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ABSTRACT

Background: It is generally acknowledged that most complex diseases are affected in part by interactions between genes and
genes and/or between genes and environmental factors. Taking into account environmental exposures and their interactions
with genetic factors in genome-wide association studies (GWAS) can help to identify high-risk subgroups in the population and
provide a better understanding of the disease. For this reason, many methods have been developed to detect gene-environment
(G×E) interactions. Despite this, few loci that interact with environmental exposures have been identified so far. Indeed, the
modest effect of G×E interactions as well as confounding factors entail low statistical power to detect such interactions. Another
potential obstacle to detect G×E interaction is the fact that true exposure is seldom observed: Indeed, only proxy effects are
measured in general. Furthermore, power studies used to evaluate a new method often are done through simulations that give an
advantage to the new approach over the other methods.
Methods: In this work, we compare the relative performance of popular methods such as PLINK, random forests and linear
mixed models to detect G×E interactions in the particular scenario where the causal exposure (E) is unknown and only proxy
covariates are observed. For this purpose, we provide an adapted simulated dataset and apply a recently introduced method for H1
simulations called waffect.
Results: When the causal environmental exposure is unobserved but only a proxy of this exposure is observed, all the methods
considered fail to detect G×E interaction.
Conclusions: The hidden causal exposure is an obstacle to detect G×E interaction in GWAS and the approaches considered in
our power study all have insufficient power to detect the strong simulated interaction.
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1. INTRODUCTION
Genome-wide association studies (GWAS) are a standard
method to identify common genetic factors that influence
health and disease conditions. These methods have improved
our understanding of the genetic basis of many complex traits
and are among the most used tools for analyzing complex dis-

eases. However, it is known that most complex diseases (e.g.
diabetes, asthma and cancer) are due to combined effect of
genes, environmental factors, as well as their interactions.[1]

Over the last years, considerable efforts have been put to de-
tect gene-environment interactions (G×E) in GWAS and few
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loci that interact with environmental exposures have been
identified.[2–4]

However, this problem is well known to be challenging due
to several reasons including the modest effect of such inter-
actions in terms of relative risk or the population structure
which can partially explain spurious associations.[5] Another
situation when detecting G×E interactions could be difficult
is when the causal exposure is unobserved but only proxy
covariates are observed. Indeed, an interesting question is to
assess whether it is still possible to detect G×E interactions
when the environmental factor interacting with the suscepti-
bility gene is unobserved but correlates with one or several
observed factors.

Nowadays, several methods are available to perform GWAS.
In principle, they could be used to detect G×E interactions.
Among them, PLINK[6] can be considered as a gold standard
for classical analysis. A major concern in GWAS is the need
to account for the complicate dependence structure in the
data, between loci as well as between individuals. Effects of
population stratification can be easily accounted in PLINK
by adding the PCA’s first components as covariates.

As an alternative, linear mixed models stem as promising
statistical methods to correct for the stratification in the pop-
ulation. A popular implementation of linear mixed models is
Fast-LMM.[7]

Furthermore, powerful data mining techniques are being in-
creasingly used. Among them, the application of random
forests (RFs) to the discovery of SNPs related to human
diseases has grown in recent years.[8]

The importance of empirical power studies based on realistic
datasets is fully acknowledged (http://www.gaworkshop
.org/). In particular, each time a new method is introduced,
it is obviously essential to evaluate its performance in com-
parison with existing techniques through power studies.[9]

However, such studies are often conducted by performing
H1 simulations under models which are very similar to the
ones used to design the new method, thus giving it an ob-
vious advantage over the other methods. It is hence quite
common to see many concurrent approaches each claiming
to outperform all others.

Recently, a new method for H1 simulations called waffect
(pronounced “double-u affect” for weighted affectations) has
been introduced to avoid this issue.[10] Indeed, this method
does not make any other assumption than the causal dis-
ease model itself, whose choice is completely unconstrained.
waffect uses weighted permutations to generate phenotypes
conditionally to the genotypes and covariates by taking into
account both the causal disease model and the design of the

study. With this new approach, it is hence possible to produce
non-subjective H1 datasets which do not favor one analysis
method over the others.

In this paper, we propose to study the effect of a hidden
causal exposure on the power to detect G×E interactions in
GWAS. For this purpose, we simulated a dataset mimicking
a situation in which the causal exposure is unobserved but
some covariates correlating with this hidden exposure are
observed. This dataset is based on the publicly available
HapMap project datasets[11] for real genotypes with popula-
tion structures; we used waffect to generate phenotypes for a
chosen causal disease model.

We compared four approaches based on three popular meth-
ods (PLINK, Fast-LMM and random forests) by performing
power analysis on our simulated dataset.

