Supplemental Material:
 Field-Embedded Particles Driven by Active Flips

Ruben Zakine, Jean-Baptiste Fournier and Frédéric van Wijland
(Dated: February 2, 2018)

I. NORMALIZATION

In order to reduce the number of free parameters, we normalize lengths by the lattice spacing a, energies by T, times by $a^{2} /(\Gamma c)$ and we absorb c in a redefinition of the field ϕ. We thus replace $\boldsymbol{x} / a \rightarrow \boldsymbol{x}, \Gamma c t / a^{2} \rightarrow t, c \phi^{2} / T \rightarrow \phi^{2}, a^{2} r / c \rightarrow r, B / c \rightarrow B, T \mu /(\Gamma c) \rightarrow \mu, a^{2} \alpha /(\Gamma c) \rightarrow \alpha$ and $a^{2} \gamma /(\Gamma c) \rightarrow \gamma$.

II. SIMULATION DETAILS

We simulate our system on a two dimensional square lattice of size $L_{x} \times L_{y}$ with periodic boundary conditions. We use the dimensionless formulation given in the article. The Gaussian field is defined on each site (i, j) and takes continuous real values $\phi_{i j}$. The particles move on the lattice sites and we denote $\boldsymbol{r}_{k}=\left(i_{k}, j_{k}\right)$ their position. The discretized Hamiltonian is given by

$$
\begin{equation*}
H=\sum_{i, j}\left[\frac{r}{2} \phi_{i j}^{2}+\frac{1}{2}\left(\nabla \phi_{i j}\right)^{2}\right]+\sum_{k=1}^{N} \frac{B}{2}\left(\phi_{k}-\phi_{0} S_{k}\right)^{2}, \tag{1}
\end{equation*}
$$

where $\phi_{k} \equiv \phi_{i_{k} j_{k}}$ and $\nabla \phi_{i j} \equiv\left(\phi_{i+1, j}-\phi_{i, j}, \phi_{i, j+1}-\phi_{i, j}\right)^{T}$. At each step Δt we first choose randomly if we begin by updating the field and then the particles, or the opposite.

- For the field update, each lattice site is updated according to

$$
\begin{equation*}
\phi_{i j}(t+\Delta t)=\phi_{i j}(t)+\Delta t\left(\nabla^{2} \phi_{i j}(t)-r \phi_{i j}(t)-B \sum_{k=1}^{N}\left[\phi_{i j}(t)-\phi_{0} S_{k}(t)\right] \delta_{i, i_{k}} \delta_{j, j_{k}}\right)+G_{i j}(0,2 \Delta t), \tag{2}
\end{equation*}
$$

where $\nabla^{2} \phi_{i j} \equiv \phi_{i+1, j}+\phi_{i-1, j}+\phi_{i, j+1}+\phi_{i, j-1}-4 \phi_{i, j}$ is the discrete Laplacian and the $G_{i j}(0,2 \Delta t)$ are independent random Gaussian variables with mean 0 and variance $2 \Delta t$.

- For the particles' update, we choose N times at random a particle among the N particles and decide if it hops to a neighbouring site, flips its spin or does not move. We compute the probability of each event and we apply a tower sampling algorithm [1]. We define P_{u}, P_{r}, P_{d}, P_{ℓ}, P_{f} the probabilities for a particle to move up, right, down, left, or to flip, respectively. The total energy variation when the particle k moves from site $\left(i_{k}, j_{k}\right)$ to $\left(i_{k}^{\prime}, j_{k}^{\prime}\right)$ is given by

$$
\begin{equation*}
\Delta H_{r_{k} \rightarrow \boldsymbol{r}_{k}^{\prime}}=\frac{B}{2}\left(\phi_{i_{k}^{\prime}, j_{k}^{\prime}}-\phi_{i_{k}, j_{k}}\right)\left(\phi_{i_{k}^{\prime}, j_{k}^{\prime}}+\phi_{i_{k}, j_{k}}-2 \phi_{0} S_{k}\right) . \tag{3}
\end{equation*}
$$

