N
N

N

HAL

open science

MODULI OF STOKES TORSORS AND
SINGULARITIES OF DIFFERENTIAL EQUATIONS

Jean-Baptiste Teyssier

» To cite this version:

Jean-Baptiste Teyssier. MODULI OF STOKES TORSORS AND SINGULARITIES OF DIFFER-

ENTIAL EQUATIONS. 2018. hal-01697776v1

HAL Id: hal-01697776
https://u-paris.hal.science/hal-01697776v1

Preprint submitted on 31 Jan 2018 (v1), last revised 26 Apr 2022 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://u-paris.hal.science/hal-01697776v1
https://hal.archives-ouvertes.fr

MODULI OF STOKES TORSORS AND SINGULARITIES OF
DIFFERENTIAL EQUATIONS

by

Jean-Baptiste Teyssier

Abstract. — Let M be a meromorphic connection with poles along a smooth divisor
D in a smooth algebraic variety. Let Sol M be the solution complex of M. We prove
that the good formal decomposition locus of M coincides with the locus where the
restrictions to D of Sol M and Sol End M are local systems. By contrast to the very
different natures of these loci (the first one is defined via algebra, the second one is
defined via analysis), the proof of their coincidence is geometric. It relies on moduli
of Stokes torsors.

The problematic of this paper is to understand how the geometry of the Stokes
phenomenon in any dimension sheds light on the interplay between the singularities
of a differential equation and the singularities of its solutions.

Consider an algebraic linear system M of differential equations with n variables

0X
6%
where €); is a square matrix of size r with coefficients into the ring C[z1, ..., z,][z;!]

of Laurent polynomials with poles along the hyperplane D in C™ given by z,, = 0.
At a point away from D, the holomorphic solutions of the system M are fully under-
stood by means of Cauchy’s theorem. At a point of D, the situation is much more
complicated. It is still the source of challenging unsolved problems. We call D the
singular locus of M. Two distinguished open subsets of D where the singularities of
M are mild can be defined.

First, the set Good(M) of good formal decomposition points of M is the subset
of D consisting of points P at the formal neighbourhood of which M admits a good
decomposition. For P being the origin, this means roughly that there exists a base
change with coefficients in C[z1,...,x,][z,] splitting M as a direct sum of well-
understood systems easier to work with.

Good formal decomposition can always be achieved in the one variable case [Sv00].
It is desirable in general because it provides a concrete description of the system, at
least formally at a point. In the higher variable case however, it was observed in
[Sab00] that M may not have good formal decomposition at every point of D. Thus,
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the set Good(M) is a non trivial invariant of M. As proved by André [And07], the
set Good(M) is the complement in D of a Zariski closed subset F' of D either purely
of codimension 1 in D or empty. Traditionally, F' is called the Turning point locus
of M, by reference to the way the Stokes directions of M move along a small circle
in D going around a turning point. In a sense, the good formal decomposition
locus of M is the open subset of D where the singularities of the system
M are as simple as possible.

To define the second distinguished subset of D associated to M, let us view M as a
D-module, that is a module over the Weyl algebra of differential operators. Let us de-
note by Sol M the solution complex of the analytification of M. Concretely, H° Sol M
encodes the holomorphic solutions of our differential system while the higher coho-
mologies of Sol M keep track of higher Ext groups in the category of D-modules. As
proved by Kashiwara [Kas75]|, the complex Sol M is perverse. From a theorem of
Mebkhout [Meb90], the restriction of Sol M to D, that is, the irregularity complex
of M along D, denoted by Irr’, M in this paper, is also perverse. In particular,
(Sol M)|p is a local system on D away from a closed analytic subset of D. The
smooth locus of (Sol M) p denotes the biggest open in D on which (SolM)p is a
local system. In a sense, the smooth locus of (Sol M) is the open subset of
D where the singularities of the (derived) solutions of M are as simple as
possible.

As observed in [Tey13|, the open set Good(M) is included in the smooth lo-
cus of (Sol M)|p and (SolEnd M) p, and the reverse inclusion was conjectured in
[Tey13, 15.0.5]. Coincidence of Good(M) with the smooth locus of (Sol M);p and
(Sol End M)|p seems surprising at first sight, since goodness is an algebraic notion
whereas Sol M is transcendental. The main goal of this paper is to prove via geometric
means the following

Theorem 1. — The good formal decomposition locus of an algebraic meromorphic
connection M with poles along a smooth divisor D in a smooth algebraic variety is
ezactly the locus of D where (Sol M)|p and (Sol End M)|p are local systems.

Other criteria detecting good points of meromorphic connections are available in
the literature. Let us mention André’s criterion [And07, 3.4.1] in terms of specialisa-
tions of Newton polygons. Let us also mention Kedlaya’s criterion [Ked10, 4.4.2] in
terms of the variation of spectral norms under varying Gauss norms on rings of formal
power series. This criterion is numerical in nature. By contrast, the new criterion
given by Theorem 1 is transcendental.

The main tool at stake in the proof of Theorem 1 is geometric, via moduli of Stokes
torsors [Tey17|. For a detailed explanation of the line of thoughts that brought them
into the picture, let us refer to 2.1. In this introduction, let us explain how these mod-
uli are used by giving the main ingredients of the proof of Theorem 1 in dimension
2. In that case, we have to show the goodness of a point 0 € D provided we know
that (Sol M) p and (SolEnd M)|p are local systems in a neighbourhood of 0. The
main problem is to extend the good formal decomposition of M across 0. This de-
composition can be seen as a system of linear differential equations A defined in a
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neighbourhood of a small disc A* of D punctured at 0.