2. SIMULATED DATASET
2.1 Genotypes
The genotypic dataset used in our study was extracted from
the HapMap phase III database of genetic variations.[12] This
database investigates 11 human populations including 57 un-
related MEX, 146 unrelated YRI, 52 unrelated ASW, 110
unrelated CEU, 154 unrelated MKK, 137 unrelated CHB,
109 unrelated CHD, 101 unrelated GIH, 113 unrelated JPT,
110 unrelated LWK and 102 unrelated TSI (Description of
the population codes can be found at www.broadinstitu
te.org). Only the SNPs that are shared by all populations
were retained.

Principal component analysis (PCA) was performed on the
whole genome, keeping one SNP over 1,000 SNPs; the first
five principal components (pca i, i = 1, . . . , 5) were consid-
ered as covariates. The association analysis in our study were
conducted on Chromosome 6, after quality control including
Hardy-Weinberg equilibrium testing and exclusion of SNPs
with a minor allele frequency (MAF) less than 5%.

2.2 Covariates
Covariates and phenotypes were simulated in order to mimic
a complex interaction between an arbitrarily chosen causal
SNP and an hidden exposure (called treatment). The unob-
served exposure was defined with high correlation with two
observed covariates (bmi, for body mass index, and sex) as
well as with the population of belonging. The idea is that
the treatment is typically taken by women (and less often by
men) trying to loose weight.

bmi was simulated taking into account the five first principal
components and another environmental covariate denoted
smoking. This binary variable was simulated to mimic smok-
ing behaviors with a probability distribution which depends
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on the population and sex. Indeed, women usually smoke less
than men with this difference depending on the population.
In order to simulate the smoking covariate, the eleven pop-
ulations were classified in three sub-populations: European
(E); African (Af) and Asian (As).

In the European sub-population, we considered that 32%
of individuals were smokers. More specifically, we sup-
posed that 37% of men and 27% of women were smokers.
In the African sub-population, the prevalence of smoking
was supposed to be 27%: 43.8% among men and 12.9%
among women.[13] At last, in the Asian sub-population, we
considered that 27% of individuals were smokers: 45.7%
among men and 4.8 % among women.[14] Covariate sex was
obtained from HapMap data.

Specifically, bmi was simulated with a regression on the first
five principal components in order to have 60% of heritability
and with a residual standard deviation of 4.0. To take into
account the fact that smokers in average have a lower bmi
than non-smokers, we simulated a smoker effect in the bmi
covariate by adding a score of 1.5 to the bmi average for
non-smokers.[15]

The individual probability to take a treatment, P (treatment),
was correlated with covariates bmi, sex and the population of
belonging as follows:

1/P(treatment)=(1+2×1sex=1 )×[1+exp(-bmi+25+γ)]

where γ ∈ {-inf,-0.1,0,0.15,-0.45,0.35,0.6,-0.4,0.05,0.1} for
population 1 to 11.

Table 1. Description of all simulated covariates and real
genotypes for 1,191 individuals with 595 cases and 596
controls

 

 

Observed 
covariates 

Values Short description 

genotype {0, 1} 

real genotypes taken from 
HapMap, length of the genotypic 
vector is 38634 

sex {1, 2}, factor sex of each individual 

pc 
continuous 
variable 

principal components of the PC 
analysis calculated from genotype 

smoking {0, 1} 
depends on population of belonging 
(pop) and sex  

bmi 
continuous 
variable 

depends on the five first PC and 
smoking 

Unobserved 
covariates 

Values short description 

pop 
{1, 2,…,11}, 
factor 

population of belonging of 
individuals 

treatment {0, 1} depends on sex, bmi and pop 

disease {0, 1} 

under H1 hypothesis, disease 
depends on causalSNP and 
treatment 

 

To sum up, in our standard design covariates sex, pca i(i =
1, . . . , 5), bmi and smoking were supposed observed. The
population of belonging, covariate treatment and the other
principal components were supposed unknown (even though
these are easily computable), see Table 1.

2.3 Disease model

We arbitrarily chose the SNP in position 22,683,075 in a
dense area of chromosome 6 as the binary susceptibility lo-
cus, denoted causalSNP. Assuming a dominant effect, we
encoded causalSNP = 1 in presence of at least one minor fre-
quency allele and causalSNP = 0 otherwise. We considered
a disease model with a very strong G×E interaction (relative
risk of 50) with a baseline prevalence of 1%:

P(disease)=0.01×(1.0+50.0×1causalSNP =1×1treatment=1)

It is important to stress that this is not a very realistic model
of complex disease due to the lack of genetic marginal effects
and also due to the very strong interaction with a relative
risk (RR) equal to 50. We chose not to include any marginal
effects for sake of clarity and because we were interested on
the detection of G×E interactions. Concerning the strong
G×E interaction, we chose to have a relative risk as high as
50 in order to increase the chance of detecting the interaction
between the causalSNP and our hidden causal exposure treat-
ment. Indeed, such a strong relative risk is obviously seldom
encoutered in genetic epidemiology except for major risk
factor like smoking in lung cancer. Our model can therefore
be seen as a best case scenario for G×E which should be
easily detected considering the right exposure. But what if
this causal exposure is unobserved?

