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When an acoustic wave propagates in a �uid, it can generate a second order �ow
whose characteristic time is much longer than the period of the wave. Within a range of
frequency between ten and several hundred Hz, a relatively simple and versatile way
to generate streaming �ow is to put a vibrating object in the �uid. The �ow develops
vortices in the viscous boundary layer located in the vicinity of the source of vibrations,
leading in turn to an outer irrotational streaming called Rayleigh streaming. Because
the �ow originates from non-linear time-irreversible terms of the Navier-Stokes equa-
tion, this phenomenon can be used to generate e�cient mixing at low Reynolds num-
ber, for instance in con�ned geometries. Here, we report on an experimental study of
such streaming �ow induced by a vibrating beam in a Hele-Shaw cell of 2 mm span
using long exposure �ow visualization and particle-image velocimetry measurements.
Our study focuses especially on the e�ects of forcing frequency and amplitude on
�ow dynamics. It is shown that some features of this �ow can be predicted by simple
scaling arguments and that this vibration-induced streaming facilitates the generation
of vortices. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4905031]

I. INTRODUCTION

It has been known since Faraday1 that a steady �ow can emanate from a periodic forcing in
a �uid, either mechanical vibrations or acoustic waves. A global feature of these �uid �ows is
that they originate from time-irreversible convection terms of the Navier-Stokes equation2 and are
thus attractive in overcoming some of the intrinsic challenges of low-Reynolds-number �ows as
for active mixing,3 pumping,4 heat transfer,5 or particles sorting.6 Such streaming has been recently
identi�ed to play a signi�cant role in the mixing process occurring in the acinar region (In the
case of lungs, the acinar region corresponds to the groups of alveoli, linked by alveolated ducts,
terminating the bronchioles.) of lungs.7

Acoustic-induced �ows have recently received much attention8 due to the massive development
of micro�uidics. Acousto�uidics phenomena are considered especially promising within MHz fre-
quency ranges,9 where acoustic wavelengths become comparable in size to the channel spans. In
these situations, the �ow is strongly in�uenced by the interplay between geometrical con�nement
and the size and shape of the transducer, and these constitute additional challenges in determining
optimized �ow conditions. Though various historical studies have focused on situations with much
lower forcing frequency, they showed that large-scale �ows could be generated within tanks of tens
of centimeters size, induced by mechanical vibrations of frequency from 1 to 100 Hz.10�12 In such
situations, analytical and numerical study of the �ow becomes more tractable.13,14

The present study aims to bridge the gap between these two approaches to streaming by analyz-
ing the �ow induced by a beam vibrating at low frequency in a cell �lled with liquid con�ned
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on two dimensions (Hele-Shaw cell). We aim to demonstrate that con�nement makes our results
relevant and universal enough for a comparative understanding of phenomena occurring within
MHz acoustic forcing in micro�uidics.

The paper is organized as follows: �rst, a summary description on vibration-induced streaming
is presented in Sec. II. The experimental setup is described in Sec. III; then, in Sec. IV, we present
the �ow pattern qualitatively and show quantitative results based on velocity-�eld measurements.
Finally, Sec. IV proposes theoretical considerations and Sec. V discusses the model and remaining
open issues and concludes by describing possible future work.

II. THEORETICAL GROUNDS

Vibration-induced streaming is a mean �ow that arises from Reynolds stresses under wave
propagation15 and compressibility. That is, vibration-induced streaming is a second order e�ect that
can be seen only at time scales greater than the period of the harmonic forcing. The usual way to
describe periodic forcing and couple it to �uid dynamics involves perturbation theory16,17 and then
developing velocity, pressure, and density �elds as

v = v0 + �v1 + �2v2; (1a)
p = p0 + �p1 + �2p2; (1b)
� = �0 + � �1 + �2�2; (1c)

where � = k A, k being the wavenumber and A being the amplitude of the wave. In this paper, in
view of our operating frequency range (between 15 and 120 Hz), typical values of the wavelength
exceed 10 m, so much higher than any other characteristic length scale involved. The quantity
� consequently remains very small in our experiments, yet it is not always the case in acoustic
streaming phenomena, especially at frequencies greater than 1 MHz.8

