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Abstract. More than a century of experiments have demonstrated that many features of natural rivers can be
reproduced in the laboratory. Here, we revisit some of these experiments to cast their results into the framework
of the threshold-channel theory developed by Glover and Florey (1951). In all the experiments we analyze, the
typical size of the channel conforms to this theory, regardless of the river’s planform (single-thread or braiding).
In that respect, laboratory rivers behave exactly like their natural counterpart. Using this finding, we reinterpret
experiments by Stebbings (1963). We suggest that sediment transport widens the channel until it reaches a
limit width, beyond which it destabilizes into a braided river. If confirmed, this observation would explain the
remarkable scarcity of single-thread channels in laboratory experiments.

1 Introduction

At the turn of the 20th century, Jaggar (1908) developed a
series of laboratory experiments to produce small-scale ana-
logues of rivers (Fig. 1a). In the first one, a subsurface flow
seeps out of a layer of sediment. Sapping then erodes the sed-
iment, and this process generates wandering channels. Intro-
ducing rainfall in another experiment, he was able to gen-
erate a ramified network of small rivers, which drains water
out of the sediment layer, much like a natural hydrographic
network drains rainwater out of its catchment. The similarity
between his experiments and natural systems led Jaggar to
the following conclusion (Jaggar, 1908, p. 300):

The foregoing experiments suggest many ques-
tions and answer few. They are based on the as-
sumption that the extraordinary similarity of the
rill pattern to the mapped pattern of rivers is due
to government in both cases by similar laws.

Jaggar was therefore convinced that we should use labo-
ratory analogues to investigate, under well-controlled con-
ditions, the mechanisms by which a river forms and how it
selects its geometry.

Forty years later, Friedkin (1945) used a laboratory flume
to investigate the stability of a river’s course. In his exper-
iment, he carved a straight channel in a layer of sand and
sharply curved its course near the water inlet. This perturba-
tion causes the channel to erode its banks and migrate lat-
erally. As it does so, the channel becomes sinuous, and a
well-defined wavelength emerges (Fig. 1b). Friedkin then ex-
plored systematically the influence of the control parameters
(grain size, initial geometry, water and sediment discharge)
on this response. His observations showed that water and sed-
iment discharges are the main control on the channel’s cross
section and planform geometry. In particular, when the sed-
iment discharge gets large, the channel turns into a braided
river. Conversely, in the absence of sediment load, the chan-
nel relaxes towards an isolated steady thread.

Building on Friedkin’s work, Leopold and Wolman (1957)
located, in the parameter space, the braiding transition of
a laboratory channel. To do so, they supplied water and
sand to an initially straight channel. As this channel adapts
to the input, mid-channel bars form which tend to sepa-
rate the flow and eventually split the channel. Ultimately,
the experiment generates a braided river. Leopold and Wol-
man then observed that braided threads have, on average, a
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Figure 1. Examples of laboratory rivers. White arrows denote flow
direction. Scales are approximate. (a) Sapping channels (adapted
from plate 1p, Jaggar, 1908). (b) Sinuous channel in sandy bed
(adapted from plate 3, Friedkin, 1945). (c) Meandering channel
forced by the oscillation of the inlet (Dijk et al., 2012). (d) Meta-
morphosis of a braided river into a single-thread channel induced by
vegetation (Tal and Paola, 2010, with permission from John Wiley
& Sons). (e) Active braided river in coarse sand (Leduc, 2013).

larger longitudinal slope than their isolated counterparts. In-
spired by this finding, they plotted field observations on a
slope–discharge diagram and showed that braided channels
are separated from single-thread ones by a critical value of
the slope Sc, which decreases with discharge Q according to
Sc = 0.06Q−0.44 (discharge in ft3 s−1).

To our knowledge, such an empirical boundary has never
been drawn for laboratory experiments, partly because main-
taining an active single-thread channel has proven to be an
experimental challenge (Schumm et al., 1987; Murray and
Paola, 1994; Federici and Paola, 2003; Paola et al., 2009).
In non-cohesive sediment, most experimental channels turn
into a braided river, unless they do not transport any sedi-
ment. This propensity for braiding persists when the water
discharge varies during the experiment and seems unaffected
by grain size (Sapozhnikov and Foufoula-Georgiou, 1996,

1997; Métivier and Meunier, 2003; Leduc, 2013; Reitz et al.,
2014).