Phenotypes were simulated accordingly to the disease mod-
els by means of the package waffect[10] publicly available
on the CRAN server of R packages.[16] This enabled us to
simulate exactly 595 cases and 596 controls for the 1,191
individuals from the HapMap genotypic dataset (see next
section for a comprehensive introduction to waffect).

2.4 Dataset availability

Our simulated dataset can be downloaded from https://ww
w.researchgate.net/FloraAlarcon/. It comprises (1)
the genotypic matrix; (2) a table with the covariates sex,
pca i, (i = 1, . . . , 5), bmi, smoking (all known in our stan-
dard design) as well as treatment (unknown in our standard
design); (3) a table with 200 replicates of phenotypes under
H0 and (4) a table with 200 replicates of phenotypes under
H1.
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3. POWER ANALYSIS
3.1 Phenotype simulations
In order to assess the empirical statistical power of different
tools to detect associations, we simulated 200 phenotypes
replicates under the disease model H1 and 200 phenotypes
replicates under the null hypothesis H0 of no association.
Each replicate consists of 1,191 phenotypes, one for each
individual.

The simulations under H0 were obtained by simply permut-
ing the phenotypes, thus breaking potential associations be-
tween phenotypes and genotypes. The simulations under
the alternative hypothesis H1 were performed using the R
package waffect publicly available on CRAN.[10]

The principal function in waffect is based on a backward sam-
pling algorithm which makes it possible to generate weighted
permutations. For the purposes of phenotype simulation, the
vector of weights is given by the penetrance, that is the proba-
bility for each individual to be a case according to the disease
model. One crucial consequence of using weighted permu-
tations is that the number of cases and controls is constant
across the replicates. This makes it possible to respect the
original design in each replicate and therefore to compare
the performance of an association method across different
replicates.

Simulating phenotypes rather than genotypes, as does the
gold standard Hapgen,[17] does not require additional data
such as haplotype frequencies or recombination rates and has
the obvious advantages of requiring much smaller computa-
tional memory and time. Moreover, for the purposes of the
present work, the primary benefit of using waffect is that it
only requires a vector of probabilities as input. As a result,
the choice of the disease model is totally unconstrained; in
particular it is possible to include G×E interactions.

In principle, one could achieve the same result by simply
using a rejection algorithm which samples the phenotype of
each individual according to the probability to be a case and
then accepts the resulting replicate only if there are enough
cases. Because the probability of obtaining a full config-
uration of phenotypes with the correct number of cases is
extremely low, this approach cannot be used in practice. In
order to overcome this problem, a solution often applied in
practice is to increase the prevalence in the disease model,
maintaining unchanged the relative risks. However it can
be proved that adjusting the prevalence creates bias in the
empirical power estimate.[10]

3.2 Statistical analysis
In this section, we briefly describe the four popular ap-
proaches adopted in our study to perform GWA analysis.

The gold standard PLINK (individual SNP logistic regres-
sion)[6] was applied in two alternative approaches: 1- analysis
performed regardless of G×E interactions and considering
only genetic effects; and, since it is easy to consider inter-
action terms with PLINK, 2- analysis performed taking into
account G×E interactions. The other two approaches are 3-
the linear mixed model for population structure correction
implemented in Fast-LMM,[7] and 4- the random forest data
mining technique, RandomForest R package.[18]

3.2.1 PLINK

PLINK implements a logistic regression approach[6] allowing
for multiple binary or continuous covariates when testing for
disease trait SNP association and interactions with covariates.
PLINK provides p-values for significance coefficients in the
logistic model. In this work, we considered two approaches
using PLINK.

The first approach, which we referred to as “PLINK SNP”,
consisted in performing analysis regardless of G×E interac-
tions by looking at the p-value associated to the significant
coefficients for the SNPs.

We referred to the second approach as “PLINK SNP×COV”,
where COV is the environmental covariate under consider-
ation (either bmi in our standard design or treatment in our
further analysis, see below). PLINK SNP × COV accounted
for all the interactions between the analyzed SNPs and the
environmental factor considered through the p-values associ-
ated to the significance coefficients of such interactions.

Correction for population structure was taken into account
by considering the five first principal components resulting
from the PCA performed on the whole genome.

3.2.2 Random forests

Random forests (RFs) have been introduced by Purcell.[19]

The general principle consists in building repeatedly classifi-
cation and regression trees (CART) from bootstrapping of the
original data. This process produces a forest of classification
trees which are statistically analyzed to produce importance
measures of the covariates (e.g. a variable belonging to many
trees probably plays a key role in the classification).

