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MODULI OF STOKES TORSORS AND SINGULARITIES OF
DIFFERENTIAL EQUATIONS

by

Jean-Baptiste Teyssier

Abstract. — Let M be a meromorphic connection with poles along a smooth divisor
D in a smooth algebraic variety. Let Sol M be the solution complex of M. We prove
that the good formal decomposition locus of M coincides with the locus where the
restrictions to D of Sol M and Sol End M are local systems. By contrast to the very
different natures of these loci (the first one is defined via algebra, the second one is
defined via analysis), the proof of their coincidence is geometric. It relies on moduli
of Stokes torsors.

The problematic of this paper is to understand how the geometry of the Stokes
phenomenon in any dimension sheds light on the interplay between the singularities
of a differential equation and the singularities of its solutions.

Consider an algebraic linear system M of differential equations with n variables

0X
6%
where €); is a square matrix of size r with coefficients into the ring C[z1, ..., z,][z;!]

of Laurent polynomials with poles along the hyperplane D in C™ given by z,, = 0.
At a point away from D, the holomorphic solutions of the system M are fully under-
stood by means of Cauchy’s theorem. At a point of D, the situation is much more
complicated. It is still the source of challenging unsolved problems. We call D the
singular locus of M. Two distinguished open subsets of D where the singularities of
M are mild can be defined.

First, the set Good(M) of good formal decomposition points of M is the subset
of D consisting of points P at the formal neighbourhood of which M admits a good
decomposition. For P being the origin, and modulo ramification issues that will be
neglected in this introduction, this means roughly that there exists a base change with
coefficients in C[z1, ..., z,][z;, ] splitting M as a direct sum of well-understood sys-
tems easier to work with.

Good formal decomposition can always be achieved in the one variable case [Sv00].
It is desirable in general because it provides a concrete description of the system, at
least formally at a point. In the higher variable case however, it was observed in
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[Sab00| that M may not have good formal decomposition at every point of D. Thus,
the set Good(M) is a non trivial invariant of M. As proved by André [And07], the
set Good(M) is the complement in D of a Zariski closed subset F' of D either purely
of codimension 1 in D or empty. Traditionally, F' is called the Turning point locus
of M, by reference to the way the Stokes directions of M move along a small circle
in D going around a turning point. In a sense, the good formal decomposition
locus of M is the open subset of D where the singularities of the system
M are as simple as possible.

To define the second distinguished subset of D associated to M, let us view M as a
D-module, that is a module over the Weyl algebra of differential operators. Let us de-
note by Sol M the solution complex of the analytification of M. Concretely, H° Sol M
encodes the holomorphic solutions of our differential system while the higher coho-
mologies of Sol M keep track of higher Ext groups in the category of D-modules. As
proved by Kashiwara [Kas75], the complex Sol M is perverse. From a theorem of
Mebkhout [Meb90], the restriction of Sol M to D, that is, the irregularity complex
of M along D, denoted by Irr}, M in this paper, is also perverse. In particular,
(Sol M)|p is a local system on D away from a closed analytic subset of D. The
smooth locus of (Sol M)|p denotes the biggest open in D on which (Sol M) p is a
local system. In a sense, the smooth locus of (Sol M)|p is the open subset of
D where the singularities of the (derived) solutions of M are as simple as
possible.

As observed in [Tey13|, the open set Good(M) is included in the smooth lo-
cus of (Sol M)|p and (SolEnd M) p, and the reverse inclusion was conjectured in
[Tey13, 15.0.5]. Coincidence of Good(M) with the smooth locus of (Sol M)|p and
(SolEnd M)|p seems surprising at first sight, since goodness is an algebraic notion
whereas Sol M is transcendental. The main goal of this paper is to prove via geometric
means the following

Theorem 1. — The good formal decomposition locus of an algebraic meromorphic
connection M with poles along a smooth divisor D in a smooth algebraic variety is
ezactly the locus of D where (Sol M)|p and (Sol End M)|p are local systems.

Other criteria detecting good points of meromorphic connections are available in
the literature. Let us mention André’s criterion [And07, 3.4.1] in terms of specialisa-
tions of Newton polygons. Let us also mention Kedlaya’s criterion [Ked10, 4.4.2] in
terms of the variation of spectral norms under varying Gauss norms on rings of formal
power series. This criterion is numerical in nature. By contrast, the new criterion
given by Theorem 1 is transcendental.

The main tool at stake in the proof of Theorem 1 is geometric, via moduli of Stokes
torsors [Tey17]. For a detailed explanation of the line of thoughts that brought them
into the picture, let us refer to 2.1. In this introduction, we explain how these mod-
uli are used by giving the main ingredients of the proof of Theorem 1 in dimension
2. In that case, we have to show the goodness of a point 0 € D provided we know
that (Sol M) p and (SolEnd M) are local systems in a neighbourhood of 0. The
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main problem is to extend the good formal decomposition of M across 0. This de-
composition can be seen as a system of linear differential equations A defined in a
neighbourhood of a small disc A* of D punctured at 0.

To show that A extends across 0, we first construct via Stokes torsors a moduli
space X parametrizing very roughly systems defined in a neighbourhood of A and
formally isomorphic to M along A. A distinguished point of X is given by M itself.
Similarly, we construct a moduli space ) parametrizing roughly systems defined in a
neighbourhood of A* and formally isomorphic to M|a% along A*. Two distinguished
points of Y are M|ax and N. Restriction from A to A* provides a morphism of
algebraic varieties res : X — Y. The problem of extending N is then the problem
of proving that res hits N. The moduli X and ) have the wonderful property that
the tangent map T\ res of res at M is exactly the map

['(A,H' Sol End M) — T(A*, H! Sol End M)

associating to s € I'(A, H! SolEnd M) the restriction of s to A*. In this geometric
picture, the smoothness of (H! SolEnd M) p around 0 thus translates into the fact
that Thqres is an isomorphism of vector spaces. Since X and ) are smooth, we
deduce that res is étale at the point M. Thus, the image of res in ) contains a non
empty open set. We prove furthermore that res is proper, so its image is closed in ).
Since Y is irreducible, we conclude that res is surjective, which proves the existence
of the sought-after extension of N.

As a by-product of the tools developed to prove Theorem 1, we show furthermore
the following rigidity result refining [Tey17, Th 3]. In a sense, it says that at a singular
point of a divisor, the existence of a non trivial Stokes structure is an exceptional
phenomenon

Theorem 2. — Let N be a good unramified split meromorphic flat bundle in a neigh-
bourhood of the origin in C™. If the pole locus of N has at least two components, and
if N is very general, then N itself is the only germ of good meromorphic flat bundle
formally isomorphic to N at 0.

In this statement, very general means roughly that the residues of each regular
constituent contributing to A lie away from a countable union of strict Zariski closed
subsets in an affine space. The main idea to prove Theorem 2 is to show that under
the genericity assumption, the moduli of Stokes torsors of ' has dimension 0 and is
connected. It is thus reduced to a point.

