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Laboratoire Matière et Systèmes Complexes, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 7057,
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We consider a finite number of particles with soft-core interactions, subjected to thermal fluctuations and
confined in a box with excluded mutual passage. Using numerical simulations, we focus on the influence of the
longitudinal confinement on the transient behavior of the longitudinal mean squared displacement. We exhibit
several power laws for its time evolution according to the confinement range and to the rank of the particle in the
file. We model the fluctuations of the particles as those of a chain of springs and point masses in a thermal bath.
Our main conclusion is that actual system dynamics can be described in terms of the normal oscillation modes
of this chain. Moreover, we obtain complete expressions for the physical observables, in excellent agreement
with our simulations. The correct power laws for the time dependency of the mean squared displacement in the
various regimes are recovered, and analytical expressions of the prefactors according to the relevant parameters
are given.

DOI: 10.1103/PhysRevE.85.061111 PACS number(s): 05.40.−a, 66.10.cg, 47.57.eb

I. INTRODUCTION

Diffusion of particles in a one-dimensional (1D) system
where mutual exchanges are forbidden has been largely
explored in the case of infinite systems with hard-core (or
zero range) interactions between the particles, in the thermo-
dynamic limit [1–10]. In this single-file diffusion (SFD), after
an initial ballistic motion with a mean square displacement
(MSD) scaling as t2, the particles undergo a subdiffusive
motion characterized by a MSD increasing as t1/2. This
non-Fickian t1/2 scaling, which can be observed at long times,
has also been predicted for particles with soft-core (or finite
range) interactions [11–14].

A subdiffusive regime is observed for systems with pe-
riodic boundary conditions too [13,15–23]. For hard-core
interactions, the t1/2 regime is eventually followed by a
linear diffusion at very long times. This corresponds to the
free diffusion of the whole system considered as a unique
effective particle with the overall mass [6,16], and with
a diffusion coefficient Dtot. For soft-core interactions, the
earliest simulations showed that the MSD varies instead as
t1/2+ε where the small correction ε depends upon the kind of
interparticle interaction [24,25] in agreement with our own
experimental results [20–22]. More recently, we exhibited
more complex behaviors according to the number of particles
and to the damping coefficient [13]. Indeed, after the initial
ballistic motion, the MSD may exhibit three different regimes:
a linear behavior growing as Dt where D is a collective
diffusion constant (D "= Dtot), a subdiffusive SFD behavior
scaling as F t1/2 where F is a collective mobility constant, or
these two behaviors in a sequence, as Dt then as F t1/2. For low
damping and a small number of particles, a ballistic behavior
of the effective particle, growing as t2, can be observed after
the SFD regime and before its eventual diffusive scaling [13].

Those behaviors have been accounted for by describing the
system of interacting particles as a chain of identical point
masses linked by linear springs to their neighbors [13,26]. The
chain motion is then described by the superposition of all the
normal modes of oscillation. We have shown that the parts

of the MSD due to the overdamped and underdamped modes
respectively scale as t1/2 and t , the relative amount of those
two parts depending upon the damping coefficient. Moreover,
the translational invariance of the system, described by a null
frequency mode, induces at very long times the ballistic motion
of the effective particle with a MSD ∝ t2 and, eventually, its
diffusive motion with a MSD ∝ t .

Finite linear systems have been seldom explored. Only a
few experimental studies [27] and no complete theory are
devoted to the SFD for particles with soft-core interactions in
a finite channel [6,28,29]. In a previous paper [27], we have
presented experimental results performed with a system of
millimetric metallic balls, with soft-core screened electrostatic
interactions. This system is put in an effective thermal bath
insured by a random mechanical vibration [20–22]. Various
regimes have been identified for the MSD time evolution. After
an initial ballistic free motion (t < tcorr), the particles undergo
an intermediate subdiffusive motion (tcorr < t < tsat) until the
eventual saturation regime (tsat < t) where the MSD reaches
its constant asymptotic value due to the finite system size.

Another important difference with respect to the cyclic
systems is the loss of translational invariance. In finite linear
systems, the diffusivities, the mobilities, and the crossover
times (tcorr and tsat) strongly depend upon the rank of the
particle in the line. We have shown that the outermost particles
reach their MSD saturation values always faster than the other
particles (see Fig. 6 of Ref. [27]) and that the longest saturation
times tsat are always associated to the inner balls. This is
somewhat paradoxical since the latter are the more confined
particles and are submitted to the strongest interparticle forces;
we should therefore expect the quickest saturation for these
particles. The actual observation of the opposite effect suggests
a collective behavior due to long-ranged correlations.

We have undertaken numerical simulations to extend our
previous study towards damping constants that are experi-
mentally out of reach, and to easily control the longitudinal
confinement. In a first paper [30], we have studied the satu-
ration regime at asymptotically long times, tsat $ t . We have
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classified the observed behaviors according to the parameters
λw and Ew, respectively defined as the length scale and the
magnitude of the confinement force. We have calculated a
curve in the plane (λw,Ew) that separates short-ranged from
long-ranged confining forces. For short-ranged confinement,
only the motions of the outermost particles are influenced by
the confining walls, and the MSD saturation values decrease
from the center particle down to the outermost ones with a
roughly parabolic shape. For long-ranged confinement, the
MSD saturation values do not vary monotonously with the
particle index. On the contrary, it reaches symmetric minimal
values for particles located between the walls and the center.
When the confining force of each wall extends in the whole
cell, this minimum takes place at the central particle whereas,
quite surprisingly, the higher fluctuations are exhibited by the
outermost particles. The confinement enhances the diffusion
[30]. The dynamics is accounted for by the description as a
chain of identical point masses linked by linear springs to their
neighbors and to the confining walls, just as cyclic systems.
All the long time behaviors of the particles are quantitatively
recovered from a normal mode analysis of the chain.

In this paper, we focus on the influence of the confinement
force on the transient regimes (0 < t < tsat) of interacting
particles confined in a box. We show that the time evolution
of the MSD strongly depends on the characteristics of the
confinement potential and on the rank of the particles in the
line. The results of our simulations are analyzed with the same
model used for the saturation regime analysis. In particular,
we show that for each particle n, only a few normal modes
contribute to the MSD and that the damping constant compared
to the normal frequencies determines the time evolution of the
MSD. We then deduce complete expressions for the physical
observables, which provide an excellent agreement with our
simulations.

The paper is organized as follows. In Sec. II A, we briefly
describe our system and the simulation methods. In Sec. II B,
we sum up the classification obtained in Ref. [30] for the
confining force. Section III is devoted to the description of the
dynamical regimes observed in our simulations (Sec. III A),
of the crossover times that define the transitions between
these regimes (Sec. III B), and to an unevenness that is a
characteristic of finite-size systems when they reach saturation
(Sec. III C). In Sec. IV, we interpret our observations with a
masses and springs chain model. The conclusion (Sec. V) sums
up our results.

