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Enhanced fluctuations of interacting particles confined in a box
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We study the position fluctuations of interacting particles aligned in a finite cell that avoid any crossing in
equilibrium with a thermal bath. The focus is put on the influence of the confining force directed along the cell
length. We show that the system may be modeled as a 1D chain of particles with identical masses, linked with
linear springs of varying spring constants. The confining force may be accounted for by linear springs linked to
the walls. When the confining force range is increased toward the inside of the chain, a paradoxical behavior is
exhibited. The outermost particles fluctuations are enhanced, whereas those of the inner particles are reduced. A
minimum of fluctuations is observed at a distance of the cell extremities that scales linearly with the confining
force range. Those features are in very good agreement with the model. Moreover, the simulations exhibit an
asymmetry in their fluctuations which is an anharmonic effect. It is characterized by the measurement of the
skewness, which is found to be strictly positive for the outer particles when the confining force is short ranged.
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I. INTRODUCTION

There has been much recent interest in the behavior of
Coulomb clusters. Relevant experiments concern ions in Paul
traps [1–4], dusty plasmas [5–7] trapped in electrostatic
potential wells, and charged metallic beads in a confinement
cell [8]. Ions interact with a long-ranged Coulomb potential,
whereas the dust particles are screened by the plasma and
interact with a Yukawa potential. Both configurations have
been studied in numerical simulations [9–11]. In those studies,
the charged particles are confined transversally in such a way
that they cannot cross each other and confined longitudinally
in a cell of finite length. This geometric ordering implies strong
correlations between the particles. Their thermal fluctuations at
equilibrium are described by their mean-square displacement
(MSD). The time evolution of the MSD have been the
focus of several studies [12–15] that have considered hard-
core interactions between particles in a line, with reflecting
boundary conditions at the extremities. When dealing with
finite systems with fixed boundary conditions, one expects
the MSD to saturate when all the particles have explored the
available space, with a saturation value that depends on the
position of the particle in the line. It is shown in Ref. [12] that
the shape of the MSD as a function of the particle index is a
parabola. This has been confirmed experimentally for chains
of cold trapped ions [1,10] or charged beads [8].

In this paper, we consider a finite system of particles
that interact with a screened electrostatic potential. They are
confined along a line by a transverse harmonic potential and
restricted to a cell of finite length by a longitudinal potential.
We focus on the influence of the longitudinal confinement force
on the thermal fluctuations. The interaction and confinement
are chosen in order to be comparable to the experimental
values in Ref. [8], but we take advantage of the numerical
simulations to extend this study toward parameter ranges that
are experimentally out of reach. The dynamics is defined
by a system of coupled Langevin equations and studied
numerically. We modelize the system as a chain of point
masses and springs in a thermal bath. The relevant stiffnesses
are uniquely determined once the equilibrium positions of the

particles are known from the simulations. We focus on the
long-time values of the MSD as a function of the particle index
and postpone the study of transitory behaviors to a forthcoming
paper [16].

As for hard-core interactions, the constant MSD value
reached at long times depends on the position of the particle
along the line. For perfectly reflecting walls, that is, for
a null confinement range, the particles are equidistant in
their equilibrium configuration. The largest fluctuations are
observed for the center particle, and they monotonously
decrease toward both extremities. When the confinement range
increases (for a given cell length), we exhibit an unexpected
result: There appears a minimum of the MSD at a finite
distance from the walls that scales roughly linearly with the
confinement range, as long as this latter is smaller than half the
cell length. Moreover, the MSD of the center particle decreases
with the confinement range, and the MSD of the outermost
particles increases, becoming even larger than that of the center
particle when the confinement extends on the whole cell. In this
case, the confinement enhances the diffusion. We show that this
behavior is peculiar to finite systems and may be interpreted
by considering how the shape of the normal modes of vibration
of the particles evolves with the confinement range.

This paper is organized as follows: in Sec. II we rapidly
describe the molecular dynamic algorithm used in our nu-
merical simulations. We specify the parameters and insist
on the averaging process. In Sec. III, we expose our model
of a chain of masses and springs in a thermal bath. We
classify the different kinds of confining forces according to
the stiffness values that they bring about. We also recall how
the determination of the eigenmodes of the chain provides
all relevant information about particle diffusion. Section IV
is devoted to the study of short-ranged confining potentials.
The eigenmodes are obtained analytically, using a method
developed by Montroll and Potts [17], and then the predictions
of the chain model are compared to the simulation data.
Section V is concerned with long-ranged confining potentials.
In this case, the eigenmodes are calculated numerically once
the equilibrium positions of the particles are known. We
discuss in Sec. VI an anharmonic effect that is evidenced by
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FIG. 1. Scheme of the system.

a nonzero skewness of the MSD histograms. A conclusion
(Sec. VII) sum up our results.

II. NUMERICS

A. Model and algorithm

The simulations are described at length in Ref. [18]. We
shortly summarize them below for the sake of completeness.
We consider (2N − 1) identical movable-point particles of
mass M located in the xy plane, submitted to a thermal bath
at temperature T . The particles are confined by a quadratic
potential in y in such a way that they cannot cross each other,
as if they were diffusing in a narrow channel of finite length L

(see Fig. 1). A natural length scale is, thus, the mean distance
in a homogeneous system, d ≡ L/(2N ).