A last application of the tools developed to prove Theorem 1 deals with degen-
erations of irregular singularities. Let X be a smooth algebraic variety and let D
be a germ of smooth divisor at 0 € X. Let M be a germ of meromorphic connec-
tion defined in a neighbourhood of D in X and with poles along D. Motivated by
Dubrovin’s conjecture and the study of Frobenius manifolds, Cotti, Dubrovin and
Guzzetti [CDG17] studied how much information on the Stokes data of M can be
retrieved from the restriction of M to a smooth curve C transverse to D and passing
through 0.

Under the assumption that M 5 splits as a direct sum of regular connections twisted
by meromorphic functions as,...,a, € Ox(*D) with simple poles along D, they
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proved that the Stokes data of the restriction Mo determine in a bijective way the
Stokes data of M in a small neighbourhood of 0 in D. This is striking, since the
numerators of the a; — a; may vanish at 0, thus inducing a discontinuity at 0 in the
configuration of the Stokes directions. Using different methods, this was reproved
by Sabbah in [Sab17b, Th 1.4]. If X is a surface, we give a short conceptual proof
of a stronger version of Cotti, Dubrovin and Guzzetti’s injectivity theorem, which
generalizes it in several directions: we don’t make any assumption on the shape of
M p, nor suppose that D is smooth, nor assume that C' is transverse to D. The price
to pay for this generality is the use of resolution of turning points in dimension 2, as
proved in the fundamental work of Kedlaya [Ked10| and Mochizuki [Moc09]. The
intuition that the techniques developed in this paper could be applied to the questions
considered by Cotti, Dubrovin and Guzzetti is due to C. Sabbah.

To state our result, let us recall that a M-marked connection is the data of a couple
(M, iso) where M is a germ of meromorphic connection with poles along D defined
in a neighbourhood of D in X, and where iso : Mz —> Mp is an isomorphism of
formal connections.

Theorem 8. — Let X be a smooth algebraic surface, let 0 € X and let D be a divisor
defined in a neighbourhood of 0. Let M be a germ of meromorphic connection at 0
and with poles along D. Let C be a smooth curve passing through 0 and not contained
in any of the irreducible components of D. If (Mj,is01) and (Ms,is02) are M-marked
connections such that

(Mlv iSOl)|C =~ (MQ, iSOQ)‘C

then (My,iso1) and (Ma,isos) are isomorphic in a neighbourhood of 0.

Let us give an outline of the paper. In section 1, we recall the Level filtration
for the Stokes sheaf in any dimension. We then apply it to prove Theorem 2. In
section 2, we introduce the global variant of the moduli of Stokes torsors constructed
in [Tey17| suited for the proof of Theorem 1. We then prove Theorem 3. In section
3, we show how to reduce the proof of Theorem 1 to the dimension 2 case. We then
show in dimension 2 that Theorem 1 reduces to extending the good formal model of
M across the point 0 under study. In the last section, we show that the sought-after
extension exists provided the moduli of Stokes torsors associated to a resolution of
the turning point 0 for M satisfies suitable geometric conditions. Finally, we show
that these geometric conditions are always satisfied when the hypothesis of Theorem
1 are satisfied, thus concluding the proof of Theorem 1.

Acknowledgement. — 1 thank Y. André, P. Boalch, F. Loray, C. Sabbah, C.
Simpson and T. Mochizuki for interesting discussions and constructive remarks on a
first draft of this work. I thank C. Sabbah for sharing with me the intuition that
the techniques developed in this paper could be applied to the questions consid-
ered in [CDG17]. I thank N. Budur and W. Veys for constant support during the
preparation of this paper. This work has been funded by the long term structural
funding-Methusalem grant of the Flemish Government. The author would like to
thank KU Leuven for providing outstanding working conditions. The finalization
of this paper benefited from a one month stay at the Hausdorff Research Institute
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1. Level filtration and application

We first introduce some notations and recall some definitions. A reference for good
meromorphic flat bundles is Part I, Chapter 2 from [Moc11b|. For basics concerning
Stokes torsors in any dimension, we refer to [Tey17].

1.1. Irregular values and truncation. — Let D be the germ of normal crossing
divisor at 0 € C™ given by 21 ---2, = 0. We endow Z™ with the order given by
m < m’ if and only if m; < m} for every i = 1,...m. For a € O¢n(xD)/O¢n, we
write a = Y, /m amz™ and denote by ord a the minimum of

{m € ZZ such that ay, # 0}

when it exists.
Let Z be a good set of irregular values with poles contained in D. By definition, Z
is a subset of Ogn (xD)/O¢n such that

— For every non zero a € Z, ord a exists and aqq, is invertible in a neighbourhood
of 0.

— For every distinct a,b € Z, orda — b exists and (a — b)orda—b is invertible in a
neighbourhood of 0.

— The set ®(Z) := {orda — b, a,b € T distinct} is totally ordered.

The elements of ®(Z) are the levels of Z. In particular, the set {ord a,a € Z} is totally
ordered. Let m(0) be its minimum. Let (m(0),...,m(L),m(L + 1)) be an auxiliary
sequence for Z. This means that m(i + 1) = m(¢) + (0,...,1,...,0) with 1 located
in position h; < m, that ®(Z) < {m(0),...,m(L + 1)} and that m(L + 1) = 0 by

convention. We set for every a € Z and every i =0,...,L + 1,
fm(z) (a) = Z an2"
n}m(i)

and a}m(i) =a— fm(z) (a)
1.2. Real blow-up. — Let p: X — C" be the fiber product of the real blow-ups
of C™ along the z; = 0,7 =1,...,m. We have
X = ([0, +0[x§")™ x €™
and p reads

(e, 0k ) ks y) — (rre™® )i, )

In particular, T := p~1(0) is a torus. Let 7 : R™ — T be the canonical projection.
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1.3. Good unramified split bundle. — For every a € Z, set £* = (Og¢n o(*D), d—
da). We fix once for all a germ of split unramified good meromorphic flat bundle of
rank r with poles along D
N:i=@PE QRa
a€l

where the R, are regular. Let i, : £*® R, —> N be the canonical inclusion and py :
N — £°®R, the canonical projection. For i =0,..., L+ 1, we set Z(i) := &m(;)(T)
and

N(@) == P EmD@D @R,

ael
The levels of M (%) belong to {m(0),...,m(i — 1)}. For a € Z(4), we set
N, = @ E*RR,

€L ,Em(;) (a)=a
The levels of NV, belong to {m(3),...,m(L + 1)}.

1.4. The Stokes sheaf. — Let Sty be the Stokes sheaf of M. This is a sheaf of
complex unipotent algebraic groups over T. By definition, the germs of Sty at € T
are the automorphisms of N defined on small sectors emanating from 0 containing the
direction 6 and asymptotic to id at 0 along the direction 6. For a formal definition,
let us refer to [Teyl7, 1.4].