By contrast, preventing bank erosion helps maintain a
single-thread channel. One way to do so is to add some fine
and cohesive sediment to the mixture injected into the ex-
periment (Schumm et al., 1987; Smith, 1998; Peakall et al.,
2007; Dijk et al., 2012). Another successful method is to
grow riparian vegetation on the emerged areas of the flume.
Tal and Paola (2007) and Brauderick et al. (2009) used alfalfa
sprouts, the roots of which protect the sediment they grow
upon from scouring. These observations show that bank co-
hesion, in addition to sediment discharge, controls the plan-
form geometry of laboratory rivers. However, the relative im-
portance of these parameters remains debatable, both for lab-
oratory experiments and for natural rivers (Métivier and Bar-
rier, 2012). To address this question, we need to formalize,
in a suitable theoretical framework, the interplay between the
dynamics of sediment transport and the mechanical stability
of a channel’s banks.

To design stable irrigation canals, Glover and Florey
(1951) calculated the shape of a channel the bed of which
is at the threshold of motion. Henderson (1963) referred to
this work as the threshold theory and showed that it applies to
natural rivers as well. This theory offers a physical interpreta-
tion for the empirical relationship proposed by Lacey (1930),
according to which the width of an alluvial river increases in
proportion to the square root of its water discharge (Hender-
son, 1963; Andrews, 1984; Devauchelle et al., 2011b; Gaurav
et al., 2015; Métivier et al., 2016).

In a series of theoretical papers, Parker and coauthors ex-
tended the threshold theory to active alluvial rivers that ei-
ther maintain their banks at the threshold of sediment motion
or rebuild them constantly by depositing a fraction of their
suspended load (Parker, 1978a, b, 1979; Kovacs and Parker,
1994). These mechanisms counteract the bank collapse in-
duced by gravity, and the resulting balance controls the ge-
ometry of their bed. This theory provides a physical basis for
comprehensive regime relations, which describe the geome-
try of alluvial rivers as a function of their water and sediment
discharges (Parker et al., 2007). Does this theoretical frame-
work apply equally to laboratory rivers?

Here, we investigate this question by reinterpreting exper-
iments performed since the late 1960s in the light of the
threshold theory. We begin with a brief presentation of the
connection between Lacey’s law and this theory and then
evaluate its applicability to laboratory experiments (Sect. 2).
Finally, using the experimental observations of Stebbings
(1963), we propose an empirical criterion for the stability of
an active channel in non-cohesive sediment and compare it to
laboratory single-thread and braided channels (Ikeda et al.,
1988; Ashmore, 2013) (Sect. 3).

Earth Surf. Dynam., 5, 187–198, 2017 www.earth-surf-dynam.net/5/187/2017/



F. Métivier et al.: Laboratory rivers 189

103 106 109 1012 1015

Discharge Q/
√
gd 5

s

102

104

106

108

W
id

th
 W
/
d
s

Figure 3

Natural
rivers

Laboratory rivers

Threshold
theory

Li et al. (2015)
Stebbings (1963)
Stebbings (1963)
Zimpfer (1985) in
Schumm et al. (1987)
Ikeda et al. (1988)

Warburton (1996)
Sapozhnikov and Foufoula-Georgiou (1997)
Métivier and Meunier (2003)
Peakall et al. (2007)
Tal and Paola (2007)

Brauderick et al. (2009)
Dijk et al. (2012)
Ashmore (2013)
Reitz et al. (2014)
Leduc (2013)

Figure 2. Lacey’s law compared to the threshold theory, for natural rivers (gray) and laboratory rivers (green). Dimensionless width W/ds

as a function of dimensionless dischargeQ/
√
gd5

s . Red line corresponds to the threshold theory (Eq. 1 with θt = 0.05 and Cf = 0.1). Shaded
area and dashed lines indicate uncertainty about the parameters.

2 Lacey’s law and the threshold theory

In 1930, Lacey remarked that irrigation canals remain sta-
ble when their width scales as the square root of their dis-
charge, even when they are cut into loose material (Lacey,
1930). Field observation later revealed that Lacey’s law ap-
plies to natural rivers as well. For illustration, we use the
compendium of Li et al. (2015) to plot the width of a broad
range of alluvial rivers against their water discharge (Fig. 2a).
Over 12 orders of magnitude in discharge, the data points
gather around a 1/2 power law, in accordance with Lacey’s
law.

