucleus and of the associated core electrons)
is modelled by a nonlocal operator called a pseudopotential, constructed once and for all from
single-atom reference calculations. The reduction of dimensionality obtained by getting rid of the
core electrons results in a much less computationally expensive approach since only the valence
pseudo-orbitals need to be computed. In addition, pseudopotentials are constructed in such a
way that the valence pseudo-orbitals oscillate much less than the valence orbitals in the core re-
gion, hence can be approximated using smaller planewave bases, or discretized on coarser grids.
Lastly, pseudopotentials are used to take into account, in the nonrelativistic framework of the
Kohn–Sham model, some relativistic effects which play an important role in the simulation of
heavy atoms.

The resulting model for the pseudo-orbitals is similar to (2)–(3), but presents some differences:

(i) N now denotes the number of valence electron pairs;

(ii) Φ now denotes the set of the pseudo-orbitals of the valence electrons;

(iii) the nuclear potential Vnuc is replaced by a pseudopotential operator Vion modelling the inter-
action between the valence electrons on the one hand, and the nuclei and the core electrons
on the other hand.

More precisely, the pseudopotential consists of two terms: a local component Vlocal (whose asso-
ciated operator is the multiplication by the R-periodic function Vlocal) and a nonlocal component
Vnl given by

Vnlφ =
J∑
j=1

(∫
Ω

ξj(r)φ(r) dr

)
ξj, (6)

where ξj are regular enough R-periodic functions and J is an integer depending on the chemical
nature of the ions in the unit cell. As a consequence, the second term in the Kohn–Sham energy
functional (3) is replaced by ∫

Ω

ρ[Φ]Vlocal + 2
N∑
i=1

〈φi|Vnl|φi〉, (7)

where the Dirac bra-ket notation is used to represent the non-local part of the operator Vion.

Further, a correction to the exchange-correlation energy due to the introduction of pseudpo-
tential is done by setting

Ec
xc,Ω(ρ[Φ]) =

∫
Ω

eLDA
xc (ρc(r) + ρ[Φ](r)) dr,

where ρc ≥ 0 is a nonlinear core-correction.

To summarize, we are therefore considering the following energy functional

EKS
0,Ω(Φ) =

N∑
i=1

∫
Ω

|∇φi|2 +

∫
Ω

Vlocal ρ[Φ] + 2
N∑
i=1

〈φi|Vnl|φi〉+
1

2
DΩ(ρ[Φ], ρ[Φ]) + Ec

xc,Ω(ρ[Φ]), (8)

and the set of admissible states

M =

{
Φ = (φ1, · · · , φN)T ∈

[
H1

#(Ω)
]N ∣∣∣∣ ∫

Ω

φiφj = δij

}
,
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where
H1

#(Ω) =
{
φ ∈ H1

loc(R3)
∣∣ φ R− periodic

}
is the R-periodic H1-space.

The ground state energy is then defined by

IKS0 = inf
{
EKS

0,Ω(Φ), Φ ∈M
}
. (9)

It can be proven that, under reasonable assumptions on Vnl, Vlocal, and Ec
xc,Ω (see [3]), (9) has a

minimizer Φ0 = (φ0
1, . . . , φ

0
N) ∈M (see Section 3.3).

The first optimality conditions read

∀1 ≤ i ≤ N, H0 φ0
i =

N∑
j=1

λ0
ijφ

0
j ,

∫
Ω

φ0
iφ

0
j = δij, (10)

where the N × N matrix Λ0 = (λ0
ij), which is the Lagrange multiplier of the matrix constraint∫

Ω
φiφj = δij, is symmetric, and where the Hamiltonian H0 is defined as follows:

H0 = −1

2
∆ + Vion + Vcoul(ρ

0) + Vxc(ρ
0),

with ρ0 = ρ[Φ0], Vion = Vlocal + Vnl, and where

Vxc(ρ)(r) =
deLDA

xc

dρ
(ρc(r) + ρ(r)).