Let rn = (xn,yn) be the position of the particle n. The origin
is taken as the middle of the cell left side. The particle is
submitted to the lateral confinement force −βyney of stiffness
β and along the x axis to the longitudinal repulsive confinement
forces Fw(xn) and Fw(L − xn) from the walls and to the
interaction force Fint(rn) from the other particles. Each pair
of particles (n,p) at respective positions rn and rp interact
with a screened electrostatic interaction described by the force

F0(rn − rp) = E0

λ0
K1

( |rn − rp|
λ0

)
, (1)

where K1 is the modified Bessel function of index 1 [19].
The constant λ0 is the characteristic decrease length of the
interaction and the constant E0 is its energy scale. The
interaction force thus reads,

Fint(rn) =
∑
p �=n

E0

λ0
K1

( |rn − rp|
λ0

)
rn − rp

|rn − rp| , (2)

where the summation extends to all particles in the chain. The
longitudinal confinement force is

Fw(r) = Ew

λw

(
λwπ

2r

)1/2(
1 + λw

2r

)
exp

(
− r

λw

)
(3)

and is specified by the constant λw, which is the characteristic
decrease length of the confinement potential, and by the
constant Ew, which is its energy scale. This expression
is analogous to the electrostatic confining potential in our
previous experiments [8]. The divergency of the potential at
small r is also numerically suitable. A plot of some examples
of those interaction forces is provided in Fig. 2.

We describe the dynamics with the Langevin equation,

M r̈n + Mγ ṙn − Fint(rn) − [Fw(xn) − Fw(L − xn)]ex

+βyney = μ(n,t), (4)

with γ the damping constant and with μ(n,t) the random force
applied on the particle n at time t . The random force has the
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FIG. 2. (Color online) Plot of the dimensionless force Fλ0/E0

as a function of the dimensionless distance r/d . (Solid blue line)
Interaction force, λ0 = d/4. (Dotted red line) Confinement force,
Ew = 0.1E0 and λw = d/2. (Dashed green line) Confinement force,
Ew = 0.5E0 and λw = 4d .

statistical properties of a white Gaussian noise,

〈μx(n,t)〉 = 0, 〈μy(n,t)〉 = 0, 〈μx(n,t)μy(n′,t ′)〉 = 0,

(5)

〈μx(n,t)μx(n′t ′)〉 = 〈μy(n,t)μy(n′,t ′)〉
= 2kBT Mγ δn,n′δ(t − t ′), (6)

where 〈·〉 means statistical averaging, where kB is Boltzmann’s
constant and where the Kronecker symbol δn,n′ is equal to 1 if
n = n′ and to 0 otherwise. As in Ref. [18], the simulation
is based on the Gillespie algorithm [20,21] that allows a
consistent time discretization of the Langevin equation. As
the initial condition, we put the required number of particles
at equidistant places in the cell and let the system evolve. The
quantity of interest is the MSD along the x direction,

〈�x2(n,t)〉 = 〈[x(n,t + t0) − x(n,t0)

−〈x(n,t + t0) − x(n,t0)〉]2〉, (7)

where t0 is an arbitrary initial time and n the index of the
particle under study. In the finite length configuration the
particles are not equivalent; hence, the ensemble averaging
has to be done for a given particle on different simulation runs.
The dynamics may be assumed to be stationary, so �x2(n,t)
do not depend on t0. For a given time t and a given particle
n, it thus makes sense to average on the initial time t0 which
greatly improves the statistics. This double averaging process
is described at length in Ref. [18].

B. Parameters of the simulation

In what follows, we vary the parameters (Ew,λw) in order
to test the influence of the confining force and keep the
other parameters constant. In most simulations, we study a
system of 33 particles (N = 17) in a cell of 60 mm, hence,
a mean interparticle distance d ≡ L/(2N ) = 1.76 mm. The
cell length L, the movable particles number (2N − 1), the
temperature T , and the interaction potential are, thus, fixed to
values that are close to the experimental ones in our previous
study [8]. However, we have also varied the particles number
in the range 8 � N � 66 at constant mean density and verified
that the system behavior is generic, whatever the value of N

[see below Sec. V B and, particularly, Fig. 12(a)].
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The length scale of the interaction potential is λ0 = d/4.
The dimensionless parameters d/λ0 and E0/(kBT ) ≈ 5 are
chosen to be of the same order of magnitude as in other
numerical [9–11] and experimental [5–8] studies. We let the
confinement length scale evolve between λw = d/4 and λw =
15d (this latter value corresponding to half the cell length) and
let the confinement energy evolve between Ew = E0/200 and
Ew = E0/2.

The long-time limit of the MSD is independent from the
dissipation, as shown by Eq. (20), but the duration of the
simulations increases with γ because the time step has to
be much shorter than γ −1 and because the asymptotic regime
is reached after longer transitory behaviors. We thus choose
γ = 1 s−1 for convenience in almost all simulations described
in what follows.

C. Statistical averaging

An important matter is the number of simulation runs
required to obtain reproducible results, in particular for higher
values of γ . We have, therefore, undertaken two consistency
checks. Since the system is obviously symmetric with respect
to the center of the cell, the particles equilibrium positions
and their stationary MSD values have to exhibit this symmetry
when plotted as functions of the particles index. We have,
thus, carefully checked the symmetry of the MSD plots for
each parameter set. In order to make the strongest possible
test, we have chosen the case of a long-ranged confining force,
because this configuration is quite unfavorable as far as the
calculation time is concerned.

The long-time MSD is plotted in Fig. 3 for several values of
γ ranging between γ = 1 and γ = 20 s−1. A sample without
averaging is given as an example, showing a MSD that is
indeed not symmetric around the cell center. The result of
only averaging four runs for γ = 20 s−1 is also displayed. With
this insufficient averaging, some asymmetry is still observed.
In contrast, it is clearly seen that the symmetry is recovered
after sufficient averaging. The data for γ = 1 and γ = 5 s−1

have been averaged on 10 samples, and those for γ = 20 s−1

have been averaged on 30 samples. They do not display any
significant asymmetry.

The MSD in the saturated regime has to be independent
on the dissipation γ , which controlled the dynamics only.
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FIG. 3. (Color online) Plot of dimensionless MSD 〈�u(n)2〉 as
a function of particle position n for a system of 33 particles, λw =
8.25d and Ew = 0.1E0. (Blue disks) γ = 1 s−1 and 10 averages; (red
squares) γ = 5 s−1 and 10 averages; (green triangles) γ = 20 s−1 and
30 averages. Open black diamonds correspond to no averaging; open
orange triangles correspond to averaging only four numerical runs.