Lacey’s relationship remained an empirical law until
Glover and Florey (1951) calculated the cross-section shape
of a channel the bed of which is at the threshold of mo-
tion. When the water flow is just strong enough to entrain
the bed material, the balance between gravity and fluid fric-
tion sets the cross-section shape and the downstream slope
of the channel. In particular, this balance relates the width
W of a channel to its discharge Q (Glover and Florey, 1951;
Henderson, 1963; Devauchelle et al., 2011b; Seizilles, 2013):

W

ds
=

 π
√
µ

(
θt(ρs− ρ)

ρ

)− 1
4
√√√√ 3Cf

2
3
2K
[

1
2

]
Q 1

2
∗ , (1)

where Q∗ =Q/
√
gd5

s is the dimensionless discharge, ds is
the grain size of the sediment, ρ and ρs are the densities of
water and of the sediment, Cf is the turbulent friction coeffi-
cient, θt is the threshold Shields parameter, µ is the friction
angle, and finally K[1/2] ≈ 1.85 is a transcendental integral.

Glover’s and Florey’s theory explains the exponent of
Lacey’s law, but what about its pre-factor? Some of the pa-
rameters in the pre-factor of Eq. (1) are approximately con-
stant in nature: the density of water (ρ ' 1000 kg m−3), that
of sediment (ρs ' 2650 kg m−3), and the friction angle (µ'
0.7). Other ones vary significantly. For instance, the median
grain size d50 extends over 3 orders of magnitudes in the data
set we use (0.1 mm–10 cm). In addition, the sediment is often
broadly distributed in size within a river reach, which, strictly
speaking, impairs the applicability of the threshold theory.
We do not know how a broad grain-size distribution affects
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Eq. (1). For lack of a better solution, hereafter we use the
median of the distribution as an approximation of the grain
size (ds ' d50). Similarly, the value of the turbulent friction
coefficient Cf typically extends over almost 2 orders of mag-
nitude in nature (0.02–0.1), depending on the flow Reynolds
number and the bed roughness (Buffington and Montgomery,
1997). The Shields parameter θt varies between about 0.03
and 0.3, depending on the Reynolds number on the grain’s
scale (Recking et al., 2008; Andreotti et al., 2012; Li et al.,
2015). One can take these variations into account by supple-
menting Eq. (1) with empirical expressions that relate Cf and
θt to the water depth and median grain size (Parker et al.,
2007). However, the rough approximation we use for the
grain size would make such exactitude superfluous. Accord-
ingly, we simply evaluate Eq. (1) using typical values for its
parameters (ρ = 1000 kg m−3, ρs = 2650 kg m−3, θt = 0.05,
Cf = 0.1) and represent the impact of their variability as an
uncertainty on the prediction (Fig. 2).

Virtually all rivers from the compendium of Li et al. (2015)
fall within this uncertainty. Equation (1) provides a reason-
able first-order estimate of the size of a river, thus support-
ing Henderson’s hypothesis: the force balance on the grain’s
scale explains Lacey’s relationship (Henderson, 1963; An-
drews, 1984; Savenije, 2003; Devauchelle et al., 2011a;
Phillips and Jerolmack, 2016). Recent experiments involv-
ing a laminar flume have shown it possible to reproduce this
balance in the laboratory (Seizilles et al., 2013). More gen-
erally, though, do laboratory rivers conform to the threshold
theory, like their natural counterpart?

To answer this question, we compiled data from a vari-
ety of laboratory experiments (Table 1, Fig. 1). We selected
a broad range of experimental conditions and included as
many shapes of channel as possible (braided, straight, sinu-
ous). Of course, our choice was limited to contributions that
fully report experimental conditions and observations, either
explicitly or in the form of figures. Among these experi-
ments, many generated braided rivers. We treated the individ-
ual threads of these as independent channels, as has proved
instructive for the interpretation of field data (Gaurav et al.,
2015; Métivier et al., 2016). We find that the width of all
the laboratory channels we selected conforms well to Lacey’s
law (Fig. 2). In fact, the laboratory experiments partly over-
lap the compendium of Li et al. (2015), and, where they do,
experimental channels cannot be distinguished from natural
rivers. In that sense, laboratory rivers do not just resemble
natural ones but rather are small rivers in their own right.