The continuity and Navier-Stokes equations for a compressible Newtonian �uid yields

@t � + r � ��v� = 0; (2a)

�@tv + ��v � r�v = �rp + �r2v +
1
3
�r�r � v�; (2b)

where bulk viscosity is neglected. Here, we consider an initially unperturbed �uid, v0 = 0. Under the
usual adiabatic and barotropic conditions, p = p��� and can be expanded around �0 as

p = p0 + �� � �0�c2 +
1
2

�� � �0�2�@�c2�0; (3)

with c = �@�P�s the velocity of the sound wave. Injecting Eq. (3) in Eq. (2) and considering only the
terms proportional to � lead to the �rst-order equations

@t �1 = ��0r � v1; (4a)

�0@tv1 = �c2r�1 + �r2v1 +
1
3
�r�r � v1�: (4b)

Coupling these two equations and neglecting the viscous terms in Eq. (4a) yields to wave
equations for v1, �1, and p1,16 as expected in classical linear acoustic theory. The second-order equa-
tions, however, are more complex since terms in �2 are either linear with respect to a second-order
quantity or a product of two �rst-order ones. Therefore, the Navier-Stokes becomes

�0@tv2 + �1@tv1 + �0�v1 � r�v1 = �c2r�2 �
1
2

�@�c2�0r�2
1 + �r2v2 +

1
3
�r�r � v2�: (5)

Depending in particular on the frequency of the wave, several forms of �ows originate from
di�erent mechanisms.18 The �rst kind of �ow, initially investigated by Rayleigh19 and further ex-
plained by Schlichting,20 is boundary layer-induced regions of non-zero vorticity lie inside the viscous
boundary layer around the vibrating object or acoustic transducer, the remaining region being globally
irrotational. The outer (Rayleigh) streaming is a consequence of the continuity of stresses between
the two regions. Stationary �ow patterns, such as those of Tatsuno’s work with an oscillating cylin-
der in a glycerine solution,21 can arise and exhibit two regions corresponding to the inner and outer
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FIG. 1. Sketch of the experimental setup. A function generator (7) prescribes a periodic sinusoidal voltage to an ampli�er
(9), then is turned to the periodic mechanical forcing of a beam (2) �xed on top of a vibrator (1), and inserted in a Hele-Shaw
cell (3) containing the liquid seeded with 10 �m silver coated hollow glass spheres (for the �ow visualization). The bold
arrows (red online) show the vibration direction. An optical set up composed of a cylindrical (5) and a convex (4) lens, and a
Nd:Yag laser (6) lights the cell with a 2D sheet of light. Movies are recorded by a camera (8) installed on top.

streaming. At much higher frequencies (�10 MHz), the dimension of the vessel is more likely to be
larger than the attenuation length Latt of the sound wave by viscosity.22 Therefore, viscous dissipation
when the sound wave propagates into the bulk �uid is responsible for the �uid motion, called Eckart
streaming.23 Recalling that frequency does not exceed 200 Hz in this paper, only Rayleigh streaming
occurs.

Although compressibility can play a signi�cant role in acoustic streaming,24 this e�ect is not
relevant in the present situation, since the Mach number based on the �rst-order velocity v1 keeps
very small

Ma =
v1

c
�

A!
c
; (6)

where ! denotes the pulsation of the forcing. Considering maximum values of frequency and ampli-
tude of 120 Hz and 5 mm, respectively, Ma = 2:5 � 10�3, so we will neglect every term related to
compressibility in Eq. (5). The simpli�ed time-averaged second-order Navier-Stokes equation yields
from Eq. (5)

