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Inverse problems in reduced order models of
cardiovascular haemodynamics: aspects of
data-assimilation and heart-rate variability

Sanjay Pant, Chiara Corsini, Catriona Baker, Tain-Yen Hsia, Giancarlo Pennati, and Irene E. Vignon-Clementel

Abstract—Inverse problems in cardiovascular modelling have
become increasingly important to assess each patient indi-
vidually. These problems entail estimation of patient-specific
model parameters from uncertain measurements acquired in
the clinic. In recent years, the method of data-assimilation,
especially the unscented Kalman filter, has gained popularity to
address computational efficiency and uncertainty consideration
in such problems. This work highlights and presents solutions
to several challenges of this method pertinent to models of
cardiovascular haemodynamics. These include methods to a)
avoid ill-conditioning of covariance matrix; b) handle a variety of
measurement types; c) include a variety of prior knowledge in the
method; and d) incorporate measurements acquired at different
heart-rates, a common situation in the clinic where patient-state
differs between various clinical acquisitions. Results are pre-
sented for two patient-specific cases of congenital heart disease.
To illustrate and validate data-assimilation with measurements at
different heart-rates, results are presented on synthetic data-set
and on a patient-specific case with heart valve regurgitation. It is
shown that the new method significantly improves the agreement
between model predictions and measurements. The developed
methods can be readily applied to other pathophysiologies and
extended to dynamical systems which exhibit different responses
under different sets of known parameters or different sets of
inputs (such as forcing/excitation frequencies).

Index Terms—data-assimilation, unscented Kalman filter,
parameter estimation, heart-rate, single-ventricle physiology,
haemodynamics

I. INTRODUCTION

Numerical models of blood flow of varying complexity—
ranging from lumped models that are electric-analogues of
the circulation, through one-dimensional Euler equations and
three-dimensional Navier-Stokes models, to geometrical mul-
tiscale models—have been developed to study various healthy
and diseased physiologies. The lumped parameter models, in
particular, find application either individually or as boundary
conditions (open or closed-loop) to higher order models (1D
or 3D) in the geometrical multiscale method [1], [2]. For
a patient-specific analysis, however, these models must be
adapted to each patient individually. This means that the
model parameters must be estimated from some set of clinical
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measurements (typically noisy) in the patient. This manuscript
deals with important perspectives related to such estimation
when data is assimilated gradually during the simulation, i.e.
in a sequential data-assimilation setting.

Estimating model parameters in haemodynamics is chal-
lenging due to three factors: the presence of uncertainty (noise
or biases) in clinical measurements; the imperfect nature of
various assumptions employed in the models; and the fact
that the number of parameters can be quite large even in
relatively simplistic models representing the whole circulation.
The inverse problem has been addressed in many previous
studies, see for example [3]–[16] and [17], [18] for their
advantages and disadvantages. A recent Bayesian approach
to parameter estimation in cardiovascular models is based on
markov chain monte carlo methods with mean or maximum
target quantities [19]. In recent years, the data-assimilation
approach has gained popularity as it can take advantage of
full-time varying measurements as opposed to just scalar
mean/minimum/maximum indices. It has been employed in
a range of cardiovascular problems such as the estimation of
Windkessel parameters [18], [20]–[22], closed loop lumped
model parameters for single-ventricle physiology [17], artery
wall stiffness parameters [22], [23] models, and tissue support
parameters for fluid-structure interaction models [24]. Re-
cently, it has also been used for parameter estimation in elec-
trocardiography/electromechanical models [25]–[28], cardiac
motion recovery [29], [30], inverse electrophysiology applica-
tions [31], [32], and for baroreflex regulation modelling [33].
This study focuses on some aspects of such a data assimilation
method, namely the unscented Kalman filter (UKF), towards
successful estimation and interpretation in closed-loop lumped
parameter models of cardiovascular haemodynamics.

The first contribution of this study is the management
of Sigma Point collapse in the sequential UKF framework
which can lead to ill-conditioning of the empirical covariance
matrix, and consequently numerical problems. The second
contribution of this study is to present a method to include the
measurements of minimum (min) and maximum (max) values
of model outputs in the method in an efficient manner. This
is relevant as sometimes only min/max values, as opposed
to full time-varying measurements, are available/measurable
for certain quantities in the clinic. The third contribution is
the presentation of different forms of prior knowledge that
can be incorporated in the UKF setting to ensure that a
reasonable solution of the inverse problem is obtained. The
final contribution is a method to include measurements at
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different heart-rates which is a challenge in the basic UKF
method.

The first two contributions are presented in two patient
specific cases of congenital heart disease, namely stage-I single
ventricle physiology (one with normal valves and one with
a regurgitant atrioventricular valve). The last contribution of
assimilating measurements at variable heart-rates is demon-
strated first for a synthetic data-set, to verify the approach, and
then on a patient-specific case. This method can be readily
extended to other dynamical systems that exhibit different
responses under: i) differing values of a single (or a set
of) known parameters (i.e. parameters that are not to be
estimated), for example, estimation of medium diffusivity and
conductivity in an advection-diffusion problem where species
concentrations are measured at two different known advection
velocities; and ii) different inputs, for example different input
signals or different forcing/exciting frequencies. The latter
case is especially relevant as, in practice, certain models can be
particularly sensitive to some parameters in certain time-zones
(or space-time zones in case of partial differential equations)
[34]. It is necessary to gain information either by having very
precise information in these zones, or to visit them several
times sequentially, so that they are revisited when knowledge
on the other parameters has been gained. Assimilating data
over several quasi-periodic signals is such an example that is
naturally encountered in physiology.

It should be noted that single-ventricle physiology presents
a challenging treatment as only one heart pump functions
well at birth, usually performed in three stages of open-heart
surgery where important decisions must be made at each stage
[35], [36]. In recent years, the adoption of computational
fluid dynamics (CFD) models, large parts of which comprise
lumped parameter models, has been employed to aid clinical-
decision making and development of novel surgical strate-
gies [36], [37]. For individual case-by-case clinical-decision
making in single-ventricle patients, however, the estimation
of lumped model parameters while taking into account the
uncertainty in clinical measurements is necessary. It is this
problem that the methods developed in this manuscript cater
to.

The model of single-ventricle physiology adopted in this
study is presented in [17] and employs the one-fibre model
[38], [39] to describe the heart chambers and an extension to
the valve model of [40] presented in [17]. The main motivation
for such model choices is that they are based on physically
meaningful parameters such as wall-volumes of the heart
chambers, effective areas of the valves, sarcomere properties,
etc., for which clinical/experimental estimates are available.
This reduces the black-box nature of the lumped models and
routine measurements such as four-chamber electrocardiog-
raphy, Doppler velocimetry, etc., can be employed, at least
qualitatively, for validation of some of the parameter estimates.
This moreover allows the estimated lumped model parameters
of the heart to serve as a first good guess for myocardium
material properties in larger 3D models.
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Fig. 2. Activation functions for the atrium and ventricle: taSA and taSV

denote the activation durations, and t1 denotes the overlap between the end
of atrium activation and the beginning of ventricular activation.

