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[1] The use of microscale experimental rivers (with flow depths of the order of a few
millimeters) to investigate natural processes such as alluvial fans dynamics, knickpoints
migration, and channel morphologies, such as meandering and braiding has become
increasingly popular in recent years. This raises the need to address the issue of how to
extrapolate results from the experimental microscale at which flow is laminar to the scale
of natural turbulent rivers. We address this question by performing measurements of
average flow velocity and sediment transport in an experimental laminar river. The
average flow velocity is correctly predicted from the Navier-Stokes equation solved for a
steady uniform laminar flow. Laminar sediment transport is found to be consistent with the
law of Meyer-Peter and Müller (1948) commonly used to describe sediment transport in
natural turbulent rivers. We also show that surface tension is important only if the
microscale river width is on the order of or smaller than the capillary length. These
results allow us to demonstrate that the evolution of longitudinal bed profiles of turbulent
and laminar rivers are governed by identical dimensionless equations and therefore
follow the same dynamics. Differences of time and length scales at work in experimental
and natural rivers are mainly encoded in the expression of two parameters, a diffusion
coefficient and a threshold slope. On the basis of this analysis, we derive a set of equations
allowing us to rescale bed elevation, downstream distance, time, and uplift rate from
an experimental microscale river to the field scale. Finally, we show how this set of
equations can be used to rescale these same parameters in the case of a temporally varying
discharge.

Citation: Malverti, L., E. Lajeunesse, and F. Métivier (2008), Small is beautiful: Upscaling from microscale laminar to natural

turbulent rivers, J. Geophys. Res., 113, F04004, doi:10.1029/2007JF000974.

1. Introduction

[2] River and sediment interactions have been the subject
of considerable attention in the literature both because of
their importance in understanding erosion processes and
landscape evolution and because of the many engineering
problems associated with river management [Yalin, 1977;
Raudkivi, 1990; Graf and Altinakar, 1996]. Rivers are
features where a free surface flow occurs in a self formed
channel that is both stable and capable of adjusting to
variations in flow and sediment transport [Parker, 1978a,
1978b].
[3] Solid sediment transport in rivers can be divided into

different modes. The first one is the suspended load,
consisting of sediment particles small enough to be trans-
ported, at least intermittently, by suspension within the
flow; it is composed primarily of silt and clay size particles
in most rivers [Allen, 1985; Knighton, 1998]. Sand-size
particles can also be part of the suspended load if the stream
flow velocity and turbulence are great enough to hold them

in suspension. The case where the sediment particles are
small enough to remain continuously suspended is usually
referred to as wash load. The third transport mode is the bed
load consisting of either rolling or saltating particles moving
along the bed of a stream. Bed load is primarily composed
of the coarser sediment bed particles and plays a key role in
the morphodynamics of gravel bed rivers: a large enough
portion of the coarse grains composing the bed must indeed
be put into motion to achieve a significant evolution of
rivers of this type [Yalin, 1977; Graf and Altinakar, 1996].
In addition, field measurements show that bed load can
account for a large fraction of the total mass transported in
gravel bed mountain streams [Wohl, 2000; Métivier et al.,
2004; Meunier et al., 2006].
[4] The evolution of a river bed through bedload transport

operates on timescales ranging from 10�1 to 104 years,
typically too long for us to directly perceive and measure its
dynamics [Knighton, 1998]. Field measurements and obser-
vations of the dynamics of a river bed are also an arduous
task [Peakall et al., 1996]. Most of the time, scientists have
to be content with estimating bed load transport from
measurements of other parameters such as bed morpholo-
gies [Kostaschuk et al., 1989] or granulometric distributions
that relate to it [Sklar et al., 2006; Jones and Frostick,
2008]. This situation has motivated the development of
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experimental channels where sediment-flow interactions
and bed morphology can be reproduced and visualized
under well-controlled conditions and where the relevant
timescales are reduced.
[5] The use of experiments raises the issue of extrapolat-

ing from the experimental scale to the field scale. If we
neglect suspended load, flow in an alluvial river can be
characterized by five dimensionless numbers (see Peakall et
al. [1996] for a more complete discussion)

A ¼ H

d
; ð1Þ

B ¼ rs
r
; ð2Þ

Re ¼ UH

n
¼ Q

n
; ð3Þ

Fr ¼ Uffiffiffiffiffiffiffi
gH

p ; ð4Þ

t� ¼ t
rs � rð Þgd ; ð5Þ

where U is the average flow velocity, H is the flow depth, v
and r are the kinematic viscosity and the density of water, Q
is the volumetric flow rate per unit river width, t is the
streamwise bed shear stress and g is gravitational accelera-
tion. rs and d are the density and the median diameter of the

sediment composing the bed. A is the ratio of flow depth to
grain size. B is a density ratio. The Reynolds number Re is
the ratio of inertial to viscous forces. Re is very large in
natural rivers (typically Re ^ 106) where flows are almost
always turbulent. The Froude number Fr is the ratio of the
inertial and gravitational forces, and t* is a dimensionless
shear stress, called the Shields number [Shields, 1936].
[6] Constructing an experimental channel where A, B, Re,

Fr, and t* would match the values of natural rivers would
be the only way to exactly reproduce river dynamics in the
lab. In the majority of experiments, the experimental fluid is
water. In that case, examination of equations (1)–(5) reveals
that scaling can only be achieved on a one to one scale. A
compromise must therefore be found that depends on the
nature of the problem being investigated. In this regard, two
rather different schools of thought have emerged.
[7] The traditional school favors scaling the Froude