To show that A extends across 0, we first construct via Stokes torsors a moduli
space X parametrizing very roughly systems defined in a neighbourhood of A and
formally isomorphic to M along A. A distinguished point of X is given by M itself.
Similarly, we construct a moduli space ) parametrizing roughly systems defined in a
neighbourhood of A* and formally isomorphic to M|a+ along A*. Two distinguished
points of J are M| and N. Restriction from A to A* provides a morphism of
algebraic varieties res : X — Y. The problem of extending N is then the problem
of proving that res hits N. The moduli X and ) have the wonderful property that
the tangent map T’y res of res at M is exactly the map

I'(A,SolEnd M) — I'(A*, Sol End M)

associating to s € T'(A,SolEnd M) the restriction of s to A*. In this geometric
picture, the smoothness of (Sol End M)|p around 0 thus translates into the fact that
Trres is an isomorphism of vector spaces. Since X and ) are smooth, we deduce
that the restriction map res is étale at the point M. Thus, the image of res in Y
contains a non empty open set. We prove furthermore that res is proper, so its image
is closed in Y. Since ) is irreducible, we conclude that res is surjective, which proves
the existence of the sought-after extension of N.

As a by-product of some of the tools developed to prove Theorem 1, we show
furthermore the following rigidity result refining [Tey17, Th 3]. In a sense, it says
that at a singular point of a divisor, the existence of a non trivial Stokes structure is
an exceptional phenomenon

Theorem 2. — Let N be a good unramified split meromorphic flat bundle in a neigh-
bourhood of the origin in C™. If the pole locus of N has at least two components, and
if N is very general, then N itself is the only germ of good meromorphic flat bundle
formally isomorphic to N at 0.

In this statement, very general means roughly that the residues of each regular
constituent contributing to N lie away from a countable union of strict Zariski closed
subsets of the affine space.

Let us give an outline of the paper. In section 1, we introduce the Level filtration
for the Stokes sheaf in any dimension. We then apply it to prove Theorem 2. In
section 2, we introduce the global variant of the moduli of Stokes torsors constructed
in [Tey17] suited for the proof of Theorem 1. In section 3, we show how to reduce
the proof of Theorem 1 to the dimension 2 case. We then show in dimension 2
that Theorem 1 reduces to extending the good formal model of M across the point
0 under study. In the last section, we show that the sought-after extension exists
provided the moduli of Stokes torsors associated to a resolution of the turning point
0 for M satisfies suitable geometric conditions. From fundamental works of Kedlaya
[Ked10][Ked11] and Mochizuki [Moc09][Mocl1b]|, resolutions of turning points
always exist. Finally, we show that these geometric conditions are always satisfied
when the hypothesis of Theorem 1 are satisfied, thus concluding the proof of Theorem
1.
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1. Level filtration and application

We first introduce some notations and recall some definitions. A reference for good
meromorphic flat bundles is Part I, Chapter 2 from [Moc11b]. For basics concerning
Stokes torsors in any dimension, we refer to [Tey17].

1.1. Irregular values and truncation. — Let D be the germ of normal crossing
divisor at 0 € C" given by x1 ...z, = 0. We endow Z™ by the order given by the
comparison of each component. For a € Ogn (+D)/O¢n, we write a = Y, Am2™
and denote by ord ¢ the minimum of

mezZm™

orda := {m € ZZ such that an, # 0}

when it exists.
Let Z be a good set of irregular values with poles contained in D. By definition, 7
is a subset of Ogn (xD)/Og¢n such that

— For every non zero a € Z, ord a exists and aq.q 4 is invertible in a neighbourhood
of 0.

— For every distinct a,b € Z, orda — b exists and (a — b)orda—p is invertible in a
neighbourhood of 0.

— The set ®(Z) := {orda — b,a,b € T} is totally ordered.
The elements of ®(Z) are the levels of Z. In particular, the set {ord a,a € Z} is totally
ordered. Let m(0) be its minimum. Let (m(0),...,m(L),m(L + 1)) be an auxiliary
sequence for Z. This means that m(i + 1) = m(¢) + (0,...,1,...,0) with 1 located
in position h; < m, where ®(Z) < {m(0),...,m(L + 1)} and where m(L + 1) = 0 by

convention. We set for every a € Z and every i =0,...,L + 1,
fm(z) (a) = Z 2"
n*m(s)

and azm(;) = a — Em()(a).
1.2. Real blow-up. — Let p: X —> C" be the fiber product of the real blow-ups
of C™ along the z; = 0,47 =1,...,m. We have
X ~ ([0, +o0[xS1)™ x €™
and p reads

(s O)k, y) — ((re™ )i, )
In particular, T := p~1(0) is a torus. Let 7 : R™ — T be the canonical projection.
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1.3. Good unramified split bundle. — For every a € Z, set £* = (Og¢n o(*D), d—
da). We fix once for all a germ of split unramified good meromorphic flat bundle of
rank r with poles along D
N = (—D E°QR,
ael
where R, is regular. Let i, : £* ® R, —> N be the canonical inclusion and p, :
N — E°®R, the canonical projection. For i =0,..., L+ 1, we set Z(i) := &m(;)(T)
and
N(@i) == P 0D @R,
ael
For o € Z(i), we set
N, = @ E*RR,
€L ,Em(s) (a)=a
For a € Z(i), the levels of N, belong to {m(i),...,m(L + 1)}.