Note that H0 is the Kohn–Sham operator

H[ρ] = −1

2
∆ + Vion + Vcoul(ρ) + Vxc(ρ), (11)

in the case where ρ is the ground state density ρ0.
In fact, (9) has an infinity of minimizers since any unitary transform of the Kohn–Sham orbitals

Φ0 in the sense of (12) below is also a minimizer of the Kohn–Sham energy. This is a consequence
of the following invariance property:

∀Φ ∈M, ∀U ∈ U(N), UΦ ∈M, ρ[UΦ] = ρ[Φ] and EKS
0,Ω(UΦ) = EKS

0,Ω(Φ), (12)

where U(N) is the group of orthogonal matrices:

U(N) =
{
U ∈ RN×N | UTU = 1N

}
,

1N denoting the identity matrix of rank N . This invariance can be exploited to diagonalize the
matrix of the Lagrange multipliers of the orthonormality constraints (see e.g. [7]), yielding the
existence of a minimizer (still denoted by Φ0) with the same density ρ0, such that

H0 φ0
i = ε0iφ

0
i ,

∫
Ω

φ0
iφ

0
j = δij, (13)

for some ε01 ≤ ε02 ≤ · · · ≤ ε0N .
As discussed in [3], it is not known whether Kohn–Sham ground states satisfy the so-called

Aufbau principle, that is whether ε01, · · · , ε0N are the lowest N eigenvalues of the Kohn–Sham
Hamiltonian H0. However, this property seems to be satisfied in practice for most systems, and
it is always satisfied for the extended Kohn–Sham model (see [3] for details). We will assume
here that the molecular system under consideration does satisfy the Aufbau principle. This allows
us to solve the Kohn–Sham equations using iterative algorithms such as the one described in
Section 3.2, which implicitly rely on the Aufbau principle.
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3. Discretization and resolution of the Kohn–Sham model

3.1. Planewave discretization

In order to approximate the solution of (9), we first discretize the variational set M using
a planewave basis set. This approximation setting is the state-of-the-art method for Kohn–
Sham simulations in solid state physics and materials science. Thus the computational domain Ω
equipped with periodic boundary conditions can be a cubic box, or more generally the unit cell
of a periodic lattice R ⊂ R3. The valence pseudo-orbitals are expanded in terms of the functions
ek(r) := |Ω|−1/2eik·r, which are the Fourier modes with wavevectors k ∈ R∗, where R∗ denotes the
dual lattice of R. The lattice R∗ indeed consists of all wavevectors k such that ek is R-periodic.
In this article, we assume for simplicity that Ω = [0, L)3 (L > 0) but our arguments can be easily
extended to the general case. In this case, R = LZ3 and R∗ = 2π

L
Z3.

Recall that the family (ek)k∈R∗ forms an orthonormal basis of

L2
#(Ω,C) :=

{
u ∈ L2

loc(R3,C) | u is R-periodic
}
,

and that for all v ∈ L2
#(Ω,C),

v(r) =
∑
k∈R∗

v̂k ek(r) with v̂k = (ek, v)L2
#

= |Ω|−1/2

∫
Ω

v(r)e−ik·r dr.

For each s ∈ R, we denote by

Hs
#(Ω) :=

{
v =

∑
k∈R∗

v̂kek

∣∣∣∣ ∀k, v̂−k = v̂∗k, ‖v‖2
Hs

#
:=
∑
k∈R∗

(1 + |k|2)s|v̂k|2 <∞

}

the Sobolev space of real-valued periodic distributions with regularity Hs.

The kinetic energy of a basis function ek is given by 1
2
|k|2, where | · | denotes the Euclidean

norm. We introduce some energy cutoff Ec > 0 and consider all basis functions whose kinetic
energy is smaller than Ec, i.e. |k| ≤

√
2Ec, to define the approximation space. That is, for each

cutoff Ec, we set Nc =
√

Ec

2
L
π

and consider the finite-dimensional discretization space

XNc :=

 ∑
k∈R∗,|k|≤ 2π

L
Nc

v̂k ek

∣∣∣∣∣∣ ∀k, v̂−k = v̂∗k

 ⊂ ⋂
s∈R

Hs
#(Ω).

We also denote by ΠNc , the linear operator on the space of R-periodic distributions defined
by

ΠNc

(∑
k∈R∗

v̂kek

)
=

∑
k∈R∗,|k|≤ 2π

L
Nc

v̂kek.