Experimental observations, like natural rivers, gather
around Lacey’s law. Several factors may account for devi-
ations: vegetation growth, cohesion, biofilms, or sediment
transport. Tal and Paola (2010) grew alfalfa sprouts on
a sandy braided river and observed that, in their experi-
ment, vegetated threads are narrower and deeper than non-
vegetated ones. Peakall et al. (2007) and Dijk et al. (2012)
used fine cohesive particles to strengthen the bed and banks
of an experimental channel. This cohesion induced nar-

rower channels. Recently, Malarkey et al. (2015) showed that
biofilms affect the threshold for sediment transport and there-
fore could change the morphology of a river.

In Fig. 2, these fluctuations disperse the data points around
the trend by a factor of about 3. Yet, on average, laboratory
channels conform well to Lacey’s law. They therefore ap-
pear to select their own size according to the available wa-
ter discharge, like natural rivers do. As a consequence, the
threshold theory provides a reasonable estimate of their size,
regardless of the specifics of each experiment. This robust-
ness is again reminiscent of Lacey’s law, which holds under
a variety of natural conditions.

All this, of course, is excellent news for experimental ge-
omorphology. If indeed experimental flumes are but small
rivers, the understanding we gain in the laboratory is likely
to apply in nature. This continuity, however, revives an old
question: How can single-thread channels be so difficult to
maintain experimentally, whereas they are ubiquitous in na-
ture? In the next section, we investigate the stability of a
single-thread channel by revisiting the laboratory observa-
tions of Stebbings (1963).

3 Channel stability

The elusiveness of the single-thread channel led some au-
thors to the conclusion that laboratory experiments lack a vi-
tal ingredient, such as sediment cohesion or vegetation, to
generate realistic rivers (Schumm et al., 1987; Smith, 1998;
Peakall et al., 2007; Dijk et al., 2012; Tal and Paola, 2007;
Brauderick et al., 2009). This view parallels a more concep-
tual criticism of the threshold theory: by definition, it cannot
take sediment transport into account. Indeed, an arbitrarily
small amount of mobile sediment can, in principle, desta-
bilize the threshold channel (Parker, 1978b). What specific
mechanism maintains the bed of single-thread rivers in na-
ture remains a matter of debate. In this section, we propose a
detailed comparison of laboratory channels with the thresh-
old theory, hoping it will help us address this question.

We now return to the diagram of Fig. 2 and focus on lab-
oratory experiments (Fig. 3). This closer view reveals that
laboratory channels follow two distinct trends, depending on
their planform geometry. The data points corresponding to
single-thread channels align with the threshold theory (the
parameters in Eq. 1 correspond to the experiment of Steb-
bings, 1963). Conversely, the threads of braided rivers tend to
be wider than predicted, although they also follow a square-
root relationship. These two distinct trends emerge from a
large collection of disparate experiments. We thus interpret
them as the signature of an underlying common parameter
that determines the planform geometry of a channel and af-
fects the pre-factor of Lacey’s law.

To isolate this pre-factor in the laboratory, the ideal ex-
periment would produce single-thread and braided rivers un-
der similar conditions. The flume experiment of Stebbings

Earth Surf. Dynam., 5, 187–198, 2017 www.earth-surf-dynam.net/5/187/2017/



F. Métivier et al.: Laboratory rivers 191

Table 1. Experimental setups and flow conditions for the studies used in the present article. Flow conditions are characterized by the Reynolds
number Re= UH/ν, the Froude number Fr=

√
U2/gH , and the particle Reynolds number Rep =

√
gdsds/ν (U is the mean flow velocity,

H is the mean channel depth, ds is the mean grain size, g is the acceleration of gravity, and ν is the kinematic viscosity).