II. PARTICLES IN A FINITE BOX

A. Simulations

We consider (2N − 1) identical point particles of mass M
located in the x-y plane, in a thermal bath at temperature
T . The particles are confined by a quadratic potential in y
in such a way that they stay in the vicinity of the cell axis
and cannot cross each other, as if they were diffusing in a
narrow channel of finite length L [13,30]. Let rn = (xn,yn)
be the position of the particle n. The particle is submitted to
the lateral confinement force −βyney of stiffness β, to the
repulsive confinement forces Fw(xn) and Fw(L − xn) from
the walls and to the interaction force Fint(rn) from the other
particles. The confinement force is characterized by an energy

scale Ew and a length scale λw, and the interaction force by
an energy scale E0 and a length scale λ0. We describe the
dynamics with the Langevin equation

M r̈n + Mγ ṙn − Fint(rn)

− [Fw(xn) − Fw(L − xn)]ex − βyney = µ(n,t) (1)

with γ the damping constant and with µ(n,t) the random force
applied on the particle n at time t . Details of the model and of
the algorithm may be found in Ref. [30].

The stiffness β is such that 〈%y2〉 $ 〈%x2〉. The system
dynamics thus always fulfills the SFD requirement. All simu-
lations are done with a system of 33 interacting particles (N =
17) confined in a channel of length L = 60 mm, and a length
scale λ0 = 0.48 mm. These values have been selected in order
to compare the simulations with our previous experiments
[27]. The dimensionless mean density L/(2Nλ0) is of the
same order of magnitude as in other numerical [24,25,31]
and experimental [15,17–19,32–35] studies. In Ref. [30], we
have modified the particle number in the range 8 ! N ! 66
at constant mean density, and obtained convincing indications
that the behavior of systems with N = 17 particles is generic.
The temperature T and the amplitude E0 are such that the
dimensionless parameter E0/(kBT ) ≈ 5, which is also of the
same order of magnitude as in other studies. The results
obtained with 33 interacting particles are thus generically
relevant to the SFD in a box.

B. The longitudinal confinement

Three domains must be considered according to the values
of the parameters λw and Ew [30]. The area of short-ranged
(SR) confinement is separated in the plane (λw,Ew) from the
area of long-ranged (LR) confinement (see Fig. 7 of Ref. [30]).
The separation curve is not a power law, but the rough estimate
Ew/E0 = (2λ0/λw)1.22 may be useful. All points (λw,Ew)
above this estimate corresponds to a long-ranged confinement.
It is noteworthy that the area of long-ranged confinement is
not defined by the characteristic length alone.

The SR domain, for which the influence of each confining
wall extends over the nearest particle only, may be itself
separated in hard wall (HW) and soft wall (SW) domains
according to the relative importance of the confinement with
respect to the interparticle interactions. If we model the system
as a chain of identical point masses linked by linear springs
to their neighbors and to the confining walls, as in Sec. IV A,
all the springs describing the interparticle interactions have
the same stiffness k whereas the stiffness kw describing
the outermost particles interaction with the walls is smaller
(higher) than k in the SW (HW) case [30]. For LR con-
finement, the springs’ stiffness depends upon the rank of the
particles.

We have the parameters λw and Ew vary by two decades.
In their respective natural scales, they range in the intervals
λw ∈ [λ0,60λ0] and Ew ∈ [0.005E0,0.1E0]. For the sake of
comparison, the mean interparticle distance is L/(2N ) =
3.68λ0 and the cell length is 125 λ0. The three different kinds
of confinement have been studied in our simulations. For
SR confinement, the HW (kw > k) and SW (kw < k) cases
respectively correspond to (λw = 0.48 mm, Ew/E0 = 5 10−2)
and (λw = 1 mm, Ew/E0 ∈ {0.1,0.5,1}) respectively. For LR
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confinement, we consider either a constant length λw = 15
mm with Ew/E0 between 5 10−3 and 0.5 or a constant
Ew/E0 = 0.1 and λw between 4 mm and 30 mm.

III. SIMULATION RESULTS

When the system is in thermal equilibrium, the thermal
fluctuations induce small displacements un of the particles
around their equilibrium positions x∗

n , such that xn(t) =
x∗

n + un(t). The instantaneous MSD of the particle n is written
〈%u(n,t)2〉.

A. Intermediate regime (tcorr < t < tsat)

A ballistic regime with 〈%u(n,t)2〉 ∝ t2 is observed when
the damping is not too large at times t < tcorr. In the
intermediate regime, three different behaviors with peculiar
power laws can be distinguished according to the damping,
the particle index, and the kind of confinement. The MSD may
saturate right after the ballistic regime. It may rather exhibit
stretched oscillations around either a linear time scaling, a
square root time scaling, or both behaviors successively. These
evolutions strongly depend on the kind of confinement.

Let us begin with SR confining force, in the HW case. In
Fig. 1, we plot 〈%u(n,t)2〉 for the four outer particles, 13 !
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FIG. 1. (Color online) Plot of MSD 〈%u(n,t)2〉 (in mm2) as a function of time (in s), for a system of 33 particles and HW confinement with
λw = 0.48 mm and Ew = 0.0095E0. We show the particles with n = ±16 (blue dots), n = ±15 (red squares), n = ±14 (green diamonds),
n = ±13 (magenta triangles up), and n = 0 (black triangles down): γ = 1 s−1 [(a) and (d)]; γ = 10 s−1 [(b) and (e)]; γ = 60 s−1 [(c) and (f)].
Left column: simulations data; right column: calculations. Both axes in Log scales. Dotted lines of slope 2, solid lines of slope 1, and dashed
lines of slope 1/2.
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TABLE I. Diffusivities and mobilities of the inner particles in Fig. 2.