Number [Yalin, 1992; Peakall et al., 1996]. Although
smaller than in natural rivers, Re in these experiments is
kept sufficiently high to ensure fully turbulent flow. This is
achieved by imposing a flow of relatively large dimensions
which, in turn, necessitates the use of large experimental
flumes typically with widths and lengths of a few meters to
a few tens of meters (see Table 1). These experimental
rivers exhibit friction coefficients close to natural values and
are therefore particularly adapted to the investigation of
many engineering problems [Métivier, 2003]. This tech-
nique known as Froude Scale modeling has for example
been successfully applied to modeling rivers with mobile
beds and flow interactions with artificial structures such as
spillways, conduits and breakwaters [French, 1985; Owen,
1985]. Because of their relatively large dimensions, Froude
scale models often operate on long timescales of a couple of
days to several weeks (see Table 1). As a result, they are
time consuming when it comes to exploring the sensitivity
of the system to a given parameter because this often
requires a large number of experimental runs.
[8] The second approach consists of using a class of

experiments referred to as ‘‘microscale rivers’’ throughout
the rest of the paper. In this approach, Fr, A and B may have
values on the order of natural rivers but there is no attempt
to achieve high Reynolds numbers. On the contrary, Re is
small (Re ] 200) and the flow is laminar [Davies et al.,
2003]. As result, water flow depth can be reduced down to
several mm and small experimental flumes can be used
(typically with lengths and widths of a few tens of centi-
meters to a couple of meters) thus reducing the duration of
the experiments (see Table 1).
[9] The microscale approach is subject to several prob-

lems. First of all, the flow is not turbulent so that microscale
rivers are believed to exhibit unrealistic friction coefficients.
Secondly the absence of turbulence prevents suspended load
transport so that microscale rivers are irrelevant to investi-
gate field cases where suspension is important. Finally,
surface tension may become important at small scales,
potentially changing the development and physics of chan-
nelized flow.
[10] Although the detailed processes of flow and sedi-

ment motion are likely to differ from those at the field scale,
many distinct fluvial morphologies can be created by purely
laminar flows such as braided rivers (Figure 1) or alluvial
fans. Hong and Davies [1979], for example, observed that

Table 1. Comparison Between the Typical Range of Parameters in

Froude Scale Models, Microscale Models, and Natural Riversa

Parameters
Froude

Scale Models
Microscale
Models

Natural
Rivers

Flume length (m) 3–160 1–3 –
Flume width (m) 1–4 0.05–2 –
Channel width (m) 0.1–4 10�2–1 1–103

Average flow velocity (m/s) 10�1–1 0.05–0.5 0.1–4
H/d 4–105 1–40 10–105

rs/r �2.5 �2.5 �2.7
Slope 2.10�3–2.10�2 10�4–5.10�2 10�6–10�2

Re 103–106 100–500 104–107

Fr 10�1–1 0.5–5 10�2–1
t* 10�1–1 0.01–0.8 10�2–10
Experimental duration 0.5–15 days 1–6 h –

aData on Froude scale models come from Ashworth et al. [1994],
Sapozhnikov and Foufoula-Georgiou [1997], Lisle et al. [1997], Blom et al.
[2003], Cantelli et al. [2004], Carling et al. [2005], and Peakall et al.
[2007]. Data on microscale models come from Métivier and Meunier
[2003] and Davies et al. [2003]. Data on natural rivers come from
Bagnold’s [1980] and Brownlie’s [1981] databases. Note that we distinguish
the flume width from the channel width. In many cases (e.g., experimental
braided rivers), these two parameters may indeed be very different.
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the number of braids in a microscale braided river was
similar to that in the 1 km wide prototype Rakaia river (New
Zealand). Such an experimental approach was also used by
Métivier and Meunier [2003] to investigate the correlation
between input and output sediment fluxes in a microscale
braided stream and to show that sediment transport rate can
reach steady state even though braiding remains unstable.
[11] Microscale rivers have become increasingly popular

to investigate processes such as alluvial fan dynamics
[Hooke, 1968; Schumm et al., 1987; Straight, 1992; Bryant
et al., 1995; Whipple et al., 1998; Parker, 1999], response
of fluviodeltaic systems to base level change [Koss et al.,
1994; Muto and Swenson, 2005], alluvial-bedrock transi-
tions [Kim and Muto, 2007], knickpoints migration
[Malverti et al., 2007], braiding [Meunier and Métivier,
2000, 2006; Métivier and Meunier, 2003] and even anthro-
pogenic aggradation [Davies et al., 2003]. Their appeal lies
in the fact that small-scale laminar experiments are indeed
easier to set up and they evolve on shorter timescales
(typically a few hours) than Froude scale models.

[12] Because turbulence is an ubiquitous feature of flow
in rivers, it has long been assumed to strongly influence bed
load transport and to determine both the dynamics and
morphology of alluvial river beds [Yalin, 1992; Nezu and
Nakagawa, 1993]. It is therefore legitimate to ask questions
such as: Can the results obtained from small-scale laminar
experiments be extrapolated to the field scale? To what
extent can we compare the evolution of the bed of a laminar
and a turbulent river? Are the evolutions described by
similar equations? And finally, can we extrapolate charac-
teristic time and length scales from the laboratory to the
field?
[13] This paper reports a preliminary investigation of

this problem and focuses on the evolution of the longi-
tudinal profile of a constant width river bed. We discuss
the effect of surface tension and perform experimental
measurements of average flow velocity and bed load
transport in a microscale laminar river. The results allow
us to demonstrate that the evolution of longitudinal bed
profiles of turbulent and laminar rivers are governed by
identical dimensionless equations and therefore follow the

Figure 1. Pictures of two braided microscales laminar rivers in our laboratory by the courtesy of Michal
Tal. (a) The average bed slope is 0.015 and the water flow rate is 1 L min�1. The bed is composed of a
mixture of 25 and 500 mm glass beads. (b) The average bed slope is 0.025 and the water flow rate is 1.5 L
min�1. The bed is composed of 250 mm glass beads. Both photos were taken 4 h after flow initiation. The
experimental fluid is water with dye added for visualization. Water flow depth and flow velocities are on
the order of a few milimeters and 0.1 m s�1, respectively. Reynolds number varies between 100–500.
The flume has a width of 75 cm and a length of 2 m.
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same dynamics. On the basis of this analysis, we derive a
set of equations allowing us to rescale bed elevation,
downstream distance, time and uplift rate from an exper-
imental microscale river to the field scale. We also show
how this set of equations can be used to rescale these
same parameters in the case of a temporally varying
discharge.