The operator ΠNc |Hs
#(Ω) (which we shall also denote by ΠNc for convenience) is in fact the or-

thogonal projector from Hs
#(Ω) to XNc for any s ∈ R, and we denote by Π⊥Nc

= (1 − ΠNc) the

orthogonal projector on X⊥Nc
, the orthogonal of XNc in Hs

#(Ω) (again for any s ∈ R). Finally, the
variational approximation to the ground state energy in XNc is defined as

IKS
0,Nc

= inf
{
EKS

0 (ΦNc) , ΦNc ∈M∩ [XNc ]
N
}
. (14)

Using once again the invariance property (12), the Euler equations of this minimization prob-
lem can be diagonalized and therefore reduced to find the pairs (φj,Nc , εj,Nc)j=1,...,N satisfying

HNc,proj φj,Nc = εj,Nc φj,Nc ,

∫
Ω

φi,Nc φj,Nc = δij, ε1,Nc ≤ ε2,Nc ≤ . . . ≤ εN,Nc , (15)
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for all i, j = 1, . . . , N . Here we define HNc,proj : XNc → XNc by

HNc,proj = ΠNcH[ρNc ]ΠNc = −1

2
ΠNc∆ΠNc + ΠNc

[
Vion + Vcoul(ρNc) + Vxc(ρNc)

]
ΠNc ,

with ρNc = ρ[ΦNc ], ΦNc = (φ1,Nc , . . . , φN,Nc)
T and where H[ρNc ] is defined by (11) for the approxi-

mate ground state density ρNc . A key observation is that HNc,proj is the restriction to XNc of the
self-adjoint operator HNc on L2

#(Ω) with domain H2
#(Ω) defined by

HNc = −1

2
∆ + ΠNc

[
Vion + Vcoul(ρNc) + Vxc(ρNc)

]
ΠNc ,

and that XNc ⊕X⊥Nc
is a HNc-stable decomposition of L2

#(Ω). More precisely, the operator HNc

can be decomposed as follows:

HNc =


HNc,proj 0

0 −1
2
∆



XNcX⊥Nc

︸ ︷︷ ︸
XNc

︸ ︷︷ ︸
X⊥Nc

Note that, as we are using a planewave discretization, the operator −1
2
∆ is diagonal on X⊥Nc

with

smallest eigenvalue larger than 1
2

(
LNc

π

)2
. Thus, as soon as

εN,Nc <
1

2

(
LNc

π

)2

, (16)

εN,Nc being the N th eigenvalue of the operator HNc,proj, ΦNc is also solution to the following
eigenvalue problem

HNcφj,Nc = εj,Ncφj,Nc ,

∫
Ω

φi,Nc φj,Nc = δij, ε1,Nc ≤ ε2,Nc ≤ . . . ≤ εN,Nc , (17)

εk,Nc being the k-th eigenvalue of HNc .
Further, the energy can then alternatively, but equivalently to (8), be obtained by

EKS
0,Ω(ΦNc) = 2

N∑
i=1

εj,Nc −
1

2
DΩ(ρNc , ρNc) + Ec

xc(ρNc)−
∫

Ω

Vxc(ρNc) ρNc , (18)

where the right-hand side only depends on the eigenvalues and the electron density [9]. This
energy is called double-counting energy in the following.

3.2. SCF-iterations

In order to solve the nonlinear eigenvalue problem (15), a Self-Consistent Field (SCF) proce-
dure is employed [19]. It consists of solving a linear eigenvalue problem at each step, at which the
Hamiltonian is computed from the density found at the previous step. Moreover, a linear charge
mixing is performed in order to improve the convergence of the algorithm. The algorithm can be
written as follows:

1. Initialization: Take an initial guess of the orbitals Φ
(0)
Nc

= (φ
(0)
1,Nc

, . . . , φ
(0)
N,Nc

)T with associ-

ated density ρ
(0)
Nc

= ρ
[Φ

(0)
Nc

]
, a memory parameter m ∈ N and a tolerance η > 0.
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2. Iterations: For i = 1, 2, ... until convergence

(a) Compute the Hamiltonian H(i−1)
Nc,proj := ΠNcH[ρ

(i−1)
Nc

]
ΠNc .