γ = 1 s−1 γ = 60 s−1 Ew/E0 = 0.1

Ew/E0 DSW (mm2s−1) Ew/E0 FSW (mm2s−1/2) γ (s−1) FSW (mm2s−1/2)

0.1 0.155 0.01 0.050 10 0.11
0.5 0.140 0.05 0.036 20 0.08
1 0.135 1 0.030 60 0.045

n ! 16, and the central one n = 0. The MSD of the outermost
particle behaves with a strikingly specific time dependence.
For small damping (γ = 1 s−1), 〈%u(16,t)2〉 exhibits a direct

transition from the ballistic regime to a regime of damped
oscillations around its saturation value at long times. These
oscillations, not observed for the other particles, decrease
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FIG. 2. (Color online) Plot of MSD 〈%u(n,t)2〉 (in mm2) as a function of time (in s), for a system of 33 particles and for a SW confining
potential with λw = 1 mm and Ew = 0.1E0. We show the particles with n = ±16 (blue dots), n = ±15 (red squares), n = ±14 (green
diamonds), n = ±13 (magenta triangles up), and n = 0 (black triangles down). The damping is γ = 1s−1 [(a) and (d)]; γ = 10s−1 [(b) and
(e)]; γ = 60s−1 [(c) and (f)]. Left column: simulations data; right column: calculations. Both axes in Log scales. Dotted lines of slope 2, solid
lines of slope 1, and dashed lines of slope 1/2. In the inset we zoom on the curves crossing.
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FIG. 3. (Color online) Plot of MSD 〈%u(n,t)2〉 (in mm2) as a function of time (in s), for a system of 33 particles and a LR confining
potential with Ew = 0.1E0 and λw = 4 mm [(a) and (d)], λw = 11 mm [(b) and (e)], and λw = 30 mm [(c) and (f)]. The damping is γ = 1s−1.
We show the particles with n = ±16 (blue dots), n = ±15 (red squares), n = ±14 (green diamonds), n = ±13 (magenta triangles down), and
n = 0 (black triangles up). Left column: simulations data; right column: calculations. Both axes in Log scales. Dotted lines of slope 2, solid
lines of slope 1.

with the damping and are almost suppressed for γ = 60 s−1.
All other particles display the same intermediate regime, as
shown by the superposition of the MSD plots before their
respective saturation [see Figs. 1(a)–1(c)]. For small damping
[γ = 1 s−1, see Fig. 1(a)], the MSD is roughly linear in time
until its saturation. A single diffusion coefficient DHW can be
determined for all particles. It is smaller than the single-particle
free diffusivity D0 (DHW = 0.16 mm2s−1, D0 = 6.4 mm2s−1),
which proves that this Fickian diffusion is a collective behavior
of the system. When the damping increases, we observe an
SFD scaling 〈%u(n,t)2〉 = FHWt1/2 with roughly the same

mobility FHW for all particles [see Figs. 1(b)–1(c)]. Its typical
value is FHW = 0.12 mm2s−1/2 for γ = 60s−1.

We now consider SR confining force, in the SW case.
Comparing Fig. 2 and Fig. 1, we see that the main difference
concerns the outermost particle. Its MSD does not oscillate
anymore, but presents the fastest evolution towards saturation.
The characteristic feature of SW confinement is thus the
crossing between the MSD plot of the outermost particle and
those of the other particles. In contrast, the inner particles still
present the same intermediate regime before their respective
saturation, as in the HW case [see Figs. 2(a)–2(c)]. We may
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FIG. 4. (Color online) Diffusivities (mm2s−1) as a function of the particle index for 33 particles and γ = 1 s−1. (a) HW confinement, λw =
0.48 mm, Ew/E0 = 0.0095 (red open squares); SW confinement, λw = 0.48 mm, Ew/E0 = 0.1 (blue circles); LR confinement, Ew/E0 = 0.1,
λw = 4 mm (magenta triangles), 7 mm (green diamonds), 11 mm (orange squares), 15 mm (black dots). (b) LR confinement, λw = 15 mm,
Ew/E0 = 0.005 (cyan squares), 0.1 (black dots), 0.5 (gray triangles).

define either a diffusivity or a mobility for the inner particles.
Both decrease very weakly with increasing amplitude Ew, as
shown in Table I. The mobility may be defined only at large
damping. As shown in the last column of Table I, the mobilities
strongly decrease with the damping. Note that these values are
very close to those measured in the HW case. We shall return
to this point in the next section.

For LR confining forces, the intermediate regime depends
on the particle index. The outermost particles evolve from the
ballistic to the saturated regime directly as in the previous case.
On the contrary, the inner particles undergo a slowing down
of their dynamics that is more and more significant the farther
they are from the walls. The superposition of the MSD curves
is recovered only in the central part of the cell. Moreover, the
differences between particles become more pronounced the
further we are in the LR area of the (λw,Ew) plane (Fig. 3).
Similar behaviors are observed if Ew is increased with λw

fixed to a large value. These effects are observable whatever
the damping.

The diffusivity DLR(λw,Ew,n) decreases with the particle
distance from the wall over a distance roughly equal to the
confinement length λw [see Fig. 4(a)]. The further we are in the
LR area, the larger the difference between the diffusivities of
the outermost and inner particles. We underline that whatever
λw and Ew, these diffusivities are always smaller than for a
free particle (D0 = 12.8 mm2s−1) with the same damping and
temperature.

For larger dampings, the time evolution of the MSD of
the inner particles exhibits the SFD scaling 〈%u(n,t)2〉 ∝

t1/2 (see Fig. 5). A mobility FLR(λw,Ew,n) may thus be
defined as was the case for the diffusivities DLR(λw,Ew,n).
We plot in Fig. 6 its evolution according to the particle
index for several confining force configurations. We see
that going further in the LR region of the (λw,Ew) plane
increases the number of particles that exhibit a SFD behavior,
decreases their mobility, with the smaller mobility for the inner
particles at a given (λw,Ew). Moreover, the mobilities also
decrease with the damping whatever the particle. All these
results are in qualitative agreement with those of previous
experiments [27].

B. Crossover times

The correlation times tcorr exhibit some systematic
behaviors (see Fig. 7). For the SR case, tcorr is roughly
constant, except for the outermost particles for which it is
either one third smaller or higher respectively in the HW and
SW cases. On the contrary, in the LR case, the correlation
times progressively increase when the particle gets closer
to the confinement wall, over a distance roughly equal to
confinement length [see Fig. 7(a)]. Let us emphasize that its
value near the edge is now twice higher than the values for
the inner particles, which are of the same order of magnitude
than those measured in the SR cases. On the other hand, the
correlation time decreases with the confinement magnitude
Ew [see Fig. 7(b)]. Lastly, these times remain independent of
the damping for small values of γ but strongly decrease when
the damping coefficient γ increases.
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FIG. 5. (Color online) Plot of MSD 〈%u(n,t)2〉 (in mm2) as a function of time (in s), for a system of 33 particles and a LR confining
potential with Ew = 0.1E0 and λw = 4 mm (a); 11 mm (b), 30 mm (c). The damping is γ = 10 s−1. We display the particles with n = ±16
(blue dots), n = ±15 (red squares), n = ±14 (green diamonds), n = ±13 (magenta triangles up), and n = 0 (black triangles down). Dotted
lines of slope 2, and dashed lines of slope 1/2

061111-6



SINGLE-FILE DIFFUSION OF PARTICLES IN A BOX: . . . PHYSICAL REVIEW E 85, 061111 (2012)

0 5 10 15

0.07

0.08

0.09

0.10

0.11

0.12

index

F
LR

m
m

2
s

1
2

(a)

(b)

0 5 10 15
0.01

0.02

0.03

0.04

0.05

index

F
LR

m
m

2
s

1
2

FIG. 6. (Color online) Mobility (mm2s−1/2) as a function of the particle index for 33 particles: (a) γ = 1 s−1. HW confinement, λw = 0.48
mm, Ew/E0 = 0.0095 (red open squares); SW confinement, λw = 0.48 mm, Ew/E0 = 0.1 (blue circles); LR confinement, Ew/E0 = 0.1,
λw = 4 mm (magenta triangles), 7 mm (green diamonds), 11 mm (orange squares), 15 mm (black dots). (b) γ = 60 s−1. LR confinement,
λw = 15 mm, Ew/E0 = 0.001 (red diamonds), 0.05 (pink circles), 0.1 (black dots).

