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Abstract

We consider the problem of optimal recovery of an unknown function u in a Hilbert space V
from measurements of the form `j(u), j = 1, . . . ,m, where the `j are known linear functionals
on V . We are motivated by the setting where u is a solution to a PDE with some unknown pa-
rameters, therefore lying on a certain manifold contained in V . Following the approach adopted
in [12, 5], the prior on the unknown function can be described in terms of its approximability by
finite-dimensional reduced model spaces (Vn)n≥1 where dim(Vn) = n. Examples of such spaces
include classical approximation spaces, e.g. finite elements or trigonometric polynomials, as well
as reduced basis spaces which are designed to match the solution manifold more closely. The
error bounds for optimal recovery under such priors are of the form µ(Vn,Wm)εn, where εn
is the accuracy of the reduced model Vn and µ(Vn,Wm) is the inverse of an inf-sup constant
that describe the angle between Vn and the space Wm spanned by the Riesz representers of
(`1, . . . , `m). This paper addresses the problem of properly selecting the measurement func-
tionals, in order to control at best the stability constant µ(Vn,Wm), for a given reduced model
space Vn. Assuming that the `j can be picked from a given dictionary D we introduce and
analyze greedy algorithms that perform a sub-optimal selection in reasonable computational
time. We study the particular case of dictionaries that consist either of point value evaluations
or local averages, as idealized models for sensors in physical systems. Our theoretical analysis
and greedy algorithms may therefore be used in order to optimize the position of such sensors.

1 Introduction

1.1 State estimation from data in parametric PDEs

One typical recovery problem in a Hilbert space V is the following: we observe m measurements
of an unknown element u ∈ V and would like to recover u up to some accuracy. Specifically, we
observe

zi := `i(u), i = 1, . . . ,m, (1.1)

where the `i are independent continuous linear functionals over V . In this paper we consider a
Hilbert space V and denote by ‖ · ‖ its norm and by 〈·, ·〉 its inner-product. The knowledge of
z = (zi)i=1,...,m is equivalent to that of the orthogonal projection w = PWmu, where

Wm := span{ω1, . . . , ωm} (1.2)

∗This research was supported by the Institut Universitaire de France; the ERC Adv grant BREAD; NSF grant
DMS 1720297; the Simons foundation and MFO.
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and ωi ∈ V are the Riesz representers of the linear functionals `i, that is

`i(v) = 〈ωi, v〉, v ∈ V. (1.3)

Obviously, there are infinitely many v ∈ V such that PWmv = w and the only way to recover u up
to a guaranteed accuracy is to combine the measurements with some a-priori information on u.

One particularly relevant scenario is when u is a solution to some parameter-dependent PDE
of the general form

P(u, a) = 0, (1.4)

where P is a differential operator, a is a parameter that describes some physical property and lives
in a given set A. We assume for each a ∈ A, the problem is well posed, that is, there exists a
solution u(a) ∈ V . Therefore, in such a scenario, our prior on u is that it belongs to the set

M := {u(a) : a ∈ A}. (1.5)

which is sometimes called the solution manifold. We assume that this manifold is a pre-compact
set in V , which allows us to approximate it by finite dimensional spaces.

For example, one could consider the diffusion equation

−div(a∇u) = f, (1.6)

on a given domain D with fixed right-side f and homogeneous Dirichlet boundary condition. Then
with A a set of symmetric matrix valued functions such that

rI ≤ a(x) ≤ RI, x ∈ D, a ∈ A, (1.7)

for some 0 < r ≤ R < ∞, the solution u(a) is well defined in V = H1
0 (D). Assuming in addition

that A is compact in L∞(D), the compactness ofM in V follows by standard continuity properties
of the map a→ u(a).

1.2 Reduced model based estimation

The above prior is generally not easily exploitable due to the fact that M does not have a simple
geometry. For example it is not a convex set, which prevents classical convex optimization tech-
niques when trying to recover u in such a set. On the other hand, the particular PDE structure
often allows one to derive interesting approximation properties of the solution manifold M by lin-
ear spaces Vn of moderate dimension n. Such spaces can for example be obtained through a scalar
parametrization of a(y) of a where y = (y1, . . . , yd), using polynomial approximations of the form

un(y) =
∑
ν∈Λn

vνy
ν , yν :=

∏
j≥1

y
νj
j , (1.8)

where Λn is a conveniently chosen set of multi-indices such that #(Λn) = n. See in particular [7, 8]
where convergence estimates of the form

sup
y∈U
‖u(y)− un(y)‖ ≤ Cn−s, (1.9)

are established for some s > 0 even when d = ∞. Thus, all solutions M are approximated in the
space Vn := span{vν : ν ∈ Λn}. Another typical instance is provided by reduced bases. In such
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approximations, one directly builds a family of n-dimensional spaces Vn := span{v1, . . . , vn} with
vi ∈M, in such a way that all solutions inM are uniformly well approximated in Vn. In particular
the approximation rate compares favorably with that achieved by the best n-dimensional spaces,
that is, the Kolmogorov n-width of M, see [4, 9].

The common feature of these reduced models is that they yield a hierarchy of spaces (Vn)n≥1

with dim(Vn) = n such that the solution manifold is uniformly well approximated in such spaces,
in the sense that

sup
u∈M

dist(u, Vn) ≤ εn, (1.10)

where εn is some known tolerance. Therefore, one natural option is to replace M by the simpler
prior class described by the cylinder

K = {v ∈ V : dist(v, Vn) ≤ εn}. (1.11)

for some given n. This point of view is adopted in [12] and further analyzed in [5] where the optimal
recovery solution u∗(w) from the data w is characterized. This solution is defined as the center of
the ellipsoid

Kw = {v ∈ K : PW v = w}, (1.12)

and equivalently given by

u∗(w) := argmin{‖v − PVnv‖ : PWmv = w}. (1.13)

It can be computed from the data w by solving a finite set of linear equations. The worst case
performance for this reconstruction is given by

max
u∈K
‖u− u∗(PWu)‖ = µ(Vn,Wm)εn, (1.14)

where for any pair of closed subspaces (X,Y ) of V , we have set µ(X,Y ) := β(X,Y )−1, with β(X,Y )
the inf-sup constant

β(X,Y ) := inf
x∈X

sup
y∈Y

〈x, y〉
‖x‖ ‖y‖

= inf
x∈X

‖PY x‖
‖x‖

∈ [0, 1]. (1.15)

Note that finiteness in µ(Vn,Wm), equivalent to β(Vn,Wm) > 0, requires that m ≥ n. It is
also shown in [5] that β(Vn,Wm) can be computed as the smallest singular value of the n × m
cross-Gramian matrix with entries 〈φi, ψj〉 between any pair of orthonormal bases (φi)i=1,...,n and
(ψj)j=1,...,m of Vn and Wm, respectively.

Remark 1.1 As already mentionned, the map u 7→ u∗(w) in (1.13) is linear. Conversely it can
easily be checked that any linear recovery algorithm may be rewritten in the form of (1.13) for a
certain space Vn. On the other hand, let us note that these linear recovery methods apply to general
solution manifolds that may result from nonlinear PDEs.

1.3 Optimal measurement selection

For a given reduced model space Vn with accuracy εn, one natural objective is therefore that
µ(Vn,Wm) is maintained of moderate size, with a number of measurements m ≥ n as small possible.
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Note that taking Wm = Vn would automatically give the minimal value µ(Vn,Wm) = 1 with m = n.
However, in a typical data acquisition scenario, the measurements that comprise the basis of Wm

are chosen from within a limited class. This is the case for example when placing m pointwise
sensors at various locations within the physical domain D.