2. Longitudinal Profile of a Turbulent Alluvial
River

[14] In this section, we follow the same arguments as
previous investigations [Begin et al., 1981; Paola et al.,

1992; Parker et al., 1998; Métivier, 1999] to derive the
equation governing the evolution of the longitudinal profile
of a turbulent alluvial river. In order to keep a simple
analytical formalism, we restrict ourselves to the simplified
case of a 2-D alluvial river of constant width and we neglect
lateral inflow of both sediment and water. The following
discussion can easily be modified to account for such
effects. Symbols and notations used in the paper are
summarized in Table 2.
[15] Conservation of water reduces to

Q ¼ UH : ð6Þ

Table 2. Symbols and Notations Used in This Paper

Symbol Description Dimensions

g gravitational acceleration [L][T]�2

Natural Turbulent River
a numerical constant of the Meyer-Peter and Müller transport law [0]
D threshold slope (equation of evolution of the natural river bed profile) [0]
f volumetric sediment discharge per unit river width [L]2[T]�1

l bed porosity [0]
v kinematic viscosity of water [L]2[T]�1

r density of water [M][L]�3

rs density of river bed sediments [M][L]�3

q threshold Shield stress of the Meyer-Peter and Müller transport law [0]
t streamwise bed shear stress [M][L]�1[T]�2

t* Shields stress [0]
cz Chézy coefficient [0]
d median grain size of the river bed sediments [L]
D diffusion coefficient (equation of evolution of the natural river bed profile) [L]2[T]�1

h river bed elevation [L]
H water flow depth [L]
Q volumetric water discharge per unit river width [L]2[T]�1

R (rs � r)/r [0]
Re Reynolds number of natural river, UH/v = Q/v [0]
S river bed slope, �@h/@x [0]
t time [T]
U average flow velocity [L][T]�1

Up uplift rate [L][T]�1

x downstream distance [L]
Laminar Microscale River

aL numerical constant of the Meyer-Peter and Müller transport law [0]
DL threshold slope (equation of evolution of the laminar river bed profile) [0]
fL volumetric sediment discharge per unit river width [L]2[T]�1

lL bed porosity [0]
vL kinematic viscosity of the experimental fluid [L]2[T]�1

rL density of the experimental fluid [M][L]�3

rsL density of the microscale river bed sediments [M][L]�3

qL threshold Shield stress of the Meyer-Peter and Müller transport law [0]
s surface tension between air and the experimental fluid [M][T]�2

tL streamwise bed shear stress [M][L]�1[T]�2

t*L Shields stress [0]
Boc channel Bond number, rLgWL

2/s [0]
dL median grain size of the microscale river bed sediments [L]
DL diffusion coefficient (equation of evolution of the laminar river bed profile) [L]2[T]�1

hL microscale river bed elevation [L]
HL water flow depth [L]
QL volumetric water discharge per unit river width [L]2[T]�1

rc curvature radius of the fluid/air interface [L]
RL (rs,L � rL)/rL [0]
ReL Reynolds number of the microscale river, ULHL/vL = QL/vL [0]
SL microscale river bed slope, �@hL/@xL [0]
tL time [T]
UL average flow velocity [L][T]�1

UpL artificial uplift rate [L][T]�1

WL microscale river width [L]
xL downstream distance [L]
yL distance along transverse flow direction [L]
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For sufficiently long space and timescales, the flow is
assumed to be stationary and uniform and momentum
conservation can be written as

t ¼ rgHS; ð7Þ

where S = �@h/@x is the bed slope, h is the elevation of the
sediment bed surface relative to a fixed horizontal datum,
and x is the downstream distance (positive downstream with
x = 0 at the inlet).
[16] For an open channel turbulent flow, it is common

practice to relate H and U by a friction relation such as the
Chézy formula [Yalin, 1992]

U ¼ cz
ffiffiffiffiffiffiffiffiffi
gHS

p
; ð8Þ

where cz is a dimensionless coefficient called the Chézy
coefficient. Although cz is a function of H, this dependance
is weak [Keulegan, 1938; Parker, 1991]. For example,
Parker [1991] predicts cz / H1/6 so that a fourfold increase
in water flow depth only increases the Chézy coefficient by
a factor of 1.26. This weak dependency has been confirmed
by field measurements, at least in the case of gravel bed
rivers [Meunier et al., 2006]. The Chézy coefficient
measured on several gravel bed rivers is plotted as a
function of Re in Figure 2: variations of cz at a given site on
a given river are small. In the following analysis, cz will
therefore be assumed constant.
[17] Sediment mass conservation is formulated by the

Exner equation

1� lð Þ @h
@t

þ @F
@x

¼ Up; ð9Þ

where t denotes time, l is the bed porosity, F is the
volumetric sediment discharge per unit river width and Up is
the tectonic uplift rate (subsidence would be modeled by a
negative Up).
[18] There is no explicit equation available for momen-

tum conservation of sediments being transported as bed
load. A large number of equations have been proposed to
describe bed load sediment transport in alluvial rivers
[Gessler, 1971; Carson and Griffiths, 1987; Gomez and
Church, 1989; Dietrich et al., 2003], many of them with a
low rate of success [Wohl, 2000]. Establishing a universal
bed load transport equation or discussing the validity of the
ones available in the literature remain active subjects of
research but are beyond the scope of this paper. Therefore
we chose to use a well founded semiempirical relation for
this analysis. The most commonly used is the transport law
of Meyer-Peter and Müller [1948] which takes the form
[Paola et al., 1992]

F

R 
 g 
 d3ð Þ1=2
¼

a t� � qð Þ3=2 for t� � q

0 for t� < q;

8<
: ð10Þ

where R = (rs � r)/r, a is a dimensionless coefficient
and q is a dimensionless threshold shear stress below
which no sediment is transported. Meyer-Peter and
Müller derived equation (10) from flume data pertaining
to well-sorted sediment in the gravel size range. A fit of
the data by equation (10) resulted in a = 8 and q =
0.047 [Meyer-Peter and Müller, 1948]. The data were
later reanalyzed by Wong [2003] who found a = 3.97
and q = 0.0495.