(b) Solve the linear eigenvalue problem

H(i−1)
Nc,proj φ

(i)
j,Nc

= ε
(i)
j,Nc

φ
(i)
j,Nc

,

∫
Ω

φ
(i)
j,Nc

φ
(i)
k,Nc

= δik,

for j = 1, . . . , N to obtain a set of orbitals Φ
(i)
Nc

= (φ
(i)
1,Nc

, . . . , φ
(i)
N,Nc

)T , by selecting the

lowest N eigenvalues ε
(i)
1,Nc

, ε
(i)
2,Nc

, . . . , ε
(i)
N,Nc

, counted with their multiplicities, and corre-

sponding eigenfunctions (φ
(i)
1,Nc

, φ
(i)
2,Nc

, . . . , φ
(i)
N,Nc

)T ∈M, following the Aufbau principle.

(c) Compute the new density ρ̌
(i)
Nc

= ρ
[Φ

(i)
Nc

]
.

(d) Charge mixing: replace the charge density ρ̌
(i)
Nc

with a linear combination of previously
computed charge densities, i.e.,

ρ
(i)
Nc

= α0ρ̌
(i)
Nc

+

min(i,m)∑
k=1

αkρ
(i−k)
Nc

with appropriately chosen mixing parameters satisfying
∑min(i,m)

k=0 αk = 1.

3. Output: If ‖ρ(i)
Nc
− ρ(i−1)

Nc
‖ < η , where ‖.‖ is a given norm, stop, else go back to step 2.

Note that several points in this algorithm need to be specified for its practical implementation.
Indeed, several linear eigenvalue solvers and several charge mixing procedures are available, and
different norms can be used for the convergence test. Every possible choice could be used, without
affecting the results presented in the next section. The choices made for the numerical tests
reported in Section 5 will be described there.

3.3. Smoothness assumptions and a priori results

In order to guarantee the existence of minimizers of problem (9) and to study the convergence
of the solutions to the discretized problem (14) to those of the continuous problem (9), some
assumptions on the data are needed. However, to avoid technicalities, these assumptions are not
detailed in the present paper and the interested reader is referred to [3].

First, under sufficient regularity assumptions, problem (9) with energy functional (8) has
a minimizer Φ0 satisfying (13). Note that the Xα exchange-correlation functional defined by
eXα

xc (ρ) = −CXρ
4/3, where CX > 0 is a given constant, satisfies these assumptions. They are also

satisfied by the exact exchange-correlation functional.
Second, the following a priori estimates hold.

Theorem 3.1 ([3]). Under sufficient regularity assumptions, there exists r0 > 0 and N0
c such

that for Nc ≥ N0
c , (14) has a unique local minimizer Φ0

Nc
in the set{

ΦNc ∈ (XNc)
N ∩MΦ0

∣∣∣ ‖ΦNc − Φ0‖H1
#
≤ r0

}
,

with

MΦ0

=

{
Ψ ∈M

∣∣∣∣ ‖Ψ− Φ0‖L2
#

= min
U∈U(N)

‖UΨ− Φ0‖L2
#

}
,

9



where U(N) is the set of all unitary transforms in RN . Besides,

‖Φ0
Nc
− Φ0‖Hs

#
≤ CsN

−(2−s)
c ‖ΠNcΦ

0 − Φ0‖H2
#
,

|ε0i,Nc
− ε0i | −−−−→

Nc→∞
0,

γ ‖Φ0
Nc
− Φ0‖2

H1
#
≤ IKS

0,Nc
− IKS

0 ≤ C ‖Φ0
Nc
− Φ0‖2

H1
#
,

for all 0 ≤ s ≤ 2, and for some constants γ > 0, Cs ≥ 0, and C ≥ 0 independent of Nc, where
the ε0i , ε

0
i,Nc

, 1 ≤ i ≤ N, are the N lowest eigenvalues (counting multiplicities) of the Hamiltonians
H0 = Hρ[Φ0]

and HNc = Hρ[ΦNc
]

respectively.