Source River type Flume size Grain size Q W H Re Fr Rep
L×W , (m) ds, (mm) (10−3 m3 s−1) (m) (m)

Stebbings (1963) Threshold & 8× 0.9 0.8 0.905 0.158 0.021 3000 0.7 130
braided

Zimpfer (1985) in Schumm et al. (1987) Straight 30× 7 0.56 5.660 1.065 0.015 5300 0.92 41
Ikeda et al. (1988) Straight 15× 0.5 1.3 8.695 0.610 0.046 14200 0.5 150
Warburton (1996) Braided 20× 3 0.5 0.532 0.330 0.010 2000–3000 0.68–0.9 30–40
Sapozhnikov and Foufoula-Georgiou (1996) Braided 5× 0.75 0.12 0.004 0.028 – – – 4
Métivier and Meunier (2003) Braided 1× 0.5 0.5 0.008 0.034 – 150 2 30
Tal and Paola (2007) Sinuous & 16× 2 0.5 1.333 0.307 0.039 2000–9000 1 35

braided
Peakall et al. (2007) Sinuous 5.5× 3.7 0.21 0.510 0.154 0.015 4500 0.79 36
Brauderick et al. (2009) Sinuous 17× 6.7 0.8 1.800 0.400 0.013 4500 0.55 70
Dijk et al. (2012) Sinuous 11× 6 0.51 1.000 0.250 0.015 3300 0.58 33
Ashmore (2013) Braided 10× 2 1.67 0.648 0.241 0.011 1000–4000 1 220
Leduc (2013) Braided 5× 1 1.3 1.165 0.191 – 600–1000 0.8–1 24–45
Reitz et al. (2014) Braided 1.5× 0.75 0.26 0.033 0.030 0.001 250 2 15
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Figure 3. Lacey’s law and threshold theory in laboratory experiments. Green: single-thread channels; blue: threads from braided rivers. Red
line corresponds to the threshold theory (Eq. 1 with θt = 0.05 and Cf = 0.1). Shaded area and dashed lines indicate uncertainty about the
parameters in experiments.

www.earth-surf-dynam.net/5/187/2017/ Earth Surf. Dynam., 5, 187–198, 2017



192 F. Métivier et al.: Laboratory rivers

(1963) approaches this ideal. Stebbings simply carved a
straight channel in a flat bed of well-sorted sand. He then
let a constant flow of water run into this channel, the mor-
phology of which gradually adjusted to the water discharge
(Fig. 4). Before reaching steady state, however, the river un-
dergoes a reproducible transient. The flow first incises the
channel near the inlet and entrains the detached sediment
towards the outlet. As a result, bed load transport intensi-
fies downstream. Stebbings noted that the river responds to
this increase by widening its channel. In some cases, a bar
emerges near the center of the widened channel, and the
river turns into a braid. If, following Stebbings, we assume
that the channel cross section adjusts to the local sediment
discharge, then his transient channel materializes the transi-
tion of a river from a channel at threshold to a collection of
braided threads. Although unconfirmed yet, the hypothesis
that the sediment load triggers the metamorphosis of a river
has been proposed previously to interpret field observations
(Mackin, 1948; Smith and Smith, 1984; Métivier and Barrier,
2012).

Once the channel has reached steady state, it does not
transport any more sediment, and we can expect it to be ex-
actly at threshold. We indeed find that the size of Stebbings’
steady-state channels accords well with the threshold theory
(Fig. 3). This also holds, albeit less literally so, for their depth
and downstream slope (Appendix A). A better way to evalu-
ate this agreement is to correct the width from the influence
of discharge. To do so, we introduce the detrended width W∗
as the ratio of the channel width to the width predicted by the
threshold theory (Gaurav et al., 2015):

W∗ =
W

CWds
√
Q∗

, (2)

where CW is the pre-factor in brackets in Eq. (1). For a
threshold channel, we expect W∗ to be 1 regardless of wa-
ter discharge. Unsurprisingly, W∗ shows no dependency on
discharge for the steady-state channels of Stebbings (1963)
(Fig. 5). Its average is 〈W∗〉 = 1.07± 0.16, confirming the
accord of Stebbings’ measurements with the threshold the-
ory.