We model this restriction by asking that the `i are picked within a dictionary D of V ′, that is
a set of linear functionals normalized according to

‖`‖V ′ = 1, ` ∈ D,

which is complete in the sense that `(v) = 0 for all ` ∈ D implies that v = 0. With an abuse of
notation, we identify D with the subset of V that consists of all Riesz representers ω of the above
linear functionals `. With such an identification, D is set of functions normalized according to

‖ω‖ = 1, ω ∈ D,

such that the finite linear combinations of elements of D are dense in V . Our task is therefore to
pick {ω1, . . . , ωm} ∈ D in such a way that

β(Vn,Wm) ≥ β∗ > 0, (1.16)

for some prescribed 0 < β∗ < 1, with m larger than n but as small as possible. In particular, we
may introduce

m∗ = m∗(β∗,D, Vn), (1.17)

the minimal value of m such that there exists {ω1, . . . , ωm} ∈ D satisfying (1.16).
We start §2 with a discussion of the typical range of m∗ compared to n. We first show the

following two “extreme” results:

• For any Vn and D, there exists β∗ > 0 such that m∗ = n, that is, the inf-sup condition
(1.16) holds with the minimal possible number of measurements. However this β∗ could be
arbitrarily close to 0.

• For any prescribed β∗ > 0 and any model space Vn, there are instances of dictionaries D such
that m∗ is arbitrarily large.

We then discuss particular cases of relevant dictionaries for the particular space V = H1
0 (D), with

inner product and norms

〈u, v〉 :=

∫
D

∇u(x) · ∇v(x) dx and ‖u‖ := ‖∇u‖L2 , (1.18)

motivated by the aforementioned example of parametric elliptic PDEs. These dictionaries model
local sensors, either as point evaluations (which is only when D is univariate) or as local averages.
In such a case, we provide upper estimates of m∗ in the case of spaces Vn that satisfy some inverse
estimates, such as finite element or trigonometric polynomial spaces. The optimal value m∗ is
proved to be of the same order as n when the sensors are uniformly spaced.

This a-priori analysis is not possible for more general spaces Vn such as reduced basis spaces,
which are preferred to finite element spaces due to their advantageous approximation properties.
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For such general spaces, we need a strategy to select the measurements. In practice, V is of finite
but very large dimension and D is of finite but very large cardinality

M := #(D) >> 1. (1.19)

For this reason, the exhaustive search of the set {ω1, . . . , ωm} ⊂ D maximizing β(Vn,Wm) for a
given m > 1 is out of reach. One natural alternative is to rely on greedy algorithms where the ωj
are picked incrementally.

Our starting point to the design of such algorithms is the observation that (1.16) is equivalent
to having

σm = σ(Vn,Wm) := sup
v∈Vn,‖v‖=1

‖v − PWmv‖ ≤ σ∗, σ∗ :=
√

1− (β∗)2 < 1. (1.20)

Therefore, our objective is to construct a space Wm spanned by m elements from D that captures
all unit norm vectors of Vn with the prescribed accuracy σ∗ < 1. This leads us to study and analyze
algorithms which may be thought as generalization to the well-studied orthogonal matching pursuit
algorithm (OMP), equivalent to the algorithms we study here when applied to the case n = 1 with
a unit norm vector φ1 that generates V1. Two algorithms are proposed and analyzed in §3 and §4,
respectively. In particular, we show that they always converge, ensuring that (1.16) holds for m
sufficiently large, and we also give conditions on D that allow us to a-priori estimate the minimal
value of m where this happens.

We close our paper in §5 with numerical experiments that illustrate the ability of our greedy
algorithms to pick good points. In particular, we return to the case of dictionaries of point eval-
uations or local averages, and show that the selection performed by the greedy algorithms is near
optimal in the sense that it achieves (1.16) after a number of iteration of the same order as that
established for m∗ in the results of §2 when Vn is a trigonometric polynomial space. We also il-
lustrate the interest of the greedy selection of the measurement for the reduced basis spaces. We
close by some remarks on the relevance of the method in the case of hyperbolic PDEs, for which
reduced basis approximation is known to be less effective than for elliptic or parabolic problems
due the presence of shocks.

Remark 1.2 The problem of optimal placement of sensors, which corresponds to the particular
setting where the linear functionals are point evaluations or local averages as in §2, has been ex-
tensively studied since the 1970’s in control and systems theory. In this context, the state function
to be estimated is the realization of a Gaussian stochastic process, typically obtained as the solu-
tion of a linear PDE with a white noise forcing term. The error is then measured in the mean
square sense, rather than in the worst case performance sense (1.14) which is the point of view
adopted in our work. The function to be minimized by the sensors locations is then the trace of
the error covariance, while we target at minimizing the inverse inf-sup constant µ(Vn,W ). See in
particular [3] where the existence and characterization of the optimal sensor location is established
in this stochastic setting. Continuous optimization algorithms have been proposed for computing
the optimal sensor location, see e.g. [1, 6, 16]. One common feature with our approach is that the
criterion to be minimized by the optimal location is non-convex, which leads to potential difficulties
when the number of sensors is large. This is our main motivation for introducing a greedy selection
algorithm, which in addition allows us to consider more general dictionaries.

5



2 A-priori analysis of measurement selection strategies

The goal of this section is to present several results that provide with estimates on the inf-sup
constant β(Vn,Wm). We first discuss general dictionaries D and approximation spaces Vn, in which
case it is not possible to control how large m has to be compared to n in order to ensure a prescribed
inf-sup constant. We then show that this goal can be met with m proportional to n, for more specific
choices of dictionaries and approximation spaces.

2.1 Two extreme results

The following result shows that one can always achieve a positive inf-sup constant β(Vn,Wn) using
a minimal number of measurement m = n, however there are no guarantees on the lower limit of
the inf-sup constant, other that it is greater than zero.

Theorem 2.1 Given a space Vn of dimension n and any complete dictionary D, there exists a
selection {ω1, . . . , ωn} from D such that β(Vn,Wn) > 0.

Proof: We define the ωi inductively, together with certain functions φi that constitute a basis of
Vn. We first pick any element φ1 ∈ Vn of unit norm. Since the dictionary is complete, there exists
ω1 ∈ D such that

〈φ1, ω1〉 6= 0. (2.1)

Assuming that {φ1, . . . , φk−1} and {ω1, . . . , ωk−1} have been constructed for k ≤ n, we pick φk ∈ Vn
of unit norm and orthogonal to Wk−1 := span{ω1, . . . , ωk−1}. Then, we select ωk ∈ D such that

〈φk, ωk〉 6= 0. (2.2)

With such a selection procedure, we find that the cross-Gramian matrix (〈ωi, φj〉)i,j=1,...,n is lower-
triangular with non-zero diagonal entries. These both show that {ω1, . . . , ωn} and {φ1, . . . , φn} are
bases, and that there is no non-trivial element of Vn that is orthogonal to Wn, which means that
β(Vn,Wn) > 0. 2

On the negative side, the following result shows that for a general space Vn and dictionary D,
there is no hope to control the value of β(Vn,Wm) by below, even for arbitrarily large m (here we
assume that V is infinite dimensional).

Theorem 2.2 Given any space Vn of dimension n > 0, any ε > 0 and any m > 0, there exists a
dictionary D such that for any selection {ω1, . . . , ωn} from D, one has β(Vn,Wn) ≤ ε.