1.5. The level filtration. — We recall the definition of the level filtration on the
Stokes sheaf St of a good unramified split bundle N as in 1.3. It is a straightforward
generalization of [BV89, II 3.2.1]. We include it for the reader’s convenience due to
a lack of reference in the higher dimensional case. For i = 0,...,L + 1, let us set

Sty := {g € Star |e"(g — id) has rapid decay for every a with orda > m(i — 1)}

The sheaf Stj\/ is a sheaf of normal algebraic subgroups of Sty. Let us define two
diagonal matrices M := Diag(e®,i € 7) and M := Diag(e®>m® i € I). The sheaf
Sti\s admits the following Stokes theoretic description:

Lemma 1.5.1. — The map
0 Sty — Sty

s — eMzge M=
induces an isomorphism between Stpr(;) and St/iv.
Proof. — The statement is local. Hence, it is enough to work on an open set S con-

tained in a product of strict open intervals. For such an open, a choice of fundamental
matrix F' of flat sections for @ .7 R, yields a commutative diagram with injective
arrows

(1.5.2) F(S,StN(Z)) *)F(S,St_/\[)

S

GL,
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where ¢ is given by s — e"M F~1sFeM . By definition, (I'(S,Star)) is the subgroup
of elements g € GL, such that for every a,b e Z,

Jaa = id

gab=0 ifa#banda<sbd

Throughout the diagonal arrow of (1.5.2), the group I'(S, Styr(;)) identifies with the
subgroup of elements of g € GL, such that for every a,be Z,

Gaa = id
Gab =0 if Epy(a) # Emey (D) and Emiy(a) €s Emi)(b)
gab =0 if a # b and 5m(7) (CL) = gm(z) (b)

Note that if a,b € Z with §m(i) (a) # fm(i)(b), then
a s b if and only if £m(i)(a) €5 Eme) (D)

Hence, I'(S, Stp(;)) identifies with the subgroup of elements g € +(I'(S,Stxr)) such
that for every a,be Z,

gab = 0 if Emeiy(a) = Emeay(b) and a # b
Let s € T'(S, Stj\/), and let a,b e Z with a # b. If {5,(;)(a) = Em(s) (b), then
1(8)ap = e TUF Y5y Fy = F; H(ebem@ m0=m@ 5,0 F),

By definition, ebem@ —0=m@) g, has rapid decay. Since F, and Fj have moderate
growth at 0, we deduce that the constant matrix ¢(s), has rapid decay. Hence,
t(8)ab = 0. Thus Stjr = ©(Star(;)). On the other hand, let s € ©(Sty(;)) and let ¢
with ord ¢ > m(i — 1). We have to show that for every a,b e Z with a # b,

€°Sap = e”“*l’Facp(s)abe_1

has rapid decay. We can suppose &m(;)(a) <s {m(s)(0). In particular a <s b. Since the
leading term of ¢ +a —b is the leading term of a — b, the exponential ect=b has rapid
decay on S. Thus, so does e“sqp. Hence, s € Sty and we deduce St} = ¢(Stpr;y). O

1.6. Quotients of the level filtration. —

Lemma 1.6.1. — There is a split exact sequence of sheaves of algebraic groups

1 —— Stars) —— Star v, Haem) Sty — 1

In particular, Gr' Sty := Stj\}Ll/Stjv ~ naeI(i) StAr(i+1)
Proof. — Let us define
Sty — H St

a€Z(i) “
s X (w)em (oo
E€m(i) (b)=a
From the local description of St ;) given in the proof of 1.5.1, we see that the only
a priori non obvious thing to prove is the fact that 1 is a group homomorphism.
Let S be an open of T, let s,t € T'(S,Styr), let @ € Z(i) and let a,b € Z such that
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Em(i)(@) = &meiy(b) = . Let us denote by 1, the component of ¢ associated to «.
Then

(wa(St))ab = Zsact(zb = Z Sacteb

cel cel
a<sc<sb

If cem # @, the leading coefficient of ¢ —a is that of {m ;) (¢) = Em@) (@) = Em) () — .
Hence, a <s cif and only if o <s &m(;)(c). Similarly, ¢ <s b if and only if £ (c) <s
a. Hence, for {y;)(c) # @, the condition a <s ¢ <s b is empty. Thus

(wU(St»ab = Z Sactep = (wa(s)'(/]a(t))ab

ceT
gm(z) (C):(X
O
1.7. Action of the fundamental group in the one level case. — We consider

in this paragraph the case where A/ has a unique level m and we fix a smooth curve
C passing through 0 as in 1.2. We denote by S < T the circle of directions in
C emanating from 0. For an hyperplane H of R" and for an interval I of S}, set
T(H,I):=n(H + 7 '(I)). For m € Z',, we set

T(m, ) := T(Z m;z; = 0,1)

For every x € T, the translation t, by x provides an isomorphism (T (m,0),0) —
mi(z + T(m,0),z). Hence, m(T(m,0),0) acts on Sty ~ (Stam)sy via the par-
allel transport. We deduce that 71(T(m,0),0) acts on H'(S},Stn,). To simplify
notations, we will denote by H'(S¢,Sta,)™ the set of invariants of the action of
71 (T (m, 0),0) on H'(SE, Star, ).

For a connected open § < T, the path v acts on T'(S, L(N)) via a linear map p(7).
The induced action on I'(S, £L(End NV)) is the conjugation by p(7).

Lemma 1.7.1. — Let C be a smooth curve passing through the origin. For every
cover I = (I;);ez/nz of St adapted to Nc, the morphisms in the commutative triangle

HY(T,Sty) H(SL, Sta.)™

\/

ZY(T(m, I),Sty)
are isomorphisms. In particular, H*(T,Stx’) is an affine space.

For a single level connection in dimension 1, an adapted cover is a cover by con-
secutive intervals with empty triple intersections such that every I € I and every pair
of irregular values a, b, the interval I contains exactly one Stokes direction associated
toa—b.
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Proof. — Since A has only one level, the same holds for No. Let T € H'(T, Sty).
From [BV89], the restriction Tgy, € H'(S%,Star) of T to S¢ admits a unique trivi-
alisation t; on each I;, i € Z/NZ and

(1.7.2) Zl(LStNC)%Hl(Sé,StNC)

Since St s has no non trivial global section on T(m, I;), the section ¢; extends uniquely
into a section of 7 on T(m, I;). Hence, the cocycle corresponding to 7g1 via (1.7.2)
extends uniquely into a cocycle for T relative to the cover T(m, I). In particular, the
upper horizontal arrow of the diagram

(1.7.3) ZY(T(m, I),Sty’) — H(T, St )

Z(1, Sta.) ——— Hl(Sé,StNC)

is surjective. Every section of Stys on a connected open is determined by its germ
at a point. Hence, the left vertical arrow of (1.7.3) is injective. We deduce that the
upper horizontal arrow of (1.7.3) is a bijection and that resc is injective. Tauto-
logically, the image of the left vertical arrow is exactly formed by those collections
of g € Z(1,Sty,.) extending to T(m, ). These are exactly the invariants under the
action of 71 (T'(m, 0),0) constructed in 1.7.