Random forests are a popular way to perform data mining
on GWAS data. Despite the fact that they exploit heavily
marginal linear regressions, random forests are able to detect
interactions between variables (see[20] for an overview of
random forests in the GWAS context). Recently, a regular-
ized version of random forests has been proposed to deal
with high dimensional data.[21] In this work we decided to
disregard this approach because it was too slow on our data
to be practical.
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For our random forests analysis, we used the randomForest
package (version 4.6-7) from R.[16] We simply used the de-
fault parameters of the method with the disease status as a
binary outcome and with all observed covariates and SNPs
as explanatory variables. Once the forest computed, we ex-
tracted for each variable its importance measure using the
default approach of the package (normalized difference be-
tween out-of-bag proportion error using original data or a
permuted version). We hence obtained for each variable and
each replicate a real value which reflects the importance of
the variable for discriminating between cases and controls.
The higher this importance value, the stronger the association
with the disease.

3.2.3 Fast-LMM

It is a well known problem that in GWAS confounding effects
of population structure lead to false positive and therefore
need to be taken into account. An alternative to including
the first principal components in linear or logistic regression
models in order to correct for confounding factors are Linear
Mixed Models LMMs.[22] LMMs generalize linear models
by introducing random effects as predictors, in addition to
the usual fixed effects. Indeed, LMMs are known to be effec-
tive when observations are not independent but rather involve
related individuals.

In LMMs for GWAS, the random effect is expressed by a
multivariate normal distribution whose variance-covariance
matrix measures the genetic similarity between individuals.
Recently the algorithm Fast-LMM has been introduced to
perform efficiently exact inference for LMMs.[7] Roughly
speaking, Fast-LMM (for Factored spectrally transformed
Linear Mixed Models) is based on a spectral decomposition
of the genetic similarity matrix which rotates the phenotypes
into uncorrelated phenotypes thus converting the original
estimation problem into the maximization of the likelihood
of a linear regression model.

A drawback of the current implementation of Fast-LMM is
that it does not allow to consider explicit interaction terms be-
tween genotypic variables and covariates in the linear mixed
model (We unsuccessfully tried to contact the authors of Fast-
LMM on this matter.). A possible solution to overcome this
limitation is to code directly such interactions in the covariate
file, thus adding new columns. However, this solution was
not appropriate in this context because it would have required
to magnify several times the size of the variables file in order
to consider the cartesian product of all the SNPs with all the
covariates. We then remove simply applied Fast-LMM to the
original genotypic and covariate datasets.

3.3 Power, ROC curves and AUC

Instead of computing the power of our detection methods for
a given controlled type-I error rate, we used the Area under
the Curve (AUC) corresponding to the receiver operating
characteristic (ROC) curves (AUROC curves) which has the
benefit to avoid choosing a type-I error rate and having to
control the procedure (ex: adjusting for multiple testing).
Our AUROC results directly reflect the overall discrimina-
tive power of the chosen statistic. Therefore, the overall
performance of each of the four methods described above
was assessed by simply looking at a summary statistics.[10]

These global statistics were then used to estimate the AUROC
curves of the four methods, each expressing the performance
of the corresponding method.

More specifically, for PLINK SNP we took as simple global
statistics the smallest among all the p-values associated to
the significance coefficients of the SNPs, similarly for Fast-
LMM. For PLINK SNP × COV, we took the smallest among
all the p-values associated to significance coefficients of the
terms coding for the interactions between the SNPs and the
covariate (bmi or treatment). At last, the summary statis-
tics for the random forest-based method was defined as the
maximum of the importance statistics over all considered
SNPs.

Then, for each method, we obtained two vectors of length
200, one under H0 and one under H1. These two vectors of
comprehensive signals were used to estimate the ROC curves
of the four methods using the R package pROC.[23]

We recall that ROC curves provide a graphical representation
of the specificities and sensitivities (i.e. values of statistical
power) that can be obtained for all possible values of the
threshold of significance.[24] An informative summary of the
ROC curve information is the area under the ROC curve (i.e.
AUC). The AUC can be qualitatively interpreted as follows:
AUC ≤ 0.6 means “fail”; 0.6 < AUC ≤ 0.70 means “poor”;
0.7 < AUC ≤ 0.80 means “fair”; 0.8 < AUC ≤ 0.9 means
“good”; 0.9 < AUC ≤ 1.0 means “excellent”.