Proof: It suffices to prove the result for n = 1 since enriching the space Vn has the effect of
lowering the inf-sup constant. We thus take V1 = Rφ for some φ ∈ V of unit norm, and we take
for D an orthonormal basis of V . By appropriate rotation, we can always choose this basis so that
|〈φ, ω〉| ≤ ε for all ω ∈ D. 2
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2.2 Pointwise evaluations

In this section, we consider the particular dictionary that consists of all point evaluation functionals
δx for x ∈ D where D is some domain of Rd. This means that the Hilbert space V should be a
reproducing kernel Hilbert space (RKHS) of functions defined on D, that is a Hilbert space that
continuously embeds in C(D). Examples of such spaces are the Sobolev spaces Hs(D) for s > d/2,
possibly with additional boundary conditions.

As a simple example, motivated by parametric second order elliptic PDEs, for a bounded
univariate interval I we consider V = H1

0 (I) which is continuously embedded in C(I). Without
loss of generality we take I =]0, 1[. For every x ∈]0, 1[, the Riesz representer of δx is given by the
solution of ω′′ = δx with zero boundary condition. Normalising this solution ω it with respect to
the V -norm (1.18), we obtain

ωx(t) =


t(1−x)√
x(1−x)

, for t ≤ x
(1−t)x√
x(1−x)

, for t > x
. (2.3)

For any set of m distinct points 0 < x1 < · · · < xm < 1, the associated measurement space
Wm = span{ωx1 , . . . , ωxm} coincides with the space of piecewise affine polynomials with nodes at
x1, . . . , xm that vanish at the boundary. Denoting x0 := 0 and xm+1 := 1, we have

Wm = {ω ∈ C0([0, 1]), ω|[xk,xk+1] ∈ P1, 0 ≤ k ≤ m, and ω(0) = ω(1) = 0}. (2.4)

As an example for the space Vn, let us consider the span of the Fourier basis (here orthonormalized
in V ),

φk :=

√
2

πk
sin(kπx), 1 ≤ k ≤ n. (2.5)

With such choices, we can establish a lower bound (1.16) on β(Vn,Wm) with a number of
measurements m∗ that scales linearly with n, when using equally spaced measurements, as shown
by the following result.

Theorem 2.3 For any 0 < β∗ < 1, and any n > 0, taking point evaluations at xi = i
m+1 for

i = 1, . . . ,m, we have β(Vn,Wm) ≥ β∗ as soon as m ≥ n
σ∗ − 1, where σ∗ =

√
1− (β∗)2. Therefore,

m∗(β∗,D, Vn) ≤
⌈ n
σ∗
− 1
⌉
≤ n

σ∗
. (2.6)

Proof: We introduce the interpolation operator IWm : V → Wm, so that the projection error in
the V norm is bounded by

‖v − PWmv‖ ≤ ‖v − IWmv‖ ≤
1

π
h‖v′′‖L2 , (2.7)

with h := max0≤k≤m |xk+1−xk|. The constant 1
π in the second inequality is optimal for the interpo-

lation error and can be derived from the Poincaré inequality ‖g′‖L2([xk,xk+1]) ≤
xk+1−xk

π ‖g′′‖L2([xk,xk+1])

for g′. On the other hand, one has the inverse estimate

‖v′′‖L2([0,1]) ≤ πn‖v′‖L2([0,1]), v ∈ Vn, (2.8)
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and therefore
‖v − PWmv‖ ≤ hn‖v‖, v ∈ Vn. (2.9)

When using equally spaced measurements, we have h = (m+ 1)−1 and therefore

‖v − PWmv‖ ≤
n

m+ 1
‖v‖. (2.10)

To satisfy supv∈Vn,‖v‖=1 ‖v − PWmv‖ ≤ σ∗, we need

m ≥ n

σ∗
− 1 (2.11)

equispaced points. 2

Bearing in mind that β(Vn,Wm) = 0 for m < n, it is fair to say that the estimate (2.11) gives
a relatively sharp estimation of the minimal m which is required.

Remark 2.4 The interplay between pointwise evaluation and Fourier reconstruction has been the
object of much attention in the area of sparse recovery and compressed sensing. It is known in
particular that, with high probabiity, trigonometric polynomials of degree N which are n-sparse, can
be exactly reconstructed from their sampling at m randomly chosen points according to the uniform
measure, if m is larger than n by some logarithmic factors. We refer to [13] for an instance of
such results. In our case the setting is different since we are searching for a recovery in the fixed
trigonometric space Vn, which allows us to have m exactly proportional to n.

2.3 Local averages

We return to the situation where D is a general domain in Rd. Since real world pointwise sensors
have a non-zero point spread, it is natural to model them by linear functionals that are local
averages rather than point evaluations, that is

`x,τ (u) =

∫
D

u(y)ϕτ (y − x)dy, (2.12)

where
ϕτ (y) := τ−dϕ

(y
τ

)
, (2.13)

for some fixed radial function ϕ compactly supported in the unit ball B = {|x| ≤ 1} of Rd and
such that

∫
ϕ = 1, and τ > 0 representing the point spread. Here, we assume in addition that ϕ

belongs to H1
0 (B). Taking the measurement point x at a distance at least τ from the boundary of

D, we are ensured that the support of ϕτ (· − x) is fully contained in D.
Note that in several space dimension d > 1, the point evaluation functionals are not continuous

on H1
0 (D), however the above local averages are. We may therefore use these functionals in the

case where V = H1
0 (D), in arbitrary multivariate dimension. The corresponding Riesz representers

ωx,τ ∈ V are the solutions to

−∆ωx,τ = gx,τ , gx,τ := ϕτ (· − x), (2.14)

with homogeneous Dirichlet boundary conditions.
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For simplicity we work in dimension d ≤ 3. We consider measurement points x1, . . . , xm that
are uniformly spaced, in the sense that they are at the vertices of a quasi-uniform mesh Th for the
domain D with meshsize h > 0. Therefore

m ∼ h−d. (2.15)

We are interested in the approximation properties of the corresponding space Wm. We cannot hope
for an estimate similar to (2.7) since these approximation properties should also depend on τ > 0
This is reflected by the following direct estimate.

Lemma 2.5 One has the estimate for the projection error in the V -norm

‖v − PWmv‖ ≤ C
(
τ +

h2

τ

)
‖v‖H2 , v ∈ H2(D) ∩ V, (2.16)

where C is independent of (h, τ).

Proof: We shall establish the following estimate in H−1(D)

min
c1,...,cm∈Rm

‖w −
m∑
i=1

cigxi,τ‖H−1 ≤ C
(
τ +

h2

τ

)
‖w‖L2 , w ∈ L2(D). (2.17)

Then, (2.16) immediately follows by application of (2.17) to w = ∆v.
In order to prove (2.17), we first introduce the nodal P1 finite element basis ψi associated to

the mesh points xi. So, under some reasonable geometric assumptions on D (piecewise smoothness
of its boundary), we have the interpolation error estimate

‖v −
m∑
i=1

v(xi)ψj‖L2 ≤ Ch2‖v‖H2 , v ∈ H2(D). (2.18)

Here we have used the fact that d ≤ 3 in order to be able to apply point evaluation of the elements
of H2(D). We introduce the dual space

G−2(D) := H2(D)′, (2.19)

which differs from H−2(D), and obtain by a duality argument that

‖w −
m∑
i=1

ciδxi‖G−2 ≤ Ch2‖w‖L2 , ci :=

∫
D

wψi, w ∈ L2. (2.20)

In order to derive (2.17), we note that gxi,τ = δxi ∗ϕτ , from which it follows that for any w ∈ L2(D),

‖w −
m∑
i=1

cigxi,τ‖H−1 ≤ ‖w − w ∗ ϕτ‖H−1 + ‖ϕτ ∗ (w −
m∑
i=1

ciδxi)‖H−1 . (2.21)

Here, the convolution of w is meant in the sense

(w ∗ ϕτ )(x) :=

∫
D

w(y)ϕτ (x− y)dy =

∫
Rd

w̃(y)ϕτ (x− y)dy, (2.22)

9



where w̃ is the extension of w by 0 outside of D.
For the first term on the right side of (2.21), we write

‖w − w ∗ ϕτ‖H−1 = max‖ψ‖=1

∫
D

(w − w ∗ ϕτ )ψ

= max‖ψ‖=1

∫
D

w(ψ − ψ ∗ ϕτ )

≤ ‖w‖L2 max‖ψ‖=1 ‖ψ − ψ ∗ ϕτ‖L2 .