This constitutes a second consistency check of our simulation
data. As shown by Fig. 3, once correctly averaged, the MSD
curves for γ = 1, γ = 5, and γ = 20 s−1 indeed collapse on
the same curve, if one considers the data averaged on four
runs only. It is clear that the fluctuations of the outermost
particles have reached their stationary regime, in contrast with
the inner particles. This comes from the fact that the particle
characteristic dynamical times are much greater for the inner
particles than for the outermost ones, as will be discussed in a
forthcoming paper [16].

This study lead us to reconsider our previous work [8].
Here we have reported on a “camel back” shape for some
MSD curves, which is not observed in simulations with
proper averaging. The experimental dissipation coefficient
was roughly γ = 10 s−1, and we now interpret this shape
as a spurious effect due to lack of averaging for the inner
particles. We see in Fig. 3 that even when averaging four
runs the statistics is insufficient for the particles near the cell
center. We may interpret the necessity of a longer averaging
to get the long-time behavior of the inner particles from the
time evolution of the normal modes that describe the chain
dynamics. The dynamics of the inner particles is mostly
due to that of the low-frequency modes. Let τD be the
characteristic decrease time associated to the component ωs

of a perturbation. We have τD ∼ Q/ωs , where Q = ωs/γ is
the quality factor. For a total duration Texp, the number of
perturbations of frequency ωs is Npert ∼ Texp/τs . The noise in
the MSD measurements scales as

√
Npert ∝ √

γ /(ωs

√
Texp).

The noise is, thus, greater for the lower-frequency modes and,
thus, for the inner particles.

III. INTERACTING PARTICLES IN A BOX

A. A chain of masses and springs

We modelize the system Eq. (4) as a strictly 1D config-
uration of (2N + 1) particles, among which (2N − 1) are
movable, in an interval of length L of the x axis, at positions
xn with n ∈ [−N,N ]. At both ends, two fixed particles such
that x(±N,t) = ±L/2 for all time t represent the walls. We
assume nearest-neighbor interactions between the particles. In
order to take into account the confinement force, we assume
in the general case that each particle interacts with both walls.

From a given simulation run, the statistically averaged
positions of the particles at long times give their equilibrium
positions. Since we know all the interactions and confining
forces, those equilibrium positions may also be calculated
from the Newton equations. The equilibrium position x∗

n of
a particle n, with n ∈ [−N + 1,N − 1], is, thus, given by

Fw(x∗
n) −Fw(L − x∗

n) + F0(x∗
n − x∗

n−1) − F0(x∗
n+1 − x∗

n) = 0,

(8)

where the forces F0 and Fw are given in Eqs. (2) and (3).
Let us define the interparticle equilibrium distances dn =

x∗
n − x∗

n−1. The thermal fluctuations induce small displace-
ments un of the particles around their equilibrium positions x∗

n ,
such that xn(t) = x∗

n + un(t) with |un| 
 dn. The dynamics of
the interacting particles may be described by that of a chain
of identical point particles of mass M linked by linear springs
to their neighbors. The confinement is accounted for, in the
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kn 1 kn

knw left knw right

N Nn 1 n n 1

FIG. 4. Schematic description of the chain model. The walls are
the gray rectangles. An arbitrary particle of index n and its two
neighbors are represented as black dots. They are linked by springs
of stiffnesses kn−1 and kn, and each particle is linked to the left (right)
wall by a spring of stiffness (kw

n )left [(kw
n )right].

general case, by other linear springs linked between each
particle and both walls. The spring stiffnesses are deduced
from the forces as

kn ≡ −∂F0

∂x
(dn),

(9)

kw
n ≡ (

kw
n

)
left + (

kw
n

)
right ≡ −∂Fw

∂x
(x∗

n) − ∂Fw

∂x
(L − x∗

n),

which are, thus, completely determined by the equilibrium
positions of the particles x∗

n = 〈xn〉. A schematic description
of the model is provided in Fig. 4.

When we vary the confinement force parameters λw and Ew,
three different configurations may be exhibited. A confining
potential is short-ranged if each wall interacts with the nearest
particle only. Two examples for which the wall influence is
limited to the outermost particles are represented in Figs. 5(a)
and 5(b), where we plot dn as a function of the particle index. It
is clear that the interparticle distance is a constant d, differing
from the distance dw between the outermost particles and
the neighboring wall. The chain model is, therefore, greatly
simplified, with a constant kw between the outermost particles
and the neighboring wall and a constant kn = k between all
other adjoining particles.

We define kw = k(1 − ε), where the constant ε ∈ [−∞,1].
The value ε = 0 corresponds to a uniform chain with kw = k,
and separates the hard wall configurations (ε < 0, kw > k)
from the soft wall configurations (ε > 0, kw < k). The Fig. 5(a)
illustrates the hard wall situation for which dw < d and kw > k,
with ε = −2.17, whereas Fig. 5(b) illustrates the soft wall
situation for which dw > d and kw < k, with ε = +0.42.

In the third configuration, long-ranged confinement, the
wall influence extends more toward the interior of the chain,
as shown in Figs. 6(a) and 6(b), where we show the interparticle
distances dn/d as a function of the particle indices. Such
distributions of equilibrium positions are observed for charged
ions in Paul traps [1,2,10,11], for confined plasma dusts [7],
and for charged metallic beads [8].

In order to describe accurately those latter situations, we
must, therefore, assume that the stiffness kn between particles
n and n + 1 actually depends on their index and introduce
for each particle a link with the walls, of stiffness kw

n , that
describes the confinement. The index-dependent stiffnesses
are displayed in Figs. 6(c) and 6(d), and the stiffnesses between
the beads and the left wall are displayed in Figs. 6(e) and 6(f)
(those with the right wall are obviously symmetric).