4. RESULTS AND DISCUSSION

Association analysis were adjusted on covariates sex, smok-
ing together with either bmi (our standard design) or treat-
ment. Moreover, for PLINK and random forests the five first
principal components pci, i ∈ {1, . . . , 5} were included as
predictors. We recall that in order to evaluate empirically the
detection power of the four approaches in presence of inter-
action with an hidden exposure, analysis were performed on
200 + 200 phenotypic replicates under H0 and H1. Investiga-
tions were performed on chromosome 6 and subregions.
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4.1 The causal exposure is observed
At first, the causal exposure treatment was supposed to be
observed. Given the very strong interaction simulated, we
expected to have a good power to detect the G×E interac-
tion. Table 2 shows the estimated AUC together with 95%
confidence intervals obtained in this context. While AUC
estimated with PLINK SNP×treatment are equal to 1 (as

expected given the strength of the simulated G×E interac-
tion), the AUC estimated with the other methods are poor.
These results confirm that the approach accounting for the
interaction is better than the approach accounting only for
the SNP and demonstrate the importance of accounting for
G×E interaction in a process of consideration of an hidden
exposure.

Table 2. Association analysis performed on chromosome 6 with the four approaches, when the causal exposurer treatment
is considered observed. Restricted regions are centered on causal SNP

 

 

AUC (%) PLINK SNP PLINK SNP × bmi RF Fast-LMM 

whole chromosome 6 63.35 (57.84-68.85) 99.97 (99.93-100.0) 67.66 (62.44-72.88) 61.54 (56.02-67.06) 

8,000 SNPs region 70.67 (65.58-75.75) 100.0 (99.99-100.0) 78.30 (73.88-82.73) 68.02 (62.82-73.23) 

2,000 SNPs region 73.91 (68.95- 78.88) 100.0 (99.99-100.0) 82.57 (78.60-86.54) 72.03 (67.02-77.04) 

800 SNPs regions 80.24 (75.78- 84.69) 100.0 (100.0-100.0) 86.07 (82.54-89.61) 80.22 (75.95-84.48) 

200 SNPs region 87.62 (84.26- 90.98) 100.0 (100.0-100.0) 89.88 (86.87-92.90) 86.65 (83.16-90.14) 

causal SNP 99.03 (98.39-99.67) 100.0 (100.0-100.0) 92.01 (89.13-94.89) 99.08 (98.47-99.69) 

 

4.2 The causal exposure is not observed
In our original design, the causal exposure was supposed to
be unobserved: the covariate bmi was observed instead of
treatment and considered, mistakenly, as the environmental
exposure of interest.

Table 3 shows the estimated AUC together with 95% con-

fidence intervals for the four approaches. Obviously, the
performance of each method increases when the region un-
der consideration decreases and reach a good power when the
region is restricted to the causal SNP. However power is low
(fail or poor) when estimation is done on whole chromosome
6.

Table 3. Association analysis performed on chromosome 6 with the four approaches with an hidden causal exposure (i.e.
covariate bmi is observed but covariate treatment is unknown). Restricted regions are centered on causal SNP

 

 

AUC (%) PLINK SNP PLINK SNP × bmi RF Fast-LMM 

whole chromosome 6 64.69 (59.26-70.13) 56.39 (50.69-62.08) 66.23 (62.44-72.88) 61.91 (56.42-67.41) 

8 000 SNPs region 72.04 (67.03-77.05) 55.32 (49.6-61.04) 71.99 (67.07-76.91) 68.96 (63.84-74.07) 

2 000 SNPs region 74.44 (69.52-79.35) 58.05 (52.41-63.70) 76.15 (71.49-80.82) 71.36 (66.35-76.36) 

800 SNPs regions 81.78 (77.54-86.02) 60.24 (54.66-65.81) 79.48 (75.10-83.87) 80.65 (76.48-84.82) 

200 SNPs region 85.50 (85.27-91.72) 68.62 (63.38-73.85) 84.71 (80.77-88.66) 86.72 (83.28-90.17) 

causal SNP 99.15 (98.57-99.73) 88.67 (85.48-91.86) 89.03 (85.75-92.32) 99.09 (98.49-99.70) 

 

Surprisingly, the PLINK SNP×bmi approach exhibits a dras-
tic loss of performance when the true causal exposure is
hidden: the drop in the AUC is as high as 43.58% with re-
spect to the case when treatment is observed. PLINK SNP,
Fast-LMM and RF provide comparable results even if PLINK
SNP seems to be a little more efficient.