To conclude, we observe that Sty being a sheaf of unipotent algebraic groups,
the scheme T'(U,Sty) is an affine space for every open subset U < T. Since
ZY(T(m, I),Sty) is a product of such schemes, it is also an affine space. O

1.8. Proof of Theorem 2. — We are now in position to prove Theorem 2. This
is a local statement, so we work in a neighbourhood of 0 in C"™ and use notations
from section 1. We argue recursively on the number of levels of N. Suppose that N
has only one level. From 1.7.1, we know that H'(T, Sty ) is an affine space. From
[Tey17, Th 3|, we know that H'(T,Sty) has dimension 0. Hence, H'(T,Styr) is a
point, so Theorem 2 is proved in the single level case. Suppose that N has at least
two levels. Let (m(0),...,m(L),m(L + 1)) be an auxiliary sequence for Z. Then,
there is an index ¢ such that N () has only one level and such that the number of
levels of Sty is strictly less than number of levels of A for every a € Z(i). Since the
N, are direct summands of N, they are also very generic. By recursion hypothesis
applied to the N, we obtain that the right term of the exact sequence of pointed sets

T,N,)

1 1 1
H'(T, Stpr(iy) — H'(T, Sty) Hnaelu)H (T,
deduced from 1.6.1 is trivial. Hence H*(T,Styr) =~ H*(T,Stpr;)). Since N is very
generic, so is N(i). Since N (i) has only one level, H'(T,Styr;)) is a point. This
finishes the proof of Theorem 2.
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2. Moduli of Stokes torsors. Global aspects

2.1. Why moduli of Stokes torsors?— Let us explain in this subsection how the
moduli of Stokes torsors were found to be relevant to the proof of Theorem 1. We use
the notations from the introduction and work in dimension 2. We suppose that 0 € D
lies in the smooth locus of (Sol M) p and (Sol End M)|p, and we want to prove that
0 is a good formal decomposition point for M.

From a theorem of Kedlaya [Ked10][Ked11] and Mochizuki [Moc09|[Moc11b],
our connection M acquires good formal decomposition at any point after pulling-back
by a suitable sequence of blow-ups above D. To test the validity of the conjecture
[Tey13, 15.0.5], a natural case to consider was the case where only one blow-up is
needed. Using results of André [AndO07], it was shown in [Tey14| that the conjecture
reduces in this case to the following

Question. — Given two good meromorphic connections M and N with poles along
the coordinate axis in C? and formally isomorphic at 0, is it true that
(2.1.1) dim(H' Sol End M)y = dim(H* SolEnd )y ?

It turns out that each side of (2.1.1) appeared as dimensions of moduli spaces of
Stokes torsors constructed by Babbitt-Varadarajan in [BV89|. These moduli were
associated with germs of meromorphic connections in dimension 1. Babbitt and
Varadarajan proved that they are affine spaces. This suggested the existence of a
moduli X with two points P, Q € X such that the left-hand side of (2.1.1) would be
dimTpX and the right-hand side of (2.1.1) would be dim T X. The equality (2.1.1)
would then follow from the smoothness and connectedness of the putative moduli.
This is what led to [Tey17], but the question of smoothness and connectedness was
left open. In the meantime, a positive answer to the above question was given by
purely analytic means by C. Sabbah in [Sab17a].

2.2. Relation with [Tey17|. — In [Tey17], a moduli for local Stokes torsors was
constructed in any dimension. This moduli suffers two drawbacks in view of the
proof of Theorem 1. First, the Stokes sheaf used in [Tey17| only makes sense at a
neigbourhood of a point, whereas our situation will be global as soon as we apply
Kedlaya-Mochizuki’s resolution of turning points. Second, the relation between Irreg-
ularity and the tangent spaces of the moduli from [Tey17] only holds in particular
cases. To convert the hypothesis on Irregularity appearing in Theorem 1 into a ge-
ometric statement on a moduli of torsors, we need to replace the Stokes sheaf St
of a connection M by a subsheaf denoted by Stj/[D . We will abuse terminology be
also calling the torsors under Stf\,lD Stokes torsors. The sheaf Stf\/lD has the advantage
of being globally defined when M is globally defined. Along the smooth locus of D,
the sheaf St/ is the usual Stokes sheaf. The only difference between St and St 3
appears at a singular point of D.

Note that the only global moduli of Stokes torsors needed in this paper come from
the case where X is a surface. Hence, this case is of independent interest regarding
the general theory and thus deserves a special treatment. To keep the level of techni-
cality as low as possible, we will thus stick to the case of surfaces. The general case
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will appear in a subsequent work, along with applications of different nature than the
one we aim at in the present paper.

2.3. Geometric setup. — In this section, D denotes a normal crossing divisor in
a smooth algebraic surface X. Let D1,..., D, be the irreducible components of D.
For every sheaf of Ox-module F, we set

Fp =(’)§|73®on

Let D¢ be the complement in D; of the singular locus Sing(D) of D. Let p : X—X
be the real blow-up of X along D. For every subset A = X, we set 04 := p~1(4) n
p~1(D) and denote by 14 : 0A —> dD the canonical inclusion. We denote by A
the sheaf of functions on 0D admitting an asymptotic development along D [Sab00].
We denote by A<P < A the sheaf of functions on 0D with rapid decay along D.
Concretely, this means the following. Let (x1,x2) be local coordinates such that D is
defined locally by xy2z; = 0 with i € {1,2}. Then, the germ of A=Y at # € 00 is given
by those holomorphic functions u defined over the trace on X\D of a neighbourhood
Q of 0 in )N(, and such that for every compact K < €, for every N1, N; € IN, there
exists a constant C'y, n, > 0 such that

Ni for any x € K n (X\D)

u(@)] < Oy v, |21 [N s

2.4. Definition of the moduli. — Let M be a good meromorphic connection
defined in a neighbourhood of D with poles along D. We set

OM = AQp-10, p ' M

We define St3P as the subsheaf of #° DR éEnd M of sections asymptotic to the
Identity along D, that is of the form Id +f where f has coefficients in A<P.

The sheaf Stf,lD is a sheaf of complex unipotent algebraic groups. In particular,
StjAD (R) is defined as a sheaf of groups on 0D for every R € C-alg. For every subset
A c D, we denote by H'(0A,St3f) the functor

C-alg — Set
R — H'Y(0A,St3P(R))

2.5. Representability by a scheme. — The purpose of this subsection is to prove
that H' (0D, Stx{’) is representable by an affine scheme of finite type over €. To do
this, the idea is to analyse separately the contributions coming from each stratum of
D. On the smooth locus of D, representability will essentially be a consequence of
Babbitt-Varadarajan’s works [BV89]. At a singular point P of D, representability
will be achieved by comparison with the situation on a well-chosen component passing
through P.

Let P € Sing(D) and let D; be a component of D containing P. Then, there exists
a disc Ap, p < D; centred at P such that any L;l Stf,lD—torsor extends above Ap, p.
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Set A%, p = Ap, p\{P}. Let j; p: 0AY, p —> 0D be the canonical inclusion. Hence,
there is a canonical morphism of functors

(2.5.1) H'(0P,St3() — H'(0A%, p,St3f)
On the other hand, restriction of torsors provides a morphism of functors
(2.5.2) HY (D3, Stx(") — H' (A%, p,Stif)

The collection of morphisms (2.5.1) and (2.5.2) defines a finite diagram of functors.
Since Stokes torsors have no non trivial automorphisms [Tey17, 1.8.1], the limit of
this diagram is H'(0D, Stx"). In particular, to understand H'(0D,St3+’) amounts
to understand what happens at a singular point of D and what happens on the smooth
locus.

