Drag and lift reduction of a 3D bluff-body using active vortex generators - Université Paris Cité Accéder directement au contenu
Article Dans Une Revue Experiments in Fluids Année : 2010

Drag and lift reduction of a 3D bluff-body using active vortex generators

Résumé

In this study, a passive flow control experiment on a 3D bluff-body using vortex generators (VGs) is presented. The bluff-body is a modified Ahmed body with a curved rear part, instead of a slanted one, so that the location of the flow separation is no longer forced by the geometry. The influence of a line of non-conventional trapezoidal VGs on the aerodynamic forces (drag and lift) induced on the bluff-body is investigated. The high sensitivity to many geometric (angle between the trapezoidal element and the wall, spanwise spacing between the VGs, longitudinal location on the curved surface) and physical (freestream velocity) parameters is clearly demonstrated. The maximum drag reduction is-12%, while the maximum global lift reduction can reach more than -60%, with a strong dependency on the freestream velocity. For some configurations, the lift on the rear axle of the model can be inverted (-104%). It is also shown that the VGs are still efficient even downstream of the natural separation line. Finally, a dynamic parameter is chosen and a new setup with motorized vortex generators is proposed. Thanks to this active device. The optimal configurations depending on two parameters are found more easily, and a significant drag and lift reduction (up to -14% drag reduction) can be reached for different freestream velocities. These results are then analyzed through wall pressure and velocity measurements in the near-wake of the bluff-body with and without control. It appears that the largest drag and lift reduction is clearly associated to a strong increase of the size of the recirculation bubble over the rear slant. Investigation of the velocity field in a cross-section downstream the model reveals that, in the same time, the intensity of the longitudinal trailing vortices is strongly reduced, suggesting that the drag reduction is due to the breakdown of the balance between the separation bubble and the longitudinal vortices. It demonstrates that for low aspect ratio 3D bluff-bodies, like road vehicles, the flow control strategy is much different from the one used on airfoils: an early separation of the boundary layer can lead to a significant drag reduction if the circulation of the trailing vortices is reduced.
Fichier principal
Vignette du fichier
JLA.pdf (816.28 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01654042 , version 1 (02-12-2017)

Licence

Paternité

Identifiants

Citer

Jean-Luc Aider, Jean-François Beaudoin, José Eduardo Wesfreid. Drag and lift reduction of a 3D bluff-body using active vortex generators. Experiments in Fluids, 2010, 48 (5), pp.771-789. ⟨10.1007/s00348-009-0770-y⟩. ⟨hal-01654042⟩
328 Consultations
1240 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More