Surprisingly, the estimated performance is better with PLINK
SNP than with PLINK SNP× bmi. For example, applying
PLINK SNP on a region with less than 800 SNPs around the
causal SNP provides good to excellent power while analysis
with PLINK SNP×bmi needs to be restricted to the causal

SNP to reach similar power. For the RF, we can only observe
a slight improvement (1% to 3% of AUC) when the treatment
is observed. This is due to the fact that, like for Fast-LMM
or PLINK SNP, the RF approach does not consider explicitly
interactions with the covariates. However, RF are known to
be able to capture complex non-linear interaction between
covariates which tend to be co-selected in the same trees.
In our example, this alleged feature clearly shows its limits.
Moreover, results obtained observing the causal exposure
have shown that PLINK SNP (as LMM and RF) were meth-
ods not suited to this context. Table 4 presents a summary of
advantages and disadvantages of each method.
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Table 4. Advantages and disadvantages of studied methods when the SNP to detect interacts with an unobserved
environmental exposure

 

 

Methods Strengths Weakness 

PLINK 
Easy to use and possibility to consider explicitly interactions with 
covariates in the model 

Provides a bad power to detect the interaction with an 
unobserved environmental exposure 

RF Able to capture complex non-linear interactions between covariates Does not consider explicitly interactions with the covariates 
Fast-LMM Able to account for population stratification from random effects Does not consider explicitly interactions with the covariates 

 

Furthermore, we note that AUC estimate applying PLINK
SNP×bmi when the analysis is performed on the whole chro-
mosome 6 appears higher than on a region of 4,000 SNPs
around the causal SNP. This result could be explained by
sample variability.

Figure 1. Manhattan plots considering chromosome 6 and
either the covariate treatment or the covariate bmi. The red
vertical line indicates the causal SNP

4.3 Further considerations
An interesting property of Fast-LMM is its ability to account
for population structure by introducing random effects as
predictors. In this context, analysis were performed with
Fast-LMM, with no principal components as covariates. We
verified (results not shown) that accounting explicitly for
principal components gives similar results. In the same way,
we performed analysis with PLINK SNP×bmi considering
explicitly the population of belonging instead of principal
components and found similar results than considering prin-
cipal components (results not shown).

Another question that may arise is about the signal local-
ization. Indeed, presence of hidden causal exposure makes
very difficult to identify the causal SNP. Figure 1 shows the
Manhattan plots obtained performing PLINK SNP × COV
analysis on Chromosome 6 from one simulation under H1.
The vertical red line indicates the causal SNP location. On
figure 1a analysis was performed observing the causal expo-
sure treatment (i.e. using PLINK SNP×treatment approach)
and on figure 1b analysis was performed with the hidden
exposure (i.e. using PLINK SNP×bmi approach). When the
causal exposure is observed, the location detected by the sig-
nal is the same as the causal SNP location. In contrast, when
the causal exposure is hidden, no signal is clearly detected.

5. CONCLUSION

The aim of this article is to study the power to detect G×E
interactions in the particular case where the causal exposure
is hidden (i.e. non observed) and instead, proxy covariates
are observed. In order to mimic this typical design we simu-
lated a dataset: real genotypes with population structure were
obtained from the HapMap project dataset and phenotypes
were simulated using waffect according to a disease model.

The disease model was chosen without marginal effect for
sake of clarity and with a very strong G×E interaction. De-
spite its simulated strength, we showed that usual methods
not accounting for interactions are not able to detect any
association at all.

Moreover, we show that when analyses are done without
searching for interactions, observing or not the causal ex-
posure has no impact on the detection power. These results
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highlight the importance of taking into account G×E interac-
tions at the risk of finding no signal at all.

Furthermore, when a method accounting for interactions is
applied to detect G×E interactions, the fact that the causal
exposure is unobserved causes a drastic loss of detection
power. In our simulation study this was true even though we
simulated a very strong G×E effect!

By using HapMap genotypes, our dataset has indeed a very
strong population structure that has to be accounted for (ex:
by using principal components as covariates). Performing
H0 simulations without population stratification (ex: pop-
ulate specific prevalence) might clearly generate spurious
association. Howaver, in real life GWAS, H0 simulations
seldom account for possible population structure, and it is
moreover clear that this possible source of bias fail to favor
the detection of the targeted G×E effect in our design. Fur-
ther investigation will definitely include population stratified
H0 and H1 simulations.

In this work, we chose to focus on three popular methods
belonging to different families of statistical techniques. Un-
fortunately, the current implementation of Fast-LMM does
not allow to account for G×E interactions. As an alterna-
tive, we considered the idea to precompute a full covariate
matrix including interactions as an input to Fast-LMM, but
this approach was finally discarded as Fast-LMM would not
perform the appropriate significance tests in any case. The
proposed dataset has the potential to provide a good frame-
work to develop further features of Fast-LMM enabling it
to account for such interactions. Similar consideration hold
for the RF which are not specifically designed to deal with
explicit interactions.

