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I. NORMALIZATION

In order to reduce the number of free parameters, we normalize lengths by the lattice spacing a,
energies by T , times by a2/(Γc) and we absorb c in a redefinition of the field φ. We thus replace
x/a → x, Γct/a2 → t, cφ2/T → φ2, a2r/c → r, B/c → B, Tµ/(Γc) → µ, a2α/(Γc) → α and
a2γ/(Γc) → γ.

II. SIMULATION DETAILS

We simulate our system on a two dimensional square lattice of size Lx × Ly with periodic
boundary conditions. We use the dimensionless formulation given in the article. The Gaussian
field is defined on each site (i, j) and takes continuous real values φij . The particles move on the
lattice sites and we denote rk = (ik, jk) their position. The discretized Hamiltonian is given by
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∑

i,j

[

r

2
φ2
ij +

1

2
(∇φij)

2

]

+

N
∑

k=1

B

2
(φk − φ0Sk)

2
, (1)

where φk ≡ φikjk and ∇φij ≡ (φi+1,j − φi,j , φi,j+1 − φi,j)
T
. At each step ∆t we first choose

randomly if we begin by updating the field and then the particles, or the opposite.

• For the field update, each lattice site is updated according to

φij(t+∆t) = φij(t)+∆t

(

∇2φij(t)− rφij(t)−B

N
∑

k=1

[φij(t)− φ0Sk(t)]δi,ikδj,jk

)

+Gij(0, 2∆t),

(2)
where ∇2φij ≡ φi+1,j + φi−1,j + φi,j+1 + φi,j−1 − 4φi,j is the discrete Laplacian and the
Gij(0, 2∆t) are independent random Gaussian variables with mean 0 and variance 2∆t.

• For the particles’ update, we choose N times at random a particle among the N particles
and decide if it hops to a neighbouring site, flips its spin or does not move. We compute the
probability of each event and we apply a tower sampling algorithm [1]. We define Pu, Pr, Pd,
Pℓ, Pf the probabilities for a particle to move up, right, down, left, or to flip, respectively.
The total energy variation when the particle k moves from site (ik, jk) to (i′k, j

′

k) is given by

∆Hrk→r′

k
=

B

2
(φi′

k
,j′

k
− φik,jk)(φi′

k
,j′

k
+ φik,jk − 2φ0Sk). (3)

Similarly, the energy variation of the system when the particle k flips spin at site (ik, jk) is
given by

∆HSk→−Sk
= 2Bφ0φkSk. (4)

Hence, according to the Langevin dynamics, we take

Pu(k) = µ∆t exp

[

−B

4
(φik ,jk+1 − φik,jk)(φik,jk+1 + φik,jk − 2φ0Sk)

]

, (5)

Pr(k) = µ∆t exp

[

−B

4
(φik+1,jk − φik,jk)(φik+1,jk + φik,jk − 2φ0Sk)

]

, (6)

Pd(k) = µ∆t exp

[

−B

4
(φik ,jk−1 − φik,jk)(φik ,jk−1 + φik,jk − 2φ0Sk)

]

, (7)

Pℓ(k) = µ∆t exp

[

−B

4
(φik−1,jk − φik,jk)(φik−1,jk + φik,jk − 2φ0Sk)

]

. (8)
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The dynamics of the flips depends on the type of particle considered. For SFIPs, the flipping
probability is

Pf (k) = ǫ∆t exp [−Bφ0φkSk] , (9)

and satisfies detailed balance, whereas for ASFIPs the flipping probability is independent of
the field and is given by

Pf (k) =

{

α∆t if Sk = −1,

γ∆t if Sk = +1.
(10)

The flipping rate ǫ plays no role on the phase diagram in equilibrium. We take ∆t small
enough to ensure that the probabilities verify

Pu(k) + Pr(k) + Pd(k) + Pℓ(k) + Pf (k) < 1, (11)

then the probability Pn(k) that particle k neither jumps nor flips is given by Pn(k) = 1 −
[Pu(k) + Pr(k) + Pd(k) + Pℓ(k) + Pf (k)].

III. FORCE BETWEEN TWO PARTICLES

In order to measure the mediated force between two particles, we perform a simulation with only
two up-spin particles in the Gaussian field. The first particle is fixed at r1 = 0, and the second
particle is trapped in a quadratic potential centered on site R0. Hence, the Langevin Eq. (5) for
the second particle, with r2 = R, writes in dimensionless form:

dR

dt
= −µ

∂H

∂R
− µ

∂Hquad

∂R
+
√

2µη2(t), (12)

with Hquad = λ(R(t) −R0)
2/2 the quadratic potential. In equilibrium, when the system reaches

a stationary regime, taking the average of Eq. (12) yields the average force

〈f〉 = 〈−∂H

∂R
〉 = λ(〈R〉 −R0), (13)

which corresponds to the field-mediated interaction when λ is large enough to ensure small fluctu-
ations of the position of particle 2.
The field-mediated force can be analytically calculated for two fixed particles using a Hubbard-

Stratonovich transformation on the partition function:

Z =

∫

Dφ exp

(

−1

2

∫

d2x
[

rφ2 + (∇φ)2
]

− B

2

∫

d2x(φ(x) − φ0)
2 [δ(x) + δ(x−R)]

)

(14)

∝
∫

dk1dk2 exp

(

−1

2
(k1, k2)A (k1, k2)

T + iφ0(k1, k2)(1, 1)
T

)

, (15)

with

A =

(

B−1 +G(0) G(R)
G(R) B−1 +G(0)

)

, (16)

in which

G(R) =

∫

d2q

(2π)2
eiq·R

r + q2
=

1

2π
K0(R

√
r). (17)

Since G(0) exhibits a logarithmic UV divergence, we regularize it by introducing a cutoff in Fourier
space that takes into account the finite size of the lattice spacing (unity here). Hence G(0) reads

G(0) =
1

2π

∫ π

0

dq
q

r + q2
≃ 1

2π
ln(πr−1/2), (18)
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for r ≪ 1. The total free energy U(R) = − lnZ is then given by U = UC + Uel with

UC =
1

2
ln

(

1− K0(R
√
r)2

Q2

)

(19)

Uel =
2πφ2

0

K0(R
√
r) +Q

, (20)

with Q = ln(πr−1/2)+2π/B. In dimensionful form, the energy UC is proportional to temperature,
whereas Uel does not depend on temperature. The interpretation is that the total interaction
energy splits into a Casimir-like contribution UC, and an elastic one Uel.

IV. ROLE OF MULTIBODY INTERACTIONS

We want to probe the effect of N -body interactions. To do so, we replace the quadratic coupling
of the particles to the field with a linear one:

Hint =

N
∑

k=1

κSkφ(rk), (21)

where κ sets the strength of the coupling. In equilibrium, we can integrate out the field which
results in an effective Hamiltonian for the particles featuring only pairwise interactions. Indeed,
for spin-up particles with local density ρ, the partition function reads

Z =

∫

Dφ exp

(

−1

2

∫

d2x
[

rφ2 + (∇φ)2
]

− κ

∫

d2xφ(x)ρ(x)

)

(22)

∝ exp

(

κ2

2

∫

ρ(x)G(x− y)ρ(y)

)

, (23)

where G is the same correlator as Eq. (17). From there we read off the direct pairwise potential:

U lin
el (x,y) = −κ2G(x− y) = −κ2

2π
K0(|x− y|

√
r) (24)

which remains independent of temperature in dimensionful form.
In order to carry out a quantitative comparison between the quadratic and the linear coupling, we

adjust the parameter κ in order to match the force obtained with the quadratic coupling. This can
be done almost perfectly: as shown in Fig. 1, the pairwise force Flin deriving from the linear coupling
U lin
el is equivalent to the force Fquad = −∇Uel, with Uel given by Eq. (20), when κ is correctly tuned

(depending on B and φ0). Then, we simulate SFIPs and ASFIPs for both couplings at matching
two-body forces (fig. 2). In the linear case, SFIPs undergo strong unphysical condensation (see
Fig. 2b) allowed by the absence of direct hard-core repulsion. Furthermore, patterns disappear in
the ASFIP system (see Fig. 2e). This demonstrates the importance of multibody interactions.

V. MOVIES

Movie 1: ASFIP at the following parameters : r = 0.01, B = 0.15, φ0 = 8, µ = 5, ρ0 = 0.4, and
α = γ = 0.02.

Movie 2: ASFIP at the following parameters : r = 0.01, B = 0.15, φ0 = 8, µ = 5, ρ0 = 0.4, and
α = 0.02, γ = 0.0066.
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FIG. 1: (color online) Equilibrium average force as a function of the average particle separation. Solid
blue line: analytical force deriving from the pairwise interaction when the coupling is linear U lin

el (r = 0.01,
κ = 1.7). Dashed green line (matches exactly the blue line): analytical force deriving from the two particle
interaction Uel when the coupling is quadratic (r = 0.01, B = 0.26, φ0 = 8).

FIG. 2: (a) SFIPs quadratically coupled to the Gaussian field, with r = 0.01, B = 0.26, φ0 = 8, ρ0 = 0.05.
(b) SFIPs linearly coupled to the Gaussian field with κ = 1.7 tuned to yield the same interaction as the
quadratic case of (a), and the same ρ0 = 0.05, r = 0.01. (c) Number of particles per site in the case of a
linear coupling: 1D snapshot of (b) along the blue arrow. The system undergoes a strong and unphysical
condensation. (d) ASFIPs quadratically coupled to the Gaussian field, with r = 0.01, ρ0 = 0.1, µ = 2.5,
α = γ = 0.005, B = 0.26 and φ0 = 8. (e) ASFIPs linearly coupled to the Gaussian field with κ = 1.7 tuned
as before (same parameters as in (d)). (f) Number of particles per site in the case of a linear coupling: 1D
snapshot of (e) along the blue arrow. The system undergoes a strong and unphysical condensation and
patterns disappear.