After the intermediate regime, the saturation times tsat
decrease roughly linearly according to the particle index n
(see Fig. 8). For small damping, the saturation times are
independent of γ . As the damping increases, the tsat associated
to the outer particles remains unchanged whereas those of the
inner particles largely increase. The saturation times tsat for
the inner and the outer particles evolve differently for a LR
confinement. When we go further in the LR area, tsat decreases
for the inner particles whereas the opposite is observed for the
outer particles [see Figs. 8(b) and 8(c)]. In our simulations,
the saturation times tsat are one to three orders of magnitude
larger than the correlation times tcorr, in agreement with our
experiments [27], whereas simulations for hard-core (zero
ranged) interactions suggest five orders of magnitude between
these two times [28,29]. This confirms the important influence
of the finite (nonzero) range of the interactions on the particle
dynamics.

C. The unevenness at saturation

Finally, let us indicate another characteristic feature of the
finite-size systems at the beginning of the saturation regime.
For small damping, we systematically observe at t = tun a
little unevenness in the time evolution of 〈%u(n,t)2〉 in the
saturation regime, which is otherwise parallel to the time axis
[see Figs. 1(a) and 1(d), Figs. 2(a) and 2(d), and Fig. 3].

For given parameters (λw,Ew), the time tun is the same for
all particles however the unevenness depth decreases as the
particle gets closer to the wall. For the outermost particles,
it is very small or completely lost. When Ew is fixed, the
unevenness is shifted towards short times as λw increases.
Similar behavior is observed when λw is fixed and Ew is raised
(Fig. 3). This feature disappears at larger damping.

IV. MODELING AND INTERPRETATION

A. Normal modes analysis

The small displacement u(n,t) induced by the thermal fluc-
tuations around the equilibrium position x∗(n) is reasonably
assumed such that |u(n,t)| $ dn, where dn is the distance
between the particles n and n + 1. Using this approximation,
we derive from Eq. (1) a model of a chain of (2N − 1) identical
point masses M linked by linear springs to their neighbors and
to both confining walls, submitted to dissipation and thermal
fluctuations [13,26]. We therefore have to solve a set of coupled
Langevin equations that reads

Mün = knun−1 −
(
kw
n + kn + kn+1

)
un

+ kn+1un+1 − Mγ u̇n + µ(n,t), (2)
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FIG. 7. (Color online) Correlation time tcorr (s) as a function of the particle index for 33 particles, γ = 1 s−1 and a LR confinement.
(a) Ew/E0 = 0.1, λw = 4 mm (magenta triangles), 7 mm (green diamonds), 11 mm (black dots), 15 mm (orange squares). (b) λw = 15 mm,
Ew/E0 = 0.005 (pink circles), 0.1 (black dots), 0.5 (gray triangles).
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FIG. 8. (Color online) Saturation time tsat (s) as a function of the particle index for 33 particles. (a) SW confinement, Ew/E0 = 0.1, λw = 1
mm: γ = 0.1 s−1 (red triangles); 1 s−1 (orange diamonds); 10 s−1 (blue square); 20 s−1 (green dots). Inset: Plot of tsat in the HW case: γ = 1
s−1 (red triangles); 10 s−1 (black diamonds). (b) LR confinement, Ew/E0 = 0.1, γ = 1 s−1, λw = 4 mm (magenta triangles); 7 mm (green
diamonds); 15 mm (black dots). (c) LR confinement with γ = 1 s−1, λw = 15 mm, Ew/E0 = 0.05 (pink circles); 0.1 (black dots); 0.5 (gray
triangles).

with n ∈ [−N,N ] and with u(−N,t) = u(N,t) = 0. The
spring stiffnesses are given by

kn ≡ −∂Fint

∂x
(dn),

kw
n ≡ −∂Fw

∂x
(L/2 + x∗

n) − ∂Fw

∂x
(L/2 − x∗

n). (3)

For a set of confinement parameters (λw,Ew), the equilibrium
positions of the particles are measured on the simulations data.
Then the spring stiffnesses are deduced from these positions
since the expressions of the confining and interparticle force
are known.

Some typical stiffness distributions are displayed in
Fig. 9(a) (SR confinement, SW, and HW) and Fig. 9(b) (LR
confinement). For the SR cases, all kn = k are the same,
whereas each outermost particle is linked to its nearest wall
by a spring of stiffness kw. We consider two SR cases with
roughly identical stiffness k, in order to identify the specific
effects of the confinement, with kw(HW) ≈ 5kw(SW). In the
LR case, the distribution of equilibrium positions induces
complex dependencies of the stiffnesses kw

n and kn with λw

and Ew. The wall-particle kw
n remains always smaller than kn

whatever the particle n (the case kw
n > kn is not as interesting

as it looks like the HW case). Going further in the LR domain,
the equilibrium positions of the outermost particles get further
from the walls, which compresses the inner particles. This
results in a large decrease of the wall-particle stiffnesses for the

outermost particles and a moderate increase of the interparticle
stiffnesses.

Knowing the stiffnesses, we write the sparse symmetric
matrix, which is the characteristic matrix associated to the
system of equations (2),

Spn = −knδp,n−1 +
(
kw
n + kn + kn+1

)
δn,p − kn+1δp,n+1. (4)

The characteristic frequencies ωs are given by the eigenvalues
σs of Spn, with ω2

s = σs/M . Several examples are presented in
Fig. 10(a) for various confinements. The frequencies increase
with the range of the confining force. In the HW case, the
system has localized modes, which are characterized by high
frequencies, larger than the cutoff frequency of a homogeneous
chain with a mean stiffness k(L/2N ), as shown in Fig. 10(b)
[30].

