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Abstract. This paper presents a novel causal semantics for concurrency,
based on rigid families. Instead of having causality as primitive notion,
in our model causality and concurrency are derived from precedence, a
partial order local to each run of a process. We show that our causal
semantics can interpret CCS and π-calculus terms. We propose some
criteria to evaluate the correctness of a causal semantics of process calculi
and we argue that none of the previous models for the π-calculus satisfy
them all.

1 Introduction

Formal models for concurrency can be divided into interleaving models, such
as traces and labelled transition systems, in which concurrency is represented
as non deterministic executions, and non interleaving ones, like configuration
structures [23], event structures [22] or presheaves [8]. Non interleaving seman-
tics have a primitive notion of concurrency between computation events. As a
consequence one can also derive a causality relation, generally defined as the
complement of concurrency. These models are therefore sometimes called causal
semantics or, if causality is represented as a partial order on events, partial order
semantics. Causal models are also known to be at the foundations of reversible
concurrent computations [19].

In this paper we propose to take a notion of precedence as the fundamental
relation between events. Precedence is a partial order that can be seen as a
temporal observation, specific to a given run of a process. In a given run, two
events may also not be related by any precedence relation, in which case one
can see them as having occurred either simultaneously or in such a way that
no common clock can be used to compare them. More traditional causality and
concurrency relations are derivable from precedence.

The interpretation of a process is built by induction on the process construc-
tors and defined as operations on rigid families [15,6]. We equip rigid families
with a labelling function on events. In this sense, our semantics resembles the
encoding of CCS in configuration structures [22].

The operations on rigid families that are used to encode CCS can be easily
adapted to the π-calculus. Importantly, the restriction operator behaves similarly
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in the rigid families for both calculi: it removes from the model the executions
that are not allowed. In previous models for the π-calculus [9,2] the restriction
of a private name introduced new orders between events.

Several causal models have been proposed in the literature for process calculi
(see for instance Refs.[3,22,9,2,4,5,7,12,13]). Each model is shown to be correct,
in some sense. But can a model be more correct than another one? What are the
criteria one uses to make such evaluation? We will show that our model satisfies
several correctness criteria, and we will argue that no previous causal model for
the π-calculus satifies them all.

The correctness criteria will be introduced as we go along the formal devel-
opment.

Outline. In section 2 we introduce the category of rigid families and rigid mor-
phisms. In section 3 and section 4 we show how to interpret CCS and π-calculus,
respectively, such that the models are compositional and sound. In section 5 we
present the three remaining correction criteria and conclude with section 6.

2 A category of rigid families

In this section we present rigid families, a model for concurrency introduced
by Hayman and Winskel [15,6], that is a close relative to configuration struc-
tures [14]. We first introduce the unlabelled categorical setting. It results in a
generic framework to represent concurrent computations as sets of events (con-
figurations) equipped with a partial order that represent temporal precedence
between events. Importantly precedence is local to a configuration whereas events
can occur in multiple configurations.

When a process P is able to output two messages a and b on two parallel
channels, three kinds of observations are possible. The observer sees the output
on a before the output on b, or the output on b before the output on a, or she
cannot tell in which order they happen, either because they really happen at
the same time, or because the observer does not have a global clock on the two
events. In the rigid family interpretation of P we would have three corresponding
configurations for the parallel emission of a and b.

Definition 1 (Rigid inclusion of partial orders). Given a partial order x,
we write |x| to denote the underlying set and e ≤x e′ whenever (e, e′) ∈ x. Rigid
inclusion of partial orders x � y is defined iff the following hold:

|x| ⊆ |y| and ∀e, e′ ∈ x : e ≤x e′ ⇐⇒ e ≤y e′

∀e ∈ y,∀e′ ∈ x, e ≤y e′ =⇒ e ∈ x

Definition 2 (Rigid families). A rigid family F = (E,C) is a set of events E
and a non empty family of partial orders, called configurations, such that ∀x ∈ C,
|x| ∈ P(E) and C is downward closed w.r.t rigid inclusion: ∀y � x, y ∈ C.



A morphism on rigid families σ : (E,C) → (E′, C ′) is a partial function on
events σ : E ⇀ E′ that is local injective:

For all x ∈ C, e, e′ ∈ x, σ(e) = σ(e′) =⇒ e = e′

and that extends to a (total) function on configurations:

σ(x) = x′ iff σ(|x|) = |x′| and ∀e, e′ ∈ dom(σ), σ(e) ≤x′ σ(e′) ⇐⇒ e ≤x e′

We write F1
∼= F2 whenever there is an isomorphism between F1 and F2 and

we use 0 to denote the rigid family with an empty set of events.

Proposition 1. Rigid families and their morphisms form a category.

∅

e1

e1 < e2

e2

e2 < e1e1, e2

(e1, e2)

Fig. 1. Example of product

Importantly, the morphisms we employ
here differ from the ones introduced by Hay-
man and Winskel that are defined on config-
urations and are not required to preserve the
order3.

If precedence is a partial order that is lo-
cal to a configuration, one may also define a
global (partial) order as follows.

Definition 3 (Causality). Let e, e′ ∈ E for (E,C) a rigid family. Define e′ < e
to mean: ∀x ∈ C, if e, e′ ∈ x then e′ <x e.

Rigid families offer a natural notion of disjoint causality: i.e an event e1 is
caused by either e2 or e3. This type of dependency is a generalisation of Defini-
tion 3:

Definition 4 (Disjoint causality). Let (E,C) a rigid family and e ∈ E, X ⊂
E such that e /∈ X. Then X is a disjoint causal set for e, denoted X < e iff the
following hold:

1. disjointness ∀e′ ∈ X, ∃x ∈ C such that e′ <x e and ∀e′′ ∈ X \ e′, e′′ 6<x e.
2. completeness ∀x ∈ C, e ∈ x =⇒ ∃e′ ∈ X such that e′ <x e;

In particular e′ < e whenever {e′} < e.

Definition 5 (Concurrency). Let (E,C) a rigid family and e, e′ ∈ E. Define
e3e′ ⇐⇒ ∃x ∈ C, e, e′ ∈ x such that e′ 6≤x e and e 6≤x e′.

Note that concurrency has an existential quantifier: two events are concurrent
if there exists a configuration in which they are not comparable. On the other
hand, causality is universal: it has to hold for all configurations.

3 We let the reader refer to appendix for details. We also show in appendix how one
can compile an event structure from rigid families and vice versa. Importantly, the
category of Definition 2 and the category of event structures are not equivalent.



Definition 6 (Operations on rigid families). Let E? = E ∪ {?}.

1. Product Let ? denote undefined for a partial function. Define (E,C) =
(E1, C1) × (E2, C2) where E = E1 ×? E2 is the product in the category of
sets and partial functions with the projections σ1 : E → E?1 , σ2 : E → E?2 .
Define the projections π1 : (E,C) → (E1, C1), π2 : (E,C) → (E2, C2) and
x ∈ C such that the following hold:
– x is a partial order with |x| ∈ P(E);
– π1(e) = σ1(e) and π2(e) = σ2(e);
– π1(x) ∈ C1 and π2(x) ∈ C2;
– ∀e, e′ ∈ x, if π1(e) = π1(e′) 6= ? and π2(e) = π2(e′) 6= ? then e = e′.
– ∀e, e′ ∈ x such that e, e′ ∈ dom(x), e <x e

′ ⇐⇒ π1(e) <π1(x) π1(e′) and
π2(e) <π2(x) π2(e′).

– ∀y ⊆ x we have that π1(y) ∈ C1 and π2(y) ∈ C2.
2. Restriction Define the restriction of an upward closed set of configurations

X ⊆ C as (E,C) � X = (∪C ′, C ′) with C ′ = C \X. We equip the operation
with a projection π : (E,C) � X → (E,C) such that π is the identity on
events.

3. Prefix Define e.(E,C) = (e ∪ E,C ′ ∪ ∅), for e /∈ E where

x′ ∈ C ′ ⇐⇒ x′ =
(
{e <x′ e′ | ∀e′ ∈ x} ∪ x

)
for some x ∈ C.

Let π : e.(E,C) → (E,C) the projection such that π(e) is undefined and π
is the identity on the rest of the events.

Example 1. We obtain the rigid family in Figure 1 for the product of (∅ ≺ {e1})
and (∅ ≺ {e2}).

Proposition 2. The following properties hold:

1. F1 ×F2 is the cartesian product in the category of rigid families.
2. F � X is a rigid family with the projection π : F � X → F a morphism.
3. e.F is a rigid family with the projection π : e.F → F a morphism.

The following proposition shows that the prefix operation adds event e before
any other event in the family.

Proposition 3. Let e.(E,C) = (E′, C ′). ∀e′ ∈ E′, e ≤ e′.

3 Rigid families for CCS

Criterion 1 (Compositional interpretation) The interpretation of a pro-
cess should be given by composing the interpretations of its subprocesses.

We conceived our category of rigid family as model for a large class of concur-
rent languages, including the π-calculus. In order to illustrate how this should
work, we begin by tuning our formalism to finite CCS [17]. We proceed in a
similar, yet more technical, manner in section 4 to model the π-calculus.



As it is standard in causal models for concurrency [21], product of rigid
families (Definition 6, Equation 1) essentially creates all possible pairs of events
that respect the rigidity constraint imposed by the morphisms of our category.
One then needs to prune out the pairs of events that do not correspond to
legitimate synchronisations. We prove in subsection 3.2 the correspondence with
CCS. For simplicity we do not deal with recursion in this paper and let the
reader refer to the appendix for a full treatment of non finitary CCS.

3.1 Definitions

Let N be a set of names N = {a, b, c, . . . }, N a set of co-names N = {a, b, c, . . . }.
The function [·] : N → N is a bijection, whose inverse is also denoted by [·] so
that a = a. Let L be the set of event labels defined by the following grammar:

α, β ::= a | a | (α, β)

The pairs of labels are globally denoted by τ . We say that an event is partial
if it is labelled by a name or a co-name. It represents a possible interaction with
the context.

Definition 7 (Labelled rigid families).
A labelled rigid family F = (E,C, `,P) is a rigid family equipped with a

distinguished set of names P (the private names of F) and a labelling function
` : E → L.

We use labels to determine which events cannot occur in a computation:

Definition 8 (Disallowed events). Let F = (E,C, `,P) and e ∈ E. We say
that `(e) is disallowed if one of the following properties holds:

1. [type mismatch] `(e) = (α, β) with α 6∈ N ∪N or α 6= β;
2. [private name] (`(e) = a ∈ N or `(e) = a ∈ N) and a ∈ P ;

A synchronisation event may only occur between complementary partial events
(Equation 1) and partial events may not use a private name (Equation 2).

Definition 9 (Dynamic label). Define the dynamic label of an event as ˆ̀(e) =
`(e) if `(e) is allowed and ⊥ otherwise.

We extend now the operations of Definition 6 in order to take labels into
account.

Definition 10 (Operations on labelled rigid families).

1. Restriction of a name Let a /∈ P. Then (E,C, `,P) � a = (E,C, `,P∪{a}) �
X, where x ∈ X iff ∃e ∈ x such that ˆ̀(e) = ⊥.

2. Prefix Define α.(E,C, `,P) = (E′, C ′, `′,P) where, for some e /∈ E, e.(E,C) =
(E′, C ′) and `′(e) = α and `′(e′) = `(e′) for e′ 6= e.



3. Product Let (E,C) = (E1, C1) × (E2, C2) and π1, π2 the projections πi :
(E,C)→ (Ei, Ci). Then

(E1, C1, `1,P1)× (E2, C2, `2,P2) = (E,C, `,P1 ∪ P2)

where `(e) =

{
`i(πi(e)) if π3−i(e) = ?(
`1(π1(e)), `2(π2(e2))

)
otherwise

4. Parallel composition

(E1, C1, `1,P1) | (E2, C2, `2,P2) = (E1, C1, `1,P1)× (E2, C2, `2,P2) � X

where x ∈ X iff ∃e ∈ x such that ˆ̀(e) = ⊥.

Definition 11 (Sound rigid family). F is sound iff ∀x ∈ F , ∀e ∈ x, ˆ̀(e) 6=
⊥.

Proposition 4. Let F1 = (E1, C1, `1,P1), F2 = (E2, C2, `2,P2) sound rigid
families such that P1 ∩ P2 = ∅ and let α a name such that α /∈ P1. Then α.F1,
F1 � a and F1 | F2 are sound rigid families.

3.2 Operational correspondence with CCS

Criterion 2 (Sound interpretation) The interpretation of a process can be
equipped with an operational semantics that corresponds to the natural reduction
semantics of the process.