Similarly, the energy variation of the system when the particle k flips spin at site $\left(i_{k}, j_{k}\right)$ is given by

$$
\begin{equation*}
\Delta H_{S_{k} \rightarrow-S_{k}}=2 B \phi_{0} \phi_{k} S_{k} . \tag{4}
\end{equation*}
$$

Hence, according to the Langevin dynamics, we take

$$
\begin{align*}
& P_{u}(k)=\mu \Delta t \exp \left[-\frac{B}{4}\left(\phi_{i_{k}, j_{k}+1}-\phi_{i_{k}, j_{k}}\right)\left(\phi_{i_{k}, j_{k}+1}+\phi_{i_{k}, j_{k}}-2 \phi_{0} S_{k}\right)\right] \tag{5}\\
& P_{r}(k)=\mu \Delta t \exp \left[-\frac{B}{4}\left(\phi_{i_{k}+1, j_{k}}-\phi_{i_{k}, j_{k}}\right)\left(\phi_{i_{k}+1, j_{k}}+\phi_{i_{k}, j_{k}}-2 \phi_{0} S_{k}\right)\right] \tag{6}\\
& P_{d}(k)=\mu \Delta t \exp \left[-\frac{B}{4}\left(\phi_{i_{k}, j_{k}-1}-\phi_{i_{k}, j_{k}}\right)\left(\phi_{i_{k}, j_{k}-1}+\phi_{i_{k}, j_{k}}-2 \phi_{0} S_{k}\right)\right] \tag{7}\\
& P_{\ell}(k)=\mu \Delta t \exp \left[-\frac{B}{4}\left(\phi_{i_{k}-1, j_{k}}-\phi_{i_{k}, j_{k}}\right)\left(\phi_{i_{k}-1, j_{k}}+\phi_{i_{k}, j_{k}}-2 \phi_{0} S_{k}\right)\right] \tag{8}
\end{align*}
$$

The dynamics of the flips depends on the type of particle considered. For SFIPs, the flipping probability is

$$
\begin{equation*}
P_{f}(k)=\epsilon \Delta t \exp \left[-B \phi_{0} \phi_{k} S_{k}\right] \tag{9}
\end{equation*}
$$

and satisfies detailed balance, whereas for ASFIPs the flipping probability is independent of the field and is given by

$$
P_{f}(k)= \begin{cases}\alpha \Delta t & \text { if } S_{k}=-1 \tag{10}\\ \gamma \Delta t & \text { if } S_{k}=+1\end{cases}
$$

The flipping rate ϵ plays no role on the phase diagram in equilibrium. We take Δt small enough to ensure that the probabilities verify

$$
\begin{equation*}
P_{u}(k)+P_{r}(k)+P_{d}(k)+P_{\ell}(k)+P_{f}(k)<1, \tag{11}
\end{equation*}
$$

then the probability $P_{n}(k)$ that particle k neither jumps nor flips is given by $P_{n}(k)=1-$ $\left[P_{u}(k)+P_{r}(k)+P_{d}(k)+P_{\ell}(k)+P_{f}(k)\right]$.

III. FORCE BETWEEN TWO PARTICLES

In order to measure the mediated force between two particles, we perform a simulation with only two up-spin particles in the Gaussian field. The first particle is fixed at $\boldsymbol{r}_{1}=0$, and the second particle is trapped in a quadratic potential centered on site \boldsymbol{R}_{0}. Hence, the Langevin Eq. (5) for the second particle, with $\boldsymbol{r}_{2}=\boldsymbol{R}$, writes in dimensionless form:

$$
\begin{equation*}
\frac{d \boldsymbol{R}}{d t}=-\mu \frac{\partial H}{\partial \boldsymbol{R}}-\mu \frac{\partial H_{\mathrm{quad}}}{\partial \boldsymbol{R}}+\sqrt{2 \mu} \boldsymbol{\eta}_{2}(t) \tag{12}
\end{equation*}
$$

with $H_{\text {quad }}=\lambda\left(\boldsymbol{R}(t)-\boldsymbol{R}_{0}\right)^{2} / 2$ the quadratic potential. In equilibrium, when the system reaches a stationary regime, taking the average of Eq. (12) yields the average force

$$
\begin{equation*}
\langle\boldsymbol{f}\rangle=\left\langle-\frac{\partial H}{\partial \boldsymbol{R}}\right\rangle=\lambda\left(\langle\boldsymbol{R}\rangle-\boldsymbol{R}_{0}\right) \tag{13}
\end{equation*}
$$

which corresponds to the field-mediated interaction when λ is large enough to ensure small fluctuations of the position of particle 2 .