At the best of our knowledge, this is the first empirical
study of the performance of methods for detecting gene-

environment interactions when the exposure is not observed.
Indeed, previous works compare the performance of methods
when the exposure is observed. Typically these comparison
studies are done when a new method to detect a G×E in-
teraction is introduced for case control data. Kraft et al.[25]

proposed a powerful 2-df joint test of marginal association
and G×E interaction. Shortly after, Mucray et al.[1] pro-
posed a 2-step approach for detecting G×E interaction in
GWA studies. Dai et al.[26] proposed a new way to combine
the test of marginal genetic effect and the test of G×E in-
teraction, by exploiting the independence between the two
tests. While these methods have demonstrated their effi-
ciency, their performance was assessed through simulations
that do not account for realistic complexity such as the inclu-
sion of confounding factors, hidden causal exposures and/or
of complicated dependance structures between individuals
as well as between loci. Testing the detection power of these
tests on our simulated dataset could then be an interesting
development. Results in this paper already seem to show that
methods based on the linear model have poor power to detect
G×E interaction when the causal exposure is not observed,
therefore we expect that the tests mentioned above will not
perform well either.

In conclusion, efforts should be put in developing standard
methods in order to detect G×E interactions as well. More-
over, it would be of interest to develop a logistic regression
with latent exposure in order to gain power in detecting G×E
interactions when the causal exposure is unobserved or par-
tially observed.

ACKNOWLEDGEMENTS
We acknoledge funding from ANR SAMOGWAS.

CONFLICTS OF INTEREST DISCLOSURE
The authors declare that they have no competing interests.

REFERENCES
[1] Murcray CE, Lewinger JP, Gauderman WJ. Gene-environment in-

teraction in genome-wide association studies. American journal
of epidemiology. 2009; 169(2): 219-226. PMid:19022827 http:
//dx.doi.org/10.1093/aje/kwn353

[2] Rothman N, Garcia-Closas M, Chatterjee N, et al. A multi-stage
genome-wide association study of bladder cancer identifies mul-
tiple susceptibility loci. Nature genetics. 2010; 42(11): 978-984.
PMid:20972438 http://dx.doi.org/10.1038/ng.687

[3] Hamza TH, Chen H, Hill-Burns EM, et al. Genome-wide gene-
environment study identifies glutamate receptor gene grin2a as a
parkinson’s disease modifier gene via interaction with coffee. PLoS
genetics. 2011; 7(8): e1002237. PMid:21876681 http://dx.doi
.org/10.1371/journal.pgen.1002237

[4] Garcia-Closas M, Jacobs K, Kraft P, et al. Analysis of epidemiologic

studies of genetic effects and gene-environment interactions. IARC
scientific publications. 2010; 163(163): 281-301.

[5] Astle W, Balding DJ. Population structure and cryptic relatedness in
genetic association studies. Statistical Science. 2009; 24(4): 451-471.
http://dx.doi.org/10.1214/09-STS307

[6] Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for
whole-genome association and population-based linkage analyses.
The American Journal of Human Genetics. 2007; 81(3): 559-575.
PMid:17701901 http://dx.doi.org/10.1086/519795

[7] Lippert C, Listgarten J, Liu Y, et al. Fast linear mixed models for
genome-wide association studies. Nature Methods. 2011; 8(10): 833-
835. PMid:21892150 http://dx.doi.org/10.1038/nmeth.168
1

[8] Goldstein BA, Hubbard AE, Cutler A, et al. An application of Ran-
dom Forests to a genome-wide association dataset: Methodolog-

116 ISSN 2377-9306 E-ISSN 2377-9330

http://dx.doi.org/10.1093/aje/kwn353
http://dx.doi.org/10.1093/aje/kwn353
http://dx.doi.org/10.1038/ng.687
http://dx.doi.org/10.1371/journal.pgen.1002237
http://dx.doi.org/10.1371/journal.pgen.1002237
http://dx.doi.org/10.1214/09-STS307
http://dx.doi.org/10.1086/519795
http://dx.doi.org/10.1038/nmeth.1681
http://dx.doi.org/10.1038/nmeth.1681


http://jer.sciedupress.com Journal of Epidemiological Research 2016, Vol. 2, No. 1

ical considerations & new findings. BMC genetics. 2010; 11(1):
49. PMid:20546594 http://dx.doi.org/10.1186/1471-215
6-11-49

[9] Spencer CCA, Su Z, Donnelly P, et al. Designing genome-wide
association studies: sample size, power, imputation, and the
choice of genotyping chip. PLoS genetics. 2009; 5(5): e1000477.
PMid:19492015 http://dx.doi.org/10.1371/journal.pgen.
1000477

[10] Perduca V, Sinoquet C, Mourad R, et al. Alternative Methods for H1
Simulations in Genome-Wide Association Studies. Human Hered-
ity. 2012; 73(2): 95-104. PMid:22472690 http://dx.doi.org/1
0.1159/000336194

[11] Thorisson GA, Smith AV, Krishnan L, et al. The international
hapmap project web site. Genome research. 2005; 15(11): 1592-1593.
PMid:16251469 http://dx.doi.org/10.1101/gr.4413105

[12] Gibbs RA, Belmont JW, Hardenbol P, et al. The international
hapmap project. Nature. 2003; 426(6968): 789-796. PMid:14685227
http://dx.doi.org/10.1038/nature02168

[13] Christopoulou R, Lillard DR. The role of culture in smoking behav-
ior: evidence from british immigrants in australia, south africa, and
the us. Technical report, Cornell University. 2011.