1.4. The Stokes sheaf. — Let N be a good unramified split bundle A as in 1.3.
Let St be the Stokes sheaf of M. By definition, St is a sheaf of complex unipotent
algebraic groups whose germs at 0 € T are given by automorphisms of N defined on
small sectors emanating from 0 containing the direction # and asymptotic to id at 0
along the direction #. For a formal definition, let us refer to [Tey17, 1.4].

1.5. The level filtration. — We define the level filtration on the Stokes sheaf Stas
of a good unramified split bundle A/ as in 1.3. It is a straightforward generalization of
[BV89, II 3.2.1]. We include it for the reader’s convenience due to lack of reference
for the higher dimensional case. For i = 0,...,L + 1, let us set

St := {g € Star [e?(g — id) has rapid decay for every a € Z with orda > m(i — 1)}

The sheaf Stj’\/ is a sheaf of normal sub-algebraic groups of Sty. Set D :=
Diag(a=m()). The sheaf St} admits the following Stokes theoretic description:

Lemma 1.5.1. — The map

(Y2 Stj\/(i) i StN

s — ePseP
induces an isomorphism from Sty to Stj\/.
Proof. — The statement is local. Hence, it is enough to work on an open S contained

in a product of strict open intervals. For such an open, a choice of fundamental
matrices F' of flat sections for @ __; R, yields a commutative diagram with injective
vertical arrows

(1.5.2) F(S,StN(Z)) *)F(S,St_/\[)

.

GL,

ael
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where ¢ is given by s — e P F~1sFeP. By definition, o(I'(S, Styr)) is the group of
g € GL, such that for every a,b € Z,

Yaa = id

g =0 ifa#banda<4sb
Throughout the diagonal arrow of (1.5.2), the group I'(S, Stys(;)) identifies with the
group of g € GL, such that for every a,b e Z,

Jaa = id
Gab =0 1 Em(i)(@) # &mn(i) (b) and Em(i) (@) £ Emi) (b)
gap =0 if a # b and &meiy(a) = Emiy(b)

Note that if a,b € Z with &m(;)(a) # Emi (), then

a s b if and only if &5y (a) €5 Em(s) (D)
Hence, I'(S, St(;)) identifies with the group of g € ¢(I'(S,Star)) such that for every
a,bel,
Jab = 0 if Emiy(a) = Emeiy(b) and a # b
Let s € T'(S, Stﬁ\if)), and let a,b e Z with a # b. If £45,(5)(a) = Em(s) (D), then
©(8)ap = *TOF sy Fy = F L (eP>m@—02m 5, ) F,

By definition, e?>m()~@>m() s has rapid decay. Since F, and F, have moderate growth
at 0, the scalar ¢(s)qp has rapid decay, so (s)ap = 0. Hence St} < a(Stars)). On
the other hand, let s € a(Stpr;)) and let ¢ € Z with ordc > m(i — 1). We have to
show that for every a,b e Z with a # b,

€°Sap = eﬁabea(p(s)abe_l
has rapid decay. We can suppose &m(;)(a) <s {m(s)(b). In particular a <s b. Since the

leading term of ¢+ a — b is the leading term of a — b, the exponential et~ has rapid
decay on S. Thus, so does e“s,p,. Hence, s € Stﬁff) and we deduce Sty, = a(Stpr;y). O

1.6. Quotients of the level filtration. —

Lemma 1.6.1. — There is a split exact sequence of sheaves of algebraic groups
¥ p
1 —— Stpr(s) —— Sty —— Haez(i) Stp, —— 1

In particular, Gr' Sty := Stj\}Ll/Stjv ~ n(yEI(i) StAr(i+1)a

Proof. — Let us define
B:Sty — ] _ . St

a€Z(i) *
s > X(Sab)éme (a)=a
Em(i) (b)=a
From the local description of St(;) given in the proof of (1.5.1), we see that the
only a priori non obvious thing to prove is the fact that 8 is a group homomorphism.
Let S be an open of T, let s,t € T'(S,Styr), let @ € Z(i) and let a,b € Z such that



MODULI OF STOKES TORSORS AND SINGULARITIES OF DIFFERENTIAL EQUATIONS 7

Em(i)(@) = Em(i)(b) = a. Let us denote by 3, the component of 3 associated to «.
Then

(601<St))llb = Zsactcb = Z Sacted

cel ceT
a<sc<sb

If cam # @, the leading coefficient of ¢ —a is that of {m ;) (¢) = Em@) (@) = Em) () — .
Hence, a <s cif and only if o <s &mi)(c). Similarly, ¢ <s b if and only if £ (c) <s
a. Hence, for &y,;y(c) # a, the condition a <s ¢ <s b is empty. Thus

(Bo(5t))ab = Z Sacter = (Ba(8)Ba(t))ab

cel
Em(i)(c)=a
O
1.7. Action of the fundamental group in the one level case. — We consider

in this paragraph the case where A/ has a unique level m and we fix a smooth curve
C passing through 0 as in 1.2. We denote by Sé c T the circle of directions in
C emanating from 0. For an hyperplane H of R" and for an interval I of S}, set
T(H,I):=n(H + 7 '(I)). For m e Z%,, we set