II. METHODS

A. Single ventricle circulation model

The model for the entire circulation (so called closed
loop model) for the single-ventricle case after stage-I surgery
considered in this study is described in [17]. Here it is briefly
presented. An electric network schematic of this physiol-
ogy alongwith the pressure-volume relationships of various
model components is shown in Fig. 1. Here, the resistances
( for linear dependence of pressure on flow-rate
and for quadratic dependence) represent the viscous
losses in the blood, the capacitances ( ) represent
the compliance of arteries or veins due to the elastic nature
of their walls, and the inductances ( ) represent
the fluid inertial effects. Note that an artificial shunt connects
the systemic and pulmonary circulations at this stage of the
heart palliative procedure. The models for the heart chambers
( ) and the valves, which function to separate the
heart chambers from the rest of the circulation, ( )
are described next, which combined with mass-conservation at
each network junction of Fig. 1, result in a system of nonlinear
ordinary differential equations (ODEs).

1) Heart chambers: The heart chambers are described by
a one-fibre model [38], [39], where the relationship between
wall fibre stress σf , pressure inside the cavity p, and volume
of the chamber V , is described by

σf/p = (1 + 3V /Vw) (1)

where Vw is the wall volume of the chamber. The fibre stress
is the sum of an active component σa responsible for the heart
contraction during each heart beat and a passive component
σp. Let V0 and l0 represent the volume of the chamber and
the length of the sarcomere, the functional unit of the fibre,
respectively, at zero transmural pressure when there is no
contraction. The fibre strech λ relating the sarcomere length l
to the volume V of the chamber is given by

λ =
l

l0
=

(
1 + (3V /Vw)

1 + (3V0/Vw)

)1/3

. (2)

Consequently, the sarcomere shortening velocity, vs, can be
computed as −dl/dt. The active component of the stress is
described as

σa = Ta0 f(l) g(ta) h(vs) (3)
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Fig. 1. Schematic of a closed-loop model for single-ventricle circulation. Measurements selected as observations to the UKF are shown in red. The pressure-
flow p-q relationships for various model components are shown in the right. SA denotes single atrium; SV denotes single ventricle; subscripts LB, UB, LU,
and SH, correspond to components of lower body, upper body, lungs, and shunt, respectively. In each of the LB, UB, and LU segments, parameters R1, K,
L1 and C1 represent the large arteries, the parameter R2 represents the resistance of the smaller vessels and the vascular bed, and the parameters C2 and
R3 correspond to the veins.

f(l) =


0, if l < la0

(l − la0)/(lam − la0), if la0 < l ≤ lam

1.0, if lam < l ≤ lae

(laf − l)/(laf − lae), if l > lae

(4)

g(ta) =


[

1
2

(
1− cos

(
2π ta

tmax

))]Ea

, if ta < tmax

0, otherwise
(5)

h(vs) =
1− (vs/v0)

1 + cv (vs/v0)
(6)

where la0, lam, laf , and lae describe the dependence of
sarcomere length l on active stress [17], ta is the time elapsed
since contraction activation, tmax is the activation duration of
the chamber in one cardiac cycle, v0 is the initial sarcomere
shortening velocity, Ta0 is the maximum active sarcomere
stress, and cv is a shape parameter. The passive stress is given
by

σp =

{
0, if λ < 1

Tp0 (exp {cp(λ− 1)} − 1) , if λ ≥ 1
(7)

where Tp0 and cp are sarcomere material properties.
Similar to [17] cv = 0 is assumed and g(ta) is parameterised

by three parameters: taSA
, the activation duration of the

heart chambers, namely the single atrium, taSV , the activation
duration of the single ventricle, and t1, the overlap between
the end of atrium activation and the beginning of ventricle

activation (see Fig. 2).

2) Valve description: The pressure drop across a valve is
given by the following Bernoulli relation

∆p = Bq|q|+ L
dq

dt
, B =

ρ

2A2
eff

, and L =
ρ leff

Aeff
, (8)

where ρ is the density of blood, and Aeff and leff denote
the effective opening area and effective length of the valve,
respectively. The valve state is described by a single variable,
ξ(t), that relates to the effective area at time t as follows

Aeff(t) =



Amax
eff ξ(t) normal valve(
Amax

eff −Amin
eff

)
ξ(t) +Amin

eff
regurgitant
(incomplete closure)A

max
eff ξ(t) if ξ(t) ≥ 0

−Ar,max
eff ξ(t) if ξ(t) < 0

regurgitant
(prolapse)

(9)

where −1 ≤ ξ ≤ 1 and is negative only if the valve is
regurgitant due to prolapse, and the parameters Amax

eff , Amin
eff ,

and Ar,max
eff , denote the maximum, minimum, and maximum

regurgitant area under prolapse, respectively. The valve dy-
namics is described by ordinary differential equations such
that the rate of valve opening/closing is proportional to the
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favourable pressure difference (see [17] for details)
ξ̇ = (1− ξ) Kvo ∆p if ∆p ≥ 0

ξ̇ = ξ Kvc ∆p if ∆prg ≤ ∆p < 0 and ξ ≥ 0

ξ̇ = (1 + ξ)Kr
vo(∆p−∆prg) if ∆p ≤ ∆prg

ξ̇ = −ξ Kr
vc (∆p−∆prg) if ∆p > ∆prg and ξ < 0

(10)
where ∆prg is the pressure gradient beyond which the valve
prolapses, and K(·) are proportionality parameters.

B. Overview of the unscented Kalman filter

After having described the hemodynamics model above, let
us explain how its parameters are estimated based on dynamics
measurements of blood flow and pressure. The unscented
Kalman filter is an extension to the Kalman filter for non-
linear problems [41], [42]. Let y ∈ Rd be the state-vector.
The so called forward model that relates the state yn at time
tn to that at tn+1 can be written as

yn+1 = F (yn,θ,∆tn), (11)

where θ ∈ Rs represents the parameter vec-
tor, ∆tn represents the time-step, and F represents
the forward operator. For example, in the model rep-
resented in Fig. 1, the state vector is represented as
y = [VSA, VSV, qAVV, qAOV, ξAVV, ξAOV, pAO, p1UB , p2UB ,
p1LB , p2LB , p1LU , p2LU , pAO, qUB, qLB, qLU, ṗSH]. The operator
F is then defined by the discretisation of the ODE system
resulting from the heart and valve models described in sections
II-A1 and II-A2 and the individual component equations
shown in Fig. 1 (right). The measurements are described by
the observation operator as

zn = H(yn, tn) + ε(tn), (12)

where zn ∈ Rm is the observation vector, i.e. the subset of
measurements chosen to estimate parameters, at time tn, H
represents the observation operator that relates the model state
to the measurements, and ε(tn) represents the measurement
noise. For parameter estimation through sequential filtering
methods, the state vector yn is combined with the parameter
vector to yield an augmented state vector xn, and the forward,
F , and observation, H, operators are written as

xn+1 =

[
yn+1

θn+1

]
=

[
F (yn,θn,∆tn)

θn

]
= F(xn,∆tn), (13)

zn = H(xn, tn) + ε(tn). (14)

The goal of sequential methods is to provide an estimate for
the state xn by taking all the measurements z1 to zn into
account. This is achieved recursively by providing an initial
estimate x̂0 with a covariance matrix Px

0 . The recursion is as
follows: first, the state x̂n and covariance P̂x

n are propagated
to an intermediate state x̂−n+1 with covariance P̂x−

n+1 through
the forward model of equation (13), and then the estimate
x̂n+1 with covariance P̂x

n+1 is obtained by correcting the
intermediate state, by accounting for (assimilating or prob-
abilistically conditioning on) the observation zn+1 through
equation (14). If N (n = 1, 2, . . .N) observations are avail-

able, then an estimate of the parameters is provided by the
corresponding components of x̂N, and associated variances by
the corresponding diagonal elements of P̂x

N.