Lemma 2.5.8. — For everyi = 1,...,n, the functor H (0Dg, Stf\AD) is a scheme of
finite type over C. The restriction morphism (2.5.2) is a closed immersion.

Proof. — Let R € C-alg. Since Stokes torsors have no non trivial automorphisms, the
relative non abelian cohomology functor

R'py St3f (R) : Open(D) — Set
U — HY0U,St3(R))

is a sheaf of sets on D. From [Sab02, II 6.1] (see also [Mal83a] for the one level
case), the restriction of R'py St3+ (R) to DS is a local system on DS whose stack at
Pe D is H'(0P,St3f (R)). Hence, for a ball B in DS, for every connected open set
U c B and every P € U, restriction induces an identification

D(U, R'py StiP (R)) —— H'(OP, St (R))

functorial in R. From works of Babbit-Varadarajan [BV89], the functor H' (0P, St3+)
is an affine space. Hence, the restriction of R!p, Stf\,lD to Dy is a local system of
schemes in the sense of [Sim94]|. Let P € DJ. Since

HY(0D;,St3P) = T(DS, R'py St37)

the functor H' (8D, StxP) identifies with the invariants of the action of m; (D, P)
on H(0P, SthD ). Since this action is functorial in R, Yoneda lemma implies that
71 (Dg, P) acts on the scheme H' (0P, Stf\AD ) via algebraic maps. Hence, its invariants
form a closed sub-scheme in H' (AP, St5+’). In particular, H' (8D, Stx) is a scheme.
The fact that (2.5.2) is a closed immersion is an immediate consequence of the fact

that H'(0DS,St3f) — H'(0P,Stx{) is a closed immersion.
O

Proposition 2.5.4. — For every P € Sing(D), the functor H' (0P, Stj,lD) is a
scheme of finite type over C.
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Proof. — If M has only one irregular value at P, then H!(0P, Stj,lD ) is the trivial
scheme so there is nothing to do. Suppose that M has at least two irregular values at
P. Goodness implies that there is a component of D passing through P such that the
difference of any two irregular values of M at P has poles along this component. Let
D; be the other component of D passing through P. We take local coordinates (z,y)
such that D; is given by x = 0. For every T € Hl(aA;hP, St3+), the sheaf UptdipsT

isa L;,l Ji, P Stf\,lD -torsor on dP. So if we prove that the adjunction morphism
(2.5.5) Up StRl — 15 i pwdi p StAL

is an isomorphism, then L;—,lji)p* will provide us with an inverse for (2.5.1), and 2.5.4
will be a consequence of 2.5.3. We now prove that (2.5.5) is an isomorphism. By
a standard Galois argument, we can suppose that M is unramified. Injectivity of
(2.5.5) is obvious so we are left to prove surjectivity. Since this is a local statement
on 0P, Mochizuki’s asymptotic development theorem [Mocl1b, 3.2.10] reduces the
question to the case where M is split unramified. We thus treat that case and borrow
the notations from 1.3. We put

S = ([0, 7[x11) x ([0, r[x L)

where I, I> are intervals. Sections of Stf\,lD on 0S := S n 0D are automorphisms of
Mon S n (X\D) of the form Id + f where p, fi, = 0 unless

(2.5.6) e er(as, AP)
Sections of St3f over
087 =08 n 0AD, p = ({0} x I) x (]0,7[xI2)
are automorphisms of M on § n (X\D) of the form Id +f where p, fi; = 0 unless
(2.5.7) et en(osy, AD)

We thus have to show that for every distinct irregular values a,b, the conditions
(2.5.7) and (2.5.6) are equivalent for a small enough choice of S. A change of variable
reduces the problem to the case where a — b = 1/2%y® where (o, 3) € N x IN*. Since
A<D is a sheaf, condition (2.5.6) trivially implies condition (2.5.7). Suppose that

el/=*v’ ¢ (082, A<P). At the cost of shrinking S, this means that for every N € IN,
every € > 0, there exists a constant C' > 0 such that for

(z,y) € (10,7[x11) x (Je,r[x13)
we have .
/") < Cla| N

Writing « = (r1,61) and y = (rq, 63), this means

ecos(a91+692)/7“1”7“§ < CT{V
In particular, o > 0 and cos(af; + 62) < 0 for every (61,62) € I} x Io. Let ¢ > 0
such that cos(af; + $62) < —c on I} x I. Then, we have

ayb /|||y
|e!/=70" | < em¢/1e1% vl
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on S. Since o > 0 and since 8 > 0 from our choice of component D;, we deduce that
(2.5.7) holds, which proves the equivalence between conditions (2.5.7) and (2.5.6).
O

Putting 2.5.3 and 2.5.4 together gives the following

Proposition 2.5.8. — The functor H' (0D, Stf\,,D) is an affine scheme of finite type
over C.

We have the following

Proposition 2.5.9. — For very P € Sing(D) and every component D; of D passing
through P, the restriction morphism (2.5.1) is a closed immersion.

Proof. — We can suppose that M is unramified in a neighbourhood of P. If not all
the two by two differences of M’s irregular values at P have poles along D;, then the
proof of 2.5.4 shows that (2.5.1) is an isomorphism, so 2.5.9 is true in that case. Let
us suppose that the difference of any two distinct irregular values for M at P has
poles along D;. Let Stpq, be the Stokes sheaf of M on dP as defined in [Teyl7|.
Then, StjAD is distinguished in Sta¢,. We thus have an exact sequence of sheaves of
algebraic groups on 0P

1 — St5P —— Sty — Q@ ——1

At the cost of restricting A*Di’P, any section of Sta(, extends to aA,*Ji,P. We thus
have an adjunction morphism

(2.5.10) Statp —— tp'ji,padi p St = tp i padi p StAL
Hence, there is a factorization
(2.5.11) HY(0P,St5P) —— H (0P, Stpm,,)
\ J(Z
1 * <D
H (8ADi,P,StM )

From an argument similar to that in 2.5.4, the map (2.5.10) is an isomorphism of
sheaves on 0P. Hence, the vertical arrow in (2.5.11) is an isomorphism of schemes.
To prove 2.5.9, it is enough to prove that

Ly HY (0P, St3f) — H' (0P, Sta,)
is a closed immersion. From [Fre57, 1.2], there is an exact sequence of pointed functors
(2.5.12)  H°(0P, Q) — H (0P, St5P) —* H' (3P, Stp,) —— H' (0P, Q)
The complex of sheaves

Stmp —— 0End M g —— d End M
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induces a sequence

(2.5.13) Q—— 0End M5 —— 0End M
Taking global sections, we deduce via [Sab00, p 44| the following sequence

(2.5.14) 0 —— H°(0P, Q) —— End Mp ; —— End M;

By flatness, the second map of (2.5.14) is injective. Hence, H°(0P, Q) is trivial. From
the exactness of (2.5.12), we deduce that the following diagram of functors

(2.5.15) HY(OP,St3f) ———— *
‘| |
H'(0P,Stp,) — H' (0P, Q)

is cartesian, where = denotes the trivial Q-torsor. If we knew that H'(0P, Q) is a
scheme, we would directly obtain that ¢y is a closed immersion. This question does
not seem to follow from the use of skeletons [Tey17]. We will circumvent this problem
with a group theoretic argument.