Stronger results can be obtained under additional assumptions on the exchange-correlation func-
tional. We refer to [3] for the details.

4. A post-processing based on perturbation theory

In this section, we propose a post-processing that is based upon the fact that the exact solution
of the Kohn–Sham problem can be interpreted as a perturbation of the approximate solution. We
assume that the tolerance parameter η defined in the SCF-procedure is sufficiently small. Given
the result of the converged SCF procedure, i.e. given the eigenfunctions ΦNc = (φ1,Nc , . . . , φN,Nc)

T

and eigenvalues (εj,Nc)j=1,...,N with density ρNc of the discretized nonlinear eigenvalue problem in
the space XNc , it is then possible to compute corrections for both the eigenfunctions and the
eigenvalues of the problem in order to increase the accuracy.

The key observation is that the exact solution (φ0
j , ε

0
j)j=1,...,N satisfies

(HNc + VNc +WNc)φ
0
j = ε0j φ

0
j ,

∫
Ω

φ0
i φ

0
j = δij,

where

VNc =
[
Vion + Vcoul(ρNc) + Vxc(ρNc)

]
− ΠNc

[
Vion + Vcoul(ρNc) + Vxc(ρNc)

]
ΠNc ,

WNc =
[
Vcoul(ρ

0) + Vxc(ρ
0)
]
−
[
Vcoul(ρNc) + Vxc(ρNc)

]
.

With these definitions, we obtain that

H[ρNc ] = HNc + VNc and H0 = HNc + VNc +WNc .

We then apply the nonlinear Rayleigh–Schrödinger perturbation method (see e.g. [8] and [6]
for a mathematical analysis) using (φj,Nc , εj,Nc)j=1,...,N as the reference solution and (φ0

j , ε
0
j)j=1,...,N

as the perturbed solution, in order to build improved approximations (φ̃j,Nc , ε̃j,Nc)j=1,...,N based
upon perturbation arguments. The use of perturbation theory in this setting seems to be new.

For the sake of simplicity, we will explain the argument assuming that all the eigenvalues
under consideration are simple, so that non-degenerate perturbation theory applies. The general
case can be dealt with the density matrix formalism (see [5]).

Since VNc +WNc is a compact perturbation of the Hamiltonian HNc , we can define for ν ∈ [0, 1]
H(ν) = HNc + ν(VNc +WNc) so that H(0) = HNc and H(1) = H0. Expanding the orbitals and
eigenvalues in terms of powers of the perturbation parameter ν and applying Kato’s regular
perturbation theory results in

φj(ν) =
∞∑
`=0

ν` φ
(`)
j,Nc

, εj(ν) =
∞∑
`=0

ν` ε
(`)
j,Nc

, for all j = 1, . . . , N,
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so that (taking ν = 1)

φ0
j =

∞∑
`=0

φ
(`)
j,Nc

, ε0j =
∞∑
`=0

ε
(`)
j,Nc

, for all j = 1, . . . , N,

with (φ
(0)
j,Nc

, ε
(0)
j,Nc

) = (φj,Nc , εj,Nc) being the solution of the unperturbed (ν = 0) nonlinear eigenvalue
problem (17). Indeed, one can show [5] that VNc +WNc is not only HNc-bounded but that the
bound tends to 0 when Nc → +∞. In consequence, the convergence radii of the above series tend
to infinity when Nc increases, so that we can guarantee convergence for ν = 1 and Nc sufficiently
large.

Further, incorporating a priori results stating that theH1−norm of the first-order perturbation
of the orbitals generated by WNc is negligible with respect to the one generated by VNc allows

us to consider only the latter, called φ
(1,1)
j,Nc

. Then, a simple calculation shows that the first-order
correction to the eigenfunctions (φj,Nc)j=1,...,N due to VNc is well-defined provided that equation
(16) is verified, and is given by (see [5] for details)

φ
(1,1)
j,Nc

= −(−1

2
∆|X⊥Nc

− εj,Nc)
−1rj for all j = 1, . . . , N, (19)

where
rj = H[ρNc ]φj,Nc − εj,Ncφj,Nc = (HNc + VNc)φj,Nc − εj,Ncφj,Nc ∈ X⊥Nc

,

is the residual of the eigenvalue problem, which can also be written as

rj =

(
−1

2
∆ + Vion + Vcoul(ρNc) + Vxc(ρNc)− εj,Nc

)
φj,Nc . (20)