We now remark that the extension ψ → ψ̃ by 0 outside of D is continuous from V to H1(Rd).
Thus, for ψ ∈ V , we may write

‖ψ − ψ ∗ ϕτ‖L2(D) ≤ ‖ψ̃ − ψ̃ ∗ ϕτ‖L2(Rd) ≤ Cτ‖ψ̃‖H1(Rd) ≤ Cτ‖ψ‖, (2.23)

up to a change in the constant C in the last inequality, and where the second inequality is a standard
estimate for regularization by convolution. It follows that

‖w − w ∗ ϕτ‖H−1 ≤ Cτ‖w‖L2 . (2.24)

For the second term on the right side of (2.21), we write

‖ϕτ ∗ (w −
∑m

i=1 ciδxi)‖H−1 = max‖ψ‖=1

∫
D

(ϕτ ∗ w −
∑m

i=1 ciϕτ (· − xi))ψ

= max‖ψ‖=1

(∫
D

w(ϕτ ∗ ψ)−
∑m

i=1 ci(ϕτ ∗ ψ)(xi)
)

≤ max‖ψ‖=1 ‖w −
∑m

i=1 ciδxi‖G−2‖ϕτ ∗ ψ‖H2

≤ Ch2‖w‖L2 max‖ψ‖=1 ‖ϕτ ∗ ψ‖H2 ,

where we have used (2.20). Using again the extension ψ̃ of ψ by 0 outside of D, we write

‖ϕτ ∗ ψ‖H2(D) = ‖ϕτ ∗ ψ̃‖H2(Rd) ≤ ‖ϕτ‖H1(Rd)‖ψ̃‖H1(Rd) ≤ Cτ−1‖ψ̃‖H1(Rd) ≤ Cτ−1‖ψ‖, (2.25)

where the first inequality is straightforward by Fourier transform, and the second inequality follows
from the definition of ϕτ by scaling. It follows that∥∥∥ϕτ ∗ (w −

m∑
i=1

ciδxi)
∥∥∥
H−1
≤ Ch

2

τ
‖w‖L2 . (2.26)

By summation of (2.24) and (2.26), we reach (2.17). 2

Remark 2.6 The estimate (2.16) deteriorates for too small or too large τ . The choice τ ∼ h gives
the optimal approximation order O(h).

We may use the above approximation result to estimate the number of local average measure-
ments needed to control the inf-sup constant β(Vn,Wm), provided that Vn satisfies some inverse
estimate. As an example, consider the case where D = [0, 1]d and the space Vn is the span of the
Fourier basis

φk := sin(πk · x), k = (k1, . . . , kd), 1 ≤ ki ≤ K, (2.27)

10



so that n = dim(Vn) = Kd. Combining the direct estimate (2.16), with an inverse estimate, we
obtain

‖v − PWmv‖ ≤ C
(
τ +

h2

τ

)
n

1
d ‖v‖, v ∈ Vn. (2.28)

Using m = Jd equally spaced measurements at points on the tensorized grid

1

J + 1
(j1, . . . , jd), 1 ≤ ji ≤ J, (2.29)

we find that h ∼ m−1/d and therefore

‖v − PWmv‖ ≤ C
(
τ +

m−2/d

τ

)
n

1
d ‖v‖, v ∈ Vn. (2.30)

This shows that β(Vn,Wm) ≥ β∗ can be achieved provided that

C
(
τ +

m−2/d

τ

)
n

1
d ≤ σ∗, (2.31)

where σ∗ =
√

1− (β∗)2.
In this analysis, the number m of required measurement deteriorates for large or small values

of τ , due to the deterioration of the approximation estimate already noted in Remark 2.6. This
fact will be confirmed in the numerical experiments given in §5.2. In the case where τ is of the
optimal order of τ ∼ h ∼ m−1/d, the above condition becomes C(n/m)

1
d ≤ σ∗, which shows that

β(Vn,Wm) ≥ β∗ can be achieved with a number of measurement m∗ that scales linearly with n,
similar to univariate pointwise evaluation described by Theorem 2.3. Note that we are not able
recover the results on univariate pointwise evaluation from the results on local averages, since the
estimate (2.30) deteriorate as τ → 0 even when d = 1. This hints that there is some room for
improvement in this estimate.

3 A collective OMP algorithm

In this section we discuss a first numerical algorithm for the incremental selection of the spaces
Wm, inspired by the orthonormal matching pursuit (OMP) algorithm which is recalled below.
More precisely, our algorithm may be viewed as applying the OMP algorithm for the collective
approximation of the elements of an orthonormal basis of Vn by linear combinations of m members
of the dictionary.

Our objective is to reach a bound (1.20) for the quantity σm. Note that this quantity can also
be written as

σm = ‖(I − PWm)|Vn‖L(Vn,V ),

that is, σm is the spectral norm of I − PWm restricted to Vn.

3.1 Description of the algorithm

When n = 1, there is only one unit vector φ1 ∈ V1 up to a sign change. A commonly used strategy
for approximating φ1 by a small combination of elements from D is to apply a greedy algorithm,
the most prominent one being the orthogonal matching pursuit (OMP): we iteratively select

ωk = argmax
ω∈D

|〈ω, φ1 − PWk−1
φ1〉|, (3.1)

11



where Wk−1 := span{ω1, . . . , ωk−1} and W0 := {0}. In practice, one often relaxes the above
maximization, by taking ωk such that

|〈ωk, φ1 − PWk−1
φ1〉| ≥ κmax

ω∈D
|〈ω, φ1 − PWk−1

φ1〉|, (3.2)

for some fixed 0 < κ < 1, for example κ = 1
2 . This is known as the weak OMP algorithm, but we

refer to it as OMP, as well. It has been studied in [2, 10], see also [14] for a complete survey on
greedy approximation.

