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Systems of independent active particles embedded into ating environment are relevant to many areas
of soft-matter science. We use a minimal model of nonintergcpin-carrying Brownian particles in a Gaus-
sian eld and show that activity-driven spin dynamics leadgatterned order. We nd that the competition
between mediated interactions and active noise alone edhsiich diverse behaviors as phase transitions and
microphase separation, from lamellar up to hexagonal orglef clusters of opposite magnetization. These
rest on complex multibody interactions. We nd regimes @lti&tnary patterns, but also dynamical regimes of
relentless birth and growth of lumps of magnetization ofipds the surrounding one. Our approach combines
Monte-Carlo simulations with analytical methods based ymadhical density functional approaches.

PACS numbers: ...

Active matter encompasses a broad class of physical
systems, ranging from animal ocks [1-4], articial self-
propelled particles [5, 6] and bacteria [7] to molecular mo-
tors [8], and pumping [9, 10] or multi-state particles such
as proteins [11]. While the former share the ability to ex-
tract energy from their environment and to convert it into
directed motion, the latter can change conformation and ex-
ert active forces upon their surrounding medium (actin |-
aments, cell membrane). Particles that deform a correlated
elastic medium experience eld-mediated interactionshwit
a uctuation-induced component [12, 13], as illustrated in
Fig. 1. Mediated interactions occur for instance between in
terfaces, colloids or proteins in soft-matter media suctrigs . )

ating eld (surface plot), favoring some valug of the eld. Inset:

!Cal binary mixtures [14, 1_5]’ liquid crystals [16, 17_]’ “”’WY . equilibrium average force as a function of the average garsepa-
interfaces [18, 19] and bio-membranes [20-24], includmg i ration, for the Hamiltonian described in the text. One péetis held
nonequilibrium settings [25]. xed and the other one is tethered to a strong harmonic tram-S
; +,bols: results of the numeric simulation (with incertitud8plid line:
A.n early approach to _the question of why and how gcuvegnalytical force deriving frontJ (R) in the text. Parameters of the
particles, e.g., proteins in cell membranes, self-orgaajz-

. . model:r =0:01, (=8,B =1and =0:05
peared in [11, 26, 27]. In a parallel series of works on reac-

tive two-state particle systems, spinodal decompositmun ¢
pled to active ips between the states has been shown to I_ea@ensity coupling. We treat the eld-particles interactioat
to a wealth of complex patterns. These have been describgfe microscopic level (background illustration in Fig. I,

in [28, 29], [30], [31, 32], and [33]. A common feature 10 o qer to capture multi-body contributions and Casimie lé-
these approaches, necessary for the active ips to producg s

nontrivial patterns, is the requirement to start from difec |, 5 ger to investigate such phenomena, we have striven to
interacting objects, either by assuming two-body intéoas,,  p, ,ii4 yn a model relying on the minimal necessary ingredi-

or in a coarse-grained form by describing these in terms of ag 1« Two populations of independent diffusing Ising parti

ad hocCahn-Hilliard eld. cles, actively switching between their two states and ader

In this Letter we show that the emergence of activity-drivening (quadratically) with a background Gaussian eld, make u
patterns can arise from purely eld-mediated interactians our model system. We refer to these particles as ASkI®s,
the absence of any direct interactions between the paticleactive switching eld interacting particles. The complgxof
The nature of the coupling between the particles and the eldhis system rests on the active nature of the particles,|bat a
is essential, as the existence of nonequilibrium phasaitran on the dynamics of the eld-mediated interactions. We treat
tions completely rests on the physics governing the cogplin the dynamics of each particle and that of the eld by equilib-
Furthermore, out of equilibrium, the coupling of partictes  rium Langevin equations. The questions we ask are: i) Are
a eld cannot be interpreted as effective direct interatsio induced interactions coupled to activity suf cient to geaie
between particles. We concentrate on systems whose ongmerging cooperative phenomena? ii) What is the role of ac-
nonequilibrium character resides in the active switchifg o tivity (in as much as it drives us away from equilibrium) in
the particles between two states coupling differently te th generating complex patterns? iii) What is the role of multi-
medium's eld. We do not rely on a simplied eld—particle body interactions and of Casimir-like forces in the states o

FIG. 1. (color online) Two particles (up spins) coupled toutu-



matter that we observe?

We consideN non-interacting particles at positiong(t),
1 kK
scribed by a scalar Gaussian eldx;t). Our eld might

N, embedded in a medium whose elasticity is de-

2

This is the one process breaking detailed balance for ASFIPs
due to the coupling with the eld and particle dynamics.