The normal modes Us are the eigenvectors of this matrix,
with components Us(n). The displacement u(n,t) of the
particle n at time t is expressed in terms of the normal modes
as u(n,t) =

∑2N−1
s=1 Us(n)Xs(t). Each amplitude Xs(t) behaves

as a damped oscillator forced by a random force, so that the
MSD of each normal mode is

〈%X2
s (t)〉 = 2kBT

Mω2
s

[
1 + ω−(s)eω+(s)t

ω+(s) − ω−(s)
− ω+(s)eω−(s)t

ω+(s) − ω−(s)

]
,

ω±(s) ≡ −γ

2
±

√
γ 2

4
− ω2

s . (5)

15 10 5 0 5 10 15

0.4

0.6

0.8

1.0

1.2

1.4

index

k n
k

d

a

15 10 5 0 5 10 15
0.0

0.5

1.0

1.5

2.0

0.00

0.05

0.10

index

k n
k

d

k nw
k

d

b

FIG. 9. (Color online) Dimensionless stiffness as a function of the particle index, for 33 particles. (a) SR confinement. Interparticle stiffness
kn/k(d) for a SW (blue dots) and HW (red triangles). (b) LR confinement, λw = 11 mm, Ew = 0.1 E0. Interparticle stiffness kn/k(d) (left axis,
blue dots) and confinement stiffness − ∂Fw
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FIG. 10. (Color online) (a) Dispersion relation of the normal modes for a system of 33 particles. HW confinement, λw = 0.48 mm,
Ew/E0 = 0.0095 (red dots); SW confinement, λw = 1 mm, Ew/E0 = 0.1 (blue squares); LR confinement, Ew/E0 = 0.1, λw = 4 mm (green
diamonds), 11 mm (black triangles up), 30 mm (orange triangles down). (b) Focus on the dispersion equation of the highest frequencies for
the HW (red dots) and the SW (blue squares) cases: for HW the two highest frequencies are associated to localized modes. The dotted line is a
guide for the eyes.

Then the MSD of the particle n, 〈%u(n,t)2〉, is given by

〈%u(n,t)2〉 =
2N−1∑

s=1

Us(n)2〈%X2
s (t)〉. (6)

From Eq. (5), we recover the ballistic regime 〈%u(n,t)2〉 t→0∼
kBT t2/M . At short times, the particles diffuse without effi-
ciently interacting with their neighbors, nor with the confining
walls. Therefore, they undergo a ballistic flight at their thermal
velocity

√
kBT /M .

In Figs. 1–3 we plot the MSD measured in the simulations
and the corresponding analytical expressions obtained from
Eq. (5) and Eq. (6). Although the calculations are done without
any free parameter, the agreement is excellent, which shows
that the dynamics of the confined particles can be explained
by our model of a masses and springs chain. We will now
bring some light on the qualitative behaviors of the particles
by carefully studying the evolution of each normal modes
according to the time.

Let us therefore discuss the variations of |Us(n)| with the
characteristics of the confining potential (λw,Ew). Figure 11
shows the variations of |Us(n)| according to the modes index
s for three different particles, the outermost one (n = ±16),
the next one (n = ±15), and the central particle (n = 0) in the
SW [Fig. 11(a)], HW [Fig. 11(b)], and LR [Fig. 11(c)] cases.

In cyclic systems, the amplitude of the modes does not
depend on the mode index s and is equal to 1/(2N − 1).

Here, the amplitudes |Us(n)| are maximal for the modes s,
which have an antinode at the position of the particle n. For
a given particle n, the number of maxima is equal to N − n.
This is obvious for the displacement amplitude of the central
particle that is by symmetry either null (odd modes, s even) or
maximum (even modes, s odd) according to the parity of the
mode (note that the number of particles, 2N − 1, is odd). This
is indeed observed in the plots of |Us(0)| as a function of s,
whatever the confinement.

For a SW confinement and a given particle n, the positions
of the maxima look like those of an homogeneous system
with a single stiffness and are roughly given by s = N(2q+1)

N−−n
where 0 ! q ! n. When the wall-particle stiffness is enhanced
or the confinement range extended, the amplitudes of the
normal modes |Us(n)| are modified. As expected, the outer
particles have the most important changes. For the HW
case, the modes of highest amplitude are shifted towards
higher frequencies. For the outermost particles (n = ±16 and
n = ±15), the maximum amplitudes are associated to the
two highest frequencies, whereas the amplitude of the center
particle becomes very small for these localized modes [see
Fig. 11(b)]. On the contrary, when the range of the confinement
increases, the maxima of |Us(n)| are shifted towards lower
frequencies for the two outermost particles. In this case, the
contribution of the high-frequency modes to the motion of
the outermost particles (n = ±16 and n = ±15) is extremely
small [see Fig. 11(c)]. The evolution of the maxima according
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FIG. 11. (Color online) Variations of |Us(n)| with the mode index s for three different particles, the outermost one (n = ±16) (red dots),
the next one (n = ±15) (blue squares), and the central particle (n = 0) (green diamonds). (a) SW confining potential with λw = 1 mm,
Ew/E0 = 0.1; (b) HW confining potential with λw = 0.48 mm, Ew/E0 = 0.005; (c) λw = 15 mm, Ew/E0 = 0.1.
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FIG. 12. (Color online) Plot of the power spectra (arb. units) of the particles trajectories as a function of the frequency ω (s−1) for particles
n = ±16 (bottom), n = ±15 (center) and n = 0 (top). (a) SW confinement: λw = 1 mm, Ew/E0 = 0.1. (b) LR confinement: λw = 15 mm,
Ew/E0 = 0.1. The dotted lines indicate the first 24 (a) and 16 (b) calculated frequencies.

to the confinement is the key to understanding the diffusion
behaviors of particles confined in a box. The shift towards low
frequencies for the two outermost particles may be directly
observed on the Fourier transform of the trajectories provided
by the simulations. These Fourier transforms are shown on
Fig. 12 for the particles (n = ±16) and (n = ±15). They
exhibit indeed a shift towards low frequencies between the
case of a SW confinement [Fig. 12(a)] and of a LR confinement
[Fig. 12(b)].

Hereafter, we shall thus locate for each particle n and
each confining force (λw,Ew) the local maxima associated
to the mode smin (smax) of smallest (highest) frequency. They
will be respectively noted smin = Pmin(n,λw,Ew) and smax =
Pmax(n,λw,Ew).

B. The intermediate regime

In order to understand the intermediate regime, it is
convenient to consider the contribution 〈%X2

s (t)〉Us(n)2 of
the mode s to 〈%u(n,t)2〉 in Eq. (6). To illustrate this point
we plot in Fig. 13 the time evolution of the contributions of
the modes s = 1, 3 and 33 for the center particle (n = 0).
Two dampings are considered: γ = 0.1 s−1 [Fig. 13(a)] and
γ = 60 s−1 [Fig. 13(b)]. The complete MSD curves, that
include the contributions of all modes, are also displayed in
order to discuss their main behaviors.

At very low damping, all modes oscillate before reaching
their constant value [Fig. 13(a)]. The time evolution of
〈%u(n,t)2〉 in the intermediate regime is explained by the
progressive disappearance in the sum (6) of the contributions
of the modes s as soon as they lose their initial quadratic
dependence with t . The power series development of 〈%X2

s (t)〉
shows that it happens at a characteristic time t ≈ 2

√
3/ωs .