Note that as φ
(1,1)
j,Nc
∈ X⊥Nc

, and −(−1
2
∆|X⊥Nc

− εj,Nc)
−1 is a diagonal operator in the Fourier

basis, the first-order correction to the j-th eigenvector φ
(1,1)
j,Nc

is easy to compute.
The first order correction to the eigenvalue originating from VNc vanishes, and the one originat-

ing from WNc is small from a priori results. The computable part of the second order correction
is (using Dirac’s bra-ket notation)

ε
(2,1)
j,Nc

= (φ
(1,1)
j,Nc

, rj)L2
#

= −〈rj|(−
1

2
∆|X⊥Nc

− εj,Nc)
−1|rj〉.

Hence φ
(1,1)
j,Nc

and ε
(2,1)
j,Nc

are well-defined (provided that Nc is large enough).
We then define the post-processed solution as

φ̃j,Nc = φj,Nc + φ
(1,1)
j,Nc

, ε̃j,Nc = εj,Nc + ε
(2,1)
j,Nc

, and ρ̃Nc = ρ[Φ̃Nc ], (21)

with Φ̃Nc = (φ̃1,Nc , . . . , φ̃N,Nc)
T . Therefore, the post-processed ground state energy can be pro-

vided, either following (8) by

ĨKS
0,Nc

=
N∑
i=1

∫
Ω

|∇φ̃i,Nc |2 +

∫
Ω

Vlocal ρ̃Nc + 2
N∑
i=1

〈φ̃i,Nc |Vnl|φ̃i,Nc〉+
1

2
DΩ(ρ̃Nc , ρ̃Nc) +Ec

xc,Ω(ρ̃Nc), (22)

or following the double counting formula (18) by

ĨKS,DC
0,Nc

= 2
N∑
i=1

ε̃j,Nc −
1

2
DΩ(ρ̃Nc , ρ̃Nc) + Ec

xc(ρ̃Nc)−
∫

Ω

Vxc(ρ̃Nc) ρ̃Nc . (23)

Even though definitions (8) and (18) are equivalent for the discrete ground states, i.e. for the
exact solutions to problem (17), the two perturbed energies computed by (22) and (23) are not
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equal, and lead to different numerical results. From a computational viewpoint, the time needed
to compute two energies (22) and (23) is almost the same. But it seems that (22) gives better
approximations for the energy than the double counting formula (23). The numerical performance
of these two formulas will be discussed in Section 5.

From a theoretical viewpoint, we can state the following result for the perturbed energy (22).

Theorem 4.1 ([5]). Let IKS
0,Nc

be the planewave approximation of the ground state energy be de-

fined by (14) and ĨKS
0,Nc

the post-processed approximation given by (22). Then, under sufficient
regularity assumptions (see [5]), there exists a constant C > 0, independent of Nc, such that∣∣∣ĨKS

0,Nc
− IKS

0

∣∣∣ ≤ C N−2
c

∣∣∣IKS
0,Nc
− IKS

0

∣∣∣,
where IKS

0 is the exact ground state energy, defined in (9).

Although the above inequality might not be not optimal (some numerical results seem to show
that the improvement factor is better than N−2

c ), this result clearly indicates that the perturbation
method leads to a substantial improvement of the accuracy of the energy in the asymptotic regime,
that is when Nc goes to infinity. Note, though, that most calculations are performed in practice
in the pre-asympotic regime, with moderate values of Nc. It is therefore important to check
numerically that the perturbation method performs well also in the pre-asymptotic regime, which
will be done in the next section. Let us also mention that the above inequality is concerned with
the energy only. Obtaining similar estimates for other properties, and in particular for atomic
forces, is a difficult task, which is work in progress.