To show the correspondence with the operational semantics of CCS, we need
to define a notion of transition on rigid families. Intuitively, a computation step
consists in triggering a single-event computation {e} that belongs to the set of
configurations. Once e is consumed, the events in conflict with e are eliminated.
The remaining configurations are those that are “above” the configuration {e}.

Definition 12 (Transitions on rigid families).
Let (E,C, `,P)/e = (E′, C ′, `′,P), for {e} ∈ C, be the rigid family obtained

after the occurence of event e and defined as follows:

– x′ ∈ C ′ ⇐⇒ x′ = x \ {e}, for {e} � x ∈ C;
– e′ ∈ E′ ⇐⇒ ∃x ∈ C, {e} � x and e′ ∈ x;

For all rigid family F = (E,C, `,P) with {e} ∈ C, note that F/e is also a labelled
rigid family. Now consider (finite) CCS terms defined by the grammar below:

P,Q ::= (P |Q) | a.P | a.P | P\a | 0

As usual, occurrences of a and a in P\a are bound. For simplicity, we assume
that all bound occurrences of names are kept distinct from each other and from
free occurrences.

The interpretation of a CCS process as a rigid family is defined by induction
on the structure of a term:

Jα.P K = α.JP K JP |QK = JP K|JQK JP\aK = JP K � a J0K = 0



Lemma 1. Let P a process and JP K = (E,C, `,P) its interpretation.

1. ∀α, P ′ such that P
α−→ P ′, ∃e ∈ E such that `(e) = α and JP K/e ∼= JP ′K;

2. ∀e ∈ E, {e} ∈ C, ∃P ′ such that P
`(e)−−→ P ′ and JP K/e ∼= JP ′K.

A direct corollary of Lemma 1 is that a process and its encoding can simulate
each others reductions.

Theorem 1 (Operational correspondence with CCS). Let P a process
and JP K = (E,C, `,P) its encoding.

1. ∀P ′ such that P
τ−→ P ′, ∃{e} ∈ C closed such that JP K/e ∼= JP ′K;

2. ∀e ∈ E, {e} ∈ C closed, ∃P ′ such that P
τ−→ P ′ and JP K/e ∼= JP ′K.

3.3 Causality and concurrency in CCS

A term in CCS can compose with a context and then exhibit more behaviours.
We will show below a property that says that precedence in the semantics of a
term can be seen as an abstraction of the causality that appears when the term
is put into a context.

In the interpretation of a CCS term, if we have a configuration x and two
concurrent events in x, we also have the configuration y with the same events
and the same order as x except for the concurrent events that become ordered
in y. This is stated formally in the following proposition.

Proposition 5. Let JP K = (E,C, `,P). ∀x ∈ C and ∀e1, e2 ∈ x such that
e13xe2, ∃y ∈ C such that |x| = |y| and

1. y preserves the order in x: ∀e, e′ ∈ x, e ≤x e′ =⇒ e ≤y e′
2. x reflects the order in y except for e1 <y e2: ∀e, e′ ∈ y such that ¬(e =

e1 ∧ e′ = e2), e ≤y e′ =⇒ e ≤x e′.

In CCS we cannot guarantee simultaneity. Two concurrent events (Definition 5)
can be observed simultaneously but also in any order. For instance the order
a < b induced by the CCS term a | b is materialized when the term composes
with the context (a.b | [·])\ab. Note that this is a property specific to CCS (and
the π-calculus in subsection 4.4), but one can encode in rigid families calculi
where such a property does not hold.

The causality of Definition 3 is called structural in previous models for
CCS [3,22]. But we can also express the disjunctive causality of Definition 4
in CCS. Consider the process a.b | a interpreted in rigid families in Figure 2,
where events are replaced by their corresponding labels. The disjunctive causal
set for the event labelled b consists of the events labelled a and τ : X = {a, τ} < b.
Disjunctive causal sets in CCS always consist of conflicting events. However, it
is not the case for the disjunctive causal sets of the π-calculus.



∅

a a τ

a, aa < a a < b a < a τ < b

a < b, a a < a < ba < a < b

Fig. 2. a.b | a in rigid families

4 Rigid families for the π-calculus

We show how definitions in section 3 can be adapted to the π-calculus [18]. The
treatment of synchronisation labels is more complicated as noted in Ref. [16,9]
since names can be substituted during computations. Also, restriction does not
necessarily delete events labelled with the private name, due to the phenomenon
of scope extrusion.

However, in our novel approach, the main difficulty of the encoding resides
in the definition of disallowed labels. Given the correct definition, all operations
on rigid families for the π-calculus are straightforward extensions from CCS,
including the restriction. As in CCS, for simplicity, we do not treat recursion or
nondeterministic sum.

4.1 Labels for the π-calculus

We redefine the set L of events labels (see below), in order to handle the labels
of the π-calculus. We use α, β to range over L, on which we define the functions
subj and obj in the obvious manner:

α ::= b〈a〉 | d(c) | (α, β)

subj(b〈a〉) = {b} subj(d(c)) = {d} subj(α, β) = subj(α) ∪ subj(β)

obj(b〈a〉) = {a} obj(d(c)) = {c} obj(α, β) = obj(α) ∪ obj(β)

A labelled rigid family for the π-calculus is defined as in Definition 7, except
that the labelling function ` : E → L has as codomain the new set L. For a label
α = b(a) or α = b〈a〉, we use the notation α ∈ `(e) if `(e) = (α, α′), `(e) = (α′, α)
or `(e) = α. The name b is binding in a label α if α = a(b) for some name a. For
simplicity we use the Barendregt convention: a name b has at most one binding
occurrence in all event labels and this occurrence binds all bs in the other event
labels.

We call an event e that binds a name b in a configuration an instantiator
for b. An event e with label c〈d〉 can thus have two instantiators, one for the
subject c and one for the object d. If the event is labelled by a synchronisation
(`(e) = (b〈a〉, d(c))) we can have up to three instantiators (for the names b,
a and d). For all e occurring in a configuration x, we write e′ ∈ instsx(e) and



e′′ = instox(e) for, respectively, the subject and object instantiator of e. Note
that in the interpretation of a π process (respecting the Barendregt convention)
as a rigid family in subsection 4.3, it can be proved that e′ <x e and e′′ <x e.

4.2 Synchronizations

Let Σ be the set of all name substitutions. The function σx : x → Σ returns a
set with all substitutions generated by synchronisation events in x.

Definition 13 (Substitution). We define σx by induction on x:

σ∅ =∅
σx =σx\e if `(e′) 6= (d(a), b〈a′〉)

σx\e ∪ {a′/a} if `(e′) = (d(a), b〈a′〉) and {a′′/a′} /∈ σx\e
σx\e ∪ {a′′/a} if `(e′) = (d(a), b〈a′〉) and {a′′/a′} ∈ σx\e

Define `x(e) = `(e)σx which applies the substitutions to the label of e.4

We can prove that for any configuration x in the interpretation of a π process,
σx is well defined.

The synchronizations of a configuration x are events e ∈ x such that `(e) =
(b(a), c〈d〉), for some names a, c, d. We use the configuration-indexed predicate
τ̃x : x → 2 to denote events of that sort. The materialized synchronisations are
synchronization events with the `x(e) = (a(c), a〈d〉). The predicate τx : x→ 2 is
the smallest predicate that holds for such events.

Importantly, one cannot simply screen out all τ̃x-events in a rigid family that
are not also τx-events. They might still become fully fledged synchronisations
after composing the family with more context. Yet some pairs of events will
never satisfy the τx predicate, no matter what operations are applied to the rigid
family they belong to. Such events can be identified thanks to their disallowed
label.

The definitions of events that have disallowed labels are quite cumbersome
but essentially consist in an exhaustive characterization of events the label of
which proves they can no longer appear in a π-calculus computation (Defini-
tion 15 and Definition 16). Such events can only appear after applying the prod-
uct or the restriction, operations needed to represent the parallel composition
and name restriction of the π-calculus. They are therefore detected and removed
on the fly (see Definition 10). The reader, uninterested in technical details, may
now safely skip to subsection 4.3, having in mind this informal notion of disal-
lowed events.

A τ̃x-event can become a materialized τx-event when the names used as sub-
ject can be matched. This is always a possibility if the names are not private,
because input prefix operations can instantiate them to a common value. How-
ever, when only one of the names is private then a distinct event, occurring
beforehand, has to be in charge of leaking the name to the context. We call such
event an extruder :
4 We give the formal definition in Appendix subsection A.5.



Definition 14 (Extruder). An event e ∈ x is an extruder of e′ ∈ x if e <x e
′

and `x(e) = b〈a〉 for some b where a is private and a ∈ subj(`x(e′)).

Consider a τ̃x-event e occurring in a configuration x. If a, b ∈ subj(`x(e)) we say
that a can eventually match b iff a /∈ P and either b /∈ P or if b ∈ P then there
exists e′, e′′ ∈ x, e′ = instsx(e) and e′′ extruder of e such that e′′ <x e

′. We write

U(a, b) iff a = b or if a can eventually match b or b can eventually match a.

Definition 15 (Disallowed τ̃x-events). Let F = (E,C, `,P) and x ∈ C, e ∈ x
with τ̃x(e). The label λ = `x(e) is disallowed if one of the following properties
holds:

1. [type mismatch] λ = (α, β) and it is not the case that α is input and β
output or viceversa;

2. [non unifiable labels] let a, b ∈ subj(λ) and either:
– ¬U(a, b)
– ∃e′ ∈ x such that a, b′ ∈ subj(`x(e′)) for some b′ and ¬U(b, b′).

Condition 1 is straightforward: an output can only synchronize with an input.
Condition 2 says that a τ̃x-event cannot materialize if the names used in subject
position cannot eventually match.

Private names cannot be used to interact with the context. Therefore we
disallows partial events that use a private name as a communication channel
(i.e. in the subject of the label). However, if the private name a is sent to the
context (by an extruder) then a synchronisation on a becomes possible. This is
formally stated by the definition below.

Definition 16 (Disallowed partial event). Let F = (E,C, `,P) and x ∈ C,
e ∈ x with ¬τ̃x(e). The label λ = `x(e) is disallowed if a ∈ subj(λ), a ∈ P and
@e′ ∈ x extruder of e.

Definition 17 (Dynamic label). Define the dynamic label of an event as
ˆ̀
x(e) = `x(e) if `x(e) is allowed and ⊥ otherwise.

We have the same operations as in Definition 10 but applied to the set of labels
of the π-calculus and using the dynamic labels of Definition 17.

4.3 Operational correspondence with the π calculus

In this section we show the operational correspondence between processes in
π-calculus and their encoding in rigid families. We assume the reader is familiar
with the π-calculus [18,20]. For the sake of simplicity we use a restricted version
of π-calculus defined by the grammar below:

P ::= (P |P ) | b〈a〉.P | d(c).P | P\a | 0

The restriction of the private name a is denoted as in CCS, to highlight that
in their interpretation in rigid families is similar. We use a late LTS for the π-
calculus recalled in the appendix. Similarly to subsection 3.2 we encode a process
into a rigid family as follows:

Jα.P K = α.JP K JP |QK = JP K|JQK JP\aK = JP K � a J0K = 0



We now revisit definition 12 since transitions on rigid families with dynamic
labels need to apply substitutions on the fly.

Definition 18 (Transitions on rigid families).
Let (E,C, `,P)/e = (E′, C ′, `′,P), for {e} ∈ C, be the rigid family obtained

after the occurence of event e and defined as follows:

– x′ ∈ C ′ ⇐⇒ x′ = x \ {e}, for {e} � x ∈ C;
– E′ = ∪|x′|, for all x′ ∈ C ′;
– if `(e) = (b〈a〉, c(d)) then `′(e) = `(e){a/d}; otherwise `′ = `.

In a rigid family we have events that do not have an operational correspon-
dence, but are necessary for compositionality. These are the events for which
the predicate τ̃x(e) holds but τx(e) does not. We ignore them when showing the
operational correspondence.

Definition 19 (Complete and closed configurations). A configuration x
in a rigid family (E,C, `,P) is complete if ∀e ∈ x, τ̃x(e) =⇒ τx(e). We say
that x is closed if ∀e ∈ x, τx(e) holds.

Remark that for minimal events (i.e. e such that {e} is a configuration) `{e}(e) =
`(e).

Lemma 2. Let P a process and JP K = (E,C, `,P) its encoding.