Thus at a given time t , the variation of 〈%u(n,t)2〉 with
time is dominated by the contributions of the modes such as
t < 2

√
3/ωs (strictly speaking, t < 2

√
3/

√
ω2

s − γ 2/4, which
is the same for small γ ). The number P (t) of those modes may
easily be estimated in the frame of the Debye approximation

P (t) ∼ 4
√

3N

π
√

KD/M t
, (7)

where KD is an effective stiffness such that the dispersion
relation at small frequencies reads

ωs =
(

π

2N

√
KD

M

)

s. (8)

The use of the Debye approximation is supported by the
fact that the most important contributions in (6) come from
the low frequencies, which follow a linear dispersion law.
In the ballistic regime, each mode s behaves as 〈%X2

s (t)〉 ∼
kBT t2/M , and using (7) we obtain the MSD for the particle n
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FIG. 13. (Color online) Plot of the variations with time (in s) of the contribution 〈%X2
s (t)〉Us(0)2 of the mode s = 1 (red; dark gray, top),

s = 3 (blue; medium), s = 33 (green; bottom) to the MSD 〈%u(0,t)2〉 (in mm2) for a system of 33 particles and a SW confining potential with
Ew = 0.1E0 and λw = 1 mm. (a) γ = 0.1 s−1, (b) γ = 60 s−1. In black we plot the summation on all modes.
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FIG. 14. (Color online) Plot of the partial sum +(P,n) as a function of P for particles n = ±15 (red dots), n = ±14 (blue squares), and
n = 0 (green diamonds). (a) SW confining potential with λw = 1 mm and Ew/E0 = 0.1. (b) LR confining potential with λw = 30 mm and
Ew/E0 = 0.1.

as

〈%u(n,t)2〉 ≈
[

kBT

M

P (t)∑

s=1

U 2
s (n)

]

t2 = 2Dt. (9)

In the opposite limit of very large damping, all modes are
overdamped [Fig. 13(b)] and evolve linearly as [2kBT /(Mγ )]t
before reaching saturation at a typical time γ /ω2

s for the mode s
[13]. Now, the time evolution of 〈%u(n,t)2〉 is explained by the
progressive disappearance in the sum (6) of the contributions
of the modes s when they reach their saturation. Thus, the
modes that contribute to the variation of 〈%u(n,t)2〉 satisfy
t < γ /ω2

s . Using once again the Debye approximation, the
number P (t) is estimated as

P (t) ∼ 2N

π
√

KD/Mγ
√

t
. (10)

Using (10), the expression of the MSD of the particle n is given
by

〈%u(n,t)2〉 ≈
[

2kBT

Mγ

P (t)∑

s=1

U 2
s (n)

]

t = F
√

t . (11)

At this point, it is convenient to introduce the partial sum
+(P,n) ≡

∑P
s=1 U 2

s (n) and to calculate its evolution accord-
ing to the number P of modes that are taken into account. Such
sums associated to three different particles n are presented
in Fig. 14(a) and Fig. 14(b) for SR and LR confinements
respectively.

In the SR case, whatever the considered particle, the
sum increases roughly linearly with P . Then, each mode
contributes to the MSD, even if they all have a different
weight. We get +(P,n) = 1 for P = 2N − 1. Thus, for the
SR case, we may write in first approximation +(P,n) ≈
P/(2N − 1). The LR case is very different. Now, for a given
particle and a given confinement, the sum is roughly linear
with P until P = Pmax(n,λw,Ew) < (2N − 1) and then jumps
abruptly to 1, which means that all modes of higher index
do not contribute. This is due to the smallness of amplitudes
Us(n) associated with high-frequency modes. Thus, as long
as P < Pmax(n,λw,Uw), the sum can be written as +(P,n) =
+(Pmax,n)P/Pmax, and is equal to 1 otherwise. The evolution
of Pmax(n,λw,Ew) according to the particle index n for

different values of λw is shown on Fig. 15. We see that Pmax
decreases with |n|.

Thus, in the case of small damping, all particles diffuse
normally with 〈%u(n,t)2〉 = 2Dt with diffusion constants DSR
and DLR respectively associated with the SR and LR cases

DSR = 2
√

3kBT N

π (2N − 1)
√

MKD

= 2
√

3kBT N

π (2N − 1)

√
κT

Mρ
, (12)

DLR(n) = 2
√

3kBT N

π
√

MKD

+(Pmax,n)
Pmax(n,λw,Ew)

= 2
√

3kBT N+(Pmax,n)
πPmax(n,λw,Ew)

√
κT

Mρ
, (13)

where ρ is the mean particle density and κT = ρ/KD is
the isothermal compressibility, which takes into account the
complete distribution of the stiffnesses in the chain.

At large damping, the MSD 〈%u(n,t)2〉 can be expressed
as F

√
t where the mobilities F are given, according to the

confinement range, by:

FSR = 2kBT N

π (2N − 1)
√

MKDγ
= 2kBT

π

N

2N − 1

√
κT

Mργ
, (14)
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FIG. 15. (Color online) Plot of Pmax(n,λw,Ew) as a function
of the particle index n for several LR confining potentials char-
acterized by Ew/E0 = 0.1 and λw = 4 mm (magenta triangles),
15 mm (black dots), and 30 mm (red diamonds). The values of
Pmax(16,15 mm,0.1E0) and Pmax(16,15 mm,0.1E0) may be read in
Fig. 11(c)
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FLR(n) = 4kBT N

π
√

MKDγ

+(Pmax,n)
Pmax(n,λw,Ew)

= 4kBT N

π

√
κT

Mργ

+(Pmax,n)
Pmax(n,λw,Ew)

(15)

Let us underline that the expressions DSR and FSR are
independent of the positions of the particles. Since the only
parameter that depends on the confining force is KD , systems
in which the confinement results in the same equilibrium
positions of the particles have the same set of diffusivities
and mobilities. Those features are displayed in the simulation
results for the HW and the SW cases (see Fig. 1 and Fig. 2).
In contrast, DLR(n) and FLR(n) explicitly depend on the index
of the particles n because of Pmax(n,λw,Ew). Both increase
as the particle gets closer to the walls, the highest coefficients
being associated with the outermost particles. Moreover, the
dependence of the diffusivities and mobilities on the effective
stiffness KD indicates that they result from a collective effect.
Lastly, note also that they are proportional, with D/F =√

γ /3. It means that, for a given set (λw,Ew), the mobility
scales as γ −1/2. This is indeed observed in the simulations,
as shown in Fig. 6. As an example, for λw = 15 mm and
Ew/E0 = 0.1 the mobility is 0.07 mm2s−1/2 for γ = 10 s−1

and 0.03 ≈ 0.07/
√

6 mm2s−1/2 for γ = 60 s−1 as indicated
by Eq. (15).