T(m, ) := T(Z m;z; = 0,1)

For every x € T, the translation ¢, by « provides an isomorphism 1 (T(m,0),0) —
m(z + T(m,0),z). Hence, m(T(m,0),0) acts on Sty ~ (Stam)sy via the par-
allel transport. We deduce that 71 (T(m,0),0) acts on H'(S},Stn,). To simplify
notations, we will denote by H'(S, Sty )™ the set of invariants of the action of
71 (T (m, 0),0) on H'(SE, Star.)-

For a connected open & < T, the path v acts on I'(S, L(N)) via a linear map p(7).
The induced action on I'(S, L(End N)) is the conjugation by p(7).

Lemma 1.7.1. — Let C' be a smooth curve passing through the origin. For every
cover I = (I;)iez/nz of St adapted to Nc, the morphisms in the commutative triangle

HY(T,Sty) HY(SE, St )™

\/

Z'(T(m, I),Sty)

are isomorphisms.

For a single level connection in dimension 1, an adapted cover is a cover by con-
secutive intervals with empty triple intersections such that every I € I and every pair
of irregular values a, b, the interval I contains exactly one Stokes direction associated
toa—b.
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Proof. — Since N has only one level, the same holds for No. From [BV89|, any
T € H'(S}, St ) admits a unique trivialisation ¢; on each I;, i € Z/NZ and

(1.7.2) Zl(LStNC)%Hl(Sé,StNC)

Since St s has no non trivial global section on T(m, I;), the section ¢; extends uniquely
into a section of 7 on T(m, I;). Hence, the cocycle corresponding to Tg1 via (2.7.2)
extends uniquely into a cocycle for T relative to the cover T(m, I). In particular, the
upper horizontal arrow of the diagram

(1.7.3) ZY(T(m, I),Sty) — H(T, Stp)

Zl(lvst/\fc) %Hl(séast/\/c)

is surjective. Every section of Sty on a connected open is determined by its germ at a
point. Hence, the left vertical arrow of (1.7.3) is injective. We deduce that the upper
horizontal arrow of (1.7.3) is a bijection and that resc is injective. Tautologically,
the image of the left vertical arrow is exactly formed by those collections of g €
ZY(I,Stn.) extending to T(m,I). These are exactly the invariants under the action
of 1 (T (m,0),0) constructed in 1.7. O

1.8. Proof of Theorem 2. — We are now in position to prove Theorem 2. This
is a local statement, so we work in a neighbourhood of 0 in C" and use notations
from section 1. We argue recursively on the number of levels of A/. Suppose that
N has only one level. Since the relative Loday-Richaud sheaf is a sheaf of unipotent
algebraic groups, proposition 3.4.1 then implies that H'(00,Star) is an affine space.
From [Tey17, Th 3], we know that H'(00, Stxr) has dimension 0. Hence, H*(00, Stx)
is a point, so Theorem 2 is proved in the single level case. Suppose that A has at least
two levels. Let (m(0),...,m(L),m(L + 1)) be an auxiliary sequence for Z. Then,
there is an index ¢ such that A/(7) has only one level and such that the number of
levels of Sty is strictly less than number of levels of A/ for every a € Z(z). Since the
N, are direct summands of N, they are also very generic. By recursion hypothesis
applied to the N, we obtain that the right term of the exact sequence of pointed sets

H' (00, Str(sy) — H'(00, Stpr) —— ]‘[a )Hl(&O,Na)

€Z(i
deduced from 1.6.1 is trivial. Hence H'(00,Styr) >~ H*(00, Stp(;y). Since N is very
generic, so is (). Since N (i) has only one level, H'(00, Sty(;)) is a point. This
finishes the proof of Theorem 2.

2. Moduli of Stokes torsors. Global aspects

2.1. Why moduli of Stokes torsors?— Let us explain in this subsection how
moduli of Stokes torsors were found to be relevant for the proof of Theorem 1. We
use the notations from the introduction and work in dimension 2. We suppose that
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0 € D lies in the smooth locus of (Sol M)|p and (Sol End M), p, and we want to prove
that 0 is a good formal decomposition point for M.

From a theorem of Kedlaya [Ked10][Ked11] and Mochizuki [Moc09]|[Moc11b],
our connection M acquires good formal decomposition at any point after pulling-back
by a suitable sequence of blow-ups above D. To test the validity of Conjecture [Tey13,
15.0.5], a natural case to consider is the case where only one blow-up is needed. Using
results of André [And07], it was shown in [Teyl4] that the conjecture reduces in
this case to the following

Question. — Given two good meromorphic connections M and N with poles along
the coordinate axis in C* and formally isomorphic at 0, is it true that

(2.1.1) dim(H' Sol End M) = dim(H' SolEnd )y~ ?

It turns out that the one dimensional analogues of the natural numbers involved in
(2.1.1) appeared as dimensions of some moduli spaces of Stokes torsors constructed
by Babbitt-Varadarajan in [BV89]. These moduli are associated with germs of mero-
morphic connections in dimension 1. Babbitt and Varadarajan proved that they are
affine spaces. The idea to prove (2.1.1) was to look for a geometric interpretation of
each side as a dimension of the tangent space at a point of a moduli of Stokes torsors
in higher dimension that was still to be constructed. The equality (2.1.1) would then
follow from the smoothness and connectedness of the putative moduli. This is what
led to [Tey17], but the question of smoothness and connectedness was left open. In
the meantime, a positive answer to the above question was given by purely analytic
means by C. Sabbah in [Sabl7|.