1. ∀α, P ′ such that P
α−→ P ′, ∃e ∈ E such that `(e) = α and JP K/e ∼= JP ′K;

2. ∀e ∈ E, {e} ∈ C complete, ∃P ′ such that P
`(e)−−→ P ′ and JP K/e ∼= JP ′K.

Proof (sketch).

1. We proceed by induction on the derivation of the rule P
α−→ P ′. We consider

the following cases:

In/Out
α.P

α−→ P
Com

P
b〈a〉−−→ P ′ Q

b(c)−−→ Q′

P |Q τ−→ P ′|Q′{a/c}
Restr

P
α−→ P ′

P\a α−→ P ′\a
a /∈ α

– Rule In/Out: let Jα.P K = α.JP K hence we have to show that

JP K ∼= (α.JP K)/e, where `(e) = α. (1)

– Rule Com: we have JP |QK = (JP K × JQK) � X. By induction JP ′K ∼=
JP K/e1 where `(e1) = b〈a〉 and JQ′K ∼= JQK/e2 where `(e2) = b(c). Then
{e1} ∈ JP K and {e2} ∈ JQK it implies that there exists {e} ∈ JP K× JQK
such that π1(e) = e1 and π2(e) = e2. Hence we have to show that((

JP K/e1 × JQK/e2

)
� X ′

)
{a/d} ∼=

(
(JP K× JQK) � X

)
/e

where F{a/d} replaces d with a in all labels.



– Rule Restr: by induction we have that JP K/e ∼= JP ′K, where `(e) = α.
We have then to show that {e} ∈ JP\aK and

(JP K/e) � a ∼= (JP K � a)/e (2)

2. We proceed by structural induction on P . Consider the following cases as
example:
– P = α.P ′ then JP K = Jα.P ′K = α.JP ′K. There exists only one singleton

configuration {e} ∈ α.JP ′K, where `(e) = α. We have that α.P ′
α−→ P ′

hence JP ′K ∼= (α.JP ′K)/e, which follows from Equation 1.
– P = P ′\a then JP K = JP ′K � a. We have that ∀{e} ∈ JP K, a /∈ subj(`(e))

and {e} ∈ JP K.
Consider the subcases where either a /∈ `(e) or τ̃x(e) holds.

Then P ′\a `(e)−−→ P ′′\a and P ′
`(e)−−→ P ′′. By induction JP ′′K ∼= JP ′K/e.

Hence we have to show that JP ′′K � a ∼= (JP ′K � Xa)/e that is (JP ′K/e) �
Xa
∼= (JP ′K � Xa)/e which follows from Equation 2.

A direct consequence of Lemma 2 is that, as in CCS, a process and its encoding
can simulate each others reductions.

Theorem 2 (Operational correspondance with the π calculus). Let P a
process and JP K = (E,C, `,P) its encoding.

1. ∀P ′ such that P
τ−→ P ′, ∃{e} ∈ C closed such that JP K/e ∼= JP ′K;

2. ∀e ∈ E, {e} ∈ C closed, ∃P ′ such that P
τ−→ P ′ and JP K/e ∼= JP ′K.

4.4 Causality and concurrency in the π-calculus

Proposition 5 extends to the π-calculus.
The disjoint causal sets in the π-calculus, capture the causality induced by

the prefix operator (as in CCS), but also the causality induced by the restriction
of private names. Consider as an example the process (b〈a〉 | c〈a〉 | a)\a with its
encoding in rigid families in Figure 3, where events are replaced by their labels.
The disjoint causal set for the event labelled a consists of the events labelled
b〈a〉 and c〈a〉, that is {b〈a〉, c〈a〉} < a. Indeed the event labelled a cannot appear
by itself: either b〈a〉 or c〈a〉 precedes it. However in rigid families disjunctive
causality [9] is not ambiguous: in every configuration the order on the events is
fixed.

5 Advanced criteria

In the previous section we have presented an interpretation that is compositional
and sound both for CCS and the π-calculus. We propose in this section a few
additional notions of correctness that our semantics enjoys. These criteria are
of particular interest in the π-calculus, as previous causal models do not satisfy
them. Hence we only formally prove them for the π-calculus, but they can be
shown to hold for CCS as well.



∅

b〈a〉 c〈a〉

b〈a〉
c〈a〉b〈a〉 < a c〈a〉 < ab〈a〉 < c〈a〉 c〈a〉 < b〈a〉

b〈a〉 < c〈a〉 < a c〈a〉 < b〈a〉 < a

b〈a〉 < a < c〈a〉 c〈a〉 < a < b〈a〉
c〈a〉 < a,
b〈a〉 < a

b〈a〉 < c〈a〉,
b〈a〉 < a

c〈a〉 < b〈a〉,
c〈a〉 < a

b〈a〉 < a,
c〈a〉

c〈a〉 < a,
b〈a〉

Fig. 3. (b〈a〉 | c〈a〉 | a)\a in rigid families

5.1 Realisability

Criterion 3 (Realisable interpretation) Every labelled run should represent
a possible execution.

A labelled trace of an open system can be closed if the right context composes
with the open term. In this case we say that the trace is realisable. This can
be seen somehow as the dual to soundness. If soundness means that the model
has enough labelled events and runs, we also require that it has not too many of
them. In order to formalise this criterion, we need to use the notion of context.
A context C in the π-calculus is defined as a process with a hole:

C[·] := [·] ‖ α.C[·] ‖ P |C[·] ‖ C[·]\a

We do not know how to define a notion of context for rigid families in general,
as it is not clear what is a rigid family with a hole. However, if a structure F
has an operational meaning (i.e. ∃P a process such that F = JP K) we can use a
π-calculus context C[·] to define a new term JC[P ]K.

When analysing the reductions of a process in context, we need to know the
contribution the process and the context have in the reduction. To this aim we
associate to the context C[·] instantiated by a process P a projection morphism
πC,P : JC[P ]K → JP K that can retrieve the parts of a configuration in JC[P ]K
that belong to JP K.

Definition 20. Let C[·] a π-calculus context, and P a process. The projection
πC,P : JC[P ]K→ JP K is inductively defined on the structure of C as follows:

– πC,P : Jα.C ′[P ]K→ JP K is defined as πC,P (e) = πC′,P (e);
– πC,P : JC ′[P ]|P ′K → JP K is defined as πC,P (e) = πC′,P (π1(e)), where π1 :

JC ′[P ]|P ′K→ JC ′[P ]K is the projection morphism defined by the product;
– πC,P : JC ′[P ]\aK→ JP K defined as πC,P (e) = πC′,P (e).

One can easily verify, by case analysis, that the projection πC,P : JC[P ]K →
JP K is a morphism. We naturally extend πC,P to configurations.

We can now prove our first criterion: every partial labelled configuration can
be ”closed”.



Theorem 3. ∀x ∈ JP K, there exists C a context for JP K and z ∈ JC[P ]K closed
such that πC,P (z) = x.

Proof (sketch). We proceed in several steps:

1. We show that for x ∈ JP K there exists a context C1 = α1 · · ·αn.[·] and
x1 ∈ JC1[P ]K such that

– πC1,P (x1) = x and
– ∀e ∈ x1, if τ̃x1

(e) then ∀b ∈ subj(`x1
(e)) we have that b /∈ P =⇒ ∃e1 ∈

x1, e1 ∈ instsx1
(e) such that `(e1) = d′(b).

2. Define a precontext as a multiset of labels such that b(a) ∈ χ =⇒ @c(a) ∈ χ.
For x1 ∈ JP1K we define a precontext and a function f : χ→ x1 associating a
label to any partial event. Intuitively for every open or partial event e ∈ x1 we
associate a label α ∈ χ that ”closes” the event. Let ς be a set of substitutions
generated by x1 and χ.
We ask that given x1, the precontext χ and the total and injective function
f : χ→ x1 satisfy the following:

– ∀e ∈ x1 with `x1
(e) = (b〈a〉, c(d)) then `χ(e) = (b〈a〉, b(d));

– ∀e ∈ x1 with `x1(e) = b〈a〉 or `x1(e) = b(d) there exists α ∈ χ, α = b′(a′)
or α = b′〈a′〉 respectively, such that f(α) = e and b′ς = b;

– ∀α1, α2 ∈ χ, such that α1 = b(a), a = subj(α2) ⇐⇒ f(α1) <x1
f(α2)

and there is a ∈ obj(`x1
(f(α1))) private.

In the above we have that `χ(e) = `(e)ς(e).
3. Let x1 ∈ JP1K with χ a precontext and f : χ→ x1 a total function as defined

above. We construct a process P2 from the precontext χ such that

– there are no private names in P2: (\a) /∈ P2, for any name a;
– α ∈ P2 ⇐⇒ α ∈ χ ;
– α1 · · ·αn.0 ∈ P2 ⇐⇒ ∃a ∈ obj(`x1

(e1)), a ∈ P and en <x1
ei, a ∈

subj(`x1
(ei)) for f(α1) = e1 and f(αi) = ei, with i ∈ {2, n}.

The context required by the theorem is C = P2 | [·]. The conditions above
guarantee that we construct the context from the precontext and that the
sequential operator are only used for an extrusion from P (and the instan-
tiation in P2) of a private name.

4. We show that ∃x2 ∈ JP2K and g : x2 → x1 a total, injective function such
that

α ∈ P2 ⇐⇒ e ∈ x2, `(e) = α

g(e2) = e1 ⇐⇒ f(`(e2)) = e1

e2 <x2 e
′
2 ⇐⇒ g(e2) <x1 g(e1)

Intuitively, x2 is the configuration that composes with x1 in order to produce
the closed configuration z. We have that x2 is maximal in JP2K, hence it
contains all labels in χ. The conditions above ensure that the function g
keeps the correspondence between partial events in x1 and their ’future’
synchronisation partners in x2.



5. Let x1 ∈ JP1K and x2 ∈ JP2K defined above. We have that JP1|P2K =
(
JP1K×

JP2K
)
� X and π1, π2 the projections. Denote JP1|P2K = (E,C). We show

that ∃z ∈ JP1|P2K closed with π1(z) = x1 and such that z /∈ X.

Using Theorem 3 we have the following straightforward corollary, that says
that any context has to preserve and reflect the concurrency relation on events,
and consequently the precedence between events. It follows from the preservation
and reflection of order by the morphisms.

Corollary 1. ∀x ∈ JP K and ∀C context for JP K such that z ∈ JC[P ]K and
πC,P (z) = x we have that e13xe2 ⇐⇒ π−1

C,P (e1)3zπ
−1
C,P (e2).

5.2 Structural congruence

Criterion 4 (Denotational interpretation) The interpretation should be in-
variant for structural congruence.

Corollary 1 says that the interpretation does not contain too much con-
currency. We also would like to prove that the interpretation contains enough
concurrency, or, dually, that it does not have too much causality: specifically
we require that the restriction operator does not introduce too much causality.
Surprisingly this is obtained by simply requiring that the semantics preserves
structural congruence. The interesting case is the scope extension rule:

Theorem 4 (Preservation of structural congruence).

J(P )\a | QK ∼= J(P | Q)\aK if a /∈ fn(Q)

Proof (sketch). We show that

F1 =
(
JP K � X1 × JQK

)
� X2

∼=
(
JP K× JQK

)
� X3 = F2.

where F1 = (E1, C1, `1,P1) and F2 = (E2, C2, `2,P2). Let us denote π1,P : F1 →
JP K and π1,Q : F1 → JQK and similarly for π2,P , π2,Q. Define a bijection on
events as follows ι(e1) = e2 ⇐⇒ π1,P (e1) = π2,P (e2) and π1,Q(e1) = π2,Q(e2).
To show it is an isomorphism we show that x1 ∈ F1 ⇐⇒ x2 ∈ F2, where
ι(x1) = x2.

To better understand the importance of this criterion, consider the causal
models presented in [2]. In those models, there is a tight correspondence with
the standard transition semantics of the π-calculus. In particular, the first output
that extrudes a name has a different label than all subsequent outputs of that
name, and moreover it precedes them in the causal relation. If we had made
a similar choice here, in the process P = (b〈a〉 | c〈a〉)\a, we would have only
configurations where one of the output would precede the other. By the way
parallel composition is defined, this would imply that in P | (b(x) | c(y)) the τ
transitions are causally related. However this process is structurally congruent
to (b〈a〉 | c〈a〉 | b(x) | c(y))\a, where the τ transitions are concurrent. Thus
Theorem 4 would fail. Though the causal model of [2] is defined on transition
systems one can represent the causality relation induced in a rigid family as
in Figure 4. We can see then that the two processes (b〈a〉 | c〈a〉)\a| (b(x) | c(y))
and (b〈a〉 | c〈a〉 | b(x) | c(y))\a have different interpretations.