If the forward and observation operators for the augmented
state F and H are linear, and ε(tn) is white noise, then
the Kalman filter [43] provides an optimal state estimate and
both the propagation and assimilation steps can be analyti-
cally computed. For non-linear problems, various extensions
such as the extended Kalman filter (EKF), ensemble Kalman
filter (EnKF), unscented Kalman filter (UKF), etc. have been
proposed, which differ primarily in the forward propagation
step. For a discussion on such choices, the reader is referred to
[18]. In what follows the forward propagation and assimilation
steps of the UKF are briefly described.

1) Forward propagation of uncertainty: In UKF, forward
propagation is performed by propagating a set of determin-
istically chosen particles, called Sigma Points, through the
forward model of equation (13). The Sigma Points, denoted
by X k

n, k = 0, . . . , 2(d+ s)) are generated as follows
X 0

n = x̂n

X i
n = x̂n +

(√
L Px

n

)
i
, i = 1, . . . , L

X i
n = x̂n −

(√
L Px

n

)
i−L , i = L+ 1, . . . , 2L

(15)

where L = d + s and
(√

(·)
)
i

represents the ith row of the

matrix square-root of (·). Each X i
n is then propagated as

X ∗in+1 = F(X i
n,∆tn) , i = 0, . . . , 2L (16)

where X ∗in+1 denotes the propagated particle. x̂−n+1 and P̂x−
n+1

are calculated from the propagated Sigma Points as

x̂−n+1 =

2L∑
i=0

W i
m X ∗in+1, (17)

Px−
n+1 =

2L∑
i=0

W i
c [X ∗in+1 − x̂−n+1][X ∗in+1 − x̂−n+1]T, (18)

where W i
m and W i

c represent the weights associated with ith

Sigma Points for empirically calculating mean and covariance,
respectively [18]. In a similar manner, the intermediate (prior)
mean and covariance of the observation vector are calculated
by propagating X ∗in+1 through equation (14) and calculating
the empirical statistics

Z∗in+1 = H(X ∗in+1, tn+1) , i = 0, . . . , 2L (19)

ẑn+1 =

2L∑
i=0

W i
m Z∗in+1, (20)

Pz
n+1 =

2L∑
i=0

W i
c [Z∗in+1−ẑn+1][Z∗in+1−ẑn+1]T+Σn+1, (21)

where Σn+1 represents the covariance matrix of the mea-
surement noise ε(tn+1). Finally, the cross-covariance matrix
between x̂−n+1 and Pz

n+1 is

Px,z
n+1 =

2L∑
i=0

W i
c [X ∗in+1 − x̂−n+1][Z∗in+1 − ẑn+1]T. (22)
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2) Assimmilating the observations: Through the measure-
ment zn+1, the above calculated intermediate state is corrected
to yield an estimate of the state x̂n+1 with covariance Px

n+1

at tn+1 by minimising the following cost function J (x̂n+1)

J =
1

2
‖x̂n+1−x̂−n+1‖(Px

n+1)−1+
1

2
‖zn+1−H(x̂n+1)‖(Σn+1)−1

(23)
The solution to the above in the UKF setting is given by

x̂n+1 = x̂−n+1 + Kn+1 (zn+1 − ẑn+1) , (24)

Px
n+1 = Px−

n+1 −Kn+1P
z
n+1K

T
n+1, (25)

where the Gain matrix Kn+1 is given by

Kn+1 = Px,z
n+1(Pz

n+1)−1. (26)

Remark 1: It should be noted that if the observation operator
H is linear then the propagation of the Sigma Points through
the observation operator, equation (19), is not necessary. In-
stead, Pz

n+1 and Px,z
n+1 in equations (21) and (22), respectively,

can be analytically computed. For ODE models, in certain
cases, this may induce a choice of formulation. Consider the
heart model as an example. This model, see Fig. 1 and section
II-A1, is highly non-linear where, for each heart chamber, the
ODE is formed naturally for volume V as follows

V̇ = dV /dt = qin − qout (27)

and the pressure, p, is calculated by equations (1)–(7). How-
ever, it is the pressure, pSA or pSV, that is typically observed.
If one were to reformulate the ODE in terms of pressure (by
differentiating equations (1) and (27)) rather than the volume,
then pressure would be a part of the state x and hence a linear
observation manager would suffice. However, given the nature
of equations (1)–(7), it is much easier to keep the ODE state
variable as V and employ a non-linear observation operator.

C. Open-loop vs. closed-loop
In the context of estimating parameters for haemodynamic

systems, such as the one presented in Fig. 1, a natural question
that arises is whether one should perform parameter estimation
in the entire closed-loop, or if one can perform simpler
estimation in sub-segments of the closed-loop circulation, i.e.
in an open-loop setting. In terms of computational cost, solving
multiple smaller open-loop segments is cheaper than one larger
closed-loop model, and this may be a driving motive for open-
loop estimation. However, in ODE systems such as that of
Fig. 1, the cost of solving the full closed-loop model is not
exorbitantly high, and hence the computational gain would
be of little practical significance. Another consequence of
estimation in open-loop segments is related to the manner
in which uncertainty in the measurements is accounted for.
As an example, consider the lower body segment in Fig.
1 (the region between nodes N-1 and N-2). Since at both
ends, the flow-rates, i.e. qLB and qIVC, and the pressures,
i.e. pAO and pSA, are available as measurements, one may
consider an open-loop model just for this segment. However,
in order to solve the forward model one must impose two
forcing conditions, in this case say at the ends N-1 and N-
2. For this, one may choose either p or q at each end and

employ the remaining two measurements as observations to
the UKF. While a reasonable approach, in doing so two of the
measurements at the boundaries have been deterministically
imposed and hence are considered devoid of any uncertainty.
This might lead to erroneous results if such an assumption,
depending on the quality of the measurements, cannot be
justified. Furthermore, there is little assurance that when the
estimated parameters for each segment are plugged into the
closed-loop model with no such forcing conditions, the model
output will agree with the measurements. On the other hand,
there is a distinct advantage in an open loop setting. In certain
cases, the measurements are not synchronised in time with
respect to each other. This is especially true if simultaneous
electrocardiogram (ECG) measurements are not taken or are
unreliable, or due to different techniques for the pressure
(typically catheterisation) and flow-rates (typically magnetic
resonance imaging (MRI)) measurements implying that their
simultaneous measurement is rarely possible. In such cases,
some of the time-shifts can be posed as parameters in the
open-loop models, and can be estimated by the UKF. As
an example, consider the aforementioned lower body open-
loop segment. Assume that the pressure measurement pmAO(t)
is synchronised with pmSA(t) and the flow-rate measurement
qmLB(t) is synchronised with qmIVC(t), but the pressure and
flow-rate are not synchronised with respect to each other. In
the UKF one may impose the following as forcing conditions
(FCs) and measurements while accounting for the phase/time-
shift between qm and pm by a parameter δtp,q:

FCs :

{
pSA(t) = pmSA(t)

qLB(t) = qmLB(t+ δtp,q)
(28)

Observations :

{
pAO(t) = pmAO(t)

qIVC(t) = qmIVC(t+ δtp,q)
(29)

Using the above formulation, and by including δtp,q as one
of the parameters to be estimated, the discrepancy due to
asynchronous measurements can be taken into account. Note
that the parameters must affect the forward model in order to
be estimated; hence only in an open-loop setting where δtp,q
appears in a FC and this affects the forward model, can it be
estimated. Such an application of estimating the asynchroni-
sation is presented in [18]. On the contrary, in a closed-loop
setting the asynchronisation between the measurements cannot
be automatically accounted for.