The difference between the columns of Fig. 6 consists in
the length scale λw of the confining force, which is roughly
doubled in the right column, whereas the amplitude Ew is
kept constant. The distance between the outermost particle and
the wall (d±16/d > 1) increases with the confinement range,
which indicates an overall compression of the chain. This is
confirmed by the interparticle distance in the middle of the
chain, which is 0.88 d for Fig. 6(a) and 0.82 d for Fig. 6(b). In
the same fashion, the interparticles stiffness is more dependent
on the index when the confinement range is increased [compare
Fig. 6(c) with Fig. 6(d)] and the wall influence extends at larger
distances from the walls [compare Fig. 6(e) with Fig. 6(f)].

The equations of motion for the chain are readily obtained
from Eq. (4) if we restrict all motions along the x axis and
develop to first order in the small quantity un. We get a set of
coupled Langevin equations,

Mün = knun−1 − (
kw
n + kn + kn+1

)
un + kn+1un+1

−Mγ u̇n + μ(n,t), (10)

where −N � n � N and with u(−N,t) = u(N,t) = 0. This
1D modelization is consistent because of the lateral con-
finement imposed in our simulations [see Eq. (4)]. We have
checked that, in the simulations, all particles are indeed aligned
along the cell axis at equilibrium with 〈yn〉 = 0 when they
have reached thermal equilibrium. We have also checked that,
for each particle, 〈�y2(n,t)〉 = kBT /β. This is the MSD for
a particle in a harmonic potential of stiffness β, showing
that the longitudinal and transverse motions are decoupled.
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FIG. 5. (Color online) Plot of interparticle distances dn/d as a function of the particle index n for 33 particles (N = 17) and short-ranged
confinement. (a) Hard wall, λw = 0.27 d , Ew = 0.0095 E0, ε = −2.17. (b) Soft wall, λw = 0.57 d , Ew = 0.1 E0, ε = +0.42.
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FIG. 6. (Color online) [(a) and (b)] Plot of dimensionless interparticle distances dn/d . [(c) and (d)] Plot of dimensionless interparticle
stiffnesses kn/k(d). [(e) and (f)] Plot of dimensionless stiffnesses between a particle and the left wall kw

n /k(d), as a function of the particle
index n, for N = 17. (Left plots) λw = 4 d , Ew = 0.1 E0. (Right plots) λw = 8.5 d , Ew = 0.1 E0.

Moreover, the transverse confining stiffness β is such that
〈�y2(n,t)〉 
 〈�u2(n,t)〉.

B. The range of the confining potential

It is convenient to identify the confinement potential length
scale λw and energy scale Ew which result in short-ranged
(either hard or soft walls) and long-ranged potentials.

In the short-ranged confinement case, each wall only has
an effect on the nearest outermost particle. Hence, all particles
in the chain only interact with their nearest neighbors, and the
calculation of their equilibirum positions is particularly simple.
The distance between neighboring particles is a constant
d, which automatically ensures consistency with Eq. (8)
for i ∈ [−N + 2,N − 2]. Let dw be the distance between
the outermost particles and the nearby wall. Knowing that
dw + (N − 1)d = L/2, the only nontrivial equation deduced
from Eq. (8) reads,

Fw(Ew,λw,dw) = F0[E0,λ0,d(dw)]. (11)

Let kw be the stiffness between each outermost particle and
the nearby wall and k the stiffness between adjacent particles,

so kw = k(1 − ε), where (ε � 1). We have

∂Fw

∂x
(Ew,λw,dw) = (1 − ε)

∂F0

∂x
[E0,λ0,d(dw)]. (12)

The limit between soft and hard wall configurations takes place
at ε = 0. Since Fw ∝ Ew for a given length scale λw, the
relevant values of dw are the solutions to the equation

1 =
∂Fw

∂x
(Ew,λw,dw)F0[E0,λ0,d(dw)]

∂F0
∂x

[E0,λ0,d(dw)]Fw(Ew,λw,dw)
. (13)

The amplitude Ew is then deduced from Eq. (11), thus giving
the curve in the plane (λw,Ew) that separates hard walls from
soft walls. This is the dashed red curve in Fig. 7.

Obviously, Eqs. (11) and (12) are valid when the confining
potential extends toward the outermost particles only. We
define as short-ranged potentials those for which the stiffness
between the wall and the next-nearest particle is less than
6% of the stiffness between adjacent particles. In contrast
with the criterion used in Eq. (13) which is unambiguous,
this coefficient 0.06 is somewhat arbitrary (but small, as
it should be). Its value has been chosen for consistency
with another criterion which discriminates unambiguously
long-ranged confining forces from short-ranged ones, which is
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FIG. 7. (Color online) Diagram in the plane (λw/λ0,Ew/E0), with
both axis in logarithmic scales. The dashed red curve separates hard
wall short-ranged potentials (HW) from soft wall ones (SW); see
Eq. (13). The solid green curve separates short-ranged potentials
from long-ranged potentials (LR); see Eq. (14). (Orange circles)
Simulations showing a bell-shaped MSD; see Sec. IV B. (Purple
squares) Simulations exhibiting a change of sign for the curvature
of the MSD; see Sec. V B.

introduced in Sec. V B and based on the shape of the MSD as
a function of the particle indices. For a given λw, the relevant
distance dw is, thus, given by

0.06 =
∂Fw

∂x
[Ew,λw,dw + d(dw)]
∂F0
∂x

[E0,λ0,d(dw)]
. (14)

Equation (11) then gives the amplitude Ew, thus the curve in
the plane (λw,Ew) that separates short-ranged potentials from
long-ranged ones. This is the solid green curve in Fig. 7. It is
noticeable that a confining force is short ranged either if its
characteristic length scale λw is small whatever its amplitude,
which is quite obvious, but also if its amplitude Ew is very
small even with a great length scale.

To illustrate this point, let us return to the two examples of
short-ranged confinement are displayed in Fig. 5. The distance
between particles is indeed a constant d, differing from the
distance dw between each outermost particle and the nearby
wall. For Fig. 5(a), λw ≈ λ0 and Ew ≈ E0/100. We may
deduce from Eq. (12) the value of the constant ε, which is
−2.17. The relevant point in the plane (λw,Ew) indeed takes
place in the short-ranged hard wall region (HW) of the diagram
displayed in Fig. 7. For Fig. 5(b), λw ≈ 2λ0 and Ew ≈ E0/10.
In this case, the value of the constant ε is +0.42. The relevant
point takes place in the short-ranged soft wall region (SW)
of the diagram displayed in Fig. 7, which is consistent with
ε > 0.