[14] Tsai YW, Tsai ZT, Yang CL, et al. Gender differences in smoking
behaviorsin an asian population. Journal of Women’s Health. 2008;
17(6): 971-978. PMid:18681817 http://dx.doi.org/10.1089
/jwh.2007.0621

[15] Chiolero A, Faeh D, Paccaud F, et al. Consequences of smok-
ing for body weight, body fat distribution, and insulin resistance.
The American journal of clinical nutrition. 2008; 87(4): 801-809.
PMid:18400700

[16] Team RC. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. 2013.

[17] Su Z, Marchini J, Donnelly P. HAPGEN2: simulation of
multiple disease SNPs. Bioinformatics. 2011; 27(16): 2304-

2305. PMid:21653516 http://dx.doi.org/10.1093/bioinfo
rmatics/btr341

[18] Liaw A, Wiener M. Classification and regression by randomforest. R
News. 2002; 2(3): 18-22.

[19] Breiman L. Random forests. Machine learning. 2001; 45(1): 5-32.
http://dx.doi.org/10.1023/A:1010933404324

[20] Boulesteix AL, Janitza S, Kruppa J, et al. Overview of random
forest methodology and practical guidance with emphasis on com-
putational biology and bioinformatics. Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery. 2012; 2(6): 493-507.
http://dx.doi.org/10.1002/widm.1072

[21] Deng H, Runger G. Feature selection via regularized trees. The 2012
International Joint Conference on Neural Networks (IJCNN). 2012.

[22] Hoffman GE. Correcting for population structure and kinship using
the linear mixed model: Theory and extensions. PLoS ONE. 2013;
8(10): e75707-10. PMid:24204578 http://dx.doi.org/10.13
71/journal.pone.0075707

[23] Robin X, Turck N, Hainard A, et al. Proc: an open-source package
for r and s+ to analyze andcompare roc curves. BMC bioinformatics.
2011; 12(1): 77. PMid:21414208 http://dx.doi.org/10.1186
/1471-2105-12-77

[24] Metz CE. Basic principles of roc analysis. In Seminars in nuclear
medicine. 1978; 8: 283-298. http://dx.doi.org/10.1016/S00
01-2998(78)80014-2

[25] Kraft P, Yen YC , Stram DO, et al. Exploiting gene-environment in-
teraction to detect genetic associations. Human heredity. 2007; 63(2):
111-119. PMid:17283440 http://dx.doi.org/10.1159/00009
9183

[26] Dai JY, Logsdon BA, Huang Y, et al. Simultaneously testing for
marginal genetic association and geneenvironment interaction. Ameri-
can journal of epidemiology. 2012; 176(2): 164-173. PMid:22771729
http://dx.doi.org/10.1093/aje/kwr521

Published by Sciedu Press 117

http://dx.doi.org/10.1186/1471-2156-11-49
http://dx.doi.org/10.1186/1471-2156-11-49
http://dx.doi.org/10.1371/journal.pgen.1000477
http://dx.doi.org/10.1371/journal.pgen.1000477
http://dx.doi.org/10.1159/000336194
http://dx.doi.org/10.1159/000336194
http://dx.doi.org/10.1101/gr.4413105
http://dx.doi.org/10.1038/nature02168
http://dx.doi.org/10.1089/jwh.2007.0621
http://dx.doi.org/10.1089/jwh.2007.0621
http://dx.doi.org/10.1093/bioinformatics/btr341
http://dx.doi.org/10.1093/bioinformatics/btr341
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1002/widm.1072
http://dx.doi.org/10.1371/journal.pone.0075707
http://dx.doi.org/10.1371/journal.pone.0075707
http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1016/S0001-2998(78)80014-2
http://dx.doi.org/10.1016/S0001-2998(78)80014-2
http://dx.doi.org/10.1159/000099183
http://dx.doi.org/10.1159/000099183
http://dx.doi.org/10.1093/aje/kwr521

	Introduction
	Simulated dataset
	Genotypes
	Covariates
	Disease model
	Dataset availability

	Power analysis
	Phenotype simulations
	Statistical analysis
	PLINK
	Random forests
	Fast-LMM

	Power, ROC curves and AUC

	Results and discussion
	The causal exposure is observed
	The causal exposure is not observed
	Further considerations

	Conclusion