For a general value of n, one natural strategy is to define our greedy algorithm as follows: we
iteratively select

ωk = argmax
ω∈D

max
v∈Vn,‖v‖=1

|〈ω, v − PWk−1
v〉| = argmax

ω∈D
‖PVn(ω − PWk−1

ω)‖. (3.3)

Note that in the case n = 1, we obtain the original OMP algorithm applied to φ1.
As to the implementation of this algorithm, we take (φ1, . . . , φn) to be any orthonormal basis

of Vn. Then

‖PVn(ω − PWk−1
ω)‖2 =

n∑
i=1

|〈ω − PWk−1
ω, φi〉|2 =

n∑
i=1

|〈φi − PWk−1
φi, ω〉|2

Therefore, at every step k, we have

ωk = argmax
ω∈D

n∑
i=1

|〈φi − PWk−1
φi, ω〉|2,

which amounts to a stepwise optimization of a similar nature as in the standard OMP. Note that,
while the basis (φ1, . . . , φn) is used for the implementation, the actual definition of the greedy
selection algorithm is independent of the choice of this basis in view of (3.3). It only involves Vn
and the dictionary D. Similar to OMP, we may weaken the algorithm by taking ωk such that

n∑
i=1

|〈φi − PWk−1
φi, ωk〉|2 ≥ κ2 max

ω∈D

n∑
i=1

|〈φi − PWk−1
φi, ω〉|2,

for some fixed 0 < κ < 1.
For such a basis, we introduce the residual quantity

rm :=

n∑
i=1

‖φi − PWmφi‖2.

This quantity allows us to control the validity of (1.16) since we have

σm = sup
v∈Vn,‖v‖=1

‖v − PWmv‖ = sup∑n
i=1 c

2
i =1

∥∥∥ n∑
i=1

ci(φi − PWmφi)
∥∥∥ ≤ r1/2

m ,

and therefore (1.16) holds provided that rm ≤ σ2 = 1− γ2.

Remark 3.1 The quantity r
1/2
m is the Hilbert-Schmidt norm of the operator I − PWm restricted

to Vn. The inequality σm ≤ r
1/2
m simply expresses the fact that the Hilbert-Schmidt norm controls

the spectral norm. On the other hand, in dimension n, the Hilbert-Schmidt norm can be up to
n1/2 times the spectral norm. This lack of sharpness is one principle limitation in our convergence
analysis which uses the fact that we can estimate the decay of rm, but not directly that of σm.

12



3.2 Convergence analysis

By analogy to the analysis of OMP provided in [10], we introduce for any Ψ = (ψ1, . . . , ψn) ∈ V n

the quantity

‖Ψ‖`1(D) := inf
cω,i

{∑
ω∈D

( n∑
i=1

|cω,i|2
)1/2

: ψi =
∑
ω∈D

cω,iω, i = 1, . . . , n
}
,

or equivalently, denoting cω := {cω,i}ni=1,

‖Ψ‖`1(D) := inf
cω

{∑
ω∈D
‖cω‖2 : Ψ =

∑
ω∈D

cωω
}
.

This quantity is a norm on the subspace of V n on which it is finite.
Given that Φ = (φ1, . . . , φn) is any orthonormal basis of Vn, we write

J(Vn) := ‖Φ‖`1(D).

This quantity is indeed independent on the orthonormal basis Φ: if Φ̃ = (φ̃1, . . . , φ̃n) is another
orthonormal basis, we have Φ̃ = UΦ where U is unitary. Therefore any representation Φ =∑

ω∈D cωω induces the representation

Φ̃ =
∑
ω∈D

c̃ωω, c̃ω = Ucω,

with the equality ∑
ω∈D
‖c̃ω‖2 =

∑
ω∈D
‖cω‖2,

so that ‖Φ‖`1(D) = ‖Φ̃‖`1(D).
One important observation is that if Φ = (φ1, . . . , φn) is an orthonormal basis of Vn and if

Φ =
∑

ω∈D cωω, one has

n =
n∑
i=1

‖φi‖ ≤
n∑
i=1

∑
ω∈D
|cω,i| =

∑
ω∈D
‖cω‖1 ≤

∑
ω∈D

n1/2‖cω‖2.

Therefore, we always have
J(Vn) ≥ n1/2.

Using the quantity J(Vn), we can generalize the result of [10] on the OMP algorithm in the following
way.

Theorem 3.2 Assuming that J(Vn) <∞, the collective OMP algorithm satisfies

rm ≤
J(Vn)2

κ2
(m+ 1)−1, m ≥ 0. (3.4)

13



Proof: For m = 0, we have

r0 =
n∑
i=1

‖φi‖2 = n ≤ J(Vn)2.

We then write

rm = rm−1 −
n∑
i=1

‖(PWm − PWm−1)φi‖2 ≤ rm−1 −
n∑
i=1

|〈φi − PWm−1φi, ωm〉|2.

On the other hand, if Φ =
∑

ω∈D cωω, we have

rm−1 =
n∑
i=1

|〈φi − PWm−1φi, φi〉| ≤
∑
ω∈D

n∑
i=1

|cω,i| |〈φi − PWm−1φi, ω〉|,

which by Cauchy-Schwarz inequality implies

rm−1 ≤
∑
ω∈D
‖cω‖2

( n∑
i=1

|〈φi − PWm−1φi, ω〉|2
)1/2

≤ κ−1
( n∑
i=1

|〈φi − PWm−1φi, ωm〉|2
)1/2 ∑

ω∈D
‖cω‖2,

and therefore
n∑
i=1

|〈φi − PWm−1φi, ωm〉|2 ≥
κ2r2

m−1

J(Vn)2
.

This implies that

rm ≤ rm−1

(
1− κ2

J(Vn)2
rm−1

)
,

from which (3.4) follows by the same elementary induction argument as used in [10]. 2

Remark 3.3 Note that the right side of (3.4), is always larger than n(m+1)−1, which is consistent
with the fact that β(Vn,Wm) = 0 if m < n.

One natural strategy for selecting the measurement space Wm is therefore to apply the above
described greedy algorithm, until the first value m̃ = m̃(n) is met such that β(Vn,Wm) ≥ γ.
According to (3.4), this value satisfies

m(n) ≤ J(Vn)2

κ2σ2
. (3.5)

For a general dictionary D and space Vn we have no control on the quantity J(Vn) which could
even be infinite, and therefore the above result does not guarantee that the above selection strategy
eventually meets the target bound β(Vn,Wm) ≥ γ. In order to treat this case, we establish a
perturbation result similar to that obtained in [2] for the standard OMP algorithm.

Theorem 3.4 Let Φ = (φ1, . . . , φn) be an orthonormal basis of Vn and Ψ = (ψ1, . . . , ψn) ∈ V n be
arbitrary. Then the application of the collective OMP algorithm on the space Vn gives

rm ≤ 4
‖Ψ‖2`1(D)

κ2
(m+ 1)−1 + ‖Φ−Ψ‖2, m ≥ 1. (3.6)

where ‖Φ−Ψ‖2 := ‖Φ−Ψ‖2V n =
∑n

i=1 ‖φi − ψi‖2.
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Proof: We introduce
tm := rm − ‖Φ−Ψ‖2,

so that, by the same argument as in the proof of Theorem 3.2, we have

tm ≤ tm−1 −
n∑
i=1

|〈φi − PWm−1φi, ωm〉|2. (3.7)

Next, we write

rm−1 =
n∑
i=1

〈φi − PWm−1φi, ψi〉+
n∑
i=1

〈φi − PWm−1φi, φi − ψi〉

By the same argument as in the proof of Theorem 3.2, the first term is bounded by

n∑
i=1

〈φi − PWm−1φi, ψi〉 ≤ κ−1
( n∑
i=1

|〈φi − PWm−1φi, ωm〉|2
)1/2
‖Ψ‖`1(D).

By Cauchy-Schwarz and Young inequalities, the second term is bounded by

n∑
i=1

〈φi − PWm−1φi, φi − ψi〉 ≤ r
1/2
m−1‖Φ−Ψ‖ ≤ 1

2
(rm−1 + ‖Φ−Ψ‖2).