C. Variance calculations

A complete description of the chain dynamics is obtained
when the (2N − 1) normal modes of vibrations are identified,
as done in Ref. [18]. The characteristic matrix associated to
the system of equations (10) is the sparse symmetric matrix,

Spn = knδp,n−1 − (
kw
n + kn + kn+1

)
δn,p + kn+1δp,n+1. (15)

The characteristic frequencies ωs are given by the eigenvalues
σs of Spn, with ω2

s = σs/M . The normal modes Us are the

eigenvectors of this matrix, with components Us(n). The
displacement u(n,t) of a given particle n at time t is expressed
in terms of the normal modes as u(n,t) = ∑2N−1

s=1 Xs(t)Us(n).
We thus may recast Eq. (10) as

2N−1∑
s=1

MẌsUs(n) =
N∑

n′=−N

2N−1∑
s=1

Snn′XsUs(n
′)

−Mγ

2N−1∑
s=1

ẊsUs(n) + μ(n,t). (16)

Taking the scalar product with the mode Us ′ , using the or-
thonormality Us · Us ′ = δss ′ , and the definition of eigenmodes∑N

n′=−N Snn′Us(n′) = −Mω2
s Us(n), we get

Ẍs + ω2
s Xs + γ Ẋs = μ̃(s,t)

M
, (17)

where we have defined μ̃(s,t) = ∑N
n=−N Us(n)μ(n,t) and

renamed s the dummy index s ′. It is easy to calculate the
correlations of the random force μ̃(s,t) from Eq. (6),

〈μ̃(s,t)μ̃(s ′,t ′)〉 =
N∑

n=−N

N∑
n′=−N

Us(n)Us(n
′)〈μ(n,t)μ(n′,t ′)〉

= 2kBT Mγ δs,s ′δ(t − t ′), (18)

which establishes the obvious physical property that the
fluctuations of different modes are uncorrelated.

The MSD of the particle n is

〈�u(n,t)2〉 =
2N−1∑
s=1

Us(n)2〈�X2
s (t)

〉
, (19)

where we have used the orthogonality of the normal modes.
From the equipartition theorem, all modes saturate at long
times toward the value 2kBT /(Mω2

s ). The asymptotic value of
the MSD for the particle n is, thus,

lim
t→∞〈�u(n,t)2〉 ≡ 〈�u(n)2〉 = 2kBT

M

2N−1∑
s=1

Us(n)2

ω2
s

. (20)

IV. SHORT-RANGED CONFINING POTENTIALS

A. Normal mode calculation

For short-ranged confinement, the normal modes may be
determined analytically, using a method of Montroll and Potts
[17] for a chain with mass impurities. We treat the case of
impurities characterized by different stiffnesses. Let us assume
that the spring between the two particles −m − 1 and −m

(respectively, m and m + 1) is of stiffness k′, with all others
stiffnesses being equal to k. The normal modes of Eq. (10)
may be searched as un(t) = U (n)eiωt , where i2 = −1 and

U (n) =

⎧⎪⎨⎪⎩
A sin(N + n)φ if n > m

B sin(N − n)φ if n < −m,

Ceinφ + De−inφ otherwise.

(21)

The equations for all particles except those at ±m and those at
±(m + 1) are satisfied if

Mω2 = 2k(1 − cos φ), (22)
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which gives the frequency ω as a function of the parameter
φ. The constants A, B, C, and D are determined by the
equations of motions for particles −m − 1, −m, m, and m + 1.
Introducing k′ = k(1 − ε), a little algebra gives

(A + B)[ε sin(N − m − 1)φ − sin(N − m)φ]

= −2(1 − ε)(C + D) cos mφ,

(A + B)(1 − ε) sin(N − m − 1)φ

= −2(C + D)[ε cos mφ − cos(m + 1)φ],
(23)

(A − B)[ε sin(N − m − 1)φ − sin(N − m)φ]

= −2i(1 − ε)(C − D) sin mφ,

(A − B)(1 − ε) sin(N − m − 1)φ

= −2i(C − D)[ε sin mφ − sin(m + 1)φ],

leading us to distinguish even modes (A = B,C = D) from
odd ones (A = −B,C = −D).

In our case, the peculiar links are between the outermost
particles and the walls, so m = ±(N − 1) and k′ = kw. The
characteristic frequencies are given by

ε cos(N − 1)φs = cos Nφs, (even modes),
(24)

ε sin(N − 1)φ′
s = sin Nφ′

s , (odd modes).

With soft walls (that is, ε > 0, kw < k), there are N even modes
and N − 1 odd modes with real parameters φs and φ′

s . The roots
are located between adjacent zeros of, respectively, cos(Nφs)
and sin(Nφs) and, thus, very easy to find numerically.

With hard walls we have ε < 0 and kw > k. When ε < −1,
the highest-frequency modes are no longer given by Eq. (24).

They are recovered assuming a complex φ = π + iψ , which
gives

|ε| cosh(N − 1)ψN = cosh NψN, (when ε < −1),

|ε| sinh(N − 1)ψ ′
N−1 = sinh Nψ ′

N−1, (25)

[when ε < −N/(N − 1)].

The frequency is then such that Mω2 = 2k(1 + cosh ψ). It
is not surprising to get higher frequencies than in the case
of soft walls and real φ as in Eq. (22), since two springs
have been replaced by springs of higher stiffnesses. The
appearance of a complex parameter with imaginary part ψ ,
hence, of a nonpropagative mode with oscillations located at
the extremities of the chain, is reminiscent of the localized
mode that appears in a semi-infinite chain when the spring at
the free extremity is replaced by one of higher stiffness [22].