2.2. Relation with [Tey17]. — In [Teyl7], a moduli for local Stokes torsors was
constructed in any dimension. This moduli suffers two drawbacks in view of the
proof of Theorem 1. First, the Stokes sheaf used in [Tey17] only makes sense at a
neigbourhood of a point, whereas our situation will be global as soon as we apply
Kedlaya-Mochizuki’s resolution of turning points. Second, the relation between Irreg-
ularity and the tangent spaces of the moduli from [Tey17| only holds in particular
cases. To convert the hypothesis on Irregularity appearing in Theorem 1 into a ge-
ometric statement on a moduli of torsors, we need to replace the Stokes sheaf St
of a connection M by a subsheaf denoted by StjAD . We will abuse terminology be
also calling the torsors under Stj/[D Stokes torsors. The sheaf Stj,lD has the advantage
of being globally defined when M is globally defined. Along the smooth locus of D,
the sheaf Stj,lD is the usual Stokes sheaf. The only difference between St and Stj,lD
appears at a singular point of D.

Note that the only global moduli of Stokes torsors needed in this paper come from
the case where X is a surface. Hence, this case is of independent interest regarding
the general theory and thus deserves a special treatment. To keep the level of techni-
cality as low as possible, we will thus stick to the case of surfaces. The general case
will appear in a subsequent work, along with applications of different nature than the
one we aim at in the present paper.
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2.3. Geometric setup. — In this section, D denotes a normal crossing divisor in
a smooth algebraic surface X. Let D1,..., D, be the irreducible components of D.
For every sheaf of Ox-module F, we set

Fp :O)ﬂb@)ox}_

Let Dy be the complement in D; of the singular locus Sing(D) of D. Let p : X—X
be the real blow-up of X along D. For every subset A = X, we set 04 := p~1(A) n
p~1(D) and denote by 14 : 0A —> dD the canonical inclusion. We denote by A
the sheaf of functions on 0D admitting an asymptotic development along D [Sab00].
We denote by A<P < A the sheaf of functions on 0D with rapid decay along D.
Concretely, this means the following. Let (z1,x2) be local coordinates such that D is
defined locally by z;z; = 0 with i € {1,2}. Then, the germ of A<P at 6 € 60 is given
by those holomorphic functions u defined over the trace on X\D of a neighbourhood
Q of § in )~(, and such that for every compact K < €1, for every N1, N; € IN, there
exists a constant Cy, n, > 0 such that

lu(x)| < Ony v, faa | M as| Ve for any 2 € K n (X\D)

2.4. Definition of the moduli. — Let M be a good meromorphic connection
defined in a neighbourhood of D with poles along D. We set

M = A®,10, p' M

We define Stj/[D as the subsheaf of H° DR 0End M of sections asymptotic to the
Identity along D, that is of the form Id 4 f where f has coefficients in A<P.

The sheaf Stf\,lD is a sheaf of complex unipotent algebraic groups. In particular,
Stf,lD (R) is defined as a sheaf of groups on 0D for every R € C-alg. For every subset
A c D, we denote by H'(0A,St3{) the functor

C-alg — Set
R — H'Y(0A,St3P(R))

2.5. Representability by a scheme. — The purpose of this subsection is to prove
that H' (0D, Stf\,lD ) is representable by an affine scheme of finite type over C. To do
this, the idea is to analyse separately the contributions coming from each stratum of
D. On the smooth locus of D, representability will essentially be a consequence of
Babbitt-Varadarajan’s works [BV89]. At a singular point P of D, representability
will be achieved by comparison with the situation on a well-chosen component passing
through P.

Let P € Sing(D) and let D; be a component of D containing P. Then, there exists
a disc Ap, p < D; centred at P such that any L1_31 Stj,tD—torsor extends above Ap, p.
Set A}, p = Ap, p\{P}. Let j; p : IA}, p —> dD be the canonical inclusion. Hence,
there is a canonical morphism of functors

(2.5.1) HY(0P,St3P) —— H (0%, p.St3P)
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On the other hand, restriction of torsors provides a morphism of functors
(2.5.2) H'(0Dg,Sti) — H(0A%, p,Stir)

The collection of morphisms (2.5.1) and (2.5.2) defines a finite diagram of functors.
Since Stokes torsors have no non trivial automorphisms [Tey17, 1.8.1], the limit of
this diagram is H'(8D, Stxf’). In particular, to understand H'(0D,St3+’) amounts
to understand what happens at a singular point of D and what happens on the smooth
locus.

Lemma 2.5.8. — For everyi = 1,...,n, the functor H (0Dg, Stf\,lD) is a scheme of
finite type over C. The restriction morphism (2.5.2) is a closed immersion.