We now turn our attention to active channels (i.e. channels
transporting sediment). In Stebbings’ experiment, the chan-
nel is active during the transient, and we expect its width
to deviate from that of the threshold channel. The down-
stream widening of the river indicates that sediment trans-
port tends to induce a wider channel (Fig. 4). This hypoth-
esis is further supported by Fig. 3, which shows that virtu-
ally all experimental threads in our data set, which are likely
to transport sediment, are wider or as wide as the threshold
channel. This observation suggests that the theory of Glover
and Florey corresponds to the narrowest possible channel,
which forms in the absence of sediment transport (Hender-
son, 1963; Parker, 1978b). We hypothesize that, as the latter
increases, the channel’s width departs from this lower bound-
ary. Unfortunately, Stebbings did not measure sediment dis-
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Sand movement
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channel
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Figure 4. Transient channel in Stebbings’s experiment (reproduced
from Stebbings, 1963). Flow from right to left.
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Figure 5. Detrended channel width in Stebbings’ laboratory ex-
periments (Stebbings, 1963). Green: threshold channels (no sedi-
ment transport); blue: active channels about to split . Left: detrended
width W∗ as a function of dimensionless discharge; right: normal-
ized histograms of the same data. Dashed lines indicate fitted Gaus-
sian distributions.

charge in his channels, and we cannot quantify the depen-
dency of the channel’s width with respect to sediment dis-
charge.

What Stebbings did measure, though, is the channel’s
width at the onset of braiding, just upstream of the first bar
(Fig. 4). We refer to this value as the “limit-channel width”,
implying it corresponds to the largest possible width of a sta-
ble channel. Once detrended according to Eq. (2), the limit-
channel widthW∗,l shows no remaining correlation with dis-
charge (Fig. 5), indicating that it is proportional to the width
of the threshold channel. The proportionality factor is about
〈W∗,l〉 = 1.7± 0.2, thus significantly larger than 1. The de-
trended limit-channel width is narrowly distributed around its
own average, much like the threshold-channel width (Fig. 5).
The two average values are clearly distinct, to the 95 % level
of confidence. In short, the channel destabilizes into a braid
when it gets about 1.7 times as large as the threshold channel.

Based on this observation, we propose the following sce-
nario for the transient in Stebbings’ experiments. As its up-
stream end incises the sediment layer, the river loads itself
with sediment. The continuous increase of bed load transport
along its course causes it to widen, until it reaches the limit-
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channel width. At this point, bars develop and quickly split
the river into multiple channels. Generalizing this interpreta-
tion, we suggest that a river can only accommodate so much
sediment transport before it breaks into a braid. This fragility
would confine single-thread channels to a precarious domain
in the parameter space, thus explaining their rarity in labora-
tory experiments.

To our knowledge, only Ikeda et al. (1988) produced ac-
tive and stable, yet non-cohesive, single-thread channels in
a laboratory experiment. To do so, they first carved an ini-
tially straight channel in non-cohesive sediment. To prevent
the formation of bars and the lateral migration of the channel,
Ikeda et al. cut the channel in half with a vertical wall aligned
with the channel’s axis. Water and sediment are then injected
at a constant rate. Eventually, this experiment generates a sta-
ble half channel with a flat lower section where sediment is
transported continuously. (Hereafter, we use twice the width
of the half channel, for comparison with other experiments.)

It is unclear whether the channels of Ikeda et al. have fully
reached steady state, with as much sediment exiting the ex-
periment as is injected into it. Nonetheless, the actual sedi-
ment discharge appears to be low enough to allow for stable
channels, which we may treat as a collection of single-thread
active channels. Their detrended width is distributed nar-
rowly around a mean value of 〈W∗,s〉 = 1.16± 0.16 (Fig. 6).
As expected, this value falls within the stability domain
based on Stebbings’ experiments, to the 95 % level of con-
fidence (Figs. 5 and 6). Based on the report by Ikeda et al.
only, we cannot be certain that no stable channel could sur-
vive outside the stability domain. Neither can we evaluate
the influence of the central wall on the channel’s stability.
However, these observations are clearly consistent with our
interpretation of Stebbings’ experiment.

Stebbings’ observations suggest that single-thread chan-
nels destabilized by sediment transport become braids. The
mechanism by which this metamorphosis occurs is still a
matter of debate, although the bar instability has been repeat-
edly highlighted (Parker, 1976; Repetto et al., 2002; Crosato
and Mosselman, 2009; Devauchelle et al., 2010b, a). What is
likely, though, is that once the river has turned into a braid,
each of its channels transports only a fraction of the total
sediment discharge. It is therefore reasonable to treat it as an
active channel itself and compare its width to the threshold
theory. This method was applied with some success to natu-
ral braided rivers and in Sect. 2 (Gaurav et al., 2015; Métivier
et al., 2016).