Preliminary tests suggested that parameter estimation on
individual open-loop segments of Fig. 1 may not result in as
good reproduction of all the measurements when substituted
in the closed-loop model (also see [44] where in an open-loop
configuration the heart-parameters estimated for patient-A are
considerably different than those estimated in a closed-loop
setting in [17]). Thus in what follows, estimation is performed
directly on the closed-loop model. Such an observation sug-
gests that uncertainty in the measurements is important to be
considered.
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D. Sigma Point collapse

The valve model presented in section II-A2 is essentially
described by the valve dynamics parameter ξ. In haemody-
namics problems, the valve state remains closed or open for
long periods of time in a cardiac cycle. This implies, that
during these periods the valve state ξ remains 0, 1, or -1,
and all perturbations (i.e. Sigma Points) to this variable at
a time tn may result in the same final state (0, 1, or -1) at
time tn+1. In two dimensions, this phenomenon is depicted
in Fig. 3, where at tn+1 all Sigma Points have the same
value for the ξ variable. This phenomenon makes the empirical
covariance matrix Px−

n+1 not positive definite, which may result
in a non-positive definite Px

n+1 after the data-assimilation step
is performed. Note that the matrix square-root in equation (15)
is typically calculated via Cholesky factorisation, and hence
the non positive definiteness of Px

n+1 presents problems. This
issue can be remedied by adding a small diagonal term to
Px−

n+1 in equation (18) as follows

Px−
n+1 = δrI+

2L∑
i=0

W i
c [X ∗in+1− x̂−n+1][X ∗in+1− x̂−n+1]T, (30)

where I is an L×L identity matrix, and δr is a scaling factor.
The added matrix δrI can be interpreted as a regularisation
term, or as the covariance matrix of error in model forward
propagation. In the latter view, the discretised model can be
seen, in lieu of equation (13), as

xn+1 = F(xn,∆tn) + εm, (31)

where εm is the discretised model propagation error with zero
mean and covariance δrI. The end result is that even though
the Sigma Points collapse in one or more dimensions, the
propagated variance in these directions is maintained at a low
value of δr. In the Bayesian perspective of UKF, the prior on
xn+1 can be seen as a Normal distribution with mean x̂n+1

and covariance Px−
n+1. Then, the data assimilation step consists

in computing the posterior distribution of xn+1|zn+1. When
collapse of Sigma Points occurs, the prior on the collapsed
states becomes a dirac delta function, i.e. the prior has no
uncertainty associated with these states, and hence cannot be
corrected in the posterior. The term δrI avoids such a case by
ensuring that no state variables become entirely certain at any
step of the UKF.

E. Minimum and maximum of a time-varying output

While the UKF can easily incorporate time-varying mea-
surements by time discretisation, i.e. a measurement z(t) is
provided at discrete time-instants tk as observations, it is
not straightforward to include measurements that correspond
to minimum or maximum of a time-varying output. This is
a common measurement in haemodynamics problems, when
only min/max volumes, pressures, or flow-rates are known.
If the time instants when the minima or maxima occur is
known a priori, then inclusion of such measurements is
straightforward by only providing these observations at the
known time-instants. However, the location of maxima or
minima depends on the parameters and the state variables,

p

ξ

tn tn+1

X i
n X ∗i

n+1

Fig. 3. Demonstration of Sigma Point collapse in two dimensions: pressure
on x-axis and valve parameter ξ on y-axis. Blue points indicate the Sigma
Points at time tn and red points indicate their propagated positions at time
tn+1. Note that the variance in the ξ direction becomes zero due to collapse.

which are continuously being modified by the UKF. Therefore,
methods to include such measurements are needed. One way,
in a non-linear observation operator setting, is to consider the
following observation operator that returns the max. or min.
of an output, say the ith component of the state, as follows

zn = H(xn) = min/max
0≤k≤K

(
x̃

(i)
n+k

)
; K = T/∆t, (32)

where x̃(i) represents the ith component of x̃, ∆t is the time-
step, T is the time-period (one cardiac cycle), and

x̃n+(k+1) = F(x̃n+k,∆t); with initial value x̃n = xn. (33)

In the above method, a forward model needs to be solved for
all the Sigma Points X ∗in+1 for at least one cardiac cycle to ob-
tain the min/max values of the observable output. In standard
UKF, there are 2(d+ s) + 1 Sigma Points, and consequently
2(d + s) + 1 forward simulations are required. If the above
method is utilised to include the min/max observations then
at each time when observations are assimilated, 2(d+ s) + 1
additional forward models need to be evaluated for at least one
cardiac cycle. This blows up the computational cost associated
with UKF. As an example, if the UKF is run for two cardiac
cycles and observations are assimilated at a total of N discrete
time instants, then 2(d+ s) + 1 forward simulations (for two
cardiac cycles) need to be run for the standard UKF, and
additional 2N(d+s)+N forward simulations (for one cardiac
cycle) to include the min/max observations. Alternatively, in
certain cases, the time instants where the maxima/minima
(tmin/max) for a particular output occur can be predetermined
and are usually a function of the parameters. In such cases
the observation operator can simply be appended whenever
t = tmin/max to include the min/max measurement. As an
example, consider that for the ventricle, only the end systolic
volume (ESV) and end diastolic volume (EDV) measurements
are available. Typically, these will correspond to the maximum
and minimum chamber volumes during a cardiac cycle. In
the model the contraction of the ventricle is dictated by
the activation function parametrised by the parameters taSV .
Hence, given the parameter taSV , the time instants where the
ventricle will be at min/max volumes can be determined.
This is shown in Fig. 4: the EDV (max) occurs just before
the ventricle begins to contract, i.e. at tc = 0 where tc is
the time elapsed since the beginning of the current cardiac
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tc = 0 tc = taSV

V
S
V

ESV ESV

EDV

Fig. 4. Relation of EDV and ESV times with respect to ventricle activation
function: ventricular activation is shown in red and its volume in blue,
both as a function of time. The large dash line indicates beginning of
ventricular contraction, while the small dashed lines indicate end of ventricular
contraction.

cycle, and the ESV occurs when the contraction phase of the
ventricle ends, i.e. at tc = taSV

. Hence, if the EDV and ESV
measurements are available then one may consider a small
interval of width ±δminmax around tc = 0 and tc = taSV , and
provide the EDV and ESV measurements as the observations
of VSV only when the UKF time t is in these intervals, the
intervals in turn being determined by the current state (which
determines taSV

).