�h�v1 � r�v1i = �r2hv2i; (7)

where the only non-zero time-averaged term arises from inertia, generating a non-zero second-order
steady velocity. In the horizontal x and y direction, i.e., the plane of the cell, the smallest length
scale is given by the size of the beam, d = 10 mm, which is much higher than the biggest length
scale in the vertical direction, that is to say the Hele-Shaw cell thickness h = 2 mm. The continuity
equation r � v = 0 then implies vz � �h=d�vx; y, so ensures a two-dimensional �ow. Moreover, in the
third term of Eq. (7), r2 sums up to @2=@z2. Therefore, this viscous term has to be evaluated through
a characteristic width lz in which all the stresses are concentrated. Thus, a scaling approach allows
us to estimate, from Eq. (7), this steady velocity

�
hv2i
l2
z
� �

hv2
1i
h
; (8)

where v1 � A! is the forcing velocity. lz is set equal to the boundary layer thickness � �
p

2�=!, with
� the kinematic viscosity of the �uid, while the thickness of the Hele-Shaw cell remains greater than
�. Equation (8) eventually yields

hv2i �
A2!

h
: (9)
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FIG. 2. Superimposition of frames of �ow patterns generated by square 10-mm beams (3:7 s exposure time) (a), rounded
10-mm-diameter beams (4:2 s exposure time) (b), and pointed 10-mm-wide beams (6:0 s exposure time) (c), with f = 50
Hz and A = 2:3 mm. White double arrows indicate the direction of vibrations. Bold arrows (purple online) show the rotation
direction of the vortices.

The other important underlying property is the independence of the scaling law on viscosity. We
have carried out experiments to con�rm this, and the domain of validity of this scaling law is discussed
further in Sec. V.

III. EXPERIMENTAL SETUP

Fig. 1 shows the experimental setup: a Hele-Shaw cell made of two �at glass plates (Fig. 1(3))
2 mm apart. This gap is �lled with water or water/glycerine solutions in which we insert a metallic
beam 10 mm wide, 1:5 mm thick, and 100 mm long (typical immersed length between 40 and 50 mm)
(Fig. 1(2)). The beam is coated with black paint to avoid light re�ections and vibrates along the longi-
tudinal direction in a frequency range from 15 to 120 Hz. Capillary forces acting on the meniscus
around the beam and plates prevent leakage from the cell. With our vibration generator (Brüel & Kjær
type 4810) (Fig. 1(1)) and power ampli�er (Brüel & Kjær Power Ampli�er type 2718) (Fig. 1(9)),
the oscillation amplitude can then be �xed up to 1 mm with an accuracy better than 0:01 mm in our
frequency range. Since the velocity of sound in water is approximately 1500 m/s, our working wave-
length exceeds 10 m, hence much greater than the cell size. This mechanical forcing can be understood
as an analogous to the emission of an acoustic plane wave by the beam of much smaller size than the
e�ective acoustic wavelength.

Flow patterns are observed by particle-image velocimetry (PIV): water is seeded with silver-
coated hollow glass spheres of 10 �m diameter (Dantec Dynamics), the cell is illuminated by a laser
sheet generated by a 4 W maximum power Nd:Yag laser (Fig. 1(6)) beam crossing a cylindrical lens
(Fig. 1(5)) and a convex lens (Fig. 1(4)) to focus it in our region of interest. The whole is �lmed from
above with a camera (Basler A312f) of 53 fps maximum frame rate (Fig. 1(8)). With this geometry
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and the direction of vibration of the metallic beam, two regions are of interest in this experimental
framework: a shear region on both sides of the beam and a compression region in front of it, so �ows
should arise from a combination of these sources.