Proof. — Let R € C-alg. Since Stokes torsors have no non trivial automorphisms, the
relative non abelian cohomology functor

R'py St3f (R) : Open(D) — Set
U — HYU,St3(R))

is a sheaf of sets on D. From [Sab02, II 6.1] (see also [Mal83a| for the one level
case), the restriction of R'py St3f (R) to DS is a local system on D$ whose stack at
Pe D is H' (0P, St3f (R)). Hence, for a ball B in DS, for every connected open set
U c B and every P € U, restriction induces an identification

(U, R'py StxP (R)) —— H'(0P,St3i (R))

functorial in R. From works of Babbit-Varadarajan [BV89], the functor H' (0P, St3+)
is an affine space. Hence, the restriction of R!p, Stj,lD to Dy is a local system of
schemes in the sense of [Sim94|. Let P € DJ. Since

HY(0D3,St3) = T(Dg, R'ps Sts)

the functor H' (0D, Stx4’) identifies with the invariants of the action of m; (D, P)
on H'(0P,St3{). Since this action is functorial in R, Yoneda lemma implies that
71 (DS, P) acts on the scheme H'(0P,St31’) via algebraic maps. Hence, its invariants
form a closed sub-scheme in H' (0P, Sty ). In particular, H*(0DS, St ) is a scheme.

The fact that (2.5.2) is a closed immersion is an immediate consequence of the fact

that H(0DS,St3y) —— H'(0P,St3+) is a closed immersion.
O

Proposition 2.5.4. — For every P € Sing(D), the functor H(0P, Stj,[D) s a
scheme of finite type over C.

Proof. — If M has only one irregular value at P, then H' (0P, Stf\,lD ) is the trivial
scheme so there is nothing to do. Suppose that M has at least two irregular values at
P. Goodness implies that there is a component of D passing through P such that the
difference of any two irregular values of M at P has poles along this component. Let
D; be the other component of D passing through P. We take local coordinates (x,y)
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such that D; is given by = 0. For every T € Hl(aA}‘)i’P, Stf\/lD), the sheaf L}ljiyp*T

is a L;lji’p* Stf\,lD—torsor on 0P. So if we prove that the adjunction morphism
(2.5.5) Up Stil — tp i pedi p StaL

is an isomorphism, then L;lji,p* will provide us with an inverse for (2.5.1), and 2.5.4
will be a consequence of 2.5.3. We now prove that (2.5.5) is an isomorphism. By
a standard Galois argument, we can suppose that M is unramified. Injectivity of
(2.5.5) is obvious so we are left to prove surjectivity. Since this is a local statement
on 0P, Mochizuki’s asymptotic development theorem [Mocl1b, 3.2.10] reduces the
question to the case where M is split unramified. We thus treat that case and borrow
the notations from 1.3. We put

S = ([0, 7[x11) x ([0, r[x L)

where I, I> are intervals. Sections of Stj,tD on 05 := S n dD are automorphisms of
M on S n (X\D) of the form Id + f where p, fi, = 0 unless

(2.5.6) et er(as, A<P)
Sections of St3+ over
087 =08 n 0AY, p = ({0} x I) x (]0,r[x I2)
are automorphisms of M on § n (X\D) of the form Id +f where p, fi; = 0 unless
(2.5.7) et eT(0Sy, A~P)

We thus have to show that for every distinct irregular values a,b, the conditions
(2.5.7) and (2.5.6) are equivalent for a small enough choice of S. A change of variable
reduces the problem to the case where a — b = 1/2%y% where (o, 3) € N x IN*. Since
A<D is a sheaf, condition (2.5.6) trivially implies condition (2.5.7). Suppose that

el/=°V’ ¢ (082, A<P). At the cost of shrinking S, this means that for every N € IN,
every € > 0, there exists a constant C' > 0 such that for

(z,y) € (10,r[x11) x (Je, r[xI2)

we have ,
/") < Cla| N

Writing = = (r1,61) and y = (rq, 63), this means
ecos(a01+ﬁ02)/r§’r§ < CT{V
In particular, o > 0 and cos(af; + 62) < 0 for every (61,62) € I} x Is. Let ¢ > 0
such that cos(af; + $62) < —c on I; x I. Then, we have
|el/w”yﬁ‘ < e—¢/I2I%1yl”
on S. Since a > 0 and since 8 > 0 from our choice of component D;, we deduce that

(2.5.7) holds, which proves the equivalence between conditions (2.5.7) and (2.5.6).
O

Putting 2.5.3 and 2.5.4 together gives the following



MODULI OF STOKES TORSORS AND SINGULARITIES OF DIFFERENTIAL EQUATIONS 13

Proposition 2.5.8. — The functor H' (0D, Stf\,lD) is an affine scheme of finite type
over C.

We have the following

Proposition 2.5.9. — For very P € Sing(D) and every component D; of D passing
through P, the restriction morphism (2.5.1) is a closed immersion.