∅

b〈a〉 c〈a〉

b〈a〉 < c〈a〉 c〈a〉 < b〈a〉

∅

τb τc

τb < τc τc < τb

∅

τb τc

τb, τc

Fig. 4. (b〈a〉 | c〈a〉)\a, (b〈a〉 | c〈a〉)\a| (b(x) | c(y)) and (b〈a〉 | c〈a〉 | b(x) | c(y))\a in
the model of [2]

5.3 Reversibility and Stability

In the operational setting, reversible variants for CCS [11] and the π-calculus [10]
have been studied. We conjecture that rigid families are suitable models for the
reversible π- calculus, but leave this as future work. Instead we show, intuitively,
why rigid families are a good fit for reversibility.

Reversible calculi allow actions to backtrack in a different order then they
appeared in the forward computation. The only constraint is that the causal
order between events is respected: we cannot undo the cause before the effect.
Configuration structures and rigid families are a suited for reversible calculi as
the (rigid) inclusion between sets dictates the allowed forward and backward
transitions. Then it is important that in the closed term we can backtrack on
any path allowed by the forward computation. We can generalise the realisability
criterion (Theorem 3) to the reversible setting: there exists a context that closes
a configuration and that preserves all possible paths leading to it.

∅

b〈a〉 c〈a〉

b〈a〉, c〈a〉b〈a〉, a c〈a〉, a

b〈a〉, c〈a〉, a

Fig. 5. The configuration struc-
tures of (b〈a〉 | c〈a〉 | a(d))\a in [9]

In previous works [22] this condition is
called stability and is defined on the domain
underlying the rigid families. Intuitively sta-
bility means that in any configuration one can
deduce a partial order on events. Notably, the
semantics proposed in [9] does not satisfy it.

Consider the process (b〈a〉 | c〈a〉 | a(d))\a
with the rigid family depicted in Figure 3. Its
representation in [9] is represented in Figure 5.
In this process a is private and it cannot be
used as a communication channel. The con-
text has first to receive the name from one of
its extruders: on channel b or on channel c.
This type of disjunctive causality is what the
model of [9] depicts. In the top configuration
the extruder of a is either b〈a〉 or c〈a〉. However in a closed term we can never
express this type of disjunctive causality. We can either close the term with a
process of the form b(a′).a′〈〉 or c(a′′).a′′〈〉. Hence there is no context which can
close such a configuration. In our model, instead, in any configuration that has
disjunctive causality the order of occurrence between events is fixed.



6 Conclusions

We presented a novel causal semantics for concurrent computations. Importantly,
we exhibit correction criteria that differentiate our model from others.We have
stated that a correct causal model should be:

1. Compositional: we have defined a category of rigid families such that the
encoding of a term is given by a categorical operation on the encoding of its
subterms.

2. Realisable: each configuration in the interpretation of a process is realisable
and the precedence in the closed system is the same as in the open one.

3. Sound: we showed an operational correspondence with the reduction seman-
tics of CCS and the π-calculus.

4. Denotational: the rules of structural congruence are preserved by the causal
semantics.

The first two correction criteria can be seen as internal coherence results:
open traces can compose to form correct closed executions. External coherence
criteria relate rigid families to other models for concurrency. In this paper we
used the model to give interpretations to CCS and π-calculus processes that
satisfy the third and fourth correction criteria. As future work, we plan to show
a correspondence between reversible π-calculus [10] and its encoding in rigid
families. The correction criteria have then to hold in a reversible setting as well.
As we showed in subsection 5.3 this is particularly interesting for the realisability
criterion.

In the π-calculus the input prefix plays the double role of instantiator and
of structural predecessor. We can interpret in rigid families a calculus without
prefix precedence [24] and we conjecture that the partial orders would then
characterise the information flow rather then the temporal precedence.

Equivalence relations defined on previous causal model for CCS have a cor-
respondence in reversible CCS [1]. We plan to show as future work that such
equivalence relations can be defined on rigid families and possibly correspond to
bisimulations in the reversible π-calculus.
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A Appendix

A.1 Alternative definition of rigid families [6,15]

Let F a family of partial orders and X ⊆ F . X is compatible denoted X ↑fin. if
∃y ∈ F finite such that ∀x ∈ X, x � y.

Definition 21 (Morphisms from [6,15]). A morphism on rigid families σ :
F → F ′ is a partial function on partial orders such that

– it preserves compatible joins:

σ(∅) = ∅ and if x ↑ x′ then σ(x ∪ x′) = σ(x) ∪ σ(x′)

– it reflects contraction:

∀x ∈ F , if σ(x) 6= ∅ then ∃z ∈ F such that

σ(z) ≺ σ(x) and @y ∈ F ′, σ(z) ≺ y ≺ σ(x)

– is partial injective on compatible configurations:

σ(x) = σ(y) and x ↑ y then σ(x) = σ(y) = σ(x ∩ y)

There are two differences with the morphisms in definition 2:

1. Morphisms reflect (but do not necesarily preserve) the order in the configu-
rations. Such morphisms induce a different product than the one defined in
definition 1 where not all the partial orders we need are generated. We can
change the first two conditions to the following (stronger) one:

∀x, z ∈ F , such that σ(x), σ(z) defined σ(z) � σ(x) ⇐⇒ z � x (3)

which requires of morphisms to preserve the order as well.
2. Partial injectivity of Definition 21 does not coincide with local injectiv-

ity Definition 2: it acts differently when events can synchronise. Consider
the example in Figure 6. We cannot eliminate configuration {τ < a} with
partial injectivity. In [15] events do not synchronize hence the partial injec-

∅

{a}

∅

{a}

{a < b}

{b}

{b < a}{a, b}

{τ}

{τ < a}

∅

{b}

Fig. 6. Product

tivity is sufficient.



A.2 Rigid families and event structures

Definition 22 (Prime event structures).
A prime event structure (E,≤, # ) consists of:

– a set of events E;
– a partial order on events ≤, called causality such that ∀e ∈ E, the set {e′ ∈
E | e′ ≤ e} is finite;

– and a binary irreflexive relation on events, called conflict, that is hereditary:

∀e1, e2, e3 ∈ E, e1 # e2 ≤ e3 =⇒ e1 # e3.

A configuration in a prime event structure is a set of events downward closed
and conflict free:

x ⊆ E,∀e, e′ ∈ E,¬(e # e′) and ∀e ∈ x,∀e′ ∈ E, e′ ∈ x.

Denote D(E) the set of configurations of E.

Definition 23 (Order-reflecting morphisms). A morphism on prime event
structures f : (E1,≤1, # 1)→ (E2,≤2, # 2) is a partial function on the under-
lying sets f : E1 → E2 that is

– configurations preserving: ∀x ∈ D(E1), f(x) = {f(e) | e ∈ x} ∈ D(E2)
– local injective: ∀x ∈ C1,∀e1, e2 ∈ x, f(e1) = f(e2) =⇒ e1 = e2

We can obtain a rigid family from a prime event structure.

Proposition 6 (Rigid family of an event structure). Define the family
of configuration of an event structure as all the conflict free, downward closed
subsets of E ordered by inclusion. The order in each configuration x is the re-
striction of causal dependency ≤ to |x|. The partial orders of a prime event
structure E = (E,≤, # ) forms a rigid family D(E) = (E,C). The construction
D : (E,≤, # )→ (E,L(E) is a functor.

Proof. From [6].

Conversely, we can obtain an event structure P(F) from a rigid family by
considering its primes.

Definition 24 (Complete primes). A prime of F is a partial order [e]x for
e ∈ x ∈ F , where [e]x denotes the restriction of the partial order x to elements
less than or equal to e:

[e]x = {u < u′|u <x e & u <x u
′}.

Proposition 7 (Event structures of a rigid family). Let (E,C) a rigid
family. The triple (P,≤ |P , # ) is a prime event structure, where

– P is the set of complete primes in C;
– ≤ |P is the rigid inclusion of C restricted to the elements in P ;



– p # p′ ⇐⇒ @x ∈ D such that p ≤ x and p′ ≤ x.

The map P : (E,C)→ (P,≤ |P , # ) is a functor between the categories of rigid
families and the prime event structures.

Proof. From [6].

If morphisms are defined as in Definition 21 then the functors P and D
yield an equivalence of categories. However if morphisms preserve causality as
in Equation 3, then it not longer holds. Consider the morphism between C1 and
C2 in figure 7. As it does not preserve the order it has no correspondence for
D(C1) and D(C2).

∅

{a}

{a, c}

∅

{a}

{a, b}

{b}

{a, c}

Fig. 7. Morphism in prime event structures

Another possible functor from rigid families to configuration structures is
a forgetful one: we map partial orders to their underlying set. Let us denote
U : F → C. We have that U is a right adjoint with D the left adjoint. However
the construction is not interesting as we loose all causal informations.

Let us now consider E to be the category of event structures with rigid
morphisms.

Definition 25 (Order-preserving and reflecting morphisms). A rigid mor-
phism on prime event structures f : (E1,≤1, # 1) → (E2,≤2, # 2) is a mor-
phism (Definition 23) that preserves the order:

e ≤ e′ =⇒ f(e) ≤ f(e′), for e, e′ ∈ E1 and f(e), f(e′) defined.

The construction D is a left adjoint and P the right adjoint between the two
categories with rigid morphisms.

Proposition 8. Let E an object in the category of event structures and rigid
map (Definition 25) and let F in the category of rigid families and rigid maps
(Definition 2). Then

1. D : E → F (Proposition 6) and P : F → E (Proposition 7) are functors;
2. D : E → F is the left adjoint to P : F → E.



Proof. 1. Let us show D : E → F is a functor. We have that D(E) is an event
structure from [6]. We have to show that D preserves the identity and the
composition laws on morphisms. Let g : E1 → E2 and D(g) : D(E1)→ D(E2)
defined as follows:

D(g)(e) = g(e) and D(g)(x) = x′ ⇐⇒ g(|x|) = |x′|. (4)

As g preserves and reflects the order and is local injective, D(g) is a rigid
morphism on rigid families (Definition 2). The identity morphisms is pre-
served

D(idE) = idD(E)

which follows from the definition of D(g). The composition law is satisfied
due to the composition of partial functions on the underlying set of events.
Similarly for P : F → E , we have that P(F) is a rigid family from [6]. Let
f : F1 → F2 and P(f) : P(rfam1)→ P(F2) defined below:

P(f)(p1) = p2 ⇐⇒ f(p1) = p2.

The rest is similar to above.
2. We prove this by showing the following natural isomorphism:

D(E)→ F
E → P(F)

that is we show that ∀E an event structure and ∀F a rigid family we can
define a family of bijections between hom(D(E),F) and hom(E ,P(F)). We
denote E = (E,≤, # ), F = (E′, C,�) and P(F) = (P,≤P , # P ). Whenever
we write f(e) or g(e), for e ∈ E ∪ F ∪ P , we assume that the function is
defined on the event.
– Let us first define the morphism between hom(D(E),F) and hom(E ,P(F)).

Let f : D(E)→ F . We have that, in D(E) = (E,D(E)) the causal set of
an event is unique:

∀e ∈ E,∀x, x′ ∈ D(E) s.t. e ∈ x, e ∈ x′ we have that [e]x = [e]x′ .

Hence we can write [e] for the causal set of e in D(E). Define g : E →
P(F) as follows:

g(e) = p ⇐⇒ f([e]) = p, where p is a complete prime in F . (5)

Let us show that g is a morphism as defined by Definition 25.
• g preserves configurations: ∀x ∈ D(E), g(x) = {g(e) | e ∈ x} ∈ C.

We have that for x ∈ D(E), x = ∪e∈x[e]x. Let us develop g(x):

g(x) = {p ∈ P | f([e]) = p, e ∈ x} = ∪e∈xf([e]) = ∪p⊆f(x)p.

As the set y = {p ∈ P | ∀p ⊆ f(x)} is conflict free, we have that
y ∈ DP(F).



• g is local injective: ∀x ∈ D(E),∀e1, e2 ∈ x, g(e1) = g(e2) =⇒ e1 =
e2.
We have that g(e1) = g(e2) implies f([e1]x) = f([e2]x), hence e1 =
e2.

• g preserves the order: e1 ≤ e2 =⇒ g(e1) ≤ g(e2), for e1, e2 ∈ E.
Follows from f preserving the order: e1 ≤ e2 =⇒ [e1] ⊆ [e2] =⇒
f([e1]) � f([e2]).