F. Prior knowledge: dynamical system and parameters

As the number of parameters to be estimated increases, the
inverse problem of estimating parameters becomes harder. This
is particularly true if the associated cost function between the
model and the measurements, i.e. L = 1

2

∑N
n=0 ‖H (xn, tn)−

zn)‖Σn
is multimodal or non-convex (i.e. it has either multiple

minima or no minimum at all). In classical least-squares
minimisation framework, identifiability is partly improved by
adding a regularisation term as follows

L =
1

2
‖x0 − x̂0‖P̂x

0
+

1

2

N∑
n=0

‖H (xn, tn)− zn)‖Σn
. (34)

As is evident from the above notation, the regularisation term
can be seen as the prior, i.e. the initial estimate for the state
with mean x̂0 and covariance Px

0 , employed in the UKF
method. As demonstrated in [18], a bad choice of x̂0 and Px

0

can lead to failure of the UKF method even in relatively simple
dynamical systems. This aspect becomes more important when
the size of the dynamical system and the number of parameters
increase. Consequently, for such systems, prior knowledge on
the parameters is important for the success of the method.
The alternative is to run many instances of the UKF method
with different priors, but this is a brute force approach that,
although realisable, requires significantly more computational
effort. Prior information may be classified into the following
categories:

1) Parameter values: Certain parameter values are known
to be close to values determined clinically, through previous
studies, or through experiments. For example, estimates of the
wall volume of the ventricles, maximum valvular areas, acti-

vation durations of the heart chambers, are available through
clinical imaging, echocardiography, or past clinical studies.
In essence, this knowledge is a measure of what is expected
in a population of patients of similar age and physiology, and
especially helpful when model parameters have a physiological
meaning, such as effective valve areas, wall volumes of the
heart chambers, etc. Such knowledge can be easily integrated
in the UKF initial state x̂0. A priori there is generally no
reason to assume correlation between the elements of x0 and
hence P̂x

0 can be assumed to be diagonal with respective
entries corresponding to the respective variances (inverse of
confidences arising from the population-based knowledge) in
the chosen prior estimates.

2) Parameter ranges: A common form of prior knowledge
is about parameter values in terms of known ranges of vari-
ation. Even more common is the knowledge that a certain
parameter cannot be negative. For example all the resistances,
capacitances, and inductances in Fig. 1 are known a priori
to be positive. Similarly, the volumes cannot be negative and
activation durations cannot be larger than the cardiac cycle.
While such information cannot be included in the form of a
prior, one can include appropriate parameterisations to enforce
such constraints. For positive parameters

Ψ = 2ψ, (35)

and for a parameter constrained between Ψmax and Ψmin

Ψ = Ψmin +
Ψmax −Ψmin

1 + exp (−ψ)
(36)

may be chosen, where Ψ is the real parameter and the ψ is
the form employed in the state x. The parameterisation ensures
that the variable ψ can be manipulated by the UKF to take
values from −∞ to +∞ in the Sigma Points while yielding
reasonable values of the real parameter to be employed in
the forward model. The parameterisation of equation (35)
can also be employed for state variables such as pressure
if they are required to be positive. This also makes sense
from a conceptual viewpoint in the sense that in the UKF,
the measurement errors (variances diagonal elements of Σn)
are seen as Gaussian, and such assumption leaves a finite non-
zero probability that the pressure might be negative. Instead,
the parameterisation of equation (35) transfers the Normal
assumption to the exponent ψ, thus making the real pressure
Ψ log-normally distributed, which is a much more reasonable
assumption due to only positive support of the log-normal
distribution.

In the models used in this study, all pressures and volumes
are parameterised by equation (35) to enforce positivity con-
straints. The state variables ξAVV and ξAOV are parameterised
by equation (36) to be constrained between 0 and 1 or between
-1 and 1 depending on whether regurgitation is included. Sim-
ilarly, the parameters taSA and taSV are constrained between
0 and T (the time-period of the cardiac cycle) and the overlap
parameter t1 is constrained between 0 and 0.05s through
equation (36).

3) Prior knowledge on the range of variation of a state
variable: The case when min/max values of certain state
variables are known a priori with reasonable degree of confi-
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Fig. 5. The evolution over time of the ratio of UKF estimated variance (σ2) to initial variance (σ2
0) for the parameters of the two patients A and B. The

UKF parameter variances are monotonically non-increasing with time as more measurements are assimilated.

dence is presented in section II-E. Here, the case when such
ranges are not precisely known in a particular patient and yet
there is some belief about what this range should not be is
presented. For example, in stage-I single-ventricle physiology,
the ventricle volumes may vary from 5-25 ml during end-
systole (end of the heart contraction period) to 15-50 ml during
end-diastole (end of the cardiac chamber filling), depending
on the age and physiology of the patient. A stronger belief is
that these should not vary between 40 ml at end diastole to
70 ml at end systole, as these are too high for a 3–6 months
old patient. This information may be seen as an imprecise
knowledge about the mean value of ventricle volume. From
equations (1) and (2) it is evident that in the heart model,
the ratios V/Vw and V0/Vw determine the pressure. If only a
noisy measurement of pressure in aorta (reflective of pressure
in the ventricle) is available, the parameters V0 and Vw are
weakly identifiable: i.e. for a higher Vw and a correspondingly
higher V0, the aforementioned mean value of V might increase
while yielding a similar value of pressure. The UKF, in such a
case, may show a constant drift in both the parameters V0 and
Vw and in the volume V . A natural question then is how to
constrain the mean value from drifting too far from a known
value, say Vk. One way to include such a constraint is to
provide the following measurement for the volume V (t)

zn = Vk = V (tn) + εn ; εn ∼ N (0, σ2
k), (37)

where σ2
k is a relatively high value in comparison to the

real measurement variances. Essentially, for a time-varying
quantity V this provides a pseudo constant measurement of
Vk at each time of data assimilation. It results in a pulling

force towards the value Vk proportional to the distance of V
from Vk, and if appropriately chosen affects the solution only
when V (t) drifts too far from Vk. For example, assume that
the true V (t) varies between 8ml and 32 ml. If one provides
a constant pseudo measurement of 20 ml with a variance 400
ml2 (i.e. 0–40 ml with one standard deviation), the effect on
the solution is negligible when the volume is in the true range,
and will pull the solution towards the 20 ml significantly when
V (t) drifts far from 20 ml.

4) Initial value of the state variables: A high degree of
confidence can be associated with the initial values of some
of the state variables based on the model physics. For example,
in the heart model note that the driving functions are the acti-
vation functions shown in Fig. 2, and hence t = 0 corresponds
to the time just before the activation of the ventricle begins.
Furthermore, a priori one may assume that the parameter t1
is zero implying no overlap between the atrium and ventricle
activations and hence at t = 0 the atrium activation has just
finished. Under these assumptions, confidence is high that
at t = 0 both the valves are closed, consequently both the
valvular flows are zero, the aortic pressure is at end-diastole,
the atrium is at end-systole, and the ventricle is at end-diastole.