IV. RESULTS

A. Flow patterns

As the beam starts to vibrate, a stationary �ow is generated whose streamlines can be visualized
by superimposing several consecutive images. This technique lets us record the trajectories of �uid
particles, as seen in Fig. 2. Several kinds of patterns can be observed depending on the frequency and
amplitude of the vibration. Starting from a pattern with only two vortices centered near the bound-
ary between the shear and the compression regions at low frequency and amplitude (Fig. 3(a)), the
centers of these vortices shift toward the axis of the vibrating beam and are pushed away from it as
the frequency or amplitude increases (Fig. 3(b)). Then, the �ow can evolve to a quadripolar shape
with two vortices on both sides of the plate in the shear boundary area and two others in front of it in
the compression area, all of them converging to its corners (Fig. 4(a)). Further increasing frequency
and amplitude leads to enlargement of the vortices, which can break into pairs in the shear region
(Figs. 3(c) and 3(d)).

To demonstrate that the corners of the square beam are not the origins of vortices, Fig. 2(b) shows
a picture of the �ow generated by a circular vibrating beam in which the same kind of patterns is
clear. The long-time exposure shots in Fig. 2, as well as in Tatsuno21 for an oscillating cylinder in an
uncon�ned geometry, are in a good qualitative agreement with those of the Rayleigh Nyborg Wester-
velt streaming described by Lighthill in Ref. 15. These type of �ows are also observed for acoustically
excited bubbles in microchannels,25 corroborating that we obtain similar �ow patterns for di�erent

FIG. 3. Vorticity maps of �ow generated in pure water by a vibration of f = 50 Hz and A = 1:2 mm (a), A = 1:7 mm (b),
A = 2:1 mm (c), and A = 2:8 mm (d). Dashed lines delimit the vibrating beam.
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FIG. 4. Average velocity �eld based on 441 �elds, corresponding to a time of 22:1 s (a) and vorticity map (b) of the �ow
generated in the neighborhood of a f = 50 Hz, A = 1:8 mm vibrating beam. (c) and (d) are the x and y pro�les, respectively.
The purple solid line in (d) is a �tting curve in the form Vmax exp���y � ymax�=s�, Vmax, and ymax being known.

shapes of vibrating object. This suggests that the �ow pattern is a robust feature depending largely on
the size of the beam and the forcing.

After recording a movie of the �ow, we use ImageJ software for image processing such as back-
ground subtraction and contrast enhancement. Then, the velocity �elds of each pair of successive
frames are analyzed with an adaptative correlation code from Dynamic Studio software (Dantec Dy-
namics). Since the �ow remains in a stationary state as long as the vibration continues, it enables to
reduce potential errors and consequent data noise through time-averaging of velocity �elds to form
a clear view of the actual average �ow phenomena. An example of such velocity �eld is shown in
Fig. 4(a). The region without velocity vectors corresponds to the mask of the vibrating beam. In order
to quantify the in�uence of the frequency and the amplitude of the excitation, the maximum veloc-
ity in the compression area is extracted from each velocity �eld, and vorticity maps of the �ow are
calculated.

B. Flow dynamics

Extraction of the maximum velocity along the axis of the beam (see Fig. 4(d)) from the veloc-
ity �elds shows a trend suggesting a linear relationship between Vmax and the excitation frequency
(Fig. 5). This behavior is in good agreement with scaling law (9) established in Sec. II. Comparing the
velocities for pure water and for a water-glycerin mixture at � = 10:5 cP, we observed the same trend.
However, the prefactor relating Vmax and f clearly depends on viscosity. These results demonstrate
that the case of water-glycerin mixture is out of the range of validity of scaling law (9). We come
back to this point in Sec. V.
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FIG. 5. Maximum velocity as a function of A2 f
h in (a) pure water and (b) water-glycerin mixture (� = 10:5 cP) and maximum

vorticity as a function of A2 f
hd in pure water (c) and in a water-glycerine mixture of � = 10:5 cP (d).