– Let g : E → P(F). We define the additional map h : D(P(F))→ F from
which we get f = D(g) ◦ h:

f : D(E)
D(g)−−−→ D(P(F))

h−→ F . (6)

Define h : D(P(F))→ F as follows:

h(p) = e′ ⇐⇒ g(e) = p where p ∈ P and p = [e′]p. (7)

We can write p = [e′]p as p is a complete prime. Let us show that h is a
morphism as in Definition 2.

• h is local injective: ∀x ∈ D(E), e1, e2 ∈ x, h(e1) = h(e2) =⇒ e1 =
e2.
If h(e1) = h(e2) then g(e1) = g(e2), and as g is local injective, we
have that e1 = e2.

• h extends to a (total) function on configurations such that the causal
order on events is preserved and reflected. For all x ∈ D(P ), x =
∪p⊆xp and ∀p1, p2 ∈ x, p1 ≤x p2 ⇐⇒ p1 ≤P p2 ⇐⇒ p1 � p2.
Let p1 = [e′1]p1 and p2 = [e′2]p2 . We can show that if p1 � p2 then
∀x′ ∈ C such that e′1, e

′
2 ∈ x′ we have that e′1 ≤x′ e′2.

It implies then that the set ∪p⊆xp is conflict free and downward
closed and has the partial order p1 ≤ p2.

To show that the constructions above define a bijection we only have to check
that the bijection works on the underlying partial functions on events. Due
to the rigid morphisms, the configurations are in a bijection if the underlying
sets of events are. Therefore we show that f(e) = f ′(e) where

D(E)
f−→ F =⇒ E g−→ P(F) =⇒ D(E)

f ′

−→ F .

First note that f(e) = e′, where e ∈ E and e′ ∈ F . Then we can derive that
f([e]) = [e′]x for some x ∈ F . We denote [e′]x = p a complete prime of F .
From Equation 5, we have that g(e) = p ⇐⇒ f([e]) = p.
Let us now derive f ′(e). From Equation 6 we have that f ′(e) = h

(
D(g)(e)

)
.

We use Equation 4 and obtain f ′(e) = h
(
g(e)

)
, which from Equation 7,

becomes f ′(e) = e′ ⇐⇒ g(e) = p and p = [e′]p.
Let us show that g(e) = g′(e) for

E g−→ P(F) =⇒ D(E)
f−→ F =⇒ E g′−→ P(F).



We obtain that f(e) = h(g(e)) similar to above. Hence f(e) = e′ ⇐⇒
g(e) = p and p = [e′]p, for p ∈ P(F), e′ ∈ F (Equation 7). From Equation 5,
we have that g′(e) = p′ ⇐⇒ f([e]) = p′. But f(e) = e′, f([e]) = [e′]p′ and
p = [e′]p. Hence p′ = p.

But even if both categories use the rigid morphisms, there is no equivalence
between the event structures and the rigid families. One cannot define an iso-
morphism between D(P(F)) and F but only the co-unit D(P(F))→ F . To see
this, consider the example of Figure 8. There is no morphism between F1 and
F2 that preserves configurations.

E

∅

e1 e2

e′2 e′1

F1

∅

{e1}

{e1, e2}

{e2}

{e1 < e2} {e2 < e1}

F2

∅

{e1}

{e1, e2}

{e2}

{e1 < e′2}{e2 < e′1}

6∼=

P D

Fig. 8. E = P(F1) and F2 = D(P(F1))

A.3 Proofs of section 2

Proof (Proposition 1). The category of rigid families and rigid morphisms con-
sists in:

– a collection of rigid families: F1,F2 . . . .
– a collection of rigid morphisms: σ : F → F .
– for every pair of morphisms σ : (E,C) → (E′, C ′) and σ : (E′, C ′) →

(E′′, C ′′) a composite morphism f ◦ g : (E,C) → (E′′, C ′′). We have that
σ : E ⇀ E′ and let D ⊆ E such that σ : D → E′ is a total function.
Similarly for D′ ⊆ E′′ and σ′ : D′ → E′′ total. Then σ ◦ σ′ : D → D′ → E′′



is a composition of total functions and σ ◦ σ′ : E ⊇ D → E′ ⊇ D′ → E′′ is
partial function undefined on {e | e ∈ E/D′ or e ∈ D,σ(e) ∈ E′/D′}. We
have that f ◦ g preserves and reflects the order and is local injective from σ
and σ′ morphisms.

– for every rigid family F an identity morphism idF : F → F .
– the morphisms satisfy the following properties:
• composition is associative;
• identity is the unit for composition.

Proof (Equation 1). Denote F1 = (E1, C1), F2 = (E2, C2) and F = (E,C) =
F1 × F2. Also we denote with πi the projections on rigid families and σi the
projections on sets, conform Equation 1. We show the following:

1. F is a rigid family;
2. π1 and π2 are morphisms: this is imposed by the definition;
3. F has the universal property of the product.

For the first condition suffices to show that any configuration is downward
closed. We proceed by induction on the size of the configurations. Let x ∈ C and
let y � x. We show that y ∈ C by showing that the following holds:

y is a partial order (from y � x)

π1(y) � π1(x) (from y � x and the rigid morphisms)

π1(y) ∈ C1 (as π1(x) ∈ C1 and downward closed)

Let us now show the third condition: F has the universal property, as de-
scribed by the diagram Figure 9. Let F ′ = (E′, C ′) with π′1 : (E′, C ′)→ (E1, C1)
and π′2 : (E′, C ′) → (E2, C2) morphisms. We first observe that events in E are

(E1, C1) (E,C) (E2, C2)

(E′, C′)

π1

π2

π′
1

π′
2

σ

Fig. 9. Universal property of the product

uniquely identified by their projections:

∀e, e′ ∈ E, σ1(e) = σ1(e′) and σ2(e) = σ2(e′) =⇒ e = e′. (8)

Moreover note that @e ∈ E such that σ1(e) = σ2(e) = ?.
In order for the diagram to commute the mapping σ : (E′, C ′)→ (E,C) has

to respect the projections:

σ(e′) = e ⇐⇒ π1(e) = π′1(e′), if π′1(e′) defined

π2(e) = π′2(e′), if π′2(e′) defined

= undefined otherwise



and extend σ to configurations

σ(x′) = {σ(e) ≤ σ(e′) | σ(e), σ(e′) both defined and e ≤x′ e′}.

To show that σ is a morphism remains to show that σ is local injective: suppose
∃e′1, e′2 ∈ x′ such that σ(e′1) = σ(e′2) = e1. It implies that π′1(e′1) = π′1(e′2) and
π′2(e′1) = π′2(e′2), hence either π′1 or π′2 are not local injective. Contradiction.

Lastly let us show that σ is the unique morphism σ : (E′, C ′)→ (E,C) such
that:

∀e′ ∈ E′, σ(e′) = e =⇒ π1(e) = π′1(e′) and π2(e) = π′2(e′)

which follows from Equation 8.

A.4 Proofs of section 3

We recall the LTS of CCS in Figure 10.

α.P
α−→ P

P
α−→ P ′

νaP
α−→ νaP ′

if a /∈ αP
a−→ P ′ Q

a−→ Q′

P | Q τ−→ P ′ | Q′

P
α−→ P ′

P | Q α−→ P ′ | Q

Fig. 10. LTS of CCS

Proof (Lemma 1). Let P a process and JP K = (E,C, `,P) its encoding.

1. ∀α, P ′ such that P
α−→ P ′, ∃e ∈ E such that `(e) = α and JP K/e ∼= JP ′K. We

proceed by induction on the derivation of the rule P
α−→ P ′.

2. ∀e ∈ E, {e} ∈ C, ∃P ′ such that P
`(e)−−→ P ′ and JP K/e ∼= JP ′K. We proceed

by structural induction on P .

Definition 26 (Height of an event). Let (E,C, `,P) a configuration struc-
ture. For x ∈ C and e ∈ x define

hx(e) = |y|, where y ⊆ x, e ∈ y and @z ⊂ y, e ∈ z

Proof (Proposition 5). Let x ∈ C and e1, e2 ∈ x such that e13xe2. We show
that there exists a configuration y ∈ C satisfying the conditions:

1. |x| = |y|;
2. y preserves the order in x: ∀e, e′ ∈ x, e ≤x e′ =⇒ e ≤y e′;
3. x reflects the order in y except for e1 <y e2: ∀e, e′ ∈ y such that ¬(e =
e1 ∧ e′ = e2), e ≤y e′ =⇒ e ≤x e′.

We proceed by induction on the structure of JP K.

– JP K = α.JP ′K. It follows by induction on JP ′K.



– JP K = JP1K × JP2K. From x ∈ JP K we have that π1(x) ∈ JP1K and π2(x) ∈
JP2K. We proceed by cases on e1, e2.
• If π1(e1) = π1(e2) = ? then π2(e1)3π2(x)π2(e2). By induction on π2(x) ∈

JP2K we have that there exists y2 ∈ JP2K such that
∗ |π2(x)| = |y2|;
∗ ∀e, e′ ∈ y2 such that ¬(e = π2(e1) ∧ e′ = π2(e2)), e ≤y2 e′ =⇒
e ≤π2(x) e

′ (the second and third condition).
Then let y ∈ JP1K× JP2K such that
∗ |x| = |y|;
∗ π1(x) = π1(y) and π2(x) = y2;
∗ ∀e, e′ ∈ y such that ¬(e = e1 ∧ e′ = e2), e ≤y e′ ⇐⇒ e ≤x e′ which

is well defined due to the conditions on y2.
which is a partial order with projections well defined. Moreover condi-
tions (1) to (3) are verified.

• If π1(e1) = ? and π1(e2) 6= ? then let y such that
∗ |x| = |y|;
∗ π1(x) = π1(y) and π2(x) = π2(y);
∗ ∀e, e′ ∈ y such that ¬(e = e1 ∧ e′ = e2), e ≤y e′ ⇐⇒ e ≤x e′.

which staisfies conditions above. Remains to show that such y is a con-
figuration in JP1K × JP2K. It follows from being a partial order with te
projections well defined.

– JP K = JP ′K � X. If x ∈ JP K then x ∈ JP ′K and by induction, there exists
y ∈ JP ′K such that properties (1)-(3) hold in JP ′K. Remains to show that
y /∈ X, hence y ∈ JP K to conclude. We have that if e ∈ y then e ∈ x and
moreover, `(e) does not change from x to y. Then, from Definition 8, if x /∈ X
it implies that y /∈ X neither.

A.5 Proofs of section 4

Let us revisit Definition 13 to have formally introduce substitution.

Definition 27 (Substitution(extended)). We define σx by induction on x:

σ∅ =∅
σx =σx\e if `(e′) 6= (d(a), b〈a′〉)

σx\e ∪ {a′/a} if `(e′) = (d(a), b〈a′〉) and {a′′/a′} /∈ σx\e
σx\e ∪ {a′′/a} if `(e′) = (d(a), b〈a′〉) and {a′′/a′} ∈ σx\e

Define `x(e) = `(e)σx, where(
d(a)

)
σx =d′(a) if {d′/d} ∈ σx

d(a) otherwise(
b〈a〉

)
σx =b′〈a′〉 if {b′/b}, {a′/a} ∈ σx

b〈a〉 otherwise(
(α, β)

)
σx =

(
(α)σx, (β)σx

)



Consider as an example the process P = νb, c(b(a).P | c(a′).b〈a′〉 | c〈a′′〉) and
let x be the maximal configuration in the encoding of P . We obtain the set of
substitutions σx = {a′′/a, a′′/a′}.

Proposition 9 (σx well defined). Let (E,C, `,P) a rigid family such that
it respects the Barendregt convention and such that for x ∈ C, e ∈ E and
e′ ∈ instx(e) we have that e′ <x e. Then σx is well defined.

Proof. As we have a single instantiator for each name a used in x, there is at
most one substitution on a. Moreover the instantiator of a name (i.e. e such
that b(a) ∈ `(e)) always precedes an output of that name (i.e. for e′ such that
b′〈a〉 ∈ `(e′) we have e′ < e).

We recall the LTS of π-calculus in Figure 11.

b(c).P
b(c)−−→ P b〈a〉.P b〈a〉−−→ P

P
b〈a〉−−→ P ′

νaP
b〈νa〉−−−→ P ′

P
α−→ P ′

νaP
α−→ νaP ′

if a /∈ α

P
b〈a〉−−→ P ′ Q

b(c)−−→ Q′

P | Q τ−→ P ′ | Q′{a/c}
P

b〈νa〉−−−→ P ′ Q
b(c)−−→ Q′

P | Q τ−→ νa(P ′ | Q′{a/c})
if a /∈ fn(Q)/{c}

P
α−→ P ′

P | Q α−→ P ′ | Q
if bn(α) ∩ fn(Q) = ∅

Fig. 11. LTS of π calculus

Proof (Lemma 2). Let P a process and JP K = (E,C) its encoding.