Proof. — We can suppose that M is unramified in a neighbourhood of P. If not all
the two by two differences of M’s irregular values at P have poles along D;, then the
proof of 2.5.4 shows that (2.5.1) is an isomorphism, so 2.5.9 is true in that case. Let
us suppose that the difference of any two distinct irregular values for M at P has
poles along D;. Let Stpq, be the Stokes sheaf of M on dP as defined in [Teyl7|.
Then, StjAD is distinguished in Sta¢,. We thus have an exact sequence of sheaves of
algebraic groups on 0P

1 —— St ——=Sty, — Q——1

At the cost of restricting A*D“P, any section of Staq, extends to 6AJ*DI_’P. We thus
have an adjunction morphism

(2.5.10) Sty — tp'dipedi p Stap = tp' i Pxdi b SAL

Hence, there is a factorization

(2.5.11) HY(0P,St5P) —— H' (0P, Stpm,.)
\ ll
HY(0A}, p,Stil)

From an argument similar to that in 2.5.4, the map (2.5.10) is an isomorphism of
sheaves on 0P. Hence, the vertical arrow in (2.5.11) is an isomorphism of schemes.
To prove 2.5.9, it is enough to prove that

Ly HY(OP,St38) — H' (0P, Sta,)
is a closed immersion. From [Fre57, 1.2], there is an exact sequence of pointed functors
(2.5.12)  H°(0P, Q) — H' (0P, St5P) — H (3P, Stp,) — H' (0P, Q)
The complex of sheaves

Stmp —— 0End M —— 0 End Mj

induces a sequence

(2.5.13) Q—— 0End Mz —— 0End M
Taking global sections, we deduce via [Sab00, p 44] the following sequence
(2.5.14) 0 —— H(0P,Q) —— End M5 ) —— End M
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By flatness, the second map of (2.5.14) is injective. Hence, H°(0P, Q) is trivial. From
the exactness of (2.5.12), we deduce that the following diagram of functors

(2.5.15) HY(6P,St5f) ———— »

HY(0P,Stp,) — HY(0P, Q)

is cartesian, where * denotes the trivial QO-torsor. If we knew that H'(0P, Q) is a
scheme, we would directly obtain that ¢y is a closed immersion. This question does
not seem to follow from the use of skeletons [Tey17]. We will circumvent this problem
with a group theoretic argument.

From [Tey17, 1.9.1], any cover U of dP by good open subsets induces a morphism
of schemes

(2.5.16) ZY U, Stamp) — HY(OP,Stpa,)

which is surjective at the level of R-points for every R € C-alg. From [BV89, 2.7.3],
the morphism (2.5.16) admits a section. Composing this section with

ZYU,Stpm,) —— 21U, Q)
gives rise to a commutative triangle of functors

HY(0P,Stp, ) — HY(0P, Q)

~

Z'U, Q)
The algebraic group
G = HUeuF(U’ Q)
acts on Z1(U, Q). Let
(2.5.17) G— 7Z'U,Q)

be the morphism of schemes obtained by restricting the action of G to the trivial
cocycle. Since HY(0P,Q) ~ 0, the morphism (2.5.17) is a monomorphism. The
diagram (2.5.15) thus splits into cartesian diagrams of functors

H'(0P,St3P) G *

g |

HY (0P, St ) — Z' (U, Q) — H'(0P, Q)
We are thus left to show that (2.5.17) is a closed immersion. From the general theory

of algebraic group actions, (2.5.17) factors into

G0 LW, o
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where « is faithfully flat, where O denotes the orbit of the trivial cocycle under G
and where ( is an immersion of schemes. Since smoothness is a local property for
the fppf topology, smoothness of G implies that O is smooth. By definition, « is an
isomorphism at the level of C-points. Hence, a is an isomorphism of varieties. We
are thus left to show that O is closed in Z'(U, Q). It is enough to show that O is
closed in Z' (U, @)™, From Kostant-Rosenlicht theorem [Bor91, I 4.10], it is enough
to show that G is a unipotent algebraic group.

Let N be the good split unramified bundle formally isomorphic to M at 0. Let
us choose a formal isomorphism iso : Mz — Nj. At the cost of refining U, we can
suppose that there exists an isomorphism 0y : IM |y — 0Ny asymptotic to iso for
every U € U. Then, conjugation by 0y provides an isomorphism Staq,,, — Sty
carrying Stj,ﬁ)U to Stﬁ/ljU. To prove that I'(U, Q) is unipotent, we can thus suppose
that M is good split unramified.

Let (m(0),...,m(L),m(L + 1)) be an auxiliary sequence for the good set of ir-
regular values of M at P. If i denotes the smallest index for which m(é) does not
have poles along every component of D passing through P, then St;ﬁ) op = St e (i)-
From the description 1.6.1 of the quotients of the level filtration on St 4, , we deduce
that Q is a product of Stokes sheaves. Since Stokes sheaves are sheaves of unipotent
algebraic groups, we conclude that G is a unipotent algebraic group. This concludes
the proof of 2.5.9.

O

Since H' (0D, St}{) is a limit of morphisms of the form (2.5.1) and (2.5.2), lemmas
2.5.3 and 2.5.9 give the following

Corollary 2.5.18. — For every P € D, the restriction morphism
HY(0D,St3f) —— H'(0P,Stx1)

is a closed immersion.

2.6. Stokes torsors and marked connections. — Let us recall that a M-
marked connection is the data of a couple (M,iso) where M is a germ of mero-
morphic connection with poles along D defined in a neighbourhood of D in X, and
where iso : My — My is an isomorphism of formal connections. We denote by
Isomig, (M, M) the St3f (C)-torsor of isomorphisms between 0M and dM which are
asymptotic to iso along D.

The proof of the following statement was suggested to me by T. Mochizuki. I
thank him for kindly sharing it. When D is smooth, It it was known to Malgrange
[Mal83b]. See also [Sab02, II 6.3].

Lemma 2.6.1. — The map associating to every isomorphism class of M-marked
connection (M, iso) the Stif (C)-torsor Isomis, (M, M) is bijective.