From [Tey17, 1.9.1], any cover U of dP by good open subsets induces a morphism
of schemes

(2.5.16) Zl(u,StMP)%Hl(aP,StMP)

which is surjective at the level of R-points for every R € C-alg. From [BV89, 2.7.3],
the morphism (2.5.16) admits a section. Composing this section with

Zl(u7StMp) — Zl(ua Q)
gives rise to a commutative triangle of functors

H1<apvst/\/lp) *}H1(6P7 Q)

ZY U, Q)

The algebraic group

G:= HUEuF(U, Q)
acts on Z1(U, Q). Let

(2.5.17) G— Z'U,Q)

be the morphism of schemes obtained by restricting the action of G to the trivial
cocycle. Since H°(0P,Q) ~ 0, the morphism (2.5.17) is a monomorphism. The
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diagram (2.5.15) thus splits into cartesian diagrams of functors

HY(0P,St31) G *

‘| J J

H1(6P7St./\/lp> *)ZI(Z/L Q) %H1(6P7 Q)

We are thus left to show that (2.5.17) is a closed immersion. From the general theory
of algebraic group actions, (2.5.17) factors into

G0y w, o

where « is faithfully flat, where O denotes the orbit of the trivial cocycle under G
and where ( is an immersion of schemes. Since smoothness is a local property for
the fppf topology, smoothness of G implies that O is smooth. By definition, « is an
isomorphism at the level of C-points. Hence, « is an isomorphism of varieties. We
are thus left to show that O is closed in Z'(U, Q). It is enough to show that O is
closed in Z*(U, @)**d. From Kostant-Rosenlicht theorem [Bor91, I 4.10], it is enough
to show that G is a unipotent algebraic group.

Let N be the good split unramified bundle formally isomorphic to M at 0. Let
us choose a formal isomorphism iso : Mz — Nj. At the cost of refining U, we can
suppose that there exists an isomorphism 0y : IMy; — 6J\f|U asymptotic to iso for
every U € U. Then, conjugation by #y provides an isomorphism St , —> Sty
carrying Stf\,[ll)U to Stﬁ/ljU. To prove that T'(U, Q) is unipotent, we can thus suppose
that M is good split unramified.

Let (m(0),...,m(L),m(L + 1)) be an auxiliary sequence for the good set of ir-
regular values of M at P. If i denotes the smallest index for which m(¢) does not
have poles along every component of D passing through P, then Stf\,ﬁ) op = Stap(i)-
From the description 1.6.1 of the quotients of the level filtration on St 4, , we deduce
that Q is a product of Stokes sheaves. Since Stokes sheaves are sheaves of unipotent
algebraic groups, we conclude that G is a unipotent algebraic group. This concludes
the proof of 2.5.9.

O

Since H (0D, Stf\,lD) is a limit of morphisms of the form (2.5.1) and (2.5.2), lemmas
2.5.3 and 2.5.9 give the following

Corollary 2.5.18. — For every P € D, the restriction morphism
HY(0D,St3f) —— H'(0P,Stx7)

is a closed immersion.

2.6. Stokes torsors and marked connections. — Let us recall that a M-
marked connection is the data of a couple (M,iso) where M is a germ of mero-
morphic connection with poles along D defined in a neighbourhood of D in X, and
where iso : M — M is an isomorphism of formal connections. We denote by
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Tsomigso (M, M) the St (C)-torsor of isomorphisms between dM and M which are
asymptotic to iso along D.

The proof of the following statement was suggested to me by T. Mochizuki. I
thank him for kindly sharing it. When D is smooth, It it was known to Malgrange
[Mal83b]. See also [Sab02, II 6.3].

Lemma 2.6.1. — The map associating to every isomorphism class of M-marked
connection (M, iso) the Stis (C)-torsor Isomis, (M, M) is bijective.

Proof. — Let us construct an inverse. Take 7 € St3f(C) and let g = (g;;) be a
cocycle for T associated to a cover (U;)er of dD. Let £ be the Stokes filtered local
system on 0D associated to M. Set L; := Ljy,. Then, g allows to glue the £; into
a Stokes filtered local system L7 on 0D independent of the choice of g. From the
irregular Riemann-Hilbert correspondence [Moclla, 4.11], L7 is the Stokes filtered
local system associated to a unique (up to isomorphism) good meromorphic connec-
tion M7 defined in a neighbourhood of D and with poles along D. By construction,
the isomorphism L7y, — Ly, corresponds to an isomorphism oMy, — oMy, .
We thus obtain a formal isomorphism iso; : (7./\/[7-7[)‘[]1_7 — aMf)lUi. On U, the dis-
crepancy between iso; and iso; is measured by the asymptotic of g;; along D. By def-
inition, this asymptotic is Id. Hence, the iso; glue into a globally defined isomorphism
6/\/17) p — OMp. Applying p, thus yields an isomorphism iso : MT7 p— Mp.
It is then standard to check that the map 7 — (M, iso) is the sought-after in-
verse. O

2.7. Proof of Theorem 3. — We are now in position to prove Theorem 3, whose
notations we use. Let 7 : Y — X be a resolution of the turning point 0 for M.
Such a resolution exists by works of Kedlaya [Ked10| and Mochizuki [Moc09]. Set
E := 77Y(D). At the cost of blowing up further, we can suppose that the strict
transform C’ of C' is transverse to E at a point P in the smooth locus of E.
From 2.6.1, the 77 M-marked connections (7t My, 7" iso;) and (7 Ma, 7% isoy)
define two C-points of H'(0E,St>£,,). Since
(ot My, myomt iso;) =~ (M;, iso;)
for i = 1,2, it is enough to show (7t My, 7" iso;) ~ (71 Mo, 7T isoq).
By assumption,
(7 My, 7" iso1)|cr =~ (M, is01)|c
~ (My,is0z2)|c
~ (7" My, 77 is02)|cr
In particular, the image of (7t Mj, 7% iso1) and (7t My, 7" isos) by the restriction
map

(2.7.1) HY(0E,St=F,,) —— H' (0P, St=E\,)

are the same. From 2.5.18, the map (2.7.1) is a closed immersion. Hence,
(7t My, 7% iso1) ~ (7 My, 7w isoy), which concludes the proof of Theorem 3.
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2.8. Obstruction theory and tangent space. — Let us compute the obstruction
theory of H'(0D,StxP) at a point Ty € H'(dD, St3”(C)). We fix a morphism of
infinitesimal extensions of C-algebras

R — R —C, I:=KerR  — R

such that I is annihilated by Ker R" — C. In particular, I? = 0 and I is endowed
with a structure of C-vector space, which we suppose to be finite dimensional. Let
T € H'(@D,St3+ (R)) lifting T5. Choose a cover U = (U;)icxc of @D such that T comes
from a cocycle g = (gij)ijerx- Set L;(R) := Lie Stf\,[D(R)‘Ui. The identifications

Li(R)v,, — Lj(R)u,
M — gi_legij

allow to glue the L;(R) into a sheaf of R-Lie algebras over 0D denoted by
Lie Stf\,lD(R)T and depending only on 7 and not on g. For t = (tx) €
C'Q(L{,LieStf\,lD(R)T), we denote by s;j, the unique representative of t;;, in
F(UZJIWLZ(R)) Then

(dt)ijer = tigr — tikt + tiji — tijk
= [gz‘jsjkzgigl — Sikl + Siji — Sijk)
We have the following
Lemma 2.8.1. — There exists
ob(T) € I ®c H*(0D, LieSt 34 (C)0)

such that ob(T) = 0 if and only if T lifts to H* (0D, St3f (R')).