In a sense, all the above points are about choosing ap-
propriate regularisation for the inverse problem and how
to include this regularisation in the UKF method. These
priors/regularisations are essential when estimating a high
number of parameters and make the inverse problem better
posed. Without appropriate prior information, one may see x̂0

and the diagonal elements of P̂x
0 as parameters of the UKF

method. These are 2d+ 2p parameters, and searching for the
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Fig. 6. Schematic of the closed-loop model to demonstrate UKF with mea-
surements at different heart-rates. Measurements are shown in red: quantities
within square brackets [·] are measured at higher heart-rate.

right parameters to utilise in a method to estimate p parameters
of the inverse problem beats the purpose.

G. Heart-rate variability in measurements

A common problem associated with haemodynamics mea-
surements is heart-rate variability. In particular, due to differ-
ent techniques of measurements—and consequently different
patient states during measurements (sometimes a difference
of days)—the pressure (obtained by catheterisation) and the
flow-rate (obtained by MRI) measurements are typically at
different heart rates. This poses problems in the basic UKF
setting as the forward model is run only at one heart rate. A
method to cope with such heart rate variability in the UKF is
presented here. Consider the following two models at different
heart ratesy

{1}
n+1 = F {1}

(
y
{1}
n ,θ,∆tn

)
at heart rate HR1

y
{2}
n+1 = F {2}

(
y
{2}
n ,θ,∆tn

)
at heart rate HR2

(38)

where y
{1}
n and y

{2}
n represent the state variables at time tn

for the models F {1} and F {2} with heart-rates HR1 and HR2,
respectively. Assume that the pressures are observed at HR1

and the flow-rates at HR2 as followsz
{1}
n+1 = H{1}

(
y
{1}
n+1, tn

)
+ ε{1} (tn+1)

z
{2}
n+1 = H{2}

(
y
{2}
n+1, tn

)
+ ε{2} (tn+1)

(39)

where H{·} are the observation operators, z
{·}
n+1 the observa-

tions, and ε{·} (tn+1) the corresponding measurement errors.
For parameter estimation, the following augmented state mod-
els for forward and observation are considered

xn+1 =


y
{1}
n+1

y
{2}
n+1

θn+1

 =


F
(
y
{1}
n ,θn,∆tn

)
F
(
y
{2}
n ,θn,∆tn

)
θn

 = F(xn,∆tn),

(40)

zn =

z
{1}
n

z
{2}
n

 =

H{1}
(
y
{1}
n+1, tn

)
H{2}

(
y
{2}
n+1, tn

)
+

[
ε{1} (tn+1)

ε{2} (tn+1)

]
(41)

Denoting the RHS of equation (41) by H(xn, tn) + ε(tn), the
UKF is performed on the state xn with forward operator F of
equation (40) and observation operator H of equation (41).
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Fig. 9. Parameter evolution over time (synthetic data) with heart-rate
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2/σ2
0), where σ2

0 is the prior variance and σ2 is the UKF estimate
variance computed at t = 1.0 s.

In the above formulation the parameters θ are corrected by
both the observations at HR1 and HR2, but each state y{1}

and y{2} is only individually corrected by the observations
z{1} and z{2}, respectively. Since most ODE systems for
haemodynamics models are initial state forgetting, in the sense
that irrespective of the initial state y0, all runs eventually
converge to the same state depending only on the parameters,
it should be possible to estimate complete states x{1} and
x{2} by correcting the parameters θ through observations at
both heart-rates. It should be noted that the above formulation
requires 4d+2s+1 forward and observation model simulations
as opposed to 2d + 2s + 1 in the basic UKF. Finally, the
proposed method can be easily extended to cases where mea-
surements at more than two different heart-rates are available
in a straightforward manner, albeit at a linearly increasing
computational cost.

All the computations in this study are implemented in-house
in the Python/Cython programming language. All simulations
are run on an HPC node (RAM 48 GB) with 2 Intel Xeon
X5650 processors, each with 6 cores and 12 threads.
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Fig. 7. UKF state evolution over time for the case with heart-rate variability (synthetic data): model output is in blue, measurements are in red, solid lines
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III. RESULTS AND DISCUSSION

The results are divided into two categories: a) when only
a single-heart rate is considered; and b) when measurements
are available at differing heart-rates. For quick reference, a
nomenclature of all the estimated parameters is presented in
Table I in the appendix.

A. Inverse problems considering a single heart-rate

The model and methods for parameter estimation are
applied to two patients: patient-A with normal atrioventricular
valve (AVV) and patient-B with regurgitant AVV valve due
to prolapse. Details of clinical data acquisition can be found
in the appendix. Both patients correspond to stage-I surgery
for the hypoplastic left/right heart syndrome, a form of
single-ventricle physiology. The parameter estimation results
for these two patients are presented in [17] and the reader is
referred to this study for the choice of model, time evolution
of parameter estimates with the UKF method, validation of
the parameter estimates, and the clinical significance of the
results. Here, the method to set up the UKF and the results
of parameter variances, that are both not included in [17], are
presented. Parameter variances in particular can provide an
indication of the identifiability of the system.

1) Typical patient-specific case: For patient-A, a non-linear
observation manager (see Remark 1) is employed, Sigma Point
collapse is prevented for the valve states (section II-D), and
the prior knowledge is considered as described in section II-F.
In particular, εm in equation (31) is assumed to be δrI with
δr equal to 1e-08. Additionally, to constrain the atrium and

ventricle volumes, pseudo measurements of Vk = 12ml and
Vk = 15 ml are respectively provided with σ2

k = 50 ml2,
see equation (37). Fig. 5 shows the evolution of log2(σ2/σ2

0)
in the UKF for the 33 parameters. In this figure, which
complements Figure 3 of [17] , σ2

0 is the initial prior variance
(diagonal elements of P̂x

0 ) and σ2 is the UKF estimated
variance (diagonal elements of P̂x

n). Note that a negative value
of −n in this plot corresponds to an uncertainty reduction by
a factor of 1/2n relative to the prior variance. The rate of
decrease corresponds to the amount of information obtained
from the measurements at each time: in general, a faster de-
creasing variance corresponds to a relatively easily identifiable
parameter. Fig. 5 shows that within 4 cardiac cycles, t ≈ 2s,
the variance of all the parameter estimates, except R1LU

and
CSH, is decreased by at least a factor of four relative to the
prior variance. This trend of consistently decreasing variance
continues as more measurements are added. On the contrary,
the parameters R1LU and CSH, appear to be weakly identifiable
in the current setting as evidenced by the fact that in 20
cardiac cycles their variance has been less than halved. This
may be related to small sensitivities of the measured model
outputs to the parameters around the estimated values (see
Table 3 of [17] where the estimated values for these parameters
are close to negligible). Small sensitivities and close to zero
estimates indicate that the parameters are not critical to model
output. On the contrary, if they are critical to model output and
appear to be weakly identifiable during estimation, it indicates
a need for more measurements to improve identifiability. For
example, the identifiability in the pulmonary block in Fig.
1 may be improved by providing an added measurement of
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the pulmonary artery pressure, p1LU
. It should be noted that

the idea of first identifying most influential parameters to the
model output (or the measurements) and then proceeding with
the estimation procedure has also been advocated in literature;
see for example [45]–[47].