Since we want to understand how our system behaves ex-
actly, taking into account detailed out-of-equilibrium die

refer to a biomembrane thickness [21, 23] or internal lipidated interactions, multibody and uctuation-induced effe
composition [34]. It may also refer to the shape of a biomemwithout relying on approximate analytical methods, we rst

brane [20, 22] or to that of an interface under gravity [1§, 19

perform Monte Carlo simulations. We discretize our equa-

While all these systems are well described by Gaussian -uctutions on a lattice with spacing with the normalizatiora =

ating elds, the speci cs of the Hamiltonian is model depen-
dent. We choose the simplest model, with energy
Z h i

Ho= d = 2+g(r )2

; ®

To model particles that can be in two states, we attach a spin

variableSy = 1to each particle. The underlying picture we
have in mind is that of protein inclusions changing conforma
tion through external chemical activity [35]. The particidd
coupling is a key-ingredient, we take:

= 2 (0 S o @

k=1

The effect of this interaction is to adjust locally the eld &
spin-dependent amplitude o, with a strength governed by
the stiffness coef cienB. We draw the reader's attention to
the quadratic nature dflj,; . Linear couplings in the eld
are quite unrealistic as they miss multibody and uctuation

induced interactions. We do not wish to discard such ingre
es

dients that exist in real systems. The total energy becom
H = Ho + Hjy . We purposely omit excluded volume or any
other kind of direct interaction, which allows us to witness
eld-induced phenomena only.

We endow with a purely relaxational dynamics satisfying
detailed balance:

@ (x:0)= %ﬁﬁ(x;t); 3)

whereT is the temperature in energy units,the eld mo-

T = c = 1 (see SM, Sec. I). The remaining param-
eters arg, xing the eld's correlation lengthr 172, B the
stiffness of the spin— eld coupling, o the targeted eld, and
the dynamical parameters and , all scaled by the eld's
mobility.

We implement discrete time Monte Carlo simulations on a
two dimensional (2D) square lattice of sitze L with pe-
riodic boundary conditions, as detailed in the Supplementa
Material (SM, Sec. Il). The eld is de ned on the lattice site
and the particles move from site to adjacent site. Between
timest andt + t, particles can hop, or ip spin, or stay on
the same site. To take into account the relative dynamics of
the particles and the eld, we implement a tower sampling
algorithm [36] instead of a Metropolis one.

In order to characterize the eld-mediated interaction in
equilibrium, we rst study the force exchanged by two par-
ticles a distanc® apart in the manner described in Fig. 1 (or
Sec. lll in SM for a precise description). The effective po-
tentialU(R) between these two particles can be derived (see
SM) from a eld-theoretic calculation. As shownin Fig. 1eth

force is well tted by UYR), which con rms the validity of

our Monte Carlo simulation. The force is attractive for elqua
spins and decays typically over the eld correlation length
We found thatfoR 1 and ¢ & 3the uctuation-induced
component of the force is negligible, but this does not mean
that it must be so out of equilibrium. Actually, the standard
deviation of the force, which has a component coming from
the Langevin force on the particle and another coming from
the uctuations of the eld, is much larger than its average.
Note that whereas in equilibrium the eld samples thermally
all of its con gurations (even when the particles move),hie t

bility and (x;t) a Gaussian white noise. Particles diffuse out-of-equilibrium case the dynamics of the eld could yiel

according to equilibrium overdamped Langevin equations:

dr k _ @ H

dt @«
where is a mobility coef cient (assumed to be spin and eld
independent), and the(t)'s are independent Gaussian white
noises. We use the simplifying assumption thatand are
independent (as is generic in soft matter, seg, Ref. [10]
for proteins in biomembranes).

Finally, the out-of-equilibrium dynamics arises from the i
ternal degree of freedom of the particles. Each particls ip
through the action of an external energy source (e.g., pisoto
chemical reactions), with xed rates:

p—

+2T w(t); (4)

Sc= 1)* S =+1: (ASFIP) (5)

retarded effects with important consequences.

Before we embark into a full description of the out-of-
equilibrium ASFIPs, we wish to introduce their equilibrium
counterpart, for future comparison purposes. In equilitoi
Switching Field Interacting Particles (SFIPs) have traosi
rates/ exp( wg) with wy = B ¢ (rg) half the energy
variation in a spin ip. Such particles experience equilib-
rium eld mediated-interactions and ips, while they diffe
on the lattice. LeN be the total number of particles angl =
N=L2. At xed r and o, we increase the coupling strength
B. We observe rst a paramagnetic—ferromagnetic phase tran-
sition (Fig. 2a), then a phase separation into a dense fagem
netic uid coexisting with a paramagnetic gas (Fig. 2b). $he
states obviously do not depend on the dynamical parameter