Proof. — For every i,j € K, let hj; € T'(Ui;,St3f (R')) be an arbitrary lift of g,
to R'. We can always choose the h;; to satisfy h;; = Id and h,;;h;; = Id. Since
Lie St (R') is locally free,

I-LieStif (R') ~ I ®p LieSt5f (R') ~ I ®c Lie St 31 (C)
We will use both descriptions without mention. We set

Sijk = hijhjkhki —Ide F(U,’jk, I - Lie StXAD (R/))

We see s;;i as a section of I ®¢ L;(C) over U,;, and denote by [s”k] its class in
I®¢LieSt3{ (C)7°. We want to prove that the [s;] define a cocycle. As seen above,
this amounts to prove the following equality in T'\(Uyj, I ®¢ Lie St3 (C))

(2.8.2) 95 (0)85k19;;' (0) = sikt + siji — Siji = 0



MODULI OF STOKES TORSORS AND SINGULARITIES OF DIFFERENTIAL EQUATIONS 19

Where g¢;;(0) is the image of g;; by R — C. We have
9i3(0)s5k19;;' (0) = hijhjkhpihuihg; —1d
= (hijhjk — hix + b)) hgahgghyi — 1d
= (hijhji — hix)gri(0)g15(0)95i(0) + hirhyihijhji — 1d
= (hijhjr — hir)gri(0) + hixhiihyihg; —1d
= (hijhjik — hik)hii + highgihihy — Id
= hijhrhii + highihihy; — 21d

‘We now see how the second term of the last line above interacts with the second term
of the left-hand side of (2.8.2).

hikhiihijhyi — sit = highrihighgs — haghrahe + 1d
= highii(hijhji — hii) +1d
= 9i(0)gri(0)(hijhji — hyi) + 1d
= gu(0)(hujhji — i) +1d
= hahijhji
Hence,
9i5(0)s5x19;;" (0) = sirt + sij1 — Sijk = harhujhyi + hijhjihy; — 21d
= (hizhjihi) ™ + hijhjihy — 21d
= (hizhjihe) " ((highjihe)® — 2hijhgihe + 1d)
= (hjhjihi) ™" s
=0
where the last equality comes from I? = 0. Hence, the [s;;;] define a cocycle of
I ®¢ Lie Stj,lD (C)70. An other choice of lift gives rise to homologous cocycles. We

denote by ob(T) the class of ([sijx])ijx in H2(8D,I®c¢ LieSt3s (C)7). It is standard
to check that ob(7) has the sought-after property. O

Corollary 2.8.3. — Let (M,iso) be a M-marked connection. Then, the space
H?(D,Trr, End M) is an obstruction theory for H (0D, St3+) at Isomig, (M, M).

Proof. — Set T := Isomys, (M, M). As observed in [Teyl7, 5.2], the canonical iden-
tification

HODR=P End M — LieSt3¢ (C)7

induces

0

H (0D, LieSt3f (C)7) ~ H'(dD, Lie St 31 (C)7)

(

‘0D, H° DR~ End M)
(
(

12

0

(0D, DR=P End M)

H
H
H

0

*(D,Trr}, End M))
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The second identification comes from the fact [Hie09, Prop. 1| that DR~ End M is
concentrated in degree 0. The third identification comes from [Sabl17a, 2.2|. Then,
corollary 2.8.3 follows from 2.8.1. O

Reasoning exactly as in [Tey17, 5.2.1], we prove the following

Lemma 2.8.4. — For every M-marked connection (M,iso), the tangent space of
HY(0D,St3() at (M,iso) identifies canonically to H'(D,Trr¥, End M).

3. Moduli of Stokes torsors in the one level case

3.1. Roadmap. — The goal of this section is to describe the moduli of Stokes tor-
sors in the case where the irregular values have only one level. To do this, we compare
a relative version of the absolute Stokes groups from [MR91]|[Lod94] with the rel-
ative non abelian cohomology of the Stokes sheaf defined in 2.5.3. For the problem
raised by this comparison in the multi-level case, we refer to 3.5. Note that over a
smooth base (corresponding in this paper to the case where D is smooth), relative
Stokes groups appeared in the one level case in [JMUS81] and in more generality
in [Boa02]. In particular, over a smooth base, they were already considered in the
multi-level case in [Boal4].

The reader interested only in the proof of Theorem 1 can skip this part, since it
will not be used in the sequel.

3.2. Relative Stokes groups. — We keep the setup and notations from 2.3 and
2.4. We recall that M stands for a good meromorphic connection defined in a neigh-
bourhood of a normal crossing divisor D in an algebraic surface X and with poles
along D. Let Z be the sheaf of irregular values of M. We first suppose that M is
unramified. In that case, Z is a subsheaf of Ox (xD)/Ox. For a,b € Z, the function
Gap = (a —b)/|a — b| induces a C®-function G, on dD. The anti-Stokes lines of
(a,b) are the connected components of

o = {0 € dD such that éG,,(0) e R™}

The set H3 is a smooth C'*-hypersurface in ¢D. Let H= be the union of all H3,
a,b € T distinct. Let ¢ : HS — 0D be the inclusion. Let Stopq be the subsheaf of
Lt~ St whose germ at 0 € 0D is

Stop,e = {g€ Stf\,lD)e such that for every a, b € Z distinct, g = 0 unless 6 € H}

We call p,Stor the relative Stokes group of M. For a possibly ramified connection
M, we define the relative Stokes group of M via Galois descent from the unramified
case.

Suppose that D is smooth. Then, for every a,b € Z, the Stokes lines of (a,b) are
parallel to the anti-Stokes lines of (a,b). Hence, H3 does not meet any Stokes line of
(a,b). Thus, for any 0 € 0D and any g € Stoay,9, the section g extends uniquely on a
small product A x I containing 6, where A is a disc in D centred at p(f) and where
I is an interval of S*. This product only depends on  and not on g. We deduce that
when D is smooth, p,Stoa is a local system on D.
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3.3. One level along the smooth locus of D. —

Lemma 3.3.1. — We suppose that D is smooth and that M admits a unique level.
Then, the sheaf psSton is canonically isomorphic to R'p, Stf\,lD.