It follows that

tm−1 ≤ 2κ−1
( n∑
i=1

|〈φi − PWm−1φi, ωm〉|2
)1/2
‖Ψ‖`1(D),

which combined with (3.7) gives

tm ≤ tm−1

(
1− κ2

4‖Ψ‖2
`1(D)

tm−1

)
,

We may apply the same induction argument as for rm in the proof of Theorem 3.2 to conclude that

tm ≤
4‖Ψ‖2`1(D)

κ2
(m+ 1)−1, (3.8)

which is the announced result. This argument requires that for the first step we have t0 ≤
4‖Ψ‖2

`1(D)

κ2
.

However, if t0 ≥
4‖Ψ‖2

`1(D)

κ2
, then the above recursion shows that t1 ≤ 0 which implies the result for

all values of m ≥ 1 by monotonicity of m 7→ tm. 2

As an immediate consequence of the above result, we obtain that the collective OMP converges
for any space Vn, even when J(Vn) is not finite.

Corollary 3.5 For any n dimensional space Vn, the application of the collective OMP algorithm
on the space Vn gives that limm→+∞ rm = 0.
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Proof: By completeness of D, for any δ, there exists a finite subset F ⊂ D and vector coefficients
cω such that

‖Φ−Ψ‖ ≤ (δ/2)1/2, Ψ :=
∑
ω∈F

cωω.

One obviously has ‖Ψ‖`1(D) <∞, and therefore one has

4
‖Ψ‖2`1(D)

κ2
(m+ 1)−1 ≤ δ

2
,

for m ≥ m(δ) sufficiently large. It follows that rm ≤ δ for m ≥ m(δ). 2

The above corollary shows that if γ > 0, one has β(Vn,Wm) ≥ γ for m large enough.

Remark 3.6 One alternative strategy to select the measurements could be to apply the OMP al-
gorithm separately on each basis element φj. This leads for each j ∈ {1, . . . , n} to the selection of
ω1,j , . . . , ωmj ,j ∈ D and to a space

Wm := span{ωk,j : k = 1, . . . ,mj , j = 1, . . .m}, m1 + · · ·+mj = m.

The following argument shows that, even when optimizing the choice of the number of iterations
mj used for each basis element, this strategy leads to convergence bounds that are not as good as
those achieved by the collective OMP algorithm. Since the residual satisfies

rm =
n∑
j=1

‖φj − PWmφj‖2 ≤
n∑
j=1

κ−2(mj + 1)−1‖φj‖2`1(D),

we optimize by choosing mj := bm‖φj‖`1(D)(
∑n

j=1 ‖φj‖`1(D))
−1c. This leads to the convergence

bound

rm ≤ κ−2m−1
n∑
j=1

‖φj‖`1(D).

This bound is not as good as (3.4), since we have

n∑
j=1

‖φj‖`1(D) = inf
{∑
ω∈D
‖cω‖1 :

∑
ω∈D

cωω = φ
}
≤ ‖Φ‖`1(D) = J(Vn). (3.9)

Remark 3.7 In the case n = 1, a well-known variant to the OMP algorithm, also discussed in [2],
is the so-called relaxed greedy algorithm. This variant avoids the computation of the projection
onto Wk: the approximation of φ1 is updated by

Akφ1 = αkAk−1φ1 + βk〈φ1 −Ak−1φ1, ωk〉ωk, (3.10)

where ωk is selected by maximizing |〈φ1 − Ak−1φ1, ω〉| over ω ∈ D and (αk, βk) are appropriate
weights. This strategy is generalized in [11] to the collective setting (with αk = 1 − (k + 1)−1 and
βk minimizing the norm of the residual), and is proved to achieve similar convergence properties
as the collective OMP algorithm.
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4 A worst case OMP algorithm

We present in this section a variant of the previous collective OMP algorithm. In our numerical
experiments presented in §5 this variant performs better than the collective OMP algorithm, how-
ever its analysis is more delicate. In particular we do not obtain convergence bounds that are as
good.

4.1 Description of the algorithm

We first take
vk := argmax

{
‖v − PWk−1

v‖ : v ∈ Vn, ‖v‖ = 1
}
, (4.1)

the vector in the unit ball of Vn that is less well captured by Wk−1 and then define ωk by applying
one step of OMP to this vector, that is

|〈vk − PWk−1
vk, ωk〉| ≥ κmax

{
|〈vk − PWk−1

vk, ω〉| : ω ∈ D
}
, (4.2)

for some fixed 0 < κ < 1.

Remark 4.1 A variant to this algorithm was priorily suggested in [12] in the particular case where
the dictionary consists of the ωx,τ in (2.14) associated to the local average functionals in (2.12) with
ϕτ a Gaussian of fixed width (see algorithm 2, called SGreedy, therein). In this variant, the selection
is done by searching for the point xk where |vk−PWk−1

vk| takes its maximum, and taking ωk = ωxk,τ .
There is no evidence provided that this selection process has convergence properties similar to those
that we prove next for the selection by (4.2).

4.2 Convergence analysis

The first result gives a convergence rate of rm under the assumption that J(Vn) < ∞, similar to
Theorem 3.2, however with a multiplicative constant that is inflated by n2.

Theorem 4.2 Assuming that J(Vn) <∞, the worst case OMP algorithm satisfies

rm ≤
n2J(Vn)2

κ2
(m+ 1)−1, m ≥ 0. (4.3)

Proof: As in the proof of Theorem 3.2, we use the inequality

rm ≤ rm−1 −
n∑
i=1

|〈φi − PWm−1φi, ωm〉|2,

and try to bound
∑n

i=1 |〈φi − PWm−1φi, ωm〉|2 from below. For this purpose, we write

rm−1 =
n∑
j=1

‖φj − PWm−1φj‖2 ≤ n‖vm − PWm−1vm‖2 = n〈vm − PWm−1vm, vm〉 (4.4)

We have vm =
∑n

i=1 ajφj for a vector a = (a1, . . . , an) such that ‖a‖2 = 1. Thus, if Φ =
∑

ω∈D cωω
we may write

vm =
∑
ω∈D

dωω, dω := 〈cω, a〉2.
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and therefore
rm−1 ≤ n

∑
ω∈D
|dω| |〈vm − PWm−1vm, ω〉|

≤ n|〈vm − PWm−1vm, ωm〉|
∑
ω∈D
|dω|

≤ n|〈vm − PWm−1vm, ωm〉|
∑
ω∈D
‖cω‖2.

Next we find by Cauchy-Schwartz that

|〈vm − PWm−1vm, ωm〉| = |
n∑
j=1

aj〈φj − PWm−1φj , ωm〉| ≤
( n∑
j=1

|〈φj − PWk
φj , ωm〉|2

)1/2
.

We have thus obtained the lower bound

n∑
i=1

|〈φi − PWm−1φi, ωm〉|2 ≥
κ2r2

m−1

n2J(Vn)2
,

from which we conclude in a similar way as in Theorem 3.2. 2

For the general case, we establish a perturbation result similar to Theorem 3.4, with again a
multiplicative constant that depends on the dimension of Vn.

Theorem 4.3 Let Φ = (φ1, . . . , φn) be an orthonormal basis of Vn and Ψ = (ψ1, . . . , ψn) ∈ V n be
arbitrary. Then the application of the worst case OMP algorithm on the space Vn gives

rm ≤ 4
n2‖Ψ‖2`1(D)

κ2
(m+ 1)−1 + n2‖Φ−Ψ‖2, m ≥ 1. (4.5)

where ‖Φ−Ψ‖2 := ‖Φ−Ψ‖2V n =
∑n

i=1 ‖φi − ψi‖2.