In Fig. 16, the diffusivities given by the expressions (13)
are plotted as a function of the index for various values of the
confinement length [Fig. 16(a)] and amplitude [Fig. 16(b)].
Those values are to be compared to the simulation data
presented in Fig. 4. We see that the simple estimates of Eqs.
(12) and (13) catch all qualitative features of the simulation
data, such as the shape of the curves and their ordering with
λw [Fig. 4(a)] and with Ew/E0 [Fig. 4(b)]. Quantitatively,
our estimates are in satisfactory agreement. Moreover, the
mobilities may be directly calculated from the Fig. 16,
multiplying by

√
γ /3. When compared with the mobility data

displayed in Fig. 6, we see that all qualitative features of the
simulation data are recovered. The order of magnitude for
the mobilities deduced from Fig. 16 compare well with the
simulations.

C. Crossover times

The correlation time tcorr(n), which characterizes the begin-
ning of the intermediate regime of a particle n is roughly given

by 2
√

3/
√

ω2
Pmax(n) − γ 2/4 (for the sake of readability, the

dependency of Pmax upon λw and Ew is not written explicitly
in this section).

For the SW confinement case, most particles have
Pmax(n) > 20. Since at large s the frequencies vary slowly with
the mode number (see Fig. 10), their resulting correlation times
are roughly the same. As the particle gets towards the wall, its
frequency ωPmax(n) decreases and consequently its correlation
time is somewhat longer. In the HW case, all the Pmax(n) are
shifted towards larger s, thus tcorr(n) remains independent of
the particle position but, since their frequencies are smaller
than in the SW case, the resulting value of the correlation time
tcorr(n) is somewhat higher. However this concerns the inner
particles only. Indeed, the frequencies associated to Pmax for
the outermost particles correspond to localized modes with
higher frequencies, so these particles have a smaller tcorr.

In the LR case, all the Pmax(n) are shifted toward the small s
and the high-frequency modes do not contribute efficiently to
the MSD. This induces larger correlation times than in the SR
cases, in particular for the outer particles for which the Pmax
are the most shifted. The evolution of the correlation times
according to the particle positions for several values of λw and
Ew are shown in Fig. 17. All these theoretical results are in
good agreement with the correlation times measured from the
simulations (see Fig. 7). Notice in particular that the change
of evolution with λw observed as the particle gets closer to the
wall is consistent with our theoretical estimates. In the case of
hard-core interactions [6,28,29] this correlation time depends
only on the particle concentration because the particles are free,
except the direct contact with one of their neighbors. In the
present situation, the particles are not actually free for t < tcorr
since they diffuse in the local potential of their neighbors and
the walls, which explains why tcorr depends on the interactions.

After the intermediate regime, the saturation time for
the particle n is controlled by the frequency of the mode
s = Pmin(n,λw,Uw). As before, we do not write explicitly the
dependency of Pmin upon λw and Uw in the rest of this section.
When ωPmin > γ /2, most modes are oscillating ones as shown
by Fig. 13(a). Thus, the saturation time may be estimated
from Eq. (5) by π (ω2

Pmin
− γ 2/4)−1/2. On the other hand, if
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FIG. 16. (Color online) Plot of the theoretical diffusivities (in mm2s−1) as a function of the particle index n. (a) Ew/E0 = 0.1, λw = 4
mm (magenta triangles), 7 mm (green diamonds), 11 mm (orange squares), and 30 mm (red dots). (b) λw = 15 mm, Ew/E0 = 0.005 (cyan
squares), 0.1 (black dots), and 0.5 (gray triangles). The mobilities are

√
γ /3DLR.
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FIG. 17. (Color online) (a) Theoretical correlation times tcorr (s) as a function of the particle index n. (a) Ew/E0 = 0.1; λw = 4 mm (magenta
triangles), 7 mm (green diamonds), 15 mm (black dots). (b) λw = 15 mm; Ew/E0 = 0.005 (magenta circles), 0.1 (black dots), and 0.5 (gray
triangles).

ωPmin < γ /2, the modes are overdamped [see Fig. 13(b)] and
the saturation time is π [γ /2 − (ω2

Pmin
− γ 2/4)1/2]−1. At very

large damping, this time is πγ /ω2
Pmin

. At very small damping,
the saturation time is π/ωPmin for all particles. Since ωPmin (n) is
roughly equal to ωPmaxN/(N−n), the saturation time decreases
linearly with n. In the intermediate γ range, the outer particles
with the highest ωPmin could be in the small damping regime
while the inner ones with smaller ωPmin are in the large damping
regime. Thus, the saturation times are independent of γ for the
outer particles but strongly depend on the damping for the
inner ones, and the evolution of tsat according to the index
n shows a jump at the particle, which corresponds to this
change of regime. This analysis is in complete agreement with
the behaviors observed in the simulations (see Fig. 8). The
intermediate regime extends between tcorr and tsat, respectively,
determined by the frequencies associated with Pmax and
Pmin. However, the amplitude |Us(±16)| corresponding to the
contribution of the mode s to the motion of the outermost
particles presents a maximum for only one mode s, as shown
by Fig. 11. Therefore, tcorr = tsat, which explains the absence
of intermediate regime for those particles.

D. Saturation unevenness

The behavior of the normal modes also explains the
unevenness observed in the saturation regime and the evolution
of its value according to λw and Ew. This unevenness exists
only when the damping is small enough for the mode s = 1
to be an oscillating mode. It corresponds to the first local
minimum in the time evolution curve of the mode s = 1,
which is typically reached at t = 2π (ω2

1 − γ 2/4)−1/2. For
a mode s > 1 whose frequency is proportional to ω1, this
time also corresponds to its sth minimum (this is true at low
frequencies, associated to the main contributions, since the
dispersion relation is linear). The unevenness is then explained
by the superposition at the same time of all these minima and
its time position is independent of the particle considered. This
surperposition also exists in the case of cyclic systems, but the
unevenness is masked by the translationally invariant mode,
which evolves linearly in time and dominates the dynamic at
long time [13]. When λw or Ew increase, the unevenness shifts
towards short times since ω1 increases (see Fig. 10). On the
contrary, when γ increases, the unevenness shifts towards long

times. Thus, the unevenness depth δdepth may be estimated as

δdepth ≈
∑

s

[
U 2

s (n)e−γπ/ω1

ω2
s − γ 2/4

]
. (16)

It increases from the outermost particle to the central one and
decreases with γ , in perfect agreement with the simulation
results (see Figs. 1–3).