The field-mediated force can be analytically calculated for two fixed particles using a HubbardStratonovich transformation on the partition function:

$$
\begin{align*}
\mathcal{Z} & =\int \mathcal{D} \phi \exp \left(-\frac{1}{2} \int d^{2} x\left[r \phi^{2}+(\boldsymbol{\nabla} \phi)^{2}\right]-\frac{B}{2} \int d^{2} x\left(\phi(\boldsymbol{x})-\phi_{0}\right)^{2}[\delta(\boldsymbol{x})+\delta(\boldsymbol{x}-\boldsymbol{R})]\right) \tag{14}\\
& \propto \int d k_{1} d k_{2} \exp \left(-\frac{1}{2}\left(k_{1}, k_{2}\right) A\left(k_{1}, k_{2}\right)^{T}+i \phi_{0}\left(k_{1}, k_{2}\right)(1,1)^{T}\right) \tag{15}
\end{align*}
$$

with

$$
A=\left(\begin{array}{cc}
B^{-1}+G(0) & G(R) \tag{16}\\
G(R) & B^{-1}+G(0)
\end{array}\right),
$$

in which

$$
\begin{equation*}
G(R)=\int \frac{d^{2} q}{(2 \pi)^{2}} \frac{e^{i \boldsymbol{q} \cdot \boldsymbol{R}}}{r+q^{2}}=\frac{1}{2 \pi} K_{0}(R \sqrt{r}) . \tag{17}
\end{equation*}
$$

Since $G(0)$ exhibits a logarithmic UV divergence, we regularize it by introducing a cutoff in Fourier space that takes into account the finite size of the lattice spacing (unity here). Hence $G(0)$ reads

$$
\begin{equation*}
G(0)=\frac{1}{2 \pi} \int_{0}^{\pi} d q \frac{q}{r+q^{2}} \simeq \frac{1}{2 \pi} \ln \left(\pi r^{-1 / 2}\right) \tag{18}
\end{equation*}
$$

for $r \ll 1$. The total free energy $U(R)=-\ln \mathcal{Z}$ is then given by $U=U_{\mathrm{C}}+U_{\text {el }}$ with

$$
\begin{align*}
U_{\mathrm{C}} & =\frac{1}{2} \ln \left(1-\frac{K_{0}(R \sqrt{r})^{2}}{Q^{2}}\right) \tag{19}\\
U_{\mathrm{el}} & =\frac{2 \pi \phi_{0}^{2}}{K_{0}(R \sqrt{r})+Q}, \tag{20}
\end{align*}
$$

with $Q=\ln \left(\pi r^{-1 / 2}\right)+2 \pi / B$. In dimensionful form, the energy U_{C} is proportional to temperature, whereas $U_{\text {el }}$ does not depend on temperature. The interpretation is that the total interaction energy splits into a Casimir-like contribution U_{C}, and an elastic one U_{el}.

