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I. NORMALIZATION

In order to reduce the number of free parameters, we normalize lengths by the lattice spacing a,
energies by T, times by a?/(I'c) and we absorb ¢ in a redefinition of the field ¢. We thus replace
x/a — x, Lct/a® — t, c¢?/T — ¢2, a®r/c — r, B/c — B, Tu/(Tc) — u, a’>a/(l'e) — a and
a*y/(Tc) — 7.

II. SIMULATION DETAILS

We simulate our system on a two dimensional square lattice of size L, x L, with periodic
boundary conditions. We use the dimensionless formulation given in the article. The Gaussian
field is defined on each site (¢, j) and takes continuous real values ¢;;. The particles move on the
lattice sites and we denote 7, = (i, ji) their position. The discretized Hamiltonian is given by

H = ZZ B Vébw } Z (6 — doSk)?, (1)

where ¢ = ¢i,j, and Vi, = (it1,; — Gi s Gij+1 — gbm-)T. At each step At we first choose
randomly if we begin by updating the field and then the particles, or the opposite.

e For the field update, each lattice site is updated according to

Gij(t+AL) = ¢4 (1) +At <V2¢u‘( ) —rdii(t) — B Z ¢i5(t) — doSk (t)]5i,ik5j,jk> +Gi;(0,24A1),

(2)
where V2¢;; = ¢ip1,j + ¢i—1j + Gij+1 + dij—1 — 4¢i; is the discrete Laplacian and the
Gi;(0,2At) are independent random Gaussian variables with mean 0 and variance 2At¢.

e For the particles’ update, we choose N times at random a particle among the N particles
and decide if it hops to a neighbouring site, flips its spin or does not move. We compute the
probability of each event and we apply a tower sampling algorithm [1]. We define P,, P., Py,
Py, Py the probabilities for a particle to move up, right, down, left, or to flip, respectively.
The total energy variation when the particle k moves from site (ix, ji) to (i, ;) is given by

B
AHr, ey, = 5 (D3, = Ginin)(Gig gy, + Pirgn — 2005k)- (3)
Similarly, the energy variation of the system when the particle k flips spin at site (i, jx) is
given by
AHg, -5, = 2B¢odr Sk (4)
Hence, according to the Langevin dynamics, we take
B
Pu(k) = pAt exp _Z(¢ik7jk+1 - ¢ik7jk)(¢ik1jk+1 + ¢ik7jk - 2¢05k) ) (5)
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Py(k) = pAt exp | = (bin-15c = Dirjn) (Pin—1.je + bir g — 2005k)| - (8)




The dynamics of the flips depends on the type of particle considered. For SFIPs, the flipping
probability is

Py (k) = e At exp [~ B¢odrSk] , (9)

and satisfies detailed balance, whereas for ASFIPs the flipping probability is independent of
the field and is given by

Py = {0 i Si=—1,
A PN

The flipping rate e plays no role on the phase diagram in equilibrium. We take At small
enough to ensure that the probabilities verify

(10)

P, (k) + P.(k) + Py(k) + Pe(k) + Pr(k) < 1, (11)

then the probability P, (k) that particle k neither jumps nor flips is given by P, (k) = 1 —
[Pu(k) + Pr(k) + Pa(k) + Po(k) + Pr(k)].

III. FORCE BETWEEN TWO PARTICLES

In order to measure the mediated force between two particles, we perform a simulation with only
two up-spin particles in the Gaussian field. The first particle is fixed at 7y = 0, and the second
particle is trapped in a quadratic potential centered on site Ry. Hence, the Langevin Eq. (5) for
the second particle, with ro = R, writes in dimensionless form:

dR - OH quuad
- MPam T +/2umo(t (12)

with Hquaa = AM(R(t) — Ro)?/2 the quadratic potential. In equilibrium, when the system reaches
a stationary regime, taking the average of Eq. (12) yields the average force

() = (- 92) = A(R) ~ R) (13)

which corresponds to the field-mediated interaction when A is large enough to ensure small fluctu-
ations of the position of particle 2.