Figure 2. Chézy coefficient cz as a function of Re for several gravel bed rivers: the North Saskatchewan
River (triangles), the Elbow River (squares), and the Oak Creek River (circles). Data correspond to rivers
with beds of median diameter larger than 2 mm. They are extracted from Bagnold’s [1980] and
Brownlie’s [1981] databases. For each river, only one given site is considered.
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[19] Combining equations (6)–(10) leads to the equation
governing the evolution of the 2-D profile of the bed of a
turbulent river

1� lð Þ @h
@t

¼

Up � D @
@x � @h

@x

� �2=3�D2=3
h i3=2
for � @h

@x � D

Up for � @h
@x � D;

8>>>>><
>>>>>:

ð11Þ

where D is a diffusion coefficient and D is a threshold slope
below which no sediment is transported

D ¼ a
Q

Rcz
ð12Þ

D ¼ cz
R3d3q3g
� �1=2

Q
: ð13Þ

[20] The evolution of the bed of an alluvial turbulent river
is therefore described by the nonlinear diffusion equation
(11) with two parameters D and D. Figure 3 shows typical
values of these parameters. D varies between 10�4 and 10�2

and D between 10�2 and 10 m2s�1.
[21] Note that equation (11) is valid for a flat bed. In the

presence of bedforms such as dunes or bars, both the
friction equation (8) and the expression of the Shields stress
need to be modified to account for the effect of form drag
(see for example [Wright and Parker, 2004]). This might
affect the values of the exponents in equation (11). Such an
effect is however beyond the scope of the present paper.
Finally we note that when the slope of a river is large
compared to D, the latter can be neglected thus reducing
equation (11) to a linear diffusion equation (see Paola

[2000] for a detailed discussion of the conditions under
which this approximation is valid)

@h

@t
¼ Up þ D

@2h

@x2
: ð14Þ

3. Evolution of the Longitudinal Profile of a
Microscale Laminar Alluvial River

[22] We now turn toward the case of experimental mi-
croscale rivers and examine what equations govern the
evolution of their longitudinal profile. To distinguish be-
tween the characteristics of laminar and turbulent rivers, all
parameters associated with experimental laminar rivers will
be denoted by an index (L).
[23] Because the flow in a microscale river is laminar,

both the sediment transport law and the friction equation are
likely to be different from the natural turbulent case dis-
cussed in the previous section. This was investigated
through several series of experiments dedicated to the
measurement of the sediment transport law and the relation
between slope, flow depth and velocity which are described
in the following sections. The effect of surface tension is
also addressed.

3.1. Experimental Setup and Procedure

[24] Our experiments were carried out in a small inclin-
able flume of width WL = 0.05 m and length 0.9 m schemed
in Figure 4. The experimental procedure consisted of
preparing a flat sediment bed several centimeters thick
(typically 8 cm) for which the slope SL was measured with
a digital inclinometer (accuracy 0.1�). The experimental
sediment consisted of small glass beads of density rsL =
2500 kg m�3. Measurements of the sediment grain size
distribution using a magnifying lens showed that it has a
gaussian form peaked around the median grain size dL =
75mm with D10 = 50mm and D90 = 90mm.

Figure 3. (a) Diffusion coefficient and (b) threshold slope as a function of the Reynolds number Re for
several natural turbulent rivers (circles) and laminar microscale rivers (triangles). Natural data come from
Bagnold’s [1980] and Brownlie’s [1981] databases and from measurement acquired by our group
[Métivier et al., 2004; Liu et al., 2008] in the Urümqi river (Chinese Tian-Shan). They all pertain to rivers
with beds of median diameter larger than 2 mm.
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[25] Once the bed was ready, the fluid was injected by a
pump at the upstream flume inlet with a constant discharge
per unit river width QL measured with a flow meter
(accuracy 0.01 L min�1). To prevent any disturbance of
the bed, the fluid was not injected as a point source but
rather it overflowed smoothly onto the river bed via a small
reservoir (see Figure 4). The reservoir extended across the
full 5 cm width of the channel and therefore guaranteed a
flow injection that was uniform across the channel width. In
all the experimental runs the discharge was high enough for
the flow to form across the full width of the flume. The fluid
used in the experiments was water, but for the sake of
generality, we will denote nL and rL as the kinematic
viscosity and the density of the experimental fluid. The
following discussion is therefore pertinent for any experi-
ments which involve any fluid other than water.
[26] Sediment particles transported by the flow settled out

in a constant water level overflow tank located at the flume
outlet. The tank rested on a high-precision scale (accuracy
0.1 g) connected to a computer that recorded the weight
every 10 s. The sediment discharge per unit river width FL

was then deduced from the sediment cumulative mass
(Figure 4b).
[27] The initiation of the flow was followed by a transitory

phase during which the mass of sediment collected at the
flume outlet increased rapidly. After about two minutes, a
steady state was reached characterized by a linear increase in
the cumulative sediment mass with time indicating a constant
sediment discharge (Figure 4b). All the experimental meas-
urements described hereafter were performed during this
steady state regime. Because we did not feed sediment at
the river inlet, an erosion wave slowly propagated from the
inlet toward the outlet of the flume. All our experiments were
stopped well before this degradation wave had reached the
middle of the flume where we performed our measurements
so that it never interfered with our results. Indeed the slope of
the river bed measured at the end of the experiment was equal
to the initial slope within the experimental accuracy.
[28] We performed a large number of experimental runs

in which we varied the water flow rate between 0.1 and 2 L/

minute and SL between 0.3 and 3�. As a result, Reynolds
number ReL = QL/nL varied between 100 and 300 and
remained below 500 which is the value of transition to
turbulent flows for an open channel flow. The flow in our
experimental river was therefore laminar.
[29] It should be noted that for the range of ReL explored

in our experiment, the nature of the flow is also sensitive to
bed roughness. If the latter becomes important relative to
flow depth, it may trigger the transition from a laminar to a
turbulent flow. As an example, we performed several
experimental runs using 350 mm diameter glass beads and
observed that the flow was weakly turbulent.
[30] The surface flow velocity Us was measured by

tracking the motion of small floating tracer plastic particles
entrained by the flow. Digital images of the particles were
acquired at a rate of 25 images per second using a digital
camera (576 
 720 pixels) placed vertically above the
flume and achieving a spatial resolution of 0.5 mm per
pixel. The images were used to compute the surface flow
velocity Us with a relative accuracy of 1%. Given that the
flow is laminar, it is expected to obey a Poiseuille velocity
profile. The averaged velocity UL was therefore calculated
as in a Poiseuille flow UL = 2 Us/3, an assumption that was
justified by our experimental results as discussed below.
[31] From conservation of water