– ∀α, P ′ such that P
α−→ P ′, ∃e ∈ E such that `e(e) = α and JP K/{e} ≡ JP ′K.

We proceed by induction on the derivation of the rule P
α−→ P ′.

• α.P α−→ P .
We have Jα.P K = α.JP K hence we have to show that

JP K ∼= (α.JP K)/{e}, where `{e}(e) = α. (9)

If we want to be rigorous we need to define the isomorphism via the
projections πα : Jα.P K → JP K and πe : (Jα.P K)/{e} → Jα.P K. For the
sake of simplicity we consider instead πα and πe to be the identity on all
events in JP K and adopt this as a convention throughout the proofs. Then
the isomorphism is the identity on events. Let us show that if x1 ∈ JP K
then x1 ∈ (α.JP K)/{e} and have the other direction in a similar manner.
If x1 ∈ JP K then x1 ∪ {e} ∈ Jα.P K and x1 ∈ (α.JP K)/{e}.

• P
b〈a〉−−→P ′ Q

b(c)−−→Q′

P |Q
τ−→P ′|Q′{a/c}

.



Let P the set of private names in P andQ. We have JP |QK = (JP K×JQK) �
X, where the private names are restricted by a subset of X. By induction
JP ′K = JP K/{e1} where `{e1}(e1) = b〈a〉 and JQ′K = JQK/{e2} where
`{e2}(e2) = b(c). Then {e1} ∈ JP K and {e2} ∈ JQK it implies that there
exists {e12} ∈ JP K× JQK such that π1(e) = e1 and π2(e) = e2.
Hence we have to show that

F1 =
((

JP K/{e1} × JQK/{e2}
)
� X ′

)
{a/d} ∼=(

(JP K× JQK) � X
)
/{e12} = F2

(10)

where F{a/d} replaces d with a in all labels.

Let F1 = (E1, C1) and F2 = (E2, C2). Denote π1,P : F1 → JP K and
π1,Q : F1 → JQK and similarly for π2,P , π2,Q. We obtain these moprhisms
similarly to Definition 20. Consider the following function on event:

ι(e1) = e2 ⇐⇒ π1,P (e1) = π2,P (e2) and π1,Q(e1) = π2,Q(e2).

To show it is an isomorphism we show that x1 ∈ F1 ⇐⇒ x2 ∈ F2 and
∼= (x1) = x2 preserving and reflecting the partial order.

x1 ∈ F1 =⇒ ι(x1) ∈ F2. We proceed by induction on <x1 . Trivial for
the base case. For the inductive step, consider x1 = x′1 ∪ {e} and
ι(x′1) = x′2. We have that

π1,P (x1) = π1,P (x′1) ∪ {π1,P (e), e1}

and

π1,Q(x1) = π1,Q(x′1) ∪ {π1,Q(e), e2}.

Let e′ ∈ E2 such that π1,P (e) = π2,P (e′) and π1,Q(e) = π2,Q(e′). Let
x2 = x′2 ∪ {e′, e12} where e′2 <x2 e

′′
2 ⇐⇒ ι(e′2) <x1 ι(e

′′
2). Then x2

is a partial order and is downward closed in JP K× JQK.
x2 /∈ X ′ follows from x1 /∈ X, hence x2 ∈ JP K× JQK. As e12 ∈ x2 we
have that x2 \ e12 ∈

(
(JP K× JQK) � X ′

)
/{e12}.

x2 ∈ F2 =⇒ ι(x2) ∈ F1. Similarly, we proceed by induction on<x2
. Let

x2 = x′2 ∪ {e} and ι(x′2) = x′1. We have that

x2 ∈
(
(JP K× JQK) � X ′

)
/{e12} =⇒ x2 ∪ {e12} ∈ JJP K× JQKK

with x2 /∈ X ′. The rest of the reasoning follows the case above.

• P
b〈νa〉−−−→P ′ Q

b(c)−−→Q′

P | Q
τ−→νa(P ′ | Q′{a/c})

if a /∈ fn(Q)/{c}. We use the same notations as

in the case above. Hence we have to show that((
JP K/{e1} × JQK/{e2}

)
� X ′

)
{a/d} � a ∼=

(
(JP K× JQK) � X

)
/{e12}

But Xa ⊆ X ′, hence it follows from equation 10.



• P
α−→P ′

νaP
α−→νaP ′

, for a /∈ α. By induction we have that JP K/{e} = JP ′K, where

`{e}(e) = α. We have then to show that {e} ∈ JνaP K and

(JP K/{e}) � a ∼= (JP ′K � a)/{e} (11)

Let x ∈ (JP K/{e}) � a. Then x /∈ Xa and x′ ∈ JP K such that |x′| =
|x| ∪ {e}. From x /∈ Xa and a /∈ α, x′ ∈ JP K � a, hence x′ \ {e} ∈ JP K.
We have that x′ \ {e} = x.
For the other direction, consider x ∈ (JP ′K � a)/{e}. It implies x′ ∈ JP K �
a, |x′| = |x| ∪ {e}. We have that x′ /∈ Xa, x′ ∈ JP K and x′ \ {e} = x ∈
JP K/{e}. As a /∈ α and x′ /∈ Xa we conclude x ∈ (JP K/{e}) � a.

• P
b〈a〉−−→P ′

νaP
b〈νa〉−−−→P ′

. By induction we have that JP K/{e} = JP ′K, where `{e}(e) =

b〈νa〉. We have then to show that {e} ∈ JνaP K and

(JP K � a)/{e} ∼= JP K/{e}, where `{e}(e) = b〈νa〉. (12)

From Equation 2 we have that {e} ∈ JνaP K. Trivial to show that for
x ∈ (JP K � a)/{e}, x ∈ JP K/{e}.
Let us consider then x ∈ JP K/{e} and suppose ∃e′ ∈ x such that a ∈
subjx(e′). Then x ∪ {e} ∈ JP K.
We have that there exists x′, x′′ ∈ JP K such that |x′| = |x′′| = |x| ∪ {e}
but e <x′ e′ and e, e′ are incomparable in x′′. We have that x′′ ∈ Xa,
x′ /∈ Xa. However x′ \{e} = x′′ \{e}, and x′ \{e} ∈ (JP K � a)/{e}, hence
x ∈ (JP K � a)/{e}.

– ∀e ∈ E, {e} complete ∃P ′ such that P
`e(e)−−−→ P ′ and (E,C)/{e} ≡ JP ′K. We

proceed by structural induction on P :
• P = α.P ′ then JP K = Jα.P ′K = α.JP ′K. There exists only one singleton

configuration {e} ∈ α.JP ′K, where `{e}(e) = α. We have that α.P ′
α−→ P ′

hence JP ′K ∼= (α.JP K)/{e}, which follows from equation 9.
• P = P1 | P2 then JP1 | P2K = (JP1K×JP2K) � X � XP with π1 : JP1 | P2K→

JP1K, π1 : JP1 | P2K→ JP1K the two projections. Let {e} ∈ JP1 | P2K with
π1(e) = e1, π2(e) = e2. The projections preserve configurations hence if
e1 6= ? then {e1} ∈ JP1K, and similar for {e2} ∈ JP2K.
We only consider the case where e1 6= ? and e2 6= ?. If e1 = ? or e2 = ?
has a similar proof. Let `{e1}(e1) = α1 and `{e2}(e2) = α2. By the

induction hypothesis, P1
α1−→ P ′1 and P2

α2−→ P ′2, where JP ′1K = JP1K/{e1}
and JP ′2K = JP2K/{e2}.
Supose α2 = c(d). We have the two following cases:

∗ α1 = b〈a〉. Then P1|P2
τ−→ P ′1|P ′2 and we have to show(

JP1K/{e1} × JP2K/{e2}
)
� X ′ � XP

∼=
(
(JP1K× JP2K) � X � XP

)
/{e}

which follows from equation 10.
∗ α1 = b〈νa〉. Then P1|P2

τ−→ νa(P ′1|P ′2) and we show the same as
above.



• P = νa(P ′) then JP K = JP ′K � a. We have that ∀{e}JP K, a /∈ subj{e}(e)

and {e} ∈ JP K. By the induction hypothesis P ′
`{e}(e)
−−−−→ P ′′ such that

JP ′′K = JP ′K/{e}. We have two cases:

∗ a /∈ `{e}(e) or `{e}(e) = τ . Then νa(P ′)
`{e}(e)
−−−−→ νa(P ′′) and we have

to show that JP ′′K � a ∼= (JP ′K � a)/{e} that is

(JP ′K/{e}) � a ∼= (JP ′′K � a)/{e}

which follows from equation 11.

∗ `{e}(e) = b〈a〉. Then νa(P ′)
b〈νa〉−−−→ P ′′ and we have to show JP ′′K ∼=

(JP ′K � a)/{e} which follows from

(JP ′K � a)/{e} = JP ′K/{e}

in equation 12.

Proposition 10 (Instantiator is a precedessor). Let JP K = (E,C, `,P),
x ∈ C and e ∈ x. If ∃e′ ∈ x, such that e′ = instx(e) then e′ <x e.

Proof. By induction on JP K. The only interesting case if P = b(a).P ′.

Proposition 11. Let JP K = (E,C, `,P). ∀x ∈ C and ∀e1, e2 ∈ x such that
e13xe2, ∃y ∈ C such that |x| = |y| and

1. y preserves the order in x: ∀e, e′ ∈ x, e ≤x e′ =⇒ e ≤y e′
2. x reflects the order in y except for e1 <y e2: ∀e, e′ ∈ y such that ¬(e =

e1 ∧ e′ = e2), e ≤y e′ =⇒ e ≤x e′.

Proof. By induction on JP K. We follow the proof of Proposition 5. The only
case that is different is for JP K = JP ′K � X. Let x ∈ C and e1, e2 ∈ x such that
e13xe2. We have that x ∈ JP ′K and hence there exists y satisfying the hypothesis
in JP ′K. Remains to show that y /∈ X.

From |x| = |y| and Proposition 10 we have that ∀e ∈ y, `y(e) = `x(e). We
show by contradiction that if e ∈ y does not satisfy conditions of Definition 15
and Definition 16 then e ∈ x does not satisfy them either. Hence x ∈ X. Con-
tradiction.

A.6 Proofs of section 5

Proposition 12. Let x ∈ JP K and e ∈ x such that `x(e) = (b(a), c〈a〉). Then at
most one of b, c are private.

Proof. By structural induction on JP K. The only interesting case is when P =
νa.P ′ with a ∈ {b, c}. Suppose a = b. We have that x ∈ JP K then if for e ∈ x
such that `x(e) = (b(a), c〈a〉), there exists instantiator of c in x (second condition
in Definition 15). Then we cannot add a restriction on c.



Definition 28 (Names in a configuration). Define the set of names in a
configuration x such that a ∈ names(x) ⇐⇒ ∃e ∈ x, a ∈ `x(e).

Proof (Theorem 3).
We proceed in several steps:

1. We show that for x ∈ JP K there exists a context C1 = α1 · · ·αn.[·] and
x1 ∈ JC1[P ]K such that
– πC1,P (x1) = x and
– ∀e ∈ x1, if τ̃x1

(e) then ∀b ∈ subj(`x1
(e)) we have that

b /∈ P =⇒ ∃e1 ∈ x1, e1 ∈ instsx1
(e) such that `(e1) = d′(b) (13)

2. Define precontext which is a multiset of labels such that

b(a) ∈ χ =⇒ c(a) /∈ χ, for any c. (14)

Let χ a precontext and let f : χ→ x1 a function. Define the set of substitu-
tions implied by χ as follows:

ς(∅) =∅
ς(x ∪ {e}) = {a′/a} ∪ ς(x) if `(e) = (d(a), b〈a′〉)

or if `(e) = d(a), α = b〈a′〉 (or the converse) where f(α) = e

= {a′′/a′} ∪
(
ς(x) \ {a′/a}

)
if `(e) = (d(a′), b〈a′′〉),

or if `(e) = d(a), f(e) = b〈a′〉 (or the converse),

where f(α) = e, {a′/a} ∈ ς(x)

For x1 ∈ JP1K we show that there exists a precontext χ and a function
f : χ→ x1 such that the following holds:
(a) ∀e ∈ x1 with `x1

(e) = (b〈a〉, c(d)) then `χ(e) = (b〈a〉, b(d));
(b) ∀e ∈ x1 with `x1(e) = b〈a〉 or `x1(e) = b(d) there exists α ∈ χ, α = b′(a′)

or α = b′〈a′〉 respectively, such that f(α) = e and b′ς(x1) = b;
(c) if b(a) ∈ χ then a /∈ Names(x) and ∃α ∈ χ such that a = subj(α2) iff

f(α1) <x1
f(α2) and there is c ∈ `x1

(f(α2)) private;
where `χ(e) = `x1

(e)ς(x1). Moreover f is total and injective: ∀α ∈ χ, f(α)
defined and if f(α1) = f(α2) then α1 = α2 (where α1 = α2 is not a syntactic
equality).
We proceed by induction on the order <x1 . We only treat the inductive case,
as the base case is straightforward.