With the frequencies given by Eqs. (24) or (25), the normal
modes are known and read

Us(n) = Cs cos nφs,

C2
s

N−1∑
n=−N+1

cos2 nφs = 1, (even modes),

(26)
Us(n) = Cs sin nφ′

s ,

C2
s

N−1∑
n=−N+1

sin2 nφ′
s = 1, (odd modes),

where the circular trigonometric functions are replaced by
their hyperbolic analogs when complex values of φ have to be
considered. For the sake of comparison and further reference,
we recall that, for a homogeneous chain (kw = k or ε = 0),
the normal modes are given by

ω2
p = 4

k

M
sin2 pπ

4N
, Up(n) =

{
(1/

√
N ) sin [pπn/(2N )] , (odd modes,p even),

(1/
√

N ) cos [pπn/(2N )] , (even modes,p odd),
(27)

Several modes for short-ranged potentials (26) are dis-
played in Fig. 8 for soft and hard walls. The low-frequency
modes are very similar and do not differ much from the modes
of a homogeneous chain [see Figs. 10(a) and 10(b)]. On the
contrary, the high-frequency modes in the hard wall case are
nothing like those for the soft wall. As seen in Figs. 8(c) and
8(d), the motion of the inner particles is almost completely
suppressed. The physical interpretation is clear: The highest
frequencies in the hard wall case (kw > k) are greater than the
cutoff frequency of the homogeneous chain with stiffness k,
so the motion does not propagate from the outer particles
toward the inner ones. The highest-frequency modes are,
hence, localized close to the chain extremities [22].

B. Saturation values of the MSD

The normal modes (26) allow the calculation of the MSD
of each particle at long time (20). A comparison of simulation
data for hard walls and soft walls is shown in Fig. 9. The
calculations of the MSD are in very good agreement with

the data. The MSD of the outer particles is smaller for hard
walls, which is consistent with the shape of the normal modes
displayed in Fig. 8. In Eq. (20), the mode’s amplitude is
weighted by the squared normal frequency, which enhances
the importance of the low-frequency modes. For the low-
frequency modes, the motion of the inner (outer) particles is
indeed greater (smaller) in the hard (soft) wall configuration.
This is consistent with the fact that the outermost particles are
linked to the wall by a harder spring than the inner ones. The
MSD of the inner particles is larger, because the interparticle
distance is larger for the hard wall configuration, as shown by
the comparison of Figs. 5(a) with 5(b).

This shape of the MSD distribution, maximum for the center
bead and minimum for the outermost beads, is characteristic
of short-ranged potentials. It is observed for all circles placed
on the graph in Fig. 7, which are all short-ranged in the sense
of the definition given in Sec. III B, see Eq. (14). The same
shape is also observed in finite systems of hard-core interacting
particles with reflecting boundaries [12]. It was shown in Ref.
[8] that, for our experimental conditions, which are roughly
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FIG. 8. (Color online) Plot of the normalized amplitude of the normal modes of a chain of 33 particles as a function of the particle’s
index for short-ranged confinement. Blue circles denote a soft wall configuration ε = 0.42 and red squares denote a hard wall configuration
ε = −2.17. (a) Mode s = 1. (b) Mode s = 2. (c) Mode s = 32. (d) Mode s = 33. The modes are ordered by increasing frequency.

the same as in our simulations, the shape of this curve is a
parabola.

V. LONG-RANGED CONFINING POTENTIALS

A. Normal modes calculation

In that case, we cannot get an analytic expression for the
normal modes, but we may numerically obtain the eigenvalues
and eigenvectors of the matrix Spn that sum up all information
on the system [see Eq. (15)]. Some modes are plotted in
Fig. 10. They differ considerably from those for short-ranged
potentials (see Fig. 8). Because of the confinement, the
high-frequency modes are almost suppressed for the outer
beads, whereas the low-frequency modes are emphasized. This
has strong consequences on the long-time MSD, because we
see in Eq. (19) that the normal mode amplitude is divided

15 10 5 0 5 10 15
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0.08

0.10

index n

u
n

2

FIG. 9. (Color online) Plot of dimensionless MSD 〈�u(n)2〉/d2

as a function of index n, for 33 particles and short-ranged confine-
ment. Simulations are accounted for by discrete symbols, calculations
by solid lines of the same color. (Blue disks) Hard wall, λw = 0.27 d ,
Ew = 0.0095 E0 [see Fig. 5(a)]. (Green solid squares) Soft wall,
λw = 0.57 d , Ew = 0.1 E0 [see Fig. 5(b)].

by the squared frequency ω2
s , hence, that the low-frequency

contributions are dominant.

B. Saturation values of the MSD

In order to discuss the long-ranged confinement force,
we plot the long-time values of the MSD in Figs. 11(a)
and 11(b) for an interaction strength Ew = 0.1 E0 and a
confinement range λw increasing from 0.57 d up to 17.0 d

and in Fig. 11(c) for a confinement range λw = 8.50 d and
an interaction strength increasing from Ew = 0.005 E0 up to
Ew = 0.5 E0. The configurations (λw = 0.57 d,Ew = 0.1 E0)
and (λw = 8.50 d,Ew = 0.005 E0) both correspond to short-
ranged potentials, and the respective MSD plots have the same
shape as inw Fig. 9. The other configurations belongs to the
long-ranged potentials domain in plane (λw,Ew).

In those cases, we see that the shape of the MSD plot as
a function of the particle index differs from what it was for
short-ranged potentials, progressively losing its bell-shaped
appearance the further the relevant point in plane (λw,Ew)
moves away the solid green line toward the LR area. The
MSD as a function of the particle index ceases to be convex, in
contrast with the case of short-ranged potentials, as shown by
Fig. 9. This justifies a posteriori the numerical value used in
Eq. (14) since points (λw,Ew) corresponding to a nonconvex
MSD distribution take place above the curve defined by
Eq. (14). It is noteworthy that this perfect agreement between
both criteria allows us to determine the confinement range
directly from the MSD distribution measurements.