C. Vorticity

The in�uence of frequency and amplitude on �ow vorticity is also investigated. Invoking Stokes’
theorem, we expect vorticity 
 to be related to velocity v by

�

�C�
v � dl =

� �

�S�

 � dS: (10)

Vorticity maps (Fig. 3) emphasize the dependence of vortex shape on excitation amplitude and
frequency, so estimating �S� and hence choosing �C� are not straightforward. Vortices are con�ned
in the x direction, as con�rmed by �ow pro�les (see Fig. 4(c)), limited to the vibrating beam width,
yet they can stretch in the y direction without geometrical constraints (see Fig. 3(d)), with a typical
extension of l. Equation (10) thus scales as

v l � 
 ld: (11)

Introducing Eq. (9) and dropping l leads to


 �
A2

hd
!: (12)

Hence, vorticity should evolve in the same way as velocity, with A2!. Measuring maximum
(or minimum) vorticity deduced from the velocity �elds con�rms this prediction experimentally
(Figs. 5(c) and 5(d)). However, this vorticity trend based on scaling arguments shows a departure
from a purely linear relationship at relatively strong forcing, emphasized for low viscosities: vorticity
reaches a plateau as the forcing acceleration increases, as shown in Fig. 5(c), corresponding to the
generation of vortices on both sides of the beam (Fig. 3), where vorticity is redistributed.
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V. DISCUSSION

The scaling laws for both velocity and vorticity come out of a balance between inertia�generating
a steady �ow from the periodic forcing�and viscous dissipation con�ned in the boundary layer
around the vibrating beam. This reasoning leads to independence on viscosity, which remains relevant
only if h � �. Since � �

p
�=!, a departure from this scaling may occur at low frequencies (see

Fig. 5(b)). To illustrate this behavior qualitatively, let us look at Fig. 6, corresponding to experiments
performed with a water/glycerin mixture of � = 108:2 cP.

Increasing � turns the visible �ow patterns to a double-layer �ow, as noted by Stuart26 and Tat-
suno,21 as inner streaming takes over a larger part of the �ow �eld. Far from the transition between
these two �ows, the size of this layer is ruled by � and d but is independent on A, so at a given vis-
cosity, reducing the excitation frequency makes this layer more visible. As shown in Fig. 6, the �ow
generated by a 200 Hz vibration (Fig. 6(d)) exhibits two vortices, forming a jet away from the beam.
At 120 Hz (Fig. 6(c)), the inner streaming appears, formed by a pair of vortices directed towards the
beam and con�ned in a layer in front of it; the size of this layer increases as the frequency is reduced
(see Fig. 6(b)) until it expands to the whole cell at 10 Hz (Fig. 6(a)). Unlike for the outer streaming,
increasing the amplitude does not lead to a displacement of the inner vortices.

Furthermore, the transition from this double to a single layer �ow structure, corresponding to the
fast shrinkage of the inner layer as the frequency increases, seems to be in�uenced by the con�nement
provided by the Hele-Shaw con�guration. The gap h of the latter is likely to act as a cuto� length for
the vibrating beam size d, since the boundary layer thickness �, growing around the vibrating beam
(see Fig. 1), reaches the same order of magnitude. However, since d still a�ects the size of the outer
vortices and hence �ow expansion, it should be of interest in applications such as mixing or transfer
enhancement in con�ned geometries.

FIG. 6. Evidence of the inner (rotational) streaming �ow with a higher-viscosity liquid : superimposition of frames of �ows
generated by a d = 10:0 mm-width beam in water-glycerin mixture of � = 108:2 cP vibrating at A = 0:4 mm and f = 50 Hz
(a), f = 100 Hz (b), f = 120 Hz (c), and f = 200 Hz (d), corresponding exposure time 150 s. Thin (purple) and bold (red)
arrows indicate the rotation direction of the vortices in the inner and outer streaming, respectively.
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This expansion, regarded along the axis of vibration (black solid line in Fig. 4(a)), can be de-
composed into two parts: the distance between the end of the beam yb and the position ymax of the
maximum streaming velocity Vmax (see Fig. 4(d)) on the one hand, and the attenuation length s of the
velocity from ymax to the in�nity (Hele-Shaw cell dimensions) on the other. As the amplitude and the
frequency increase, the position of the maximum velocity Vmax shifts away from the beam. The dis-
tance ymax � yb consequently follows the f A2 trend given by scaling law Eq. (9) with no in�uence of
d. Further than ymax, the streaming velocity along the axis of vibration decreases with a characteristic
attenuation length s. Assuming an exponential decay, s is evaluated by a �t of the form (purple curve
on Fig. 4(d))