. We characterize the magnetization of each homogeneous
phase by the order parameter h * i=h i, where
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tions correspond to the continuous lines of Fig. 2¢ while the

‘ results of the Monte Carlo simulations are indicated by the
dashed lines. The agreement is all the better as we are work-
ing atlarge ¢ orlow T

We now return to our original nonequilibrium ASFIPs. The
phase diagram of ASFIPs undergoing symmetric ipsq{ )
% ~0. is shown in Fig. 2d. The system is always paramagnetic on
' ‘ global average, due to the imposed ips, however increasing
B at xed ¢ yields rst a transition from a paramagnetic
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1 gas to ferromagnetic clusters of either magnetizationd; as
v (d) lustrated in Fig. 3a, then to a ph fd ical f
| macroscopiceclusters ustrated in Fig. 3a, then to a phase of dynamical ferromag-

Y i and stripes netic stripes. A typical snapshot of the macroscopic stripe
is shown in Fig. 3c. For asymmetric ips (e.g.,= 3 ) we
S observe a dynamical hexagonal pattern of clusters (Fig. 3b)

~—— e
e

————————— These clusters are formed by the particles with the higher i
homogeneous gas rate
paramagnetic ) L . . . .
0.0 . . . 0.0 . . . To gain insight into the physics of this pattern creation,
0.0 02 %3 0.6 0. 0.0 0.2 % 0608 \ve have computed the average uxes of the particles and the
map of the eld (Fig. 3d). First, we see that high (low)
FIG. 2. (color online) (a) SFIPs in a box with periodic bourydeon- eld regions have a majority of spin up (spin down) particles

ditions,L = 150, ¢ = 0:05,r = 0:01, o = 8 andB = 0:07, Hence, ASFIPs also tend to phase separate due to the eld
yielding a ferromagnetic state. Red (blue) dots indicatdigges ~ mediated interactions. We observe that spin up particestr
with up (down) spins. Inset: magnetization order paramatea  from regions of low spin-up density to regions of high spm-u
function of B. Light orange (dark purple) symbols correspondto density, just as for the coarsening of the equilibrium S&IP"

increasing (decreasing). (b) SFIPs Br= 0:26 (same other pa- However, these activity-driven uxes never vanish, whish i
rameters) showing the coexistence of a ferromagneticdiquid a ’ ’

paramagnetic gas (c) Phase diagram of SFIPs in terms ofdetel speci ¢ to being out of equilibrium. Therefore, whenever a
sity and coupling strength for = 0:01, o, = 8 and = 5. Solid particle ips, it is expelled by the eld-mediated interaohs
lines: mean- eld predictions for the paramagnetic—feragmetic ~ towards the nearest region matching its updated spin. $his i
transition (black) and for the binodal curve of the phaseasgon  the mechanism by which pattern formation occurs.

(green, orgray). Thelcorresponding dashed lines are thise$the In addition, within large enough regions of a given mag-
Monte Carlo simulations. (d) ASFIPs for the same parameBts o7 ation, we observe the systematic nucleation and growt

= =0:1. Solid red line: mean- eld prediction for the transition fl f it tizati Il visible bl
to a patterned phase. Yellow (light gray) zone: beginningeafre- of lumps of opposite magnetizatioe.g, small visible blue

gation. Orange (gray) zone: ferromagnetic stripes and @saopic  Islands in F_ig. _3b or red and blue ones i_n 3c), as illustrated
clusters. by the movies in the SM, Sec. V. They diffuse, get expelled

and eventually merge into a domain of the same magnetiza-
tion. The mechanism allowing for this behavior is intrinsi-

: i ... cally out of equilibrium. For SFIPs, energy balance quickly
we nd that the paramagnetic—ferromagnetic phase tramsiti prevents the growth of lumps, whereas for ASFIPs long lived

IS cqmpaﬂble with a continuous one (Fig. 2a, inseq). spin states are allowed to gather and form the seed for a dy-
Since SFIPs are in equilibrium, we can rely on thermody- - i lump which then grows by accretion

namics to study their behavior. The mean- eld energy dgnsit
naturally deriving fromH is

is the density of particles with 1spinsand = *+ ,and

What is the importance of uctuation-induced interactions
and multi-body effects in the ASFIP system? If we turn off the

fo r, B . , B . 2 eld noise (x;t) (while keeping the dynamics on the par-
mt = 5 * 2 ( 0)"+ E( )+ o) ticles unchanged), we observe that particle segregatidn an
+ *ln o+ “)In( ): 6 pattern formation occur as soon Bsexceeds the mean- eld