The field-mediated force can be analytically calculated for two fixed particles using a Hubbard-
Stratonovich transformation on the partition function:

2= [Dooxw (- [ Ealra+ (Vor) - 3 [ Eotote) - P Bla) + o - RY) (1)

o /dkldkzg exp (—%(kl,k:g)A (K1, k)T 4o (K1, k2) (1, 1)T) , (15)
with
B~1 4+ G(0 G(R
= (" el 50): 1o
in which

2 eiq‘R
G(R) = / (d—q L g (ry). (17)

2m)2 r+q¢*> 27

Since G(0) exhibits a logarithmic UV divergence, we regularize it by introducing a cutoff in Fourier
space that takes into account the finite size of the lattice spacing (unity here). Hence G(0) reads

1 g 1
G(O):%/ dg—L— ~ = In(xr—1/?), (18)



for r < 1. The total free energy U(R) = —In Z is then given by U = Uc + U, with

e = 3 (1~ 2oBY0) (19)
B 22
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with Q = In(7r~'/?) +27/B. In dimensionful form, the energy U is proportional to temperature,
whereas U, does not depend on temperature. The interpretation is that the total interaction
energy splits into a Casimir-like contribution Uc, and an elastic one Usy.

IV. ROLE OF MULTIBODY INTERACTIONS

We want to probe the effect of N-body interactions. To do so, we replace the quadratic coupling
of the particles to the field with a linear one:

N

Hiy = Zﬁsk(b(’l“k), (21)

k=1

where x sets the strength of the coupling. In equilibrium, we can integrate out the field which
results in an effective Hamiltonian for the particles featuring only pairwise interactions. Indeed,
for spin-up particles with local density p, the partition function reads

2= [Doexp (—% [l + (voP) — x [ oz ¢<w>p<w>) (22)

o exp (% /p(:v)G(:v - y)p(y)) ; (23)

where G is the same correlator as Eq. (17). From there we read off the direct pairwise potential:

— s Ko(lz — yIv7) (24)

lin _ .2 o _
U(e.y) = K26 -~ y) =~

€
which remains independent of temperature in dimensionful form.

In order to carry out a quantitative comparison between the quadratic and the linear coupling, we
adjust the parameter s in order to match the force obtained with the quadratic coupling. This can
be done almost perfectly: as shown in Fig. 1, the pairwise force Fj;,, deriving from the linear coupling
UQI}“ is equivalent to the force Fyyaq = —VUe, with Ue given by Eq. (20), when & is correctly tuned
(depending on B and ¢g). Then, we simulate SFIPs and ASFIPs for both couplings at matching
two-body forces (fig. 2). In the linear case, SFIPs undergo strong unphysical condensation (see
Fig. 2b) allowed by the absence of direct hard-core repulsion. Furthermore, patterns disappear in
the ASFIP system (see Fig. 2e). This demonstrates the importance of multibody interactions.

V. MOVIES

Movie 1: ASFIP at the following parameters : » = 0.01, B = 0.15, ¢9 = 8, u = 5, po = 0.4, and
a=v=0.02.

Movie 2: ASFIP at the following parameters : » = 0.01, B = 0.15, ¢9 = 8, u = 5, po = 0.4, and
a = 0.02, v = 0.0066.

[1] W. Krauth, Statistical mechanics: algorithms and computations, vol. 13 (OUP Oxford, 2006).
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FIG. 1: (color online) Equilibrium average force as a function of the average particle separation. Solid
blue line: analytical force deriving from the pairwise interaction when the coupling is linear UL" ( = 0.01,
r = 1.7). Dashed green line (matches exactly the blue line): analytical force deriving from the two particle

interaction U. when the coupling is quadratic (r = 0.01, B = 0.26, ¢o = 8).
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FIG. 2: (a) SFIPs quadratically coupled to the Gaussian field, with » = 0.01, B = 0.26, ¢o = 8, po = 0.05.
(b) SFIPs linearly coupled to the Gaussian field with x = 1.7 tuned to yield the same interaction as the
quadratic case of (a), and the same po = 0.05, » = 0.01. (c) Number of particles per site in the case of a
linear coupling: 1D snapshot of (b) along the blue arrow. The system undergoes a strong and unphysical
condensation. (d) ASFIPs quadratically coupled to the Gaussian field, with » = 0.01, po = 0.1, u = 2.5,
a = =0.005, B=0.26 and ¢o = 8. (e) ASFIPs linearly coupled to the Gaussian field with x = 1.7 tuned
as before (same parameters as in (d)). (f) Number of particles per site in the case of a linear coupling: 1D
snapshot of (e) along the blue arrow. The system undergoes a strong and unphysical condensation and
patterns disappear.