Proof: We introduce
tm := rm − n2‖Φ−Ψ‖2,

for which we have

tm ≤ tm−1 −
n∑
i=1

|〈φi − PWm−1φi, ωm〉|2. (4.6)

We next write, as in the proof of Theorem 4.2,

vm =

n∑
i=1

ajφj =

n∑
i=1

ajψj +

n∑
i=1

aj(φj − ψi),

for a vector a = (a1, . . . , an) such that ‖a‖2 = 1. If Ψ =
∑

ω∈D cωω, using (4.4), we now reach

rm−1 ≤ n|〈vm − PWm−1vm, ωm〉|
∑
ω∈D
‖cω‖2 + n

n∑
j=1

aj |〈vm − PWm−1vm, φj − ψj〉|.

18



By Cauchy-Schwartz and Young inequality, the second term is bounded by 1
2rm−1 + 1

2n
2‖Φ−Ψ‖2.

By subtracting, we thus obtain

tm−1 ≤ 2n|〈vm − PWm−1vm, ωm〉|
∑
ω∈D
‖cω‖2.

Proceeding in a similar way as in the proof of Theorem 4.2, we obtain the lower bound

n∑
i=1

|〈φi − PWm−1φi, ωm〉|2 ≥
κ2t2m−1

4n2J(Vn)2
,

and we conclude in the same way as in the proof of Theorem 3.4. 2

By the exact same argument as in the proof of Corollary 3.5 we find that that the worst case
OMP converges for any space Vn, even when J(Vn) is not finite.

Corollary 4.4 For any n dimensional space Vn, the application of the worst case OMP algorithm
on the space Vn gives that limm→+∞ rm = 0.

4.3 Application to point evaluation

Let us now estimate m(n) if we choose the points with the greedy algorithms that we have intro-
duced. This boils down to estimate for J(Vn). In this simple case,

J(Vn) := ‖Φ‖`1(D) = inf
{ ∫
x∈[0,1]

‖cx‖2 dx : Φ =

∫
x∈[0,1]

cxωx dx
}

and we can derive cx for every x ∈ [0, 1] by differentiating twice the components of Φ since

Φ′′(x) =

∫
y∈[0,1]

cyω
′′
y (x) dy = −

∫
y∈[0,1]

cyδy(x) dx = −cx.

Thus, using the basis functions φk defined by (2.5), we have

J(Vn) =

∫
x∈[0,1]

(
n∑
k=1

|φ′′k(x)2|

)1/2

dx =

∫
x∈[0,1]

(
n∑
k=1

2kπ| sin(kπx)|2
)1/2

dx ∼ n3/2.

Estimate (3.5) for the convergence of the collective OMP approach yields

m(n) &
n3

κ2σ2
,

while for the worst case OMP, estimate (4.3) gives

m(n) &
n5

κ2σ2
.

As already anticipated, these bounds deviate from the optimal estimation (2.11) due to the use of
the Hilbert-Schmidt norm in the analysis. The numerical results in the next section reveal that
greedy algorithms actually behave much better in this case.
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5 Numerical tests

All numerical tests presented in this section were performed in Python using the standard NumPy
and SciPy packages.

5.1 Pointwise evaluation

In this test we consider the setting as outlined in §2.2. That is, we have V = H1
0 (I), where the

interval I =]0, 1[, the approximation space is the Fourier basis, Vn = span{φk : k ∈ 1, . . . , n} where

φk(t) =
√

2
πk sin(kπt), and we pick the measurement functionals that define the space Wm from a

dictionary of pointwise evaluations in ]0, 1[. The dictionary D is thus composed of elements ωx, the
normalized Riesz representers of function evaluation at the point x, given explicitly in (2.3).

The selection of the evaluation points performed both using the collective OMP and worst-case
OMP algorithms. The inner product between ωx and φk can be computed using an explicit formula,
hence there is no discretization or approximation in this aspect of our implementation. In both
algorithms we require a search of the dictionary D to find the element that maximizes either (3.2)
or (4.2). Evidently we require D to be of finite size to perform this search, so we use

D = {ωx : x ∈ 1/M, . . . , (M − 1)/M}

where we take M to be some large number. In practice we found that M = 104 offered similar
results to any larger number, so we kept this value.

We compare the inf-sup constant β(Vn,Wm) for the evaluation points picked by these two OMP
algorithms with those obtained when these points are picked at random with uniform law on ]0, 1[.
In all cases, the selected points are nested as we increase m ≥ n, that is, Wm ⊂ Wm+1, so that β
is monotone increasing. We also compare with the value of β(Vn,Wm) obtained for equally spaced
points, which in view of Theorem 2.3 are expected to be a near optimal choice, but are not nested.
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Figure 5.1: Comparisons of collective OMP, worst-case OMP, uniformly spaced and equally spaced
point selection, using a Fourier basis Vn, with n = 20 or n = 40, and increasing values of m ≥ n.

Results in Fig 5.1 show the behavior of β(Vn,Wm) as m increases for two representative values
of n. They reveal that the worst-case OMP algorithm produces a slightly better behaved inf-sup
constant than the collective OMP algorithm, not far from the near optimal value obtained with
evenly spaced evaluations. In contrast, the random selection is clearly suboptimal.
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Figure 5.2: Minimum m̃ = m̃(n) required for β(Vn,Wm̃) > β∗ = 0.5 against a variety of n, using
collective OMP and worst-case OMP, and intertwining the growth of Vn and Wm (dashed).

Fig 5.2 displays the minimum value m̃ = m̃(n) required to make β(Vn,Wm̃) > β∗ := 0.5 for
a variety of n. It shows a clear linear trend, with the rate of increase almost equal to 1 for the
worst-case OMP algorithm. This shows that the estimates on m̃(n) obtained in §4.3 from our
theoretical results are in this case too pessimistic.

We note that the obtained curves (solid lines) are not monotone increasing, due to the fact
that the selected points for different values of n have no nestedness properties. An alternative
strategy that leads to a nested sequence consist in intertwining the greedy algorithm with the
growth of Vn: assuming that we have selected m̃(n) points such that β(Vn,Wm̃(n)) > β∗, we apply
the greedy algorithm for Vn+1 to enrich Wm̃(n) until we reach the first value m̃(n + 1) such that
β(Vn+1,Wm̃(n+1)) > β∗. We may again use either the collective or worst-case OMP algorithm. In
this fashion we construct a sequence of Wm̃(1) ⊂ . . . ⊂ Wm̃(n) ⊂ . . . that pair with each Vn and
always ensure an inf-sup constant larger than β∗. This strategy bears similarity to the generalized
empirical interpolation method [15] where, at each step, one adds a new function to Vn and a new
linear functional to Wm. In that case, we always have m = n, but no theoretical guarantee that
β(Vn,Wn) remains bounded away from zero.

The resulting curves are also plotted on Fig 5.2 (dashed lines). We see that we do not pay a
significant penalty, as m̃(n) is not significantly worse for this incremental method that when Wm

is built from nothing for each Vn. We again find that the worst-case algorithm is slightly superior
to the collective algorithm.

5.2 Local averages

In this test we perform the collective and worst-case OMP algorithms on dictionaries of local-
averages. Here we build our measurement spaces Wm against a Fourier space Vn, working on the
unit interval I =]0, 1[ as in §5.1.