Let x = x′ ∪{e}. From the induction hypothesis there exists χ′ a precontext
and f : χ′ → x′ satisfying conditions above. We build the precontext χ and
the function f such that χ = χ′σ ∪ {α} and f = f ′σ ∪ {α 7→ e}, where σ is
a list of substitutions. Both σ and α are defined below, by cases on `x(e):
– `χ(e) = (b〈a〉, c(d)). We proceed by cases on whether b and c are private:
• b, c ∈ P. From proposition 12 this case is not possible.



• b ∈ P and c /∈ P. Then from the hypothesis on x (Equation 13) we
have that c /∈ P =⇒ ∃ec = instx(c), where the instantiator of a
name is defined similarly to the instantiator of an event.
We have that ec ∈ x′, then from the induction hypothesis on x′ there
exists αc ∈ χ, f(αc) = ec and αc = d〈c〉.
As e satisfy Definition 15 then there exists an extruder of b: let e′ ∈ x,
e′ <x e and `x(e′) = d′〈b〉. Let αb = d′(b′) where f(αb) = e′.
Then let χ = χ′{b′/c} and f = f ′{b′/c}. We have to show that:
∗ f is a total and injective function, which follows from f ′.
∗ χ is a precontext: consists in showing that it does not exists an

instantiator of c in χ′. Follows from c /∈ P.
∗ the conditions above on χ hold. First note that `χ(e) = (b〈a〉, b(d))

as b′ς(x) = b =⇒ cς(x) = b. Let e′ ∈ x such that `χ′(e′) =
(c〈a′〉, c(d′)). But then `χ(e′) = (b〈a′〉, b(d′)). We have that αb is
an instantiator for αc and that b ∈ subj(`x(e)) is private. Hence
the thrid condition on the precontext holds as well.

• b, c /∈ P. Then there exists ec, eb ∈ instsx(e) (from Equation 13) and
ec, eb ∈ x′. From χ′ a precontext for x′ we have that there exists
αb, αc ∈ χ′ such that f(αb) = eb, f(αc) = ec, and αb = d〈b〉, αc =
d〈c〉.
Then let χ = χ′{b/c} and f = f ′{b/c}. The first two conditions on
the precontext hold from a similar reasoning as above. Note that
there does not exists instantiators of b or c in χ as b, c /∈ P. Hence
third condition holds as well.

– `χ(e) = b(a). By cases on b:

• b ∈ P. From the condition on the restriction operation in definition 16
we have that there exists an extruder e′ ∈ x, e′ <x e and `x(e′) =
c′〈b〉. As e′ ∈ x′, there exists α′ ∈ χ′ such that f(α′) = e′ and hence
α′ = c′(d), with d /∈ names(x). Moreover dς(x) = b.
Define α = d〈a′〉, a′ fresh (i.e. a′ /∈ names(x)) and χ = χ′ ∪ α,
f = f ′ ∪ {α→ e}.
Let us show that χ verifies the conditions on the precontext and that
f is total and injective. The later follows from f(α) = e and e /∈ x′.
The first condition on χ follows from χ′ a precontext. The second
condition is implied by dς(x) = b. The third condition is satisfied as
well as for α′ = insts(α) we have that b = subj(e) ∈ P, e′ <x e.

• b /∈ P. Then let α = b〈a′〉, with a′ fresh and χ = χ′∪α, f = f ′∪{α→
e}. The conditions on χ and f follow easily.

3. We construct a process P2 from the precontext χ such that

@a, such that νa ∈ P2 (15)

α ∈ P2 ⇐⇒ α ∈ χ (16)

α1 · · ·αn.0 ∈ P2 ⇐⇒ ∃a ∈ obj(`x1
(e1)), a ∈ P and

en <x1
ei, a ∈ subj(`x1

(ei))
(17)



for f(α1) = e1 and f(αi) = ei, with i ∈ {2, n}. The context required by the
theorem is C = P2 | [·]. Equation 15 guarantees that there are no private
names in P2, Equation 16 says that the context is build from the precontext
and Equation 17 constructs a context that is maximal concurrent: the only
sequential computation is due to the extrusion from P (and the instantiation
in P2) of a private name.
We proceed by induction on the precontext χ such that

α1 <χ α2 iff f(α1) >x1
f(α2).

The base case is trivial. Let us consider the inductive case. Let χ = χ′ ∪{α}
and f = f ′ ∪ {α → e1}. Let P ′2 be the process generated by χ′ satisfying
equations above.
Let then the following set of events:

Ee1 = {e′1 ∈ x1 | e1 <x1
e′1,@e′′ ∈ x1, e

′, e1 <x1
e′′ <x1

e′1 and (18)

`x1
(e′1) 6= (β, β′) and (19)

`x1
(e1) = b〈a〉, with a ∈ P and (20)

∃e′′, e1 < e′′ such that a ∈ subj(α′′), for f(α′′) = e′′}.
(21)

We have that ∀e′ ∈ Ee1 , ∃α′ ∈ χ′ such that f(α′) = e′. This follows
from Equation 18 and Equation 19. Then α′ ∈ P ′2. Equation 18 also guar-
antees that for e′ ∈ Ee1 with f(α′) = e′ we can rewrite P2 = α′.Q′ | R.
Equation 20 says that α is an instantiator. Moreover the name received is
private. Lastly, Equation 21 guarantees that Equation 17 is satisfied for P2

constructed below. We consider the following cases:
– If Ee1 = ∅ then P2 = α | P ′2 and Equation 15, Equation 16, Equation 17

trivially hold. P2 is a valid π process as α is not an instantiator of any
α′ in P ′2 (from third condition on the precontext and from Equation 14).

– Suppose then Ee1 6= ∅. From Equation 17 on P ′2, we can partition P ′2 in
the following way:

P ′2 =
∏

e′∈Ee1

α′.Q | R

where f(α′) = e′. We have then

P2 = α.
( ∏
e′∈Ee1

α′.Q
)
| R.

P2 is a valid process if b(a) ∈ χ =⇒ c(a) /∈ χ, for any c, which follows
from the definition of a precontext in Equation 14. Equation 17 follows
from the definition of Ee and the rest of the conditions follow trivially.

4. We show that ∃x2 ∈ JP2K and g : x2 → x1 a total, injective function such
that

α ∈ P2 ⇐⇒ e ∈ x2, `x2(e) = α (22)

g(e2) = e1 ⇐⇒ f(`x2(e2)) = e1 (23)

e2 <x2 e
′
2 ⇐⇒ g(e2) <x1 g(e1) (24)



Inuitively, x2 is the configuration that composes with x1 in order to produce
the closed configuration z. We have that x2 is maximal in JP2K, hence it
contains all labels in χ (Equation 22). Equation 23 and Equation 24 ensure
that the function g keeps the correspondence between partial events in x1

and their ’future’ synchronisation partners in x2.

Due to conditions Equation 23 and Equation 24 we cannot apply an inductive
reasoning on P2 to build x2 directly. Instead we start by showing that there
exists y ∈ JP2K maximal in JP2K (i.e. α ∈ P2 ⇐⇒ e ∈ y, `y(e) = α) without
any synchronisation event (i.e. ∀e ∈ y, `y(e) 6= (α, β)). Moreover y is the
most liberal such configuration:

e <y e
′ ⇐⇒ `y(e) · · · `y(e′) ∈ P2 (25)

We proceed by structural induction on P2.

– Q = β.Q′. By induction there exists y′ ∈ JQ′K. We have that JQK =
Jβ.Q′K = β.JQ′K hence we have y = {e} ∪ y′ ∈ JP2K, where `y(e) = β.
Then y is maximal and satsifies Equation 25.

– Q = Q1 | Q2. By induction on Q1 and Q2 we have y1 ∈ JQ1K and
y2 ∈ JQ2K, respectively satsifying the required conditions. By definition
of product, we have that y ∈ JQ1K × JQ2K if π1(y) ∈ JQ1K and π2(y) ∈
JQ2K, where πi are morphisms. Then we consider y such that

• π1(y) = y1 and π2(y) = y2;
• e ∈ y iff either π1(e) ∈ y1, π2(e) = ? or π1(e) = ?, π2(e) ∈ y2;
• e <y e′ iff either π1(e) <y1 π1(e′), both defined or π2(e) <y2 π2(e′),

both defined.

Then y is maximal (from the first item), contains no synchronisation
(which follows from the second item) and satisfy Equation 25 (the thrid
item).

Define function g : y → x1 total and injective as follows: g(e2) = e1 ⇐⇒
f(`y(e2)) = e1. We have y ∈ JP2K with |y| = |x2| (follows from y and
x2 maximal in JP2K). Moreover y is more ’liberal’ then x, that is x is an
refinement of the partial order in y. We use Proposition 11 and have that
x2 ∈ JP2K with

e2 <x2 e
′
2 ⇐⇒ f(`y(e)) <x1 f(`y(e′))

We can then define g on x2 and have that x2 and g satisfy Equation 22, Equa-
tion 23 and Equation 24.

5. For x1 ∈ JP1K, let χ, P2 and x2 ∈ JP2K defined above. We have that JP1|P2K =(
JP1K× JP2K

)
� X and π1, π2 the projections. Denote JP1|P2K = (E,C, `,P)

and JPiK = (Ei, Ci, `i,Pi). Let us show that ∃z ∈ JP1|P2K closed with π1(z) =
x1, π2(z) = x2 and such that z /∈ X.



For e ∈ E let us denote π1(e) = e1 and π2(e) = e2. In the induction hypoth-
esis we also need to show that ∀e ∈ z the following hold:

e1 6= ? (26)

`χ(e1) = `z(e) (27)

e2 = ? ⇐⇒ `x1
(e1) = (α, β) (28)

e2 6= ? =⇒ g(e2) = e1 (29)

From Equation 26 the size of z is equal to the size of x1. We proceed by
induction on the size of the configurations in JP1K.
Base case. Let x1 = {e1} ∈ JP1K.

– If `x1
(e1) = (b〈a〉, c(d)) then from condition (a) on the precontext

we have that there exists e ∈ x1 such that e = instsx1
(e1). Hence we

cannot have such a configuration {e1} without the instantiator of e1.
– If `x1

(e1) = (b〈a〉, b(d)) we have that there exists e ∈ E such that
π1(e) = e1 and π2(e) = ?. Straightforward to show that the condi-
tions above hold.

– If `x1
(e1) = α with α ∈ {b〈a〉; b(d)} then have that, from condi-

tion (b) on χ, α ∈ χ. Moreover from Equation 22 and Equation 16,
∃{e2} ∈ JP2K such that `{e2}(e2) = α. It is easy to show that {e} /∈ X,
hence {e} ∈ JP1|P2K closed with π1(e) = e1 and π2(e) = e2. Condi-
tion 29 holds from 23 and all the rest hold trivially.

Inductive case. Let x1 = x′1 ∪ {e1} and let z′ closed such that π1(z′) = x′1.
We have the following cases on e1:
– `x1(e1) = (b〈a〉, c(d)). Suppose b 6= c (similar for the other case). Let
e ∈ E with π1(e) = e1 and π2(e) = ?. Let z = z′ ∪ {e} and ∀e′ ∈ z′,
e′ <z e ⇐⇒ π1(e′) <x1

e1. It follows by induction on z′ that

e′ <z e
′′ ⇐⇒ π1(e′) <x1

π1(e′′). (30)

We show that z is a configuration in JP1K× JP2K, show that it is not
in X, that it is closed and then that it satisfies conditions above.

z ⊆ E1 × E2 and z is a partial order (from Equation 30). Also we
have that π1(z) = x1. From Equation 30 again and by induction on
z′ we obtain that e′ <z e

′′ ⇐⇒ π2(e′) <x2
π2(e′′) as π2(e) = ?.

Hence π2(z) = π2(z′).