When the confinement parameters take place in the LR
area of the diagram Fig. 7, a somewhat paradoxical effect
takes place. The fluctuations of the outermost particles are
strongly enhanced, while those of the inner particles are
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FIG. 10. (Color online) Normalized amplitude of the normal modes for 33 particles as a function of the particle’s index. The blue solid
disks show for reference the modes of a homogeneous chain Eq. (27) and the open red squares the modes for a confinement range λw = 3.96 d

and Ew = 0.1E0. (a) Mode s = 1. In the inset we plot the frequency spectrum ωs (Hz) as a function of the mode index s for a chain of 33
particles. (Solid line) Homogeneous chain; (red circles) confinement range λw = 3.96 d and Ew = 0.1E0. (b) Mode s = 2. (c) Mode s = 32.
(d) Mode s = 33. The modes are ordered by increasing frequencies.

reduced, until they become lower than the fluctuations of
the outermost particles for the longest-range confining force,
with (λw = 31.28 λ0,Ew = 0.5 E0) [see the orange triangles

in Fig. 11(c)]. This enhancement of the fluctuations may reach
a factor 4 and do not increase much when λw is greater than
14.57 λ0 for Ew = 0.1E0 [see Fig. 11(b)]. Not only is this
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FIG. 11. (Color online) Plot of dimensionless MSD 〈�u(n)2〉/d2
as a function of particle position n for 33 particles and γ = 1 s−1.

Discrete symbols simulations data, averaged 10 times; solid lines, with the same color code, calculations from Eq. (19). (a) Ew = 0.1E0; (violet
disk) λw = 2.10 λ0, (red triangles) λw = 8.35 λ0, and (orange squares) λw = 14.57 λ0. (b) Ew = 0.1E0; (green disks) λw = 22.93 λ0, (blue
triangles) λw = 31.28 λ0, and (black squares) λw = 62.56 λ0. (c) λw = 31.28 λ0; (green disks) Ew = 0.005 E0, (red squares) Ew = 0.02 E0,
(blue triangles) Ew = 0.1 E0 and (orange diamonds) Ew = 0.5 E0. (d) Ew = 0.1E0, λw = 31.28 λ0. (Blue triangles) Same curve as in (b).
(Red diamonds) Simulations restricted to nearest-neighbors interactions.
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FIG. 12. (Color online) (a) Plot of xmin (in mm) as a function of the (dimensionless) potential range λw/d for a fixed value d = 60/34 mm
and a fixed potential amplitude Ew = 0.1E0. The particles number are, respectively, 16 (green diamonds), 33 (red disks), 66 (blue squares),
and 132 (purple triangles). (b) Value of the MSD (in mm2) for the central particle (red disks) and the outer particles (blue squares) as a function
of λw/d for a system of 33 particles.

effect strong, but it is also very sensitive to the confining force
range. Indeed, a typical lengthscale λw ≈ 4d is sufficient to
reach the highest values of the outermost particles fluctuations.
The inner particles fluctuations are reduced by, at most, a factor
2 for the largest λw, so the reduction of fluctuations for the inner
particles is much more gradual than the enhancement of the
fluctuations for the outer particles.

As was already noted, the shape of the MSD as a function
of the particles index is very different for long-ranged confine-
ment than for short-ranged ones. As soon as the parameters
(λw,Ew) take place in the LR area of Fig. 7, the fluctuations for
the immediate neighbors of the outermost beads are minimal.
When λw increases, the distance xmin between the confining
walls and the particles exhibiting those minima increases, the
MSD of the outermost particle increases, and the MSD of
the center particle decreases. Those results are summarized in
Fig. 12.

In Fig. 12(a) we plot xmin as a function of λw at constant Ew.
For 33 particles, the position of the minimum scales linearly
at small λw and then seems to saturate. This saturation is a
finite-size effect. In order to verify this interpretation, we have
varied the particle number, keeping the mean interparticle
distance d constant. In every case a minimum of the MSD
appear at a distance xmin from each wall, and this distance
scales linearly with λw at small λw. For the smaller system
(16 particles) the saturation is very clear, while for the larger
system (132 particles) the linear evolution is effective up
to λw = 17d . The saturation value is about half the cell
length.

The data displayed in Fig. 12(b) show that the MSD for
the center (outermost) particle decreases (increases) with the
confinement range. Eventually, the MSD for the outermost
particle is greater than for the center one. The same behavior
is always observed, whatever the particle number, at fixed d .

A look at the structure of the normal modes, as in Fig. 10,
may explain this behavior. The lowest-frequency modes [see
Figs. 10(a) and 10(b)] roughly keep their shape, but the
motion of the outermost particle is enhanced while that of
the center particle is reduced. This is due to the fact that
the link between the outermost particle and the fixed wall
is of low stiffness, whereas most of the other particles are
linked with higher-stiffness springs, as shown by Figs. 6(c)
and 6(d). The contribution of the low-frequency modes to

the sum in Eq. (20) increases the relative contribution of the
outermost particle. Considering now the highest-frequency
modes [see Figs. 10(c) and 10(d)], we see that the motion
of the particles near both extremities is almost completely
suppressed, with a typical length scale equal to λw. This
is of no consequence for the outermost particle, because
its dynamics is completely dominated by the low-frequency
modes. In contrast, the suppression of the high-frequency
motion significantly reduces the size of the fluctuations of
the other outer particles. This justifies the appearance of a
minimum of MSD at a finite distance from the extremities and
indicates that the position of this minimum should scale as λw,
as shown in Fig. 12(a). Moreover, increasing the confinement
range λw reduces the amplitude of the center particle MSD and
increases that of the outer particles at low frequency. Since the
contributions to the sum in Eq. (20) are weighted by the factor
1/ω2

s , this explains why the fluctuations decrease for the center
particle and increase for the outermost particle when λw rises,
as shown in Fig. 12(b).