From an implementational viewpoint, the residual rj, defined in (20), which is an infinite-
dimensional object belonging to Π⊥Nc

, is represented on a discrete space XNc,res based on some
Ec,res ≥ Ec which, in turn, corresponds to a certain Nc,res ≥ Nc. Further, observing that the
density ρNc belongs to X2Nc (corresponding to 4Ec and 2Nc), the potential Vcoul(ρNc) therefore
belongs to X2Nc as well. The post-processing requires that the potentials Vion and Vxc(ρNc) can
be expressed in the larger space with cutoff Ec,res so that full knowledge of all the modes of the
residual lying in XNc,res are accessible. In practice, it might be simpler to obtain Vion and Vxc(ρNc)
as elements of XNc,res directly in order to avoid too many data structures associated with different
cutoffs. The computation of this residual requires additional Fast Fourier Transforms (FFT) on
the finer grid corresponding to Ecut,res. Indeed, applying the Hamiltonian H[ρNc ] to the orbitals
φj,Nc requires two additional FFT’s on the fine grid for each orbital.

5. Numerical results

We present here some results on a small molecule as a proof of concept. The alanine molecule
which has 18 valence electron pairs is considered. The computation of the planewave approx-
imation is based on KSSOLV [19], a Matlab toolbox for solving the Kohn–Sham equations.
Troullier–Martins pseudopotentials [17] are considered, in combination with the Perdew–Zunger
(PZ81) LDA-functional [11, 16]. Note that we obtained qualitatively the same results with the
CO2 molecule as well as the benzene molecule.

In all what follows, the computed solutions are compared to a reference solution, which is a
solution computed on a very fine grid with a kinetic energy cutoff Eref

c of 400 atomic units (a.u.).
A coarse solution (labelled “without perturbation”) is computed on a grid with cutoff Ec, and the
post-processed approximations given by the perturbation theory are computed on a grid with fine
cutoff Ec,res (labelled “with perturbation”) (21). Note that the components of the Kohn–Sham
orbitals on the coarse grid are not modified by the post-processing. The coefficients computed
through the perturbation process correspond to basis functions with wave numbers larger than

Ec. We denote by λ the relation between the coarse and fine cutoffs, i.e. λ =
Ec,res

Ec

.
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In the following, we simulate three scenarios. In each case, we compare the errors on the
energies of the solutions with perturbation computed with either formula (22) or formula (23)
to the errors on the energies of the solutions without perturbation. First, we fix a coarse cutoff
Ec, and we vary the fine cutoff Ec,res, which corresponds to varying the parameter λ. In the
second case, we fix a fine cutoff Ec,res and we vary the coarse cutoff Ec, which also corresponds to
varying the parameter λ. Finally, we fix λ and we vary simultaneously the cutoffs Ec and Ec,res.
Thus we can observe the improvement in the energy when applying the perturbation theory in
these different frameworks. This enables us to find the best compromises between accuracy and
computational resources, both in time and memory.

5.1. Simulations with a constant Ec

Here, we fix Ec, hence the dimension of the space in which we compute the coarse solution. We
then compute the post-processed corrections in spaces of different sizes characterized by different
Ec,res to obtain a more accurate solution. We observe on Figure 1 that for all the tested Ec,res, the
energy of the solution with perturbative corrections is more precise than the coarse solution as
the relative energy error is improved by one to two orders of magnitude, depending on the energy
formula used to compute the perturbed energy. Indeed, the formula (22) gives an energy always
closer to the exact energy than the formula (23) based on double counting.

The relative time increases when the parameter λ increases, as it is more expensive to compute
the perturbed solution on a larger grid than on a smaller one. However, the time necessary to
compute the perturbative corrections corresponds approximately to 1% to 12% of the cost to
compute the coarse solution, which is indeed very little. The cost to compute the perturbed
energy is a little higher for the energy based on (22) than for the double counting energy (23), but
the difference in negligible compared to the total computing time. Note that the cost in memory
is also higher when Ec,res is large, as the perturbed solution is then computed on a larger grid.

The improvement of the solution seems to be constant for λ ≥ 3, which means that the main
improvement of the post-processing is due to coefficients corresponding to planewaves with kinetic
energy slightly larger than Ec. We therefore conclude that it seems useless to use a large λ and
hence a large Ec,res, to post-process the solution as the improvement is negligible while the cost
in time and memory increases. The best choice of λ seems to vary, but a good choice seems to be
around 2.