In his review on braided rivers, Ashmore (2013) reports
on laboratory experiments he performed in the 1980s. What
makes his experiments unique is that he measured the size
and the discharge of the individual threads that compose his
braided rivers. Translating his measurements in terms of the
detrended width W∗,b, we find that its distribution spreads
around an average of 〈W∗,b〉 = 1.87± 0.68, close to the up-
per bound of the stability domain (Fig. 6). One way to in-
terpret this observation, although speculative at this point, is

1.0 1.5 2.0 2.5 3.0
Detrended width W ∗=W/ds

√
Q ∗

0

2

4

6

PD
F

Stability domain

Single
threads

Braided
threads

Figure 6. Normed histograms of the detrended width of laboratory
channels. Green: single-thread channels (Ikeda et al., 1988); blue:
threads of braided rivers (Ashmore, 2013).

to consider the upper bound of the stability domain as an at-
tractor for the threads’ dynamics. Accordingly, we conjecture
that the threads of a braided river, constantly destabilized by
an excessive sediment discharge, split into smaller channels.
These channels, when numerous enough, are likely to meet
one another and recombine their sediment load. This process
could repeat itself until reaching the dynamical equilibrium
which characterizes a braided river (Métivier and Meunier,
2003; Reitz et al., 2014). The thread population resulting
from this equilibrium would include stable channels, the de-
trended width of which lies in the stability domain, and split-
ting channels, which we expect to be wider than the limit
channel. The broad distribution of W∗,b in Ashmore’s exper-
iment is consistent with this interpretation (Fig. 6), as are the
center bars often found in the threads of natural braided rivers
(Gaurav et al., 2015; Métivier et al., 2016).

The threshold we propose to represent the braiding tran-
sition remains empirical. This transition is often attributed
to the formation of bars (Parker, 1976; Repetto et al., 2002;
Crosato and Mosselman, 2009; Devauchelle et al., 2010b, a).
Parker (1976) investigated the linear stability of an initially
flat, non-cohesive channel. His analysis predicts the transi-
tion from single-thread to multiple-thread channels. Using
the experiments of Stebbings (1963), Ikeda et al. (1988), and
Ashmore (2013), we compare Parker’s prediction with our
own analysis (Fig. B1 and Appendix B). We find that the ex-
periments accord with both transition criteria. However, the
criterion introduced here corresponds more accurately to the
limit channels observed by Stebbings. At this point, we can-
not base this empirical criterion on physical reasoning.
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4 Conclusions

More than a 100 years of laboratory investigations have im-
proved our understanding of how rivers select their own mor-
phology. Here, we have revisited some of these experiments
to place them in the perspective of the threshold theory intro-
duced by Glover and Florey (1951) and Henderson (1963).
Although these experiments were designed to investigate a
variety of phenomena, the channels they produced all con-
form to Lacey’s law, exactly like natural rivers. This indi-
cates that laboratory flumes and natural rivers are indeed con-
trolled by the same primary mechanisms, in accordance with
Jaggar’s views. We take it as encouragement for experimen-
tal geomorphology.

Most laboratory channels are larger than predicted by
the threshold theory. Based on the experiment of Stebbings
(1963), we propose that, for the most part, sediment transport
induces this departure from the threshold channel. According
to this interpretation of Stebbings’ observations, the chan-
nel widens to accommodate more bed load, until it reaches
a width of about 1.7 times that of the threshold channel, at
which point it destabilizes into a braided river. The writing
of Stebbings’ paper suggests that, had he been aware of the
work of Glover and Florey (1951), he would have drawn sim-
ilar conclusions from his experiment. To our knowledge, the
influence of the sediment discharge on the width of a channel
has never been measured directly (Stebbings did not measure
the sediment discharge). The laboratory would certainly be a
convenient place to do so.

Mentions of active single-thread channels are scarce in the
literature on laboratory rivers, although some authors suc-
ceeded in maintaining such channels by various means, such
as riparian vegetation or cohesive sediment.