Proof. — Let us construct an inverse. Take T € Sti{ (C) and let g = (gi;) be a
cocycle for T associated to a cover (U;);er of dD. Let £ be the Stokes filtered local
system on 0D associated to M. Set L; := Ljy,. Then, g allows to glue the £; into
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a Stokes filtered local system L7 on 0D independent of the choice of g. From the
irregular Riemann-Hilbert correspondence [Moclla, 4.11], L7 is the Stokes filtered
local system associated to a unique (up to isomorphism) good meromorphic connec-
tion M7 defined in a neighbourhood of D and with poles along D. By construction,
the isomorphism L7y, — Ly, corresponds to an isomorphism oMy, — oMy, .
We thus obtain a formal isomorphism iso; : 0./\/17-’5“]1_7 — 6M5|Ui. On Ujj, the dis-
crepancy between iso; and iso; is measured by the asymptotic of g;; along D. By def-
inition, this asymptotic is Id. Hence, the iso; glue into a globally defined isomorphism
é’./\/lT, » — OMp. Applying ps thus yields an isomorphism iso : /\/17—7 p— Mp.
It is then standard to check that the map 7 — (M, iso) is the sought-after in-
verse. [

2.7. Obstruction theory and tangent space. — Let us compute the obstruction
theory of H'(0D,StxP) at a point Ty € H'(8D, St3”(C)). We fix a morphism of
infinitesimal extensions of C-algebras

R —R—C, I:=KerR — R

such that I is annihilated by Ker R" — C. In particular, I? = 0 and I is endowed
with a structure of C-vector space, which we suppose to be finite dimensional. Let
T € H (0D, St3f (R)) lifting Ty. Choose a cover U = (U;)icx of 8D such that T comes
from a cocycle g = (gi5)i jex- Set L;(R) := Lie StjAD(R)‘Ui. The identifications

LZ(R)\ULJ — LJ(R)|U”

M — g;;'Mg,;
allow to glue the L;(R) into a sheaf of R-Lie algebras over 0D denoted by
LieSthlD(R)T and depending only on 7 and not on g. For t = (tjx) €

C?(U,LieSti{ (R)7), we denote by s;x the unique representative of t; in
F(ka,LZ(R)) Then

(dt)ijer =tk — tikt + tiji — tijk
= [gijsjklgigl — Sikl + Siji — Sijk)
We have the following
Lemma 2.7.1. — There exists
ob(T) € I ®c H*(0D, Lie St 3¢ (C)0)
such that ob(T) = 0 if and only if T lifts to H' (0D, St3f (R')).

Proof. — For every i,j € K, let hy; € F(Uij,StjAD(R’)) be an arbitrary lift of g;;
to R'. We can always choose the h;; to satisfy h;; = Id and h,;;h;; = Id. Since
Lie St (R') is locally free,

I-LieSt3P (R) ~ I ®p LieSti4 (R') ~ I ®c Lie St (C)
We will use both descriptions without mention. We set

Sijk = hijhjhg; —1d € T(Up, I - LieSt3f (R))



MODULI OF STOKES TORSORS AND SINGULARITIES OF DIFFERENTIAL EQUATIONS 17

We see s;;i as a section of I ®¢ L;(C) over U,;, and denote by [s”k] its class in
I®¢LieSt3{ (C)7°. We want to prove that the [s;] define a cocycle. As seen above,
this amounts to prove the following equality in T'\(Uyjx, I ®¢ Lie St3{ (C))

(2.7.2) gij(o)sjklg;jl(o) — Sikl + Siji — Sijk =0
Where g¢;;(0) is the image of g;; by R —> C. We have
9i(0)8519;;' (0) = hijhjrhiihiihy —1d
= (hijh]’k — h + hik)hklhljhji —1Id
= (hijhjr — hix)gri1(0)g15(0) g5 (0) + hiphrihiihy; —1d
= (hijhjr — hix)gri(0) + highgihyihgs — 1d
= (hijhjr — hik)hii + highihyjhy, —1Id
= hijhjkhki + hikhklhljhji —21Id
We now see how the second term of the last line above interacts with the second term
of the left-hand side of (2.7.2).
hikhrihijhyi — sikt = highrihighys — haghrihe + 1d
= highii(hijhj; — hi;) +1d
= 9ir(0)gr1(0) (hujhji — i) + 1d
= gil(O)(hljhji — hli) +1Id
= hithyjhji
Hence,
gij(o)sjklgi_jl(o) — Sikl + Sij1 — Sijk = hahgjhy + hihjhg — 21d
= (hijhjlhli)_l + hijhjlhli —21Id
= (hijhjihi) " ((Rijhjiheg)? — 2highjihy + 1d)
(hijhjihi) ™" s3y
0

where the last equality comes from I? = 0. Hence, the [sijk] define a cocycle of
I ®¢ Lie Stj,lD (€)70. An other choice of lift gives rise to homologous cocycles. We
denote by ob(T) the class of ([sijx])ijx in H?(0D, I ®¢ LieSt3+ (C)70). Tt is standard
to check that ob(7) has the sought-after property. O

Corollary 2.7.83. — Let (M,is0) be a M-marked connection. Then, the space
H?(D,Trry End M) is an obstruction theory for H (0D, St3+) at Isomie, (M, M).

Proof. — S