threshold (solid red line in Fig. 2d). Thermal uctuations
Since is the only conserved quantity, we minimizg: with  tend to destroy patterns and uctuation-induced forcesa@we
respect to and *, which yields an energy densify);( )  weak to play any pattern-favoring role. In order to investey
and =B o(2* )=(r+B )witheither * = = =2 multi-body effects, we have also replaced the quadratie cou
(paramagnetic phase) of 8  (ferromagnetic phase). At pling of Eq. (2) with a linear coupling adjusted to yield, up
low values ofB, the system is uniform and there is a con-to a very good approximation, the same two-body eld medi-
tinugus paramagnetic—ferromagnetic transitioredf? = ated interaction (see SM). This results in the condensation
(1+ 1+4r 3= )=(2 2). AthighervaluesoB, we obtain the particles on a unique site for SFIP's and in the absence of
through the double tangent constructionfdl) ( ) a phase activity driven patterns for ASFIP's. Multibody interatis
separation between a low density paramagnetic phase andage thus essential. We have checked that adding a hard-core
high density ferromagnetic phase. These mean- eld predicrepulsion, in the quadratic coupling case, has almost no ef-
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stant, does not change the interfiahin ; kmax] over which
temporal eigenvalues destabilize the homogeneous solutio
We also found that increasing the particles' mobilitywhile
keeping all other parameters xed) enlarges the domain eher
patterns are stable in the phase diagram. We expect that tak-
ing thes ! 0 limit in B{™ leads us to equilibrium. In-
deed, when sending! Oor !1 |, the eldis effectively
sampled in an equilibrium manner. In between two ips, the
diffusion of the particles is a quasi-equilibrium proceBsr-
thermore, LSA con rms that patterns are speci ¢ to out-of-
equilibrium since sending ! 0yieldskmin ! 0, and then
we end up with a more conventional coarsening of the binary
0 mixture in that regime. What is more surprising, however, is
thatB{™ 1 B{™ whens ! 0. This is due to the spe-
! cic choice = , which protects the up-down symmetry,
hence leaving the phase boundary unchanged in the equilib-
rium limit (the scenario does not hold foré ).

FIG. 3. (color online) Snapshots of the patterns created SIRs. We are now in a position to summarize the answers to our
The parameters are= 0:01, o = 8. Red (blue) dots indicate par- original questions. Starting from a microscopic model veher
ticles with up (down) spins. () Square phase obtained fnsgtric  noninteractingparticles are coupled to a Gaussian eld, we

ips(B =0:26, o =0:1, =2:5 = =0:005L = 180). - - - - -
(b) Hexagonal phase of clustel® (= 015, o = 04, = 50, ha\(e_ proved that eld-mediated interactions c_:omblned WIFh
=0:02 = =3 L = 160). (c) Striped phase obtained for activity can generate a wealth of new emerging cooperative
symmetric ips 8 = 0:15, o = 0:4, =5:0, = =0:02 phenomena. This is relevant for soft-matter systems in lwhic
L = 160). (d) shows the corresponding eld map of (c) and the  interactions are mostly indirect, eld-mediated. In ouissy
time average of the uxes of spin-up particles. tem, it is the presence of activity which drives complex pat-

terns of particle clusters by a continuous tossing in and out
of diffusing particles. The quadratic coupling that we have
fect on the phase diagram, indicating that modest shogeran ysed captures both multibody and uctuation-induced inter
interaction are irrelevant in our system. actions. While the former is of paramount relevance, the lat
Let us rationalize our ndings on the phase diagram withter is entirely dominated by thermal uctuations and can be
a dynamical mean- eld approach. Since ASFIPs diffuse byneglected. We see several directions along which we could
means of overdamped Langevin equations, we implement @xpand our ndings. From a theoretical standpoint, we wish
Dean—Kawasaki [37, 38] approach in the noiseless limit. Theg investigate the effect of varying the details of the clarre

evolution equationsthenred@ +r j =0withj = tor (membranes will feature higher derivatives for insgnc
r (@f=@ ). Taking spin exchange into account, we Similarly, the particle— eld coupling may also involve Higr
arrive at the evolution equations: derivatives depending on physical context. Exploring the-c
B ) . sequences of hydrodynamic effects is also of great relevanc
@ =r +B ( o) » Finally, it would be interesting to investigate such emeggi
@ =r? r B "( o0 B ( + o) (7)  phenomena in experimental systems of active particles) eve

in athermal macroscopic systems where activity alone might
Linear stability analysis (LSA) shows that above a threshsyf ce.

old in B the stationary and homogeneous solutiof [=

o=( *+ ), s = o=( + )and s = B o ¢

s )=(r + B )] is no longer stable, indicating the onset of
a patterned phase.d:or symmetric ips= , this threshold
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