More often, laboratory flumes generate braided rivers.
Again, we suspect sediment discharge is the real culprit for
this familiar destabilization. Accordingly, it should be possi-
ble to produce active and stable single-thread channels sim-
ply by lowering the sediment input enough. If this method
works, not only will we be able to quantify the influence
of sediment transport on a channel’s width, but it will also
gain us a laboratory rat for single-thread rivers. We believe
it would shed light on the dynamics of such rivers, including
meandering.

Data availability. The experimental data discussed in this paper
have been compiled from various sources (see Table 1). They are
provided as a supplement.
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Appendix A: Threshold theory for depth and slope

In addition to the width, the threshold theory provides an
estimate for the depth and the slope of channel at thresh-
old (Glover and Florey, 1951; Henderson, 1963; Devauchelle
et al., 2011b; Seizilles, 2013):

H

ds
=

√µ
π

(
θt(ρs− ρ)

ρ
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2

3
2

3Cf
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2
∗ . (A2)

We now compare these regime equations to Stebbings’ ex-
perimental channels (Fig. A1a). The depth of the channels
accords with Eq. (A1), although with slightly more scatter
around the prediction than for the width (Fig. 3). Measure-
ment uncertainty probably explains this dispersion, since the
depth of a channel is less accessible than its width.
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Figure A1. Regime relationship for the depth (a) and slope (b) measured in the experiment of Stebbings (1963). Solid red line corresponds
to the threshold theory (Eq. 1 with θt = 0.05 and Cf = 0.1). Shaded area and dashed lines indicate uncertainty about the parameters in
Stebbings’ experiment.

The downstream slope of Stebbings’ channel appears
more dispersed than the width (Fig. A1b). The corresponding
data points nonetheless follow a clear power law, compatible
with the inverse square root predicted by Eq. (A2). The pre-
factor of this relationship, however, falls around the upper
bound of the uncertainty range. We do not know the origin of
this offset, for which we can only propose speculative expla-
nations. First, as the slope of experimental channels is notori-
ously difficult to measure, a systematic error cannot be ruled
out (Stebbings provides no indication about the accuracy of
his slope measurements). Second, as readily seen by com-
paring Eqs. (1) and (A2), the slope of a threshold channel
is sensitive to the value of the threshold Shields parameter.
A value twice as large would account for Stebbings’ slope
measurements, without impacting significantly the width and
depth of the threshold channel. Finally, to our knowledge,
the regime equations of a channel at threshold have always
been established using the shallow-water approximation. In
real channels, the flow transfers momentum across the stream
(Parker, 1978b). Taking this transfer into account could cor-
rect the threshold theory, without altering much the scalings
it predicts.
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Appendix B: Comparison with the stability analysis
of Parker (1976)

Parker (1976) investigated the growth of bars in an ini-
tially flat channel perturbed sinusoidally. His stability analy-
sis predicts the transition between single-thread channels and
multiple-thread channels. This transition occurs when

W

H
∼

Fr
S
, (B1)

where S is the channel slope, Fr= U/
√
gH is the Froude

number of the flow, g is the acceleration of gravity, and W ,
H and U are the width, depth, and velocity of the flow re-
spectively.
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Figure B1. (a) Detrended width as a function of dimensionless discharge. Green: threshold threads (points), stable threads (three-pointed
stars), and threshold theory (dashes); blue: limit threads (points), braided threads (crosses), and transition between stable and unstable threads
(dashes). (b) Regime diagram of Parker (1976). Here the blue dashed line corresponds to the theoretical transition proposed by Parker (1976).

Figure B1 compares our empirical prediction (Fig. B1a),
to that of Parker (Fig. B1b), using the same dataset. We se-
lected, in the datasets presented in Sect. 2 and Table 1, the
experiments that involved only non-cohesive sediments and
no vegetation. Threshold channels and single-thread chan-
nels lie in the stable domain of both diagrams. Most multiple-
thread channels lie in the unstable domain of both diagrams.
Finally, limit channels gather around the transition line in
both cases. Therefore, the data set we use is compatible with
both predictions. However, the limit channels of Stebbings
(1963) gather more tightly around the threshold proposed
here (Fig. B1a) than around the threshold proposed by Parker
(Fig. B1b).
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