QL ¼ ULHL; ð15Þ

we deduced the average flow depth HL = QL/UL. The
accuracy of the determination of HL mainly depended on the
accuracy of the water flow rate measurement and varied
between 0.5% at large flow rates and 10% at low flow rate.
[32] HL was found to vary between 1 and 3 mm in our

experiments. Such values were too small to allow us to
measure flow depth directly using methods like the devia-
tion of a laser sheet. Therefore we were not able to check for
flow uniformity by checking for constant flow depth.
However close examination of the bed showed that it
remained flat for the whole duration of the experiment in
the range of parameters explored. Direct observation of the

Figure 4. (a) Schematic of the experimental setup. (b) Cumulative sediment mass as a function of time
at the flume outlet for QL = 5.10�4 m2s�1 and S = 0.035 (2�). The same qualitative behavior was observed
in all experiments. The initiation of the flow was followed by a transitory during which the mass of
sediment collected at the flume outlet increased rapidly. After about 2 min, a stationary state was reached
characterized by a linear increase of the cumulative sediment mass with time which indicates a constant
sediment discharge.
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flow surface showed that it remained smooth and flat except
in the immediate vicinity of the sidewalls where a small
meniscus of size about 1 mm developed because of wetting
of the glass sidewalls by the experimental fluid [Degennes,
1985]. This observation raises the important issue of the
effect of surface tension on small-scale experimental flumes
which is addressed in the next section.

3.2. Influence of Surface Tension

[33] Surface tension s is a tensile force which results
from the difference between the internal molecular forces of
a liquid and the forces between liquid molecules and an
adjacent surface. Surface tension varies as a function of
temperature [Lajeunesse and Homsy, 2003]. It acts only at
the free surface; consequently, it does not appear in the
Navier-Stokes equations, but rather enters through the
boundary conditions [Guyon et al., 2001].
[34] In rivers, the effect of surface tension is largely

insignificant [Peakall et al., 1996]. In microscale rivers,
however, flow depth is small and surface tension may
become important. Peakall and Warburton [1996] and
Métivier and Meunier [2003] concluded on the basis of
dimensional analysis that the effect of surface tension is
negligible as long as the dimensionless Weber number Wb =
rL UL

2 HL/s is large. In our experiments, Wb typically ranged
between 0.1 and 2, suggesting that surface tension may have
influenced the dynamics of our microscale river. This was
however not the case as we shall now demonstrate by
including explicitly the surface tension term into Saint-
Venant equations for a microscale river.
[35] Surface tension acts by creating a pressure jump DP

at the interface wL between fluid and air (see Figure 5)

DP ¼ s
rc
; ð16Þ

where s is the surface tension between the air and the
experimental fluid and rc is the radius of curvature of the
fluid-air interface. If the slope of the fluid-air interface is
small, rc is given by

rc �
@2wL

@x2L
þ @2wL

@y2L

� ��1

; ð17Þ

where xL is the downstream distance and yL the distance
along the transverse flow direction. This pressure jump
modifies the pressure field PL in the river which now
depends on the local curvature of the fluid-air interface

PLðzLÞ ¼ rg HL � zLð Þ � s
rc
; ð18Þ

where zL is the vertical coordinate. Note that the magnitude
of the effect of surface tension is controlled by the curvature
of the water free surface. If this surface is flat, the curvature
cancels and the pressure jump due to surface tension
vanishes. We need therefore to consider the general
situation of a curved (nonzero curvature) fluid-air interface
to correctly evaluate the effect of surface tension. This is
why we now write Saint-Venant equation for the most
general case of an unsteady and nonuniform laminar river
and include the effect of surface tension

rL
@ ULHLð Þ

@tL
þ rL

@ U2
LHL

� �
@xL

¼ rLgHLSL � tL

� @

@xL
rLgH

2
L 1� s

rLgHLrc

� �
 �
; ð19Þ

where tL is the basal shear stress exerted by the river on the
sediment bed.
[36] The effect of surface tension is encoded in the ratio

s/rL HL rc which expresses the local ratio between the
hydrostatic pressure and the pressure jump due to surface
tension. From equation (17), we see that

rc /
HL

x2
þ HL

W 2
L

� ��1

; ð20Þ

where WL is the width of the laminar river and x is a
characteristic length along the streamwise direction. The
fluid surface of our laminar river did not exhibit any
structures such as a hydraulic jump and therefore x is
typically on the order of the flume length. As a result x �
WL which leads to

rc /
W 2

L

HL

ð21Þ

and therefore

s
rLHLrc

/ s
rLgW

2
L

: ð22Þ

The magnitude of surface tension effects is therefore
described by a dimensionless parameter, which we will call
the channel Bond number because of its resemblance to the
Bond number commonly used in interfacial fluid mechanics
[Guyon et al., 2001]

Boc ¼
rLgW

2
L

s
¼ W 2

L

l2c
; ð23Þ

where lc =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s=rLg

p
is the capillary length of the

experimental fluid. Surface tension becomes important for
Boc ] 1.

Figure 5. Cross-sectional scheme of the interface wL

between fluid and air.
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[37] To summarize, surface tension acts only for a curved
(nonzero curvature) fluid-air interface. Even though its
effect becomes important at small Boc, i.e., when the
microscale river width becomes on the order of or smaller
than the capillary length. For water within air, this latter is
2.6 mm. In our experiment, Boc � 370 and surface tension
was therefore negligible.
[38] Let us end with three important remarks. First of all,

the previous analysis made no assumption about the flow
and holds for both laminar and turbulent flows. It suggests
that the dimensionless parameter Boc is more appropriate
than the Weber number to estimate the influence of surface
tension on the flow in a laminar microscale river. Secondly,
a microscale river of width on the order of lc is likely to be
strongly influenced by surface tension. The above discus-
sion therefore indicates that small-scale experiments are
probably not suitable to investigate the early stages of
channel inception for which the width of the channel is
small. Finally, let us point out that the previous analysis
mainly focuses on the influence of surface tension on the
basal shear stress exerted by a microscale river on its bed.
We have not discussed how surface tension influences
erosion and boundary conditions along the banks. A full
analysis of the impact of surface tension on the morphology
of an erodible bank microscale river remains to be done
although the experimental results of Métivier and Meunier
[2003] suggest that this effect is weak.