IV. ROLE OF MULTIBODY INTERACTIONS

We want to probe the effect of N-body interactions. To do so, we replace the quadratic coupling of the particles to the field with a linear one:

$$
\begin{equation*}
H_{\mathrm{int}}=\sum_{k=1}^{N} \kappa S_{k} \phi\left(\boldsymbol{r}_{k}\right), \tag{21}
\end{equation*}
$$

where κ sets the strength of the coupling. In equilibrium, we can integrate out the field which results in an effective Hamiltonian for the particles featuring only pairwise interactions. Indeed, for spin-up particles with local density ρ, the partition function reads

$$
\begin{align*}
\mathcal{Z} & =\int \mathcal{D} \phi \exp \left(-\frac{1}{2} \int d^{2} x\left[r \phi^{2}+(\boldsymbol{\nabla} \phi)^{2}\right]-\kappa \int d^{2} x \phi(\boldsymbol{x}) \rho(\boldsymbol{x})\right) \tag{22}\\
& \propto \exp \left(\frac{\kappa^{2}}{2} \int \rho(\boldsymbol{x}) G(\boldsymbol{x}-\boldsymbol{y}) \rho(\boldsymbol{y})\right) \tag{23}
\end{align*}
$$

where G is the same correlator as Eq. (17). From there we read off the direct pairwise potential:

$$
\begin{equation*}
U_{\mathrm{el}}^{\operatorname{lin}}(\boldsymbol{x}, \boldsymbol{y})=-\kappa^{2} G(\boldsymbol{x}-\boldsymbol{y})=-\frac{\kappa^{2}}{2 \pi} K_{0}(|\boldsymbol{x}-\boldsymbol{y}| \sqrt{r}) \tag{24}
\end{equation*}
$$

which remains independent of temperature in dimensionful form.
In order to carry out a quantitative comparison between the quadratic and the linear coupling, we adjust the parameter κ in order to match the force obtained with the quadratic coupling. This can be done almost perfectly: as shown in Fig. 1, the pairwise force $F_{\text {lin }}$ deriving from the linear coupling $U_{\text {el }}^{\text {lin }}$ is equivalent to the force $F_{\text {quad }}=-\nabla U_{\text {el }}$, with $U_{\text {el }}$ given by Eq. (20), when κ is correctly tuned (depending on B and ϕ_{0}). Then, we simulate SFIPs and ASFIPs for both couplings at matching two-body forces (fig. 2). In the linear case, SFIPs undergo strong unphysical condensation (see Fig. 2b) allowed by the absence of direct hard-core repulsion. Furthermore, patterns disappear in the ASFIP system (see Fig. 2e). This demonstrates the importance of multibody interactions.

V. MOVIES

Movie 1: ASFIP at the following parameters : $r=0.01, B=0.15, \phi_{0}=8, \mu=5, \rho_{0}=0.4$, and $\alpha=\gamma=0.02$.

Movie 2: ASFIP at the following parameters : $r=0.01, B=0.15, \phi_{0}=8, \mu=5, \rho_{0}=0.4$, and $\alpha=0.02, \gamma=0.0066$.

FIG. 1: (color online) Equilibrium average force as a function of the average particle separation. Solid blue line: analytical force deriving from the pairwise interaction when the coupling is linear $U_{\mathrm{el}}^{\mathrm{lin}}(r=0.01$, $\kappa=1.7$). Dashed green line (matches exactly the blue line): analytical force deriving from the two particle interaction U_{el} when the coupling is quadratic ($r=0.01, B=0.26, \phi_{0}=8$).

FIG. 2: (a) SFIPs quadratically coupled to the Gaussian field, with $r=0.01, B=0.26, \phi_{0}=8, \rho_{0}=0.05$. (b) SFIPs linearly coupled to the Gaussian field with $\kappa=1.7$ tuned to yield the same interaction as the quadratic case of (a), and the same $\rho_{0}=0.05, r=0.01$. (c) Number of particles per site in the case of a linear coupling: 1D snapshot of (b) along the blue arrow. The system undergoes a strong and unphysical condensation. (d) ASFIPs quadratically coupled to the Gaussian field, with $r=0.01, \rho_{0}=0.1, \mu=2.5$, $\alpha=\gamma=0.005, B=0.26$ and $\phi_{0}=8$. (e) ASFIPs linearly coupled to the Gaussian field with $\kappa=1.7$ tuned as before (same parameters as in (d)). (f) Number of particles per site in the case of a linear coupling: 1D snapshot of (e) along the blue arrow. The system undergoes a strong and unphysical condensation and patterns disappear.