The dictionary D is the collection of Riesz representers ωx,τ of M local averages of width τ ,
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with x equispaced between τ/2 and 1− τ/2, that is

D =
{
ωx,τ : x =

τ

2
,

1− τ
M − 1

+
τ

2
, . . . ,

(M − 2)(1− τ)

M − 1
+
τ

2
, 1− τ

2

}
. (5.1)

Again, the value M = 104 appeared to produce satisfactory results that produced similar results
to any larger M .

Figure 5.3 illustrates the behaviour both greedy algorithm for the particular value τ = 10−2 and
shows that it is slightly better than what had been previously obtained with point values (which
correspond to τ = 0).

The dependence on τ , which appears in the theoretical analysis in §2.3 is reflected in Figure 5.4:
increasing τ first allows both OMP algorithms to obtain better β values, until a certain value where
β deteriorates as τ gets larger. In this particular case, we actually notice that if τ is a multiple of
2/n, then we have 〈ωx,τ , φn〉 = 0 for any x appearing in (5.1) and hence β(Vn,Wm) = 0.
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Figure 5.3: Comparisons of collective OMP, worst-case OMP for a dictionary of local average
functions, as well as randomly selected local average locations, using a Fourier basis Vn, with
n = 20 or n = 40, and increasing values of m ≥ n.

5.3 Reduced bases

In our last test we consider the elliptic problem proposed in §1.1, on the unit square D =]0, 1[2

with Dirichelet boundary conditions, and a parameter dependence in the field a, that is

−div(a(y)∇u) = f for all x ∈ D with u(x) = 0 on ∂D. (5.2)

In this example we consider “checkerboard” random fields where a(y) is piecewise constant on a
dyadic subdivision of the unit-square. That is, for a given level j ≥ 0, we consider the dyadic
partition

D =

2j−1⋃
k,l=0

S
(j)
k,l

with
S

(j)
k,l := [k 2−j , (k + 1)2−j [× [` 2−j , (`+ 1)2−j [ k, ` ∈ 0, . . . , 2j − 1.
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Figure 5.4: The resulting β(Vn,Wm) against m for n = 20 and n = 40 and a selection of measure-
ment widths τ .

The random field is defined as

a(y) = 1 +
1

2

2j−1∑
k,`=0

χ
S
(j)
k,l

yk,` (5.3)

where χ
S
(j)
k,l

is the indicator function on S
(j)
k,l , and the yk,` are random coefficients that are indepen-

dent, each with identical uniform distribution on [−1, 1].
For the reduced basis space, we generate n random parameters y(1), . . . , y(n), with each y(k) ∈

[−1, 1]2
2j

, and solve the variational form of (5.2) using P1 finite elements to produce the corre-
sponding solutions uh(y(k)). In our numerical test, we take j = 2, that is 16 parameters, and we
use for the finite element space a triangulation Th on a regular grid of mesh size h = 2−7. Our
approximation space is then defined as

Vn = span{uh(y(1)), . . . , uh(y(n))} (5.4)

As to the dictionary D, we consider local averages by the nodal basis functions of the finite element
space, so the linear form `x in this dictionary are indexed by the mesh points of Th.

Here, we compare the performance of the above reduced basis space which we label here V red
n ,

with the trigonometric polynomial spaces

V sin
n = span{φk,` : 1 ≤ k × ` ≤ n},

where the φk,` are given by the linear interpolation on Th of
√

2
π
√
k2+`2

sin(kπx1) sin(`πx2) for k, l =

1, . . . , r and n = r2.
We recall that the worst case performance of the state estimation algorithm as defined in (1.13)

is given by the product of the inverse inf-sup constant µ(Vn,Wm) by the approximation error
εn = dist(M, Vn). Since the exact computation of εn is out of reach, we instead study the average
projection error for a collection of solutions uh(a(y)) to Vn = V red

n or V sin
n . The left side of Figure

5.5 shows that the reduced bases outperform the trigonometric polynomial spaces by several order
of magnitude, as to the decay of this approximation error. On the other hand, the right side of
Figure 5.5 shows (here in the case n = 20) that when applying the greedy algorithm, the inf-sup
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constant β(Vn,Wm) is better behaved for the trigonometric polynomial spaces, however only by
a moderate factor of around 1.1. Therefore the final trade-off is clearly in favor of reduced basis
spaces.
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Figure 5.5: Results on unit square.

5.4 An adversary case: hyperbolic PDEs

In the case of parametrized elliptic PDEs, reduced bases are known to bring significant improve-
ments over more conventional approximation spaces, as illustrated in the previous example by the
left side of Figure 5.5. In this example, the solutions typically exhibit singularities which prevent
the Fourier method to perform well, however these singularities are at fixed locations independently
of the parameter value which make the reduced basis particularly effective for capturing them.

The situation is quite different when the locations of the singularities vary together with the
parameters, in which case reduced basis approximation cannot be as effective. This typically occurs
for hyperbolic PDEs when parameters influence the transport velocity and therefore the positions
of shocks. As a toy example, let us consider the univariate transport equation

∂tu(x, t) + y∂xu(x, t) = 0, x ∈ R, t ≥ 0, (5.5)

with initial value u0(x) = χ]−∞,0], and parameter y ∈ [0, 1]. We consider the parametrized family
of solutions at time t = 1 restricted to x ∈ [0, 1], that is

M = {χ[0,y] : y ∈ [0, 1]}. (5.6)

Here, we choose to work in the Hilbert space V = L2([0, 1]) which contains such discontinuous
functions. Due to the presence of discontinuities, it can easily be seen that if Vn is the Fourier
space generated by the functions φk in (2.5), one has the approximation rate

sup
u∈M

‖u− PVnu‖ ∼ n−1/2. (5.7)

On the other hand, a reduced basis space is of the form

Vn = span{χ[0,yi] : i = 1, . . . , n}. (5.8)
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for some points y1, . . . , yn ∈ [0, 1], and therefore a space of piecewise constant functions on the
intervals [yi, yi+1], assuming that these points have been increasingly ordered. By taking a y to be
the midpoint of the largest of such intervals, that has length larger than n−1, it is easily checked
that

‖χ[0,y] − PVnχ[0,y]‖ ≥
1

2
n−1/2, (5.9)

and therefore the approximation rate is not better than with the Fourier space. More generally
it can be checked that the Kolmogorov n-width of M in V decays like n−1/2, that is, any linear
approximation method cannot have a better rate.

This is illustrated by the left side of Figure 5.6, which shows the slow decay of the approximation
error for the reduced basis spaces, slightly worse that when using Fourier spaces. It is of course still
possible to apply the collective and worst case OMP algorithm in order to select measurements in
this setting. Here, we use a dictionary of local averages

D = {`x,ε : x ∈ [0, 1]}, `x,ε(v) =
1

2ε

x+ε∫
x−ε

v, (5.10)

which are continuous linear functionals on L2. The behaviour of the inf-sup constant is displayed
on the right-side of Figure 5.6, and shows that the greedy algorithm performs well, for both Fourier
and reduced bases. However the recovery performance is affected by the fact that both of these
linear spaces have poor approximation properties over the class M.
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Figure 5.6: Results on unit square.

More generally, we stress that for this class of problems, linear recovery methods can be highly
suboptimal. Consider for example the case where the data are given by a single measurement in
the form of the global average.

`(v) =

1∫
0

v. (5.11)

Then, we find that `(χ[0,y]) = y, so that an optimal reconstruction map from w = `(u) that gives
exact recovery is simply given by

A∗(w) = χ[0,w]. (5.12)

This map is non-linear since χ[0,w1] + χ[0,w2] obviously differs from χ[0,w1+w2].
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