3.3. Friction Equation in a Laminar Microscale River

[39] Let us now turn to the friction equation in our
laminar river. As argued in section 3.1, we used our laminar
experimental river in a range of parameters for which the
flow was uniform. The discussion held in section 3.2 also
shows that surface tension was negligible. Sidewall friction
which scales as (HL/WL)

2 � 10�2 is therefore assumed
negligible. Solving the Navier-Stokes equation for a steady

uniform laminar flow in an open channel neglecting both
surface tension and sidewall friction leads to the following
relationship:

UL ¼ gSLQ
2
L

3nL

� �1=3

: ð24Þ

[40] A linear fit of our experimental data leads to UL =
0.95 (gSLQL

2/3 vL)
1/3 (see Figure 6a). Taking into account the

experimental uncertainties, our data exhibit a rather good
agreement with the values predicted from (24).
[41] This agreement between the calculated and the

measured velocities has important consequences: (1) it
validates the assumption of a steady uniform flow, (2) it
confirms the laminar nature of the flow in our microscale
river, and (3) it demonstrates that surface tension and
sidewall friction have a minor impact on the flow.

3.4. Sediment Transport Law in a Laminar
Microscale River

[42] Let us now discuss the sediment transport law in a
laminar microscale river. Equation (19) leads to the follow-
ing expression for the streamwise bed shear stress in a
steady uniform flow

tL ¼ rLgHLSL: ð25Þ

The corresponding Shields number is

t�L ¼ HLSL=RLdL; ð26Þ

where RL = (rsL � rL)/rL.
[43] Measurements of FL as a function tL* are reported in

Figure 6b. A fit of our experimental data shows that
sediment transport in a laminar river is compatible with a

Figure 6. (a) Average flow velocity UL as a function of the predicted values using equation (24) Ut =
(gSLQL

2/3vL)
1/3. The solid line corresponds to a linear fit of the experimental data. (b) Dimensionless

sediment transport rate FL* = FL/(RLgdL
3)1/2 as a function of the Shields number tL*. The solid line

corresponds to a fit of the experimental data to the Meyer-Peter and Müller law.
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transport model such as that of Meyer-Peter and Müller, as
in the case of natural rivers

FL

RL 
 g 
 d3Lð Þ1=2
¼

aL t�L � qL
� �3=2

for t�L � qL

0 for t�L < qL;

8<
: ð27Þ

with aL = 0.67 and qL = 0.12.
[44] Although qL is calculated as a fitting parameter, it

exhibits good agreement with the Shields number measured
at the onset of sediment motion determined from direct
visualization. It is also in good agreement with the critical
Shields number 0.07 predicted from the Shields curve for
the experimental range of grain Reynolds numbers Re* =ffiffiffiffiffiffiffi
gdL

p
dL/nL = 2.5 [Shields, 1936].

[45] We do not imply that the Meyer-Peter and Müller
equation is the only one capable of predicting our experimental
data. The situation is rather similar to the one previously
discussed for natural rivers: the experimental data could
certainly be described by slightly different transport laws with
slightly different exponents, numerical constants and thresh-
olds such as the one proposed by [Charru et al., 2004]. A
discussion of which law best fits the data is an objective of our
future work. For the purpose of the present paper, it is
sufficient to note that sediment transport in a laminar river is
compatible with a law of the Meyer-Peter and Müller type.

3.5. Governing Equation for the Longitudinal Profile
of an Alluvial Laminar River

[46] For a microscale river with no lateral inflow of
sediment and a constant width, sediment mass conservation
goes as

ð1� lLÞ
@hL
@tL

þ @FL

@xL
¼ UpL; ð28Þ

where lL and hL are the bed porosity and elevation
respectively of the microscale river. tL denotes time for a
microscale experiment. Several authors have attempted to
model the effect of tectonic uplift, subsidence or sea level
variations in a microscale river by modifying the base level
during an experimental run [see, e.g., Paola et al., 2001;
Muto and Swenson, 2005]. In order to deal with the most
general case, we therefore introduce an artificial "uplift rate"
UpL in equation (28).
[47] Equations (15), (24), (25), (27), and (28) lead to the

equation governing the evolution of the profile of a 2-D
laminar river

1� lLð Þ @hL
@tL

¼

UpL� DL
@
@xL

� @hL
@xL

� �2=3
�D2=3

L


 �3=2
for � @hL

@xL
� DL

UpL for � @hL
@xL

� DL

8>>>>>><
>>>>>>:

: ð29Þ

DL is a diffusion coefficient and DL is a threshold slope
defined by

DL ¼ aL

RL



ffiffiffiffiffiffiffiffiffiffiffiffiffi
3nLQL

p
ð30Þ

DL ¼ R3
Ld

3
Lgq

3
L

3nLQL

� �1=2

: ð31Þ

3.6. Experimental Verification

[48] We performed a series of experimental run in order to
verify that a constant width laminar river indeed obeys the
nonlinear diffusion equation (29). These experiments were
performed using the setup previously described in section
3.1. The procedure consisted to perturb an initially uniform
river bed by creating a vertical offset. This offset was
imposed using a gate located at the downstream end of
the flume which can be dropped down so rapidly in
comparison to the timescale of channel evolution that it can
be considered as instantaneous (Figure 4). The response of
the river to this sudden perturbation was measured by mean
of a set of laser sheets projected onto the river bed. A digital
camera positioned above and perpendicular to the bed
recorded images of the laser sheets the deviation of which
allowed us to measure the variations of bed elevation within
an accuracy of 6%. The size of the region imaged by the
camera was about 40 cm. Note that there was no sediment
input at the river inlet. As a result an erosion wave progres-
sively propagated slowly from the inlet toward the outlet of
the flume. All our experiments were stopped before this
degradation wave had reached the region of interest so that it
never interfered with our results (seeMalverti et al. [2007] for
more details on the experimental procedure).
[49] Several series of experimental runs were conducted

with initial bed slope ranging from 0.3� to 4�, water
discharge from 0.5 to 2.5 L min1 and offset from 0.5 to
1 cm. Experimental duration ranged between 30 min and
1 h. Figure 7 displays the evolution of the bed elevation