In Figs. 11(a)–11(c), we plot the theoretical prediction for
the MSD, deduced from Eq. (20) and the calculation of the nor-
mal modes based on the equilibrium positions of the particles
and on the assumption of nearest-neighbor interactions. The
agreement between simulations and calculations is excellent.
Some discrepancies appear for the inner particles only, for
the longest-ranged confining force, as evidenced by the data
displayed as blue triangles in Fig. 11(d) [they are the same as in
Fig. 11(b) with a different scale]. When the particles are most
strongly confined, the distances between the inner particles is
so short that the assumption of interactions restricted to nearest
neighbors ceases to be correct. Indeed, when we undertake
a simulation restricted to nearest-neighbors interactions, as
shown by the red diamonds in Fig. 11(d), the agreement
between the simulations and the model is almost perfect. This
reveals some limitations of the chain model but constitutes a
minor quantitative effect, and taking into account interactions
extended to more than the nearest neighbors should be an
undue complication.

VI. ANHARMONIC EFFECTS

In a chain of particles harmonically bounded to their
neighbors and the confining walls, the fluctuations around the
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FIG. 13. (Color online) Plot of the skewness as a function of index n, for 33 particles, in a half cell. The center particle has index 0. (Inserts)
The position histograms (translated for convenience) for the outermost particles and the center one. Left plot, short-ranged confinements: red
disks λw = λ0, Ew = 0.095E0, (green squares) λw = 2λ0, Ew = 0.1E0, (blue diamonds) λw = 15λ0, Ew = 0.005E0. Right plot, long-ranged
confinements: confinement amplitude Ew = 0.1E0. (Gray disks) λw = 15λ0; (purple squares) λw = 30λ0.

equilibrium have to be symmetrical since each particle is in the
bottom of a parabolic well. This is also obvious for the normal
modes, which behave like damped harmonic oscillators [see
Eq. (17)]. However, asymmetrical fluctuation histograms were
observed experimentally for the outermost particles [8]. This
is, thus, an anharmonic effect, showing that the linear springs
chain cannot explain this feature of the confined particles
dynamics. An efficient way to measure the asymmetry of a
statistical distribution is to calculate the skewness, which is
defined as 〈(x − 〈x〉)3〉/〈�x2〉3/2 (see, e.g., Ref. [23]).

The skewness measurements are plotted in Fig. 13 as a
function of the particle indices. In the left plot, we display data
for a short-ranged confining force. The simulations data are in
agreement with the experimental observations. The skewness
is indeed nonzero, decreasing with the distance from the wall
for a given confining force. We see also that the shorter
the range of the confining force, the greater the skewness.
For the outermost particles, the asymmetry is sufficiently
high to be observed right away on the position histograms.
Because of obvious symmetry argument, the skewness should
be zero for the center particle. The nonzero value measured
for this particle gives an indication of the error bars of such
measurements.

We display in the right plot of Fig. 13 the skewness for
a long-ranged confining force. The skewness remains very
small whatever the particle under consideration. In fact, the
amplitude of the skewness for the center particle (n = 0) is
under the error bar and is null by symmetry. The histograms
plotted in the inset of the right plot in Fig. 13 are the same for
every particle. When the confining force range is increased, the
asymmetry of the position histograms observed in the short-
ranged case disappears.

Such an effect has been predicted by Lizana and
Ambjörnsson [14] for hard spheres confined by perfectly
reflecting walls. In this model, the confining force is of stricly
null range and the asymmetry of the histograms for the outer
particles is strongly emphasized. It is, thus, consistent to
observe such an asymmetry in our system with non-zero-
ranged forces for the shorter-ranged confining forces. An
asymmetry of the fluctuation histograms for the outermost
particles has also been reported previously in our experiments

[8]. We have checked that the parameters of the confining force
in our experiments are close to the short-ranged area defined
in Fig. 7, which is consistent with the behaviors observed in
the simulations.

VII. CONCLUSION

In this paper we studied the position fluctuations (the
MSD) of interacting particles aligned in a finite cell, when
they are in equilibrium with a thermal bath. We focus on the
influence of the longitudinal confining force, keeping constant
all other parameters in the simulation (e.g., particle number,
temperature, and interaction potential).

We modelize the system as a chain of particles strictly
aligned along a line, with identical masses, linked with linear
springs of varying spring constants. We added to each particle
two linear springs bound to each cell extremity to take into
account the confining forces. We show that once the normal
modes of vibrations are known for the chain, the thermal
fluctuations are fully determined. We distinguish between
long-ranged confinement that extends at least to the second
particle near the wall and short-ranged confinement which is
restricted to the outermost particles only. In this latter case the
normal modes are calculated analytically, whereas we must
resort to numerics for long-ranged confinement.

For short-ranged confinement, the variation of the MSD
with the particle index n (n = 0 in the center) is bell shaped,
with the inner particles exhibiting the highest fluctuations.
When the confining force influence is extended toward the
inside of the chain, we exhibit a paradoxical behavior. The
outermost particles fluctuations are enhanced, whereas those
of the inner particles are reduced. They eventually become
smaller than the outer-particle fluctuations when the confining
force extends toward the middle of the cell. Two minima of
fluctuations are observed near the chain extremities, symmetric
with respect to the center particle. The gap between the cell
extremities and those minima scales as the confining force
range. The observed values of the MSD in the simulations
are in good agreement with the calculations based on the
equilibrium positions of the particles.
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The MSD of the outer particles is not symmetrical for the
short-ranged confining force. This is an anharmonic effect
that cannot be described by our harmonic chain model. We
have measured the skewness and showed that it is positive
for the outer particles, beyond the measurement uncertainties.
It decreases from the outermost particles toward the inner
ones and decreases with the range of the confining force.

We recover, although in a less pronounced fashion, an effect
already seen for particles with hard-core interactions [14].

In a forthcoming paper [16], we will show that our analysis
in terms of normal modes determines also the complete
dynamics of the system. Moreover, the distinction between
short-ranged and long-ranged potentials is also relevant to
characterize the different dynamical regimes.
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