E. Discussion

All the behaviors obtained with these theoretical expres-
sions are in perfect agreement with the simulation results;
they also explain the experimental observations presented in
Ref. [13]. The analysis of the equilibrium positions obtained
in these experiments shows that the decrease of the applied
voltage V is equivalent to a displacement of the (λw,Ew) point
inside the LR domain. The observed increase of diffusivity
D as the voltage V decreases is explained by the relation
(13), as well as its increase with the particle index |n|. In the
same way, our analysis explains the observed mobilities, which
were left unexplained in Ref. [27] but are consistent with (15)
(see Fig 10 of Ref. [27]. There is a misprint in the caption where
the colors have been transposed. The text in the body of the
paper is correct). In this article, we also presented a surprising
result concerning the correlation time. While the correlation
time measured for V = 1300 V is always higher than the one
measured at 1000 V, the opposite is observed for the outermost
balls (see Fig 8. of Ref. [27]). This is in agreement with our
estimations of the correlation time displayed in Fig. 17.

V. CONCLUSION

We have described the SFD of a finite number of particles
with soft-core interactions, confined in a linear and finite box
and submitted to thermal fluctuations. We have performed
numerical simulations of the relevant Langevin equations and
proposed to describe this system as a chain of linear springs
and point masses in a thermal bath. In a previous work
[30], we have identified three different kinds of confinement,
according to the relative values of the springs: The SR
confining forces are such that interparticle interactions may
be described by identical springs, with HW and SW confining
forces corresponding to a wall-particle interaction respectively
higher and smaller than the interparticle interactions. For the
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LR confinement the springs vary along the line. Since such
systems have finite size, the particles’ MSD reach constant
values at very long times (tsat ! t). In a previous article, we
have studied the effects of the confinement on the MSD in
this saturation regime [30]. Here we focus on the transient
behaviors at short times.

Two regimes have been identified for the transient time
evolution of the MSD 〈%u(n,t)2〉 of the nth particle. At small
times (0 ! t ! tcorr), it evolves as 〈%u(n,t)2〉 = (kBT /m)t2.
This is a ballistic flight that results from the inertial effects
and is observed whatever the damping γ , the particle n, and
the confinement range. For (tcorr ! t ! tsat), an intermediate
regime takes place in which the power law describing the
evolution of the MSD according to the time depends on the
damping value. For small damping, a linear scaling in t is
observed and a constant diffusivity may be defined for all
the particles. For large damping, the MSD undergoes a SFD
scaling in t1/2 and mobilities may be determined. In these
finite-size linear systems, the translation invariance is broken
and the evolution of the MSD according to the time depends
on the rank of the particle in the line.

We exhibit a strong dependency of the dynamics on the
confinement. While the dynamic of the outermost particles is
the slowest in the HW case, it is by contrast the fastest in
the SW and LR cases. Moreover, while the behavior of the
MSD may be described by a single diffusivity or a single
mobility in the case of a SR confinement, these coefficients

vary along the line for a LR confinement. In this case,
both coefficients increase when the considered particle is far
from the confining walls. The crossover times depend on the
confinement too. For LR confinement, the correlation times
strongly increase for particles close to the wall whereas the
saturation times decrease as the particle gets farther from the
walls.

From a theoretical point of view, we show that the motion
of the particles of such systems may be described in terms of
the normal modes of oscillation of the corresponding chain
of springs and point masses. The MSD results from the
superposition of all these modes, which undergo the same
dynamic as an oscillator in an harmonic well. The overdamped
modes, which do not oscillate until they saturate, contribute
to the SFD scaling in t1/2. The underdamped modes oscillate
before reaching their saturation and contribute to the linear
time scaling. The particularity of finite-sized linear systems is
that the particles are not equivalent. Each of them is associated
with specific modes in which they oscillate preferentially.
Thus, the superposition of modes is different for each particle.
Complete expressions of their diffusivities and mobilities have
been expressed according to the relevant parameters. Those
estimates are in perfect agreement with our simulation data.
With this model, we recover the correct power laws for the
time dependency of the MSD in the various regimes, and we
are able to estimate the prefactors according to the relevant
parameters.

[1] D. Jepsen, J. Math. Phys. 6, 405 (1965).
[2] R. Arratia, Ann. Prob. 11, 362 (1983).
[3] P.-G. de Gennes, J. Chem. Phys. 55, 572 (1971).
[4] D. G. Levitt, Phys. Rev. A 8, 3050 (1973).
[5] P. M. Richards, Phys. Rev. B 16, 1393 (1977).
[6] H. van Beijeren, K. W. Kehr, and R. Kutner, Phys. Rev. B 28,

5711 (1983).
[7] J. Kärger, Phys. Rev. A 45, 4173 (1992).
[8] K. Hahn and J. Kärger, J. Phys. A 28, 3061 (1995).
[9] K. Hahn and J. Kärger, J. Phys. Chem. B 102, 5766 (1998).

[10] A. Taloni and F. Marchesoni, Phys. Rev. E 74, 051119 (2006).
[11] M. Kollmann, Phys. Rev. Lett. 90, 180602 (2003).
[12] B. Felderhof, J. Chem. Phys. 131, 064504 (2009).
[13] J.-B. Delfau, C. Coste, and M. Saint Jean, Phys. Rev. E 84,

011101 (2011).
[14] T. Ooshida, S. Goto, T. Matsumoto, A. Nakahara, and M. Otsuki,

J. Phys. Soc. Jpn. 80, 074007 (2011).
[15] B. Lin, M. Meron, B. Cui, S. A. Rice, and H. Diamant, Phys.

Rev. Lett. 94, 216001 (2005).
[16] V. Borman, B. Johansson, N. Skorodumova, I. Tronin, V. Tronin,

and V. Troyan, Phys. Lett. A 359, 504 (2006).
[17] Q.-H. Wei, C. Bechinger, and P. Leiderer, Science 287, 625

(2000).
[18] B. Lin, B. Cui, J.-H. Lee, and J. Yu, Europhys. Lett. 57, 724

(2002).
[19] C. Lutz, M. Kollmann, P. Leiderer, and C. Bechinger, J. Phys.:

Condens. Matter 16, S4075 (2004).
[20] G. Coupier, C. Guthmann, Y. Noat, and M. Saint Jean, Phys.

Rev. E 71, 046105 (2005).

[21] G. Coupier, M. Saint Jean, and C. Guthmann, Phys. Rev. E 73,
031112 (2006).

[22] G. Coupier, M. Saint Jean, and C. Guthmann, Europhys. Lett.
77, 60001 (2007).

[23] C. Coste, J.-B. Delfau, C. Even, and M. Saint Jean, Phys. Rev.
E 81, 051201 (2010).

[24] K. Nelissen, V. Misko, and F. Peeters, Europhys. Lett. 80, 56004
(2007).

[25] S. Herrera-Velarde and R. Castañeda-Priego, J. Phys.: Condens.
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