Figure 7. Bed elevation as a function of downstream
distance for an experimental run with an initial bed slope of
0.035, an offset of amplitude A = 0.5 mm, and a critical
slope DL = 0.003. Bed elevation hL and downstream
distance xL are normalized to the offset amplitude A.
Symbols correspond to experimental data acquired at
different times as indicated in the inset. Solid lines
correspond to the predictions of equation (29).
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observed for a typical experimental run. The river
responded to the offset by spreading a diffusive erosion
wave upstream.
[50] Equation (29) was solved numerically using a finite

difference scheme for all experimental runs. It showed a
very good agreement with the experimental data (as illus-
trated on Figure 7) thus confirming the validity of equation
(29) to describe the longitudinal profile of a laminar
constant width river.
[51] To be complete, it is important to note that the

agreement between the predictions of equation (29) and
the experiments was good provided that the amplitude of
the offset was smaller or on the order of the water depth HL.
When the offset amplitude was much larger than HL, the
uniform flow assumption was not met any more so that
equation (29) failed to capture the first instants of the
erosion of the scarp.

4. Discussion

[52] Equation (29) which describes the dynamics of a
microscale river longitudinal profile is similar to equation
(11) derived for a natural river. The differences between a
turbulent and a laminar river are encoded in the expressions
of the diffusion coefficients and the threshold slopes. We
now discuss in details how these coefficients can be used to
upscale from microscale laminar to natural turbulent rivers.
[53] Let us start with natural rivers. Equation (11) which

describes the evolution of longitudinal profile of a constant
width natural river can be made dimensionless by defining
the following dimensionless variables:

h� ¼ h

‘D
; ð32Þ

x� ¼ x

‘
; ð33Þ

t� ¼ D

1� lð Þ‘2 t; ð34Þ

where ‘ is some characteristic river length. The choice of ‘
depends on the problem under investigation: ‘ could be the
river length if one studies the long-term evolution of a
complete river profile; it could be the length of a reach if
one is to investigate the river profile at a more local scale.
With these new variables, equation (11) becomes

@h�

@t�
¼

U�
p�

@

@x�
� @h�

@x�

� �2=3

�1

" #3=2

for � @h�

@x�
� 1

U �
p for � @h�

@x�
� 1;

8>>>>>>>><
>>>>>>>>:

ð35Þ

where Up* is a dimensionless uplift rate defined as

Up� ¼ Up ‘

DD
: ð36Þ

In equation (35), the downstream distance is measured in
units of ‘, slope is measured in units of the critical slope D

and time is measured in units of the characteristic diffusive
time tD = (1 � l)‘2/D.
[54] The same procedure can be applied to equation (29)

which describes the evolution of a laminar river bed profile,
leading to the dimensionless equation

@h�L
@t�L

¼

U�
pL�

@

@x�L
� @h�L
@x�L

� �2=3

�1

" #3=2

for � @h�L
@x�L

� 1

U �
pL for � @h�L

@x�L
� 1;

8>>>>>>>><
>>>>>>>>:

ð37Þ

involving the following dimensionless variables and
parameters

h�L ¼ hL

‘LDL

; ð38Þ

x�L ¼ xL

‘L
; ð39Þ

t�L ¼ DL

1� lLð Þ‘2L
tL; ð40Þ

U �
pL ¼ UpL ‘L

DLDL

; ð41Þ

where ‘L is some characteristic length of the laminar river.
[55] Under their dimensionless shape, equations (35) and

(37) are strictly identical. If solved for the same dimension-
less boundary and initial conditions, they will lead to the
same dimensionless solution

h� x�; t�ð Þ ¼ h�L x�L; t
�
L

� �
provided

x� ¼ x�L
t� ¼ t�L

U�
p ¼ U�

pL:

8<
: ð42Þ

From the above equation, it follows that upscaling from the
time and length scales of a microscale experiment to that of
natural rivers is given by the following ratios:

hL

h
¼ DL

D
‘L
‘
; ð43Þ

xL

x
¼ ‘L

‘
; ð44Þ

tL

t
¼ ‘2L

‘2
1� lL

1� l
D

DL

; ð45Þ

UpL

Up

¼ ‘

‘L

DL

D

DL

D
: ð46Þ

[56] Microscale and natural rivers have bed porosities
with similar orders of magnitude: the porosity of microscale
river beds is typically of the order of 0.35–0.4 whereas that
of natural rivers varies in the range of 0.15–0.35 (R. Frings
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et al., Discriminating between pore-filling load and bed-
structure load: A new porosity-based method, exemplified
for the river rhine, submitted to Sedimentology, 2008).
Upscaling from a laminar to a turbulent river is therefore
mainly controlled by the differences in the characteristic
length scales, diffusion coefficients and threshold slopes.
Figure 3 shows typical values of these last two parameters
for both natural turbulent and microscale rivers. The thresh-
old slope DL of a laminar river varies between 10�3 and
10�2, a range comparable to that of natural gravel bed
rivers. Diffusion coefficients DL for microscale rivers vary
between 10�6 and 10�5 m2s�1. These values are 4–6 orders
of magnitude smaller than those of natural rivers which are
between 10�2 and 10 m2s�1. This means that natural rivers,
for which length ‘ typically ranges between 10 and 1000
km, evolve on timescales varying between (1 � l) ‘2/D ’
107 and 1013s, in other words between a few months and a
few hundreds of thousands of years. The experimental
laminar rivers, whose lengths are typically a few tens of
centimeters, evolve on characteristic timescales (1 � lL) ‘L