vy�y� = Vmax exp���y � ymax�=s� (13)

recalling that ymax and Vmax are known. As shown in Fig. 7, whatever the amplitude and frequency of
the excitation, s is comparable to d=2, half of the vibrating beam width.

A similar statement emerges from measuring the amplitudes A1 of the �ow harmonic response,
evidenced by oscillations of the seeding particles during one period, in the vicinity (dashed blue line in
Fig. 7(a)) of the axis of vibration of the beam (dashed purple line in Fig. 7(a)). A plot of A1, normalized
by its maximum value A1;m, versus the distance y � yb to the beam (Fig. 7(b)) suggests an exponential
decay. Following the same approach conducted to evaluated s, a characteristic attenuation length la
can be obtained by �tting this average amplitude with A1;o f f =A1;m + exp���y � yb�=la� (red curve in

FIG. 7. The �ow generated in a glycerin mixture (� = 10:5 cP) by a 10 mm-width vibrating beam at f = 50 Hz and
A = 2:3 mm (a). The white arrow indicates the vibration direction and the amplitude is delimited by white dashed line.
The region in which measurements were done is indicated by the two dashed blue lines around the axis of vibration (dashed
purple line). (b) The corresponding plot of measured amplitude A1=A1,m of the �uid harmonic response as a function of the
distance to the beam y � yb , from which we can extract an attenuation length la �tted by an exponential decrease plus an
o�set: exp���y � yb �=la � + A1,o�=A1,m (solid black line). (c) The attenuation length la from the �t of (b) and characteristic
length of decay s extracted from velocity pro�les along the axis of vibration as a function of A, the continuous and dashed
lines corresponding to the average values. (d) The decay length s as a function of A for several frequencies and beam widths
d, with continuous lines showing the average values.
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Fig. 7(b)), where A1,m is the maximal amplitude measured and A1,o� a �tting parameter corresponding
to an o�set on A1. As for the slope s emanating from the velocity y-pro�le (Fig. 4(d)), the evaluation
of la always returns a length close to d=2, whatever amplitude or frequency of the excitation within
our working range. In summary, the characteristic length of the decrease s of the second-order �ow
obtained from Fig. 4(d) is comparable to that extracted from the �rst-order oscillations of the �ow
in Fig. 7(b). Since this feature is not noticed in extended geometries, it could be attributed to the
two-dimensional con�nement of our geometry.

VI. CONCLUSION

Our study presents quantitative measurements on streaming �ows forced by mechanical vibra-
tions within a two-dimensionally con�ned geometry. We found behaviors which are analogous to
acoustically forced streaming �ows, because the vibrating object can be considered as a di�user of an
acoustic plane wave of wavelength much larger than the size of the vessel. This is typically the case in
ultrasonic wave-forced �ows in micro�uidics geometries. The results of our PIV measurements yield
simple scaling laws for the maximal velocity and vorticity and show the limitations of these laws,
especially in capturing the in�uence of viscosity and vibrating object size. The scaling law is valid
typically when the size of the boundary layer is less than other characteristic length of the problem,
primarily the thickness of the liquid gap. Therefore, the prescribed geometrical con�nement must be
taken into account in the �ow structure and spatial reach.

Ongoing work concerns viscous and size e�ects as well as �ow dynamics of the inner streaming.
The authors are currently working to reduce the scale of their experiments in order to study that kind
of streaming at microscale, particularly its e�ciency in mixing.
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