Lastly, the parameter estimates obtained by the proposed
method are clinically reasonable: for example, the ventricu-
lar wall volume measured by MRI for this patient is 34.2
ml, whereas that estimated by the method is 33.9 ml [17].
Similarly, the SV volume variation was measured via MRI
between 10 ml and 29 ml, whereas that reproduced by the
model is between 10.7 ml and 24.5 ml [17]. Measurements
such as venrticular pressure which are not employed for
parameter estimation also show a good agreement with the
model output [17]. The parameter estimates and model out-
put are further validated through other qualitative measures,
such as echocardiography, Doppler velocimetry, E/A ratio for
ventricular filling, and pulmonary venous wedge pressures; for
details see [17].

2) Enforcing ventricular volume extrema to model a case of
valve regurgitation: Patient-B includes atrioventricular valve
regurgitation due to prolapse. In order to correctly estimate
heart model parameters with a regurgitant atrioventricular
valve, measurements pertaining to heart-chamber volumes are
necessary. In the absence of direct measurements of regurgita-
tion, such as area and flow-rate measurements at the atrioven-
tricular valve, if measurements of chamber volumes are not
provided, the UKF has no information pertaining to the valve
being regurgitant, and consequently, a parameter estimation
run yields a non-regurgitant valve where

∫ T
0
qAO(t)dt = EDV

- ESV. In fact, even in the clinic regurgitant blood volume is as-
sessed via the difference between EDV-ESV and

∫ T
0
qAO(t)dt.

Consequently, it is critical to include measurements of ven-
tricular volume along with measurements for qAO(t) (or alter-
natively qAOV(t)) to model regurgitation. While conductance
catheters are the gold standard for measurement of time-
varying ventricular volume information, this is rare in routine
clinical practice. Commonly, the EDV and ESV are estimated
from echocardiography, but more accurate measurements are
possible from 3D echocardiography and MRI. These result in
volumes at specific points of the cardiac cycle, such as end-
diastole and end-systole, and not volume changes over the full
cycle. Consequently, in addition to the methods employed for
patient-A, the EDV and ESV measurements are included in
the UKF to provide information on valve regurgitation through
the approach presented in section II-E. With these methods,
the evolution of parameter estimate means for the 34 model
parameters are shown in Figure 6 of [17]. The associated
decrease in the variance of the parameter estimates is shown in
Fig. 5. For this patient, all variances of the parameter estimates
are reduced by at least a factor of four when the UKF is
run for 40 cardiac cycles. Varying degrees of decrease in the
parameter variances, however, is apparent, which is likely to
be a result of difference in sensitivities. Due to the inclusion
of EDV and ESV volume measurements, the clinically mea-
sured regurgitation fraction of 25.3% is well captured in the
model which produces a regurgitation fraction of 22.7%. For
further validation of the parameter estimates, through direct

MRI measurements and indirect electrocardiogram and wedge
pressure measurements, see [17] and the discussion in section
III-B2.

B. Inverse problems with heart-rate variability

Results for heart-rate variability are first presented for a
synthetic data-set followed by a patient-specific case.

1) Synthetic data-set: To demonstrate the efficacy of the
proposed UKF method in taking measurements at different
heart rates into account (see section II-G), a further reduced
system of circulation is constructed. This system lumps all
the systemic and pulmonary circulations into a single block
and is shown in Fig. 6. For the heart activation functions,
it is assumed that the ventricle activation duration taSV

and
the ratio traSA

= taSA
/T = taSA

HR/60 remain invariant
with changes in heart-rate. This implies that at higher heart
rates, the duration of ventricle activation remains constant
while the decrease in heart-beat time-period is reflected in a
decrease in taSA

. Such an assumption is justified by clinical
studies, for example see [48], which report that at higher heart-
rates, the decrease in systolic time-interval is significantly
smaller than the decrease in diastolic time-interval. Synthetic
observations are generated by running the forward model with
known parameter values at two different heart rates of 120
and 150 bpm. Pressure output is stored from the lower HR
model and flow-rate output for the higher HR model. Small
noise (2% of maximum values) is added to these two sets of
outputs to generate measurements for parameter estimation.
The combined set of measurements corresponds to [pAO,
p1LB

, pSA, pSV, qAVV, qAOV, qAO, qSA]. The 16 parameters to
be estimated are [V0SA

, VwSA
, V0SV

, VwSV
, Amax

effAVV
, Amax

effAOV
,

CAO, R1LC
, R2LC

, R3LC
,KLC, L1LC

, C1LC
, C2LC

, traSA
, taSV

].
Fig. 7 shows how the two model states at different heart

rates are corrected by the UKF. As expected, in each heart-
rate, the model state that is observed is corrected much faster
than the unobserved state. For example, in the lower-heart
rate model, since only pressures are observed, the flow-rates
are corrected much slower than the pressures. Nonetheless,
within 20 cardiac cycles (of lower HR model), the UKF
parameters converge very close to the true parameters.
This is shown in Fig. 8. Finally, the evolution of UKF
parameter variances for two cardiac cycles of the lower HR
model are shown in Fig. 9. The results display a consistent
decrease in the parameter variances with the observation of
measurements. Here, within 2 cardiac cycles the reduction in
the variance for all parameters is, at least, more than a factor of
28, with the exception of KLC where this factor is, at least, 24.

2) Patient-specific case: In [17] it is noted that in patient-
B the pressure and flow-rate measurements were acquired at
different heart rates of 106 and 140 bpm, respectively. In that
study the heart beat time-period of the pressure measurements
was artificially shortened to be consistent with the flow-rate
measurements. Here, to palliate this shortcoming, the method
to deal with HR variability presented in section II-G is applied
to model the circulation of patient-B. The aforementioned hy-
pothesis that traSA

= taSA/T = taSAHR/60 remains constant



ACCEPTED BY THE JOURNAL OF THE ROYAL SOCIETY INTERFACE - HTTP://DX.DOI.ORG/10.1098/RSIF.2016.0513 13

between different heart rates is made and traSA
is estimated as

opposed to taSA in [17]. The results of the UKF estimation
are presented in Fig. 10. The evolution of estimate means
and variances shows that all parameters are converged and
that their variances decrease by a factor of at least 25. A
comparison of model output (with UKF-estimated parameters)
with the measurements is shown in Fig. 11. Comparing this
figure to the results of [17] (reproduced in this figure in
solid grey), it is observed that the measured venous flows,
particularly qSVC and qIVC are significantly better reproduced
when HR variability is taken into account. It is also observed
that the agreement between ventricular pressure in model-
output and the measurements is improved, particularly in
relation to the duration of ventricular mechanical activation.
The change of PV-loop from lower HR (solid line) to higher
heart rate (dashed-line) is consistent with the assumption of
traSA

and taSV
remaining constant when HR changes. It appears

that at higher heart rates there is restricted ventricular filling
time, resulting in lower EDV. Consequently, there is lower
ventricular preload and hence peak systolic pressure generation
is reduced. Overall, due to better modelling of physics it is
observed that consideration of HR variability improves the
parameter estimates and the agreement between model-output
and the measurements, albeit at a higher computational cost
(see section II-G). It should be noted that the force-frequency
relationship [49] which suggests that cardiac muscles produce
higher forces at higher frequencies is not included in the
model, and it is likely that inclusion of this phenomenon will
result in further improvement of the results. This, however, is
an area of future investigation.