2/
DL ranging between half an hour and a day. This difference
is a reason for the keen interest in the use of microscale
experiments.
[57] Developing equations (43)–(46) leads to

hL

h
¼ ‘L

‘

� �
RLdLqL
R d q

� �3=2
Q=czffiffiffiffiffiffiffiffiffiffiffiffiffi
3nLQL

p
� �

; ð47Þ

xL

x
¼ ‘L

‘

� �
; ð48Þ

tL

t
¼ ‘L

‘

� �2
1� lL

1� l

� �
RL=aL

R=a

� �
Q=czffiffiffiffiffiffiffiffiffiffiffiffiffi
3nLQL

p
� �

; ð49Þ

UpL

Up

¼ ‘L
‘

� ��1
RL=aL

R=a

� ��1
RLdLqL
R d q

� �3=2

: ð50Þ

These four equations can be used as calibration curves to
compare a given experimental run with respect to a natural
river. It is worth noting that hL/h and tL/t depend in
particular on the flow rates per unit river width Q and QL

whereas xL/x and UpL/Up do not.
[58] Table 3 presents values of hL/h, xL/x, tL/t and UpL/Up

calculated for several natural rivers compared to one of our

experimental run performed with a flow rate of 1 L per
minute, that is QL = 3.3.10�4 m2s�1 and Re = 333. For the
natural rivers, we consider a reach of characteristic length
scale ‘ = 100km andwe use the values ofa and q estimated by
MeyerPeter and Müller. The laminar miscroscale river oper-
ates on a timescale typically 10�6 smaller than a natural one.
Note that uplift rates are only 5 to 10 times faster in the lab
than in nature. Such uplift rates would therefore be too small
to be modeled using our experimental setup. Equation (50)
shows that this situation can be solved by increasing the
experimental grain size or reducing the microscale river
length.
[59] From equations (43) and (44), it comes that the ratio of

laminar to turbulent river bed slopes SL/S goes asDL/D. This
ratio is larger than 1 (see Table 3) which explains why the
slope of microscale rivers is larger than that of natural rivers.
[60] In the above discussion, we have implicitly assumed

constant flow rates Q and QL. We now finish this section by
examining how equations (47)–(50) can be used to upscale
in the case of a variable flow rate. We will, as an example,
consider the situation of a natural river subject to the
influence of alternating floods and low flows so that the
hydrograph can be written as

Q ¼ Q0 f t�ð Þ; ð51Þ

where Q0 is some characteristic flow rate and f(t*) is a
dimensionless function of the dimensionless time t*
describing the temporal variations of water flow rate. On
the basis of equations (47) and (49), such an hydrograph is
modeled in a microscale laminar river by applying a water
flow rate with the following time dependency:

QL ¼ QL0 g t�L
� �

with g t�L
� �

¼ f t�ð Þ2: ð52Þ

QL0 is again some characteristic flow rate chosen by the
experimenter and sets both hL/h and tL/t. The important
result is that to model a field situation where Q goes as f(t*),
one needs to apply QL going as f(tL*)

2 as illustrated on
Figure 8. Note of course that this result holds true as long as
the rate of change of water flow rate is not excessively high
relative to the river adjustment timescale.

5. Conclusion

[61] In this paper, we have addressed the question of how
to extrapolate results from the experimental microscale at
which flow is laminar to the scale of natural turbulent rivers.
In order to keep a simple analytical formalism, we restricted
ourselves to the simplified case of a 2-D river of constant
width.

Table 3. Comparison of Values for Several Natural Rivers to Those From an Experimental Runa

River cz d (m) Q (m2s�1) Re xL/x hL/h tL/t UpL/Up DL/D

Elbow River 9.5 2.5 
 10�2 1.3 1.3 
 106 9 
 10�6 1.4 
 10�5 2.6 
 10�6 5.5 1.56
Oak Creek 4.5 1.8 
 10�2 0.39 3.9 
 105 9 
 10�6 1.5 
 10�5 1.6 
 10�6 9 1.62
North Saskatchewan River 11.4 3.2 
 10�2 3.8 3.8 
 106 9 
 10�6 2.4 
 10�5 6.3 
 10�6 3.8 2.63

aChézy coefficient, median sediment diameter, average flow rate per unit width, average Reynolds number, xL/x, hL/h, tL/t, UpL/Up, and DL/D for several
gravel bed rivers compared to one of our experimental runs performed with a flow rate of 1 L min�1 (QL = 3.3 
 10�4 m2s�1) and Re = 333. For the natural
rivers, we consider a reach of characteristic length scale ‘ = 100 km and we use the values of a and q estimated by Meyer-Peter and Müller [1948]. Note
that UpL/Up is merely computed to provide an example of rescaling. We do not imply that the Elbow River, Oak Creek, and North Saskatchewan River are
subject to any active tectonics. Data are extracted from Brownlie’s [1981] and Bagnold’s [1980] databases.
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[62] The use of microscale laminar rivers to model natural
ones raises several questions: (1) the effect of surface tension
which can become important at small length scale, (2) the
modification of the friction equation, and (3) that of the
sediment transport law with respect to the turbulent case. We
have successively addressed all these points. First, we
showed that surface tension is important only if the micro-
scale river width is on the order of or smaller than the
capillary length. Secondly, the friction equation was found
to be correctly predicted from the Navier-Stokes equation
solved for a steady uniform laminar flow. And finally we have
shown experimentally that sediment transport in a microscale
laminar river is consistent with Meyer-Peter and Müller’s
[1948] transport model although the coefficients are different
than in natural rivers. These results allowed us to demonstrate
that the evolution of the longitudinal bed profile of a
microscale laminar river is governed by a nonlinear diffusion
equation successfully tested against experimental data.
[63] We then show that the evolution of longitudinal bed

profiles of turbulent and laminar rivers are governed by
identical dimensionless equations and therefore follow the
same dynamics. Differences of time and length scales at work
in experimental and natural rivers are mainly encoded in the
expression of two parameters, a diffusion coefficient and a
threshold slope. On the basis of this analysis, we derive a set
of equations allowing to rescale bed elevation, downstream
distance, time and uplift rate from an experimental micro-
scale river to the field scale. Finally we show how this set of
equations can be used to rescale these same parameters in the
case of a time varying discharge, as long as the rate of change
of the discharge is not excessively high.
[64] We do not imply that turbulence is irrelevant to the

dynamics and morphology of alluvial rivers. Both the
timescales of development and the spatial scales of expres-

sion can be expected to differ depending on whether the flow
is laminar or turbulent. Several important classes of phenom-
ena, such as suspended load and its related morphologies, are
typically associated with turbulence and cannot be modeled
in a laminar flow. To conclude, microscale experiments using
laminar flow provide a valid, relatively quick and inexpen-
sive method for investigating geological processes that occur
on long timescales and for obtaining insights into many
aspects of fluvial morphodynamics.
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