From property (a) on the precontext we have that `χ(e1) = (b〈a〉, b(d)).
From Equation 27 on z′ we obtain that ∀e′ ∈ z′, `χ(π1(e′)) = `z(e).
Then `z(e) = (b〈a〉, b(d)) hence z is closed.

We have to show that z /∈ X. As z is closed we only need to show that
all events in z are compatible according to Definition 15. It follows
from conditions (a) and (b) on the precontext χ.

z trivially satisfies the conditions above.
– `x1

(e1) = α1 6= (α, β). Using condition (b) on the precontext we have
that ∃α2 ∈ χ such that f(α2) = e1 and subj(α2)ς = subj(α1)ς.



We use then Equation 16 and have that α2 ∈ P2, which from Equa-
tion 22 implies that ∃e2 ∈ x2 such that `x2

(e2) = α2. Also, from Equa-
tion 23 we get that

g(e2) = e1. (31)

We have that e ∈ E with π1(e) = e1, π2(e) = e2. We take z = z′∪{e}
with e′ <z e ⇐⇒ π1(e′) <x1

e1. It follows by induction on z′ that

e′ <z e
′′ ⇐⇒ π1(e′) <x1

π1(e′′). (32)

As above, let us show that z a configuration in JP1K× JP2K, that it is
not in X, that it is closed and then that it satisfies conditions above.

z ⊆ E1 ×E2 and from Equation 32 z is a partial order with π1(z) =
x1. Also, from Equation 24 π2(z) = x2.
We have that

`z(e) = `χ(e) (33)

which follows from Equation 27 on z′ and from condition (b) on χ.
It implies that z /∈ X as well.

Equation 26 and Equation 28 trivially hold. Equation 27 follows
from Equation 33, and Equation 29 from Equation 31.

Proof (Theorem 4).

1. Jνa(νbP )K ∼= Jνb(νaP )K. We have that JP K � a � b ∼= JP K � b � a where
JP K � a � b = JP K � X and JP K � b � a = JP K � X.

2. Jνa(P ) | QK ∼= Jνa(P | Q)K if a /∈ fn(Q). We show that

F1 =
(
JP K � X1 × JQK

)
� X2

∼=
(
JP K× JQK

)
� X3 = F2.

where F1 = (E1, C1, `1,P1) and F2 = (E2, C2, `2,P2). Let us denote π1,P :
F1 → JP K and π1,Q : F1 → JQK and similarly for π2,P , π2,Q. Define a
bijection on events as follows:

ι(e1) = e2 ⇐⇒ π1,P (e1) = π2,P (e2) and π1,Q(e1) = π2,Q(e2).

To show it is an isomorphism we show that x1 ∈ F1 ⇐⇒ x2 ∈ F2, where
ι(x1) = x2.

(a) x1 ∈ F1 =⇒ ι(x1) ∈ F2.
We proceed by induction on <x1

. Trivial for the base case. For the induc-
tive step, consider x1 = x′1 ∪{e1} and ι(x′1) = x′2. We have that x1 /∈ X2

and x1 ∈ JP K � X1 × JQK. Hence π1,P (x1) /∈ X1. Moreover

π1,P (x1) = π1,P (x′1) ∪ {π1,P (e1)} and π1,Q(x1) = π1,Q(x′1) ∪ {π1,Q(e1)}.



Let e2 ∈ E2 such that π1,P (e1) = π2,P (e2) and π1,Q(e1) = π2,Q(e2).
Define

x2 = x′2 ∪ {e2} with e′2 <x2
e′′2 ⇐⇒ ι(e′2) <x1

ι(e′′2).

x2 is then a partial order, with projections defined as x1 and downward
closed in JP K×JQK. Hence x2 ∈ JP K×JQK. Remains to show that x2 /∈ X3,
which follows by case analysis from x1 /∈ X1 and from the isomorphism
reflecting and preserving the order and the labels.

(b) x2 ∈ F2 =⇒ ι(x2) ∈ F1. We use the same reasoning as above: we
proceed by induction to show that ι(x2) ∈ JP K � X1 × JQK. The only
difficulty resides in showing that if π2,P (x2) ∈ JP K then π2,P (x2) ∈ JP K �
X1. We denote π2,P (x2) with y. We show by contradiction that @e ∈ yp
such that one of the conditions of Definition 15, Definition 16 holds.
Consider the following cases:

i. [type mismatch] Suppose ∃e ∈ y such that `y(e) = (α, β) and both
α and β are outputs. The argument follow from the fact that the
isomorphism preserves the labels: let e2 ∈ x2 such that π2,P (e2) = e.
Then π2,P (`x2(e2)) = `y(e). But as `y(e) is a synchornisation we
have that `x2

(e2) = (α′, β′) where α′ and β′ are both outputs. Then
x2 ∈ X3 and we reach a contradiction.

ii. [non unifiable labels] Let e ∈ y such that `y(e) = (α, β) and
c = subj(α), b = subj(β) with c 6= b. Similar to above let e2 ∈ x2 such
that π2,P (e2) = e and

`y(e) = (α, β) =⇒ `x2(e2) = (α′, β′) (34)

We have two cases:
– ¬U(c, b). Then either b or c are in the set of private names of

Jνa(P )K. To reduce the number of cases, suppose b is not private
in νa(P ) but c is. If c 6= a then we have that y /∈ JP K, contra-
dicting the hypothesis. Remains then to consider the case when
c = a.
• @e′ ∈ y, e′ = instsx(e). But as π process cannot add an instan-

tiator of b in a parallel composition we have that b = subj(β′)
and that @e′2 ∈ x2, e′2 = instsy(e2). As a ∈ P1 we have that
a ∈ subj(α′). Hence a and b are not unifiable in x2 which im-
plies that x2 ∈ X3. Contradiction.
• @e′′ ∈ y, e′′ extruder of e, but ∃e′ ∈ y such that e′ = insty(b).

Let e′2 ∈ x2 such that π2,P (e′2) = e′. From Equation 34 it
follows that a = subj(α′). If x2 /∈ X3 then U(a, subj(β′)). We
have two possibilities: either a = subj(β′) or there exists an
extruder of c in x2.

In the later case, informally, since a is private in Jνa.P K and
x2 ∈ JP K× JQK we get that an extruder of a necessarily exists
in y.



Let us treat the case a = subj(β′) more formally. We have
`x2

(e′2) = (d(b), d′〈a〉), where `y(e′) = d(b). Then there exists
an event eq ∈ π2,Q(x2) such that its label is d′〈a〉. Since a
is private in Jνa(P )K we have that there exists e′′′ ∈ y such
that `y(e′′′) = b′〈a〉. Let us denote with e′′′2 ∈ x2 such that
π2,P (e′′′2 ) = e′′′. Then we can show that there exists a chain of
synchronisations in x2 with the least element e′′′2 and the great-
est one e2. As the projection preserves the order we conclude
that e′′′ <y e.
Then e′′ is an extruder of e in y and e′′ <y e.

– Let us consider the case c = a and let e′ ∈ y such that b, b′ ∈
subj(`y(e′)) for some b′ with ¬U(a, b′). Consider e′2 ∈ x2 such
that π2,P (e′2) = e′. As x2 /∈ X3, for b′′, b′′′ ∈ subj(`x2

(e′2)),

U(a, b′′) and U(a, b′′′). With a reasoning similar to above we get
to a contradiction.
The other cases are similar.

iii. [disallowed partial event] Suppose that there exists e ∈ y such
that ¬τ̃y(e) with a ∈ subj(`y(e)) and @e′ ∈ x extruder of e. We
have a similar reasoning as the case above. Since ∃e2 ∈ x2 such that
π2,P (e2) = e, it implies that it necessarily exists an unsynchronised
extruder of a in y, smaller then e in y.

We conclude the proof by showing that if x2 ∈ F2 then x1 /∈ X1 similar
to the case (a) above.

3. JP | QK ∼= JQ | P K. We have to show that(
JP K× JQK

)
� X1

∼=
(
JQK× JP K

)
� X2

which follows from JP K× JQK ∼= JQK× JP K and X1 = X2.
4. J(P | Q) | RK ∼= JP | (Q | R)K that is(

(JP K× JQK) � X1 × JRK
)
� X2

∼=
(
JP K× (JQK× JRK) � X3

)
� X4.

A.7 Recursion and rigid families

One can deal with recursive definitions on rigid families in a similar manner to
their treatment in [22], [9]. Winskel [22] defines a complete partial order on con-
figuration structures and shows that the operations prefix, parallel composition,
restriction and sum are continuous with respect to the cpo. A recursive process
is then unfolded and each unfolding is encoded in a rigid family. Its denotational
semantics is the upper bound of its unfoldings.

Crafa, Varacca, Yoshida [9] define a model for pi calculus where a special
treatement for names is necessary. At each unfolding of a process the set of
bound names have to be distinct from any other name used in the process, in
order to guarantee the Barendregt convention. Moreover the names have to be
chosen in an unambiguous manner, hence it is not enough to consider fresh names
at each unfolding. Instead the infinite set of bound names used in a process is



fixed in advance and at each unfolding new names are chosen in a consistent
way.

Here we revisit the work in [22] and [9] and show that can be adapted to
rigid families in a straightforward manner.

Definition 29 (Partial order on rigid families).

(E0, C0) � (E1, C1) ⇐⇒ E0 ⊆ E1

C0 ⊆ C1

∀x ⊆ E0, x ∈ C1 =⇒ x ∈ C0

Lemma 3. – � is a partial order on rigid families with least element (∅, {∅}).
– A ω chain of rigid families (E0, C0) � · · ·� (En, Cn) � · · · has a lub (E,C)

defined as

E = ∪n∈ωEn
x ∈ C ⇐⇒ (x ⊆ E ∧ ∀n ∈ ω, xn ∈ Cn ∧ x = ∪n∈ωxn)

with xn ≡ ∪{z ∈ Cn | z ⊆ xn}

Definition 30 (Monotonic and continuous). Let op a binary operation on
rigid families.

– Let (E0, C0) � (E1, C1) and (E,F ) rigid families. op is monotonic if

op
(
(E0, C0), (E,C)

)
� op

(
(E1, C1), (E,C)

)
.

– Let (E0, C0) � · · ·� (En, Cn) and (E,F ) rigid families. op is continuous if

op
(
∪i≤n (Ei, Ci), (E,C)

)
= ∪i≤nop

(
(Ei, Ci), (E,C)

)
.

One can show if an operation is continuous it implies that it is monotonic as
well. Hence we prove the following:

Lemma 4. Prefix, product and restriction are continuous w.r.t �.

CCS We deal with recursive processes by introducing a set of constants, ranged
by A, B:

P ::= · · · | A
and imposing that each constant has a unique definition A = PA. The rule in
the LTS of CCS that handles recursion is standard:

PA
α−→ P ′ A = PA

A
α−→ P ′

The encoding of CCS terms with recursion is now parametric on the level of
unfolding:

Jα.P Kk = α.JP Kk JP |QKk = JP Kk|JQKk Jνa(P )Kk = JP Kk � Xa JAKk = JPAKk+1

The encoding is given in terms of labelled rigid families but it is trivial to
extend Definition 29,Definition 30 and Lemma 3,Lemma 4 to the labelled case.
We have that JP Kk � JP Kk+1, and that JP K0 = (∅, ∅, ∅) is the bottom element in
the ω chain (∅, ∅, ∅) � · · · JP Kk � JP Kk+1. Hence the interpretation of a process
JP K is given by ∪n∈ωJP Kn.



π calculus Similarly to CCS, we deal with recursive processes by introducing
a set of constants, ranged by A, B:

P ::= · · · | A(ã|z)

and imposing that each constant has a unique definition A(ã|z) = PA where
ã is the set of distinct names and z is a mapping to an infinite set of names
z : N→ Names. ã are the free names in PA and z are the (infinite) set of bound
names in PA. The set z is introduced in the semantics of event structures [9]
in order to handle the creation of fresh names in the unfolding of A. The set ã
is specified in order to guarantee distinctness between bound and free names:
z∩ ã = ∅. In this manner we satisfy the Barendregt convention which guarantees
the distinctness of bound and free names. We add to the LTS of Figure 11 the
following rule:

PA{b̃/ã,w/z}
α−→ P ′ A(ã|z) = PA

A(b̃|w)
α−→ P ′

with b ⊆ a and w ⊆ z. Moreover the bound names used at each unfolding
need to be unambiguously chosen. As an example consider A(ã|z) = A0(ã0|z′) |
A1(ã1|z′′), with ã = ã0 ∪ ã1 and z′(n) = z(2n+ 1), z′′(n) = z(2n+ 2).
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