Validation of parameter estimation procedure can be per-
formed in two ways: first, to consider clinical estimates of cer-
tain measurable parameters such as ventricular wall volumes
(measured by MRI), valve annulus areas, and mechanical acti-
vation times of heart chambers (qualitatively assessed by ECG
readings); and second, by considering measurements of model-
output that were not employed in the parameter estimation
procedure. The latter can include qualitative measures such
as pulmonary venous wedge pressures and measures derived
through echocardiography, and quantitative measures such as
ventricular pressure and volume variations. For patient-B, a
two-fold qualitative validation is performed: first, by the range
of variation of pulmonary venous wedge pressure (measured to
be ∼ 5.5 mmHg vs. ∼ 4 mmHg produced by the model); and
second by mechanical activation times of the single atrium
and single ventricle which show an overlap between their
contractions (implying that there is a significant time-period
when both the atrium and ventricle are contracting, which is
indeed qualitatively observed in the ECG readings depicting
the merging of the T and P waves). Quantitative measurement
is also performed in two ways: first, by the measurement of
ventricular pressure tracing that was not used for parameter
estimation (see Figure 10, second last plot on the right column,
which shows this measurement in green and the model output
in solid blue); and second by the measurements of end systolic
and end diastolic ventricle volumes measured by MRI to be
13 ml and 30 ml, respectively, vs. model output of 12.7 ml
and 30.3 ml, respectively.

When only a single heart-rate is considered, see [17],
with 20 parallel processes the UKF takes approximately 140
s for 200 discrete observations in one cardiac cycle. The
same computation time when HR variability is considered is
approximately 200 s.

While the proposed method works quite well, in certain
cases it may not be possible to write a closed system of
equations for the dynamical system without using a noisy
measurement (for instance, as a forcing/boundary condition).
This method may fail in such cases. The method may also not
be applicable when only min./max./mean values are available
as measurements without any full time-varying measurement
at all. In such cases, it may be advantageous to consider other
Bayesian methods for parameter estimation, such as Markov
chain Monte Carlo (MCMC), see for example [19]. Note
that methods such as MCMC may also be used in general
estimation problems, such as those studied in this manuscript,
albeit at a higher associated computational cost. Lastly, if the
measurement noise is coloured (perhaps, due to a correlated
structure), then appropriate modifications, see for example
[50], may be needed to the proposed method.

IV. CONCLUSION

Several challenges of the UKF method for parameter es-
timation in haemodynamics problems are tackled. These in-
clude the prevention of Sigma Point collapse to avoid ill-
conditioning of the empirical covariance matrix, inclusion of
minimum/maximum measurements in the method, and the
choice of appropriate prior knowledge. Furthermore, an ex-
tension to the basic UKF method to assimilate measurements
at different heart rates is presented. The methods are demon-
strated on two patient-specific cases (one with and one without
atrioventricular valve regurgitation). The efficacy of the pro-
posed extension to the UKF method for assimilating measure-
ments at different heart-rates is first shown for a synthetic data-
set as a proof-of-concept where the true parameters are known,
and then on a patient-specific case with atrioventricular valve
regurgitation. In the latter case 34 parameters are estimated and
the model predictions are shown to be significantly improved
when heart-rate variability is taken into account. The proposed
methods enable analysis of patient-specific physiologies in a
computationally efficient manner while taking measurement
uncertainty into account. Lastly, these methods can be readily
applied to other pathophysiologies.
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Fig. 11. Forward model with the UKF-estimated parameters when considering
heart-rate variability for patient-B presented in [17]. Unlabelled x-axis: time
(s), higher heart-rate: 140 bpm, lower heart-rate 106 bpm, model output at
higher heart-rate: dashed blue, model output at lower heart-rate: solid blue,
measurements provided to UKF: red, measurements not provided to UKF:
green, pressures (p) are in mmHg, flow-rates (q) are in ml/s, volumes (V ) are
in ml, flow-rate measurements are at higher heart-rate, pressure measurements
are at lower heart-rate, model output from single heart-rate study [17]: grey.
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APPENDIX
CLINICAL DATA ACQUISITION

All MRI acquisitions were performed on 1.5T scanners (Philips
Intera Achieva, Best, Netherlands; and Siemens Avanto, Siemens
Medical Solutions, Erlangen, Germany). Functional, flow, and three-
dimensional information, were acquired in a routine pre-stage-II
clinical protocol. Electrocardiogram (ECG)-gated velocity-encoded
phase contrast imaging sequences were used to acquire flow mea-
surements in multiple locations under free-breathing. Flow-rates were
calculated using the OsiriX open-source software (OsiriX Founda-
tion, Geneva, Switzerland), through an in-house plugin. A contrast-
enhanced three-dimensional angiogram was acquired following ad-
ministration of 0.2mmol/kg gadoteridol. Cardiac catheterization under
general anaesthesia was performed following a routine clinical-
protocol in a bi-plane fluoroscopy suite (Siemens Medical Solutions
USA, Inc. Pennsylvania). Pressure and haemodynamic measurements
in several systemic and pulmonary arterial and venous locations
were acquired through a fluid-filled catheter system. Valvular and
ventricular function was assessed by routine echocardiography and
pulse wave Doppler velocimetry.

APPENDIX
NOMENCLATURE OF THE PARAMETERS ESTIMATED

The symbols and descriptions of all the parameters estimated in
this work are tabulated in Table I.
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TABLE I

NOMENCLATURE OF THE PARAMETERS ESTIMATED

Symbol Description

SA Single atrium (see Fig. 1)

SV Single ventricle (see Fig. 1)

AVV Atrioventricular valve (see Fig. 1)

AOV Aortic valve (see Fig. 1)

LB Lower body (see Fig. 1)

LU Lungs (see Fig. 1)

UB Upper body (see Fig. 1)

LC Lumped circulation (see Fig. 6)

R1(·) Resistance (linear dependence of pressure on flow-rate) of large arteries in segment (·)

R2(·) Resistance (linear dependence of pressure on flow-rate) of the vascular bed in segment (·)

R3(·) Resistance (linear dependence of pressure on flow-rate) of veins in segment (·)

K(·) Resistance (quadratic dependence of pressure on flow-rate) of large arteries in segment (·)

L1(·) Inductance (due to blood inertia) of the larger arteries in segment (·)

C1(·) Compliance of the large arteries in segment (·)

C2(·) Compliance of veins in segment (·)

CSH Compliance of the systemic-to-pulmonary shunt

V0(·) Volume of chamber cavity (·) at zero transmural pressure

Vw(·) Wall volume of chamber (·)

Amax
eff(·)

maximum effective area of valve (·) in normal function

Ar,max
eff(·)

maximum effective area of valve (·) during regurgitation due to prolapse

CAO Aortic compliance

Ea(·) Shape controlling exponent for activation of chamber (·), see equation (5)

ta(·) Activation duration of chamber (·)

traSA
ratio of activation duration of the atrium to the heart time period, T: traSA

= taSA
/T

t1 Overlap between the activations of single ventricle and single atrium, see Fig. 2

Tp0 Scaling factor for passive fibre stress, see equation (7)
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