5.2. Simulations with a constant Ec,res

In this case, we fix the fine grid used for the computation of the perturbed solution but we
compute it from different coarse solutions obtained with different values of Ec. This corresponds
to a case where the limiting parameter is the memory, and so the fine grid in which we can
compute the perturbed solution is fixed. It is shown on Figure 2 that it is possible to get the
same accuracy in energy by doing a small computation on a coarse grid and then post-processing
the coarse solution on a grid with parameter Ec,res. The computational cost is in this case much
reduced if we compare it to a classical approach consisting of computing the solution on the grid
with cutoff Ec,res.

First, the computational time needed to compute the perturbed solution from the unperturbed
one is once again negligible compared to the time needed to compute the coarse solution, at least
for small values of the parameter λ. The cost in terms of CPU time is also negligible using either
(22) or (23) for the post-processed energy computation.

Second, we observe that for Ec,res = 100 a.u. and Ec,res = 200 a.u., the relative energy error
for the solution with perturbation is always smaller than for the solution without perturbation
by a factor of about 10 to 50. When λ increases, the error becomes larger, which is expected
since Ec decreases. Moreover it seems that the improvement is better for Ec,res = 200 than for
Ec,res = 100.
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Figure 1: Simulations with a constant Ec (alanine molecule).

The post-processed energy ĨKS
0,Nc

given by (22) is in this case always closer to the exact energy

than the energy ĨKS,DC
0,Nc

given by (23). Indeed, the energy error for ĨKS,DC
0,Nc

is often 2 to 5 times

larger than the energy error based on ĨKS
0,Nc

. Hence, the post-processed energy ĨKS
0,Nc

improves the
energy error of the solution on the coarse grid by a factor 10 to 100 whereas the post-processed
energy based on double counting formula (23) improves the energy error only by a factor between
4 and 12.

Moreover, it is interesting to compare the time needed to reach a given accuracy for the method
with or without perturbation. For example, for λ = 3 and Ec,res = 200 a.u., the time needed to
compute the perturbed solution is about 2600 seconds which is 7 times less than the time needed
to compute the self-consistent solution on this grid (corresponding to λ = 1), whereas the energy
error ĨKS

0,Nc
given by (22) is of the same order of magnitude. Hence, when the solution on the coarse

grid is not too crude, the perturbation theory enables us to significantly improve the solution at
very low extra cost.

5.3. Simulations with a constant λ

In this case, we fix the proportionality constant between Ec and Ec,res. For different values of
Ec, we consider the relative energy error without or with the perturbation corrections (Figure 3).

For all Ec greater than 20 a.u., there is an improvement in energy when performing the
perturbation corrections, using one or the other energy formula. The relative energy error of the
solutions with perturbation is indeed lower than for the solutions without perturbation by a factor
between 2 and 100. Once again, the energy formula (22) gives better results than the formula
(23). The computational time increases as Ec increases and the time necessary to compute the
solution with perturbation is still very small compared to the computation of the coarse solution,
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Figure 2: Simulations with a constant Ec,res (alanine molecule).

and is less than 3% of the total computational time for λ = 1.4 and λ = 2, and no more than
8% of the total computational time for λ = 3. The computational time is always smaller for the
energy formula (23) based on double counting than for the energy formula (22).

For all the values of Ec tested, the best improvement is given either by λ = 2 or λ = 1.4,
which drives us into using mostly small values of λ, as the computations are also less expensive
in memory.

Concerning the two possible energy formulas for computing the post-processed energy, the
energy formula (22) gives better results than (23). Note that the theoretical results obtained so
far are only concerned with formula (22). However the formula (23) based on double counting is
a little cheaper to compute to evaluate and also leads to an improvement of the energy.

In conclusion, it seems that whenever the coarse solution is accurate enough, the use of the
perturbation method to post-process the solution improves the energy by a factor typically of
more than 10. Since the computational cost of this post-process is negligible, it is possible to get
the same accuracy as a solution computed on a large grid by first doing a smaller computation on
a coarse grid and then post-processing the coarse solution using the perturbation method. This
approach is much cheaper than the computation of the solution directly on a grid of size Ec,res.
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