Proof — Since D is smooth, the sheaves psStor, and R'py Stf\,lD are local systems
on 0D. For every P € D, we have a diagram with canonical vertical arrows

(3.3.2) (p«Stop) p — (R'p« Sti)p

L(OP, Stop) —z— H" (0P, St3()
P

where LRp is the isomorphism constructed by Loday-Richaud [Lod94, II 1.9], and
where the upper arrow makes (3.3.2) commutative. To prove 3.3.1, we have to show
that the identifications LR p glue into an isomorphism of local systems. This amounts
to show that the LRp are compatible with the parallel transports of p,.Stor, and
Rlp, Stf\,lD . That is, for every P,@ € D and every continuous path v in D joining P
to @, the following diagram commutes

(3.3.3) (0P, Stop) —— T(0Q, Stom)
LRPl JLRQ
HY(0P,St3P) —— HY(0Q,St37)

where the horizontal arrows are the parallel transports along . This compatibility
question is a local question on D. Let us thus suppose that P and @) belong to a small
disc A in D. By Galois descent, we can suppose that M is unramified. Via a local
rectification 0A ~ A x S! as in [Sab02, 6.8], the anti-Stokes hyperplanes of M above
A can be pictured as follows. Let us order the connected components of 0A n H<

M,(z p— (/
A

P Q

cyclically v, . .., aq and denote by «;(z) the point «; n 0z for every x € A. For € > 0
small enough and for ¢ € Z/dZ , consider the open sector S; = Ax]a; — €, a1 + €.
Set S := (Si)iez/az- Take g = (gi € Stoay,a,(P))iez/az- Since € has been chosen small
enough, g; can be seen as a section of St3f above Ja;(P) —¢, a;(P) +¢[. By definition,
LRp(g) is the Stokes torsor on P associated to the cocycle g € Z'(S n 0P, St37).
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The image of LRp(g) by the parallel transport of Rlp, Stf\,lD is the restriction to
0@ of the unique 7 € Hl(ﬁA,Stf\,tD) such that 7,p = LRp(g). But g extends
uniquely into § = (§;) € Z'(S,Stxs’). Thus, T is the Stokes torsor associated to .
Hence, travelling down the diagram (3.3.3) produces the torsor over dQ associated to
djoq € ZYS noQ, Stf\,lD). On the other hand, we observe that the parallel transport
of g as a section of the relative Stokes sheaf is (J; q,())i- Since LRQ((i,a,(@)):) 18
the Stokes torsor associated to gjaq, the commutativity of (3.3.3) is proved.

O

3.4. One level at a singular point of D. — In this paragraph, we restrict our
attention to what happens at a point P € Sing(D).

Proposition 3.4.1. — Suppose that M admits a unique level at P. Then, there is
a canonical isomorphism

['(0P,Stop) —— Hl(aP, Staq)

Proof. — By Galois descent, we can suppose that M is unramified. We denote by
m its level. Let us choose local coordinates centred at P and let us denote by C
the diagonal. Then, M admits only one level. Let I be a cover of S(lj a la Loday-
Richaud for M. By definition, this is a cover by intervals with non empty triple
intersection such that any of these interval contains exactly two consecutive anti-
Stokes directions. An element of I'(0P, Stoay) defines a cocycle in Z1(0P(m, I), St )
from which we deduce a Staq-torsor on dP. The same construction holds on S¢.
Hence, there is a commutative diagram

(3.4.2) T'(OP,Stoa) — T(Sk, Stop,.)

| J

HY (0P, Stpm) ——— H* (S, Stae)

resc

From [Lod94], the right vertical map of (3.4.2) is an isomorphism. Taking the invari-
ants under the action of 1 (T'(m, 0), 0) on the right part of (3.4.2) gives a commutative
diagram

(3.4.3) T(9P,Stop) —— T(SL, Stopre )™
| |
H! (6P, StM) S Hl(Sév, StMc)m

From 1.7.1, the bottom arrow of (3.4.3) is an isomorphism. Hence, the left vertical
arrow of (3.4.3) is an isomorphism. This concludes the proof of 3.4.1. O

In simple cases, the previous lemmas tell precisely what the moduli of Stokes torsor
looks like.

Corollary 3.4.4. — Suppose that M has rank 2. Then, Hl(éD,Stwa) is an affine
space.
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Proof. — It is enough to show that the morphisms (2.5.2) and (2.5.1) are linear
inclusions of affine spaces. Relative Stokes groups are sheaves of unipotent algebraic
groups. The underlying scheme of a unipotent algebraic group is an affine space.
Then, corollary 3.4.4 is an immediate consequence of the description 3.3.1 and 3.4.1
of Stokes torsors in terms of relative Stokes groups in the one level case. O

3.5. A remark on the multi-level case. — In this subsection, we restrict to the
case where D is smooth. The question whether R!p,, Stj,lD and p4Stoq are isomorphic
seems to be fruitful, since it would imply that when D is smooth, moduli of Stokes
torsors are affine spaces. This last assertion is known in dimension 1 from [BV89].
We thus formulate the following

Conjecture. — Suppose that D is smooth. Then, the local systems R'p St/f,tD and
PxStoas are isomorphic.

In the several level case, the main difficulty comes from the fact that the parallel
transports for Rlp, StjAD and p,Stopas produce different cocycles that are not equal
on the nose, but might be cohomologous. The following picture illustrates this phe-
nomenon. The picture on the left features part of our initial element of the Stokes

P Q

group above P. In this situation, two anti-Stokes lines L; and Lo intersect once along
the path joining P to ). Let us call x the intersection point. Since anti-Stokes lines
are parallel to Stokes lines, there is a neighbourhood Q2 of x in dD not meeting any
Stokes line coming from the differences of irregular values giving rise to L; and Ly. In
particular, g; and go extend uniquely into sections g1 and gs of Stj,lD over 2. When
applying the parallel transport for R'p, Stf\,tD , we end up with the cocycle in the
upper right picture. The bottom right picture represents the effect of the parallel
transport for p,Stor. Finally, one passes from one cocycle to the other by permuting
g1 and gs. Since the Stokes sheaf is not commutative, it is not a priori clear that
these cocycles are cohomologous.



24 J.-B. TEYSSIER

4. Reduction of Theorem 1 to extending the formal model

4.1. Reduction to the dimension 2 case. — In this subsection, we reduce the
proof of Theorem 1 to the dimension 2 case. The main tool is André’s goodness
criterion [And07, 3.4.3] in terms of Newton polygons. This reduction does not seem
superfluous. Of crucial importance for the sequel of the proof (see 4.3.1) will be indeed
the fact that for an unramified meromorphic connection M with poles along a divisor
D and for a point 0 € D, the formal model of M splits on a small enough punctured
disc around 0. This fact is specific to dimension 2, since it pertains to the property
that turning points of connections in dimension 2 are isolated.

Lemma 4.1.1. — Theorem 1 is true in any dimension if it is true in dimension 2.

Proof. — Take n > 2. We argue recursively by supposing that Theorem 1 holds
in dimension strictly less than n and we prove that Theorem 1 holds in dimension
n. Let 0 € D and suppose that Irrj, M and Irr}, End M are local systems in a
neighbourhood of 0. If j : X\D — X and i : D — X are the canonical inclusions,
we have distinguished triangle

J1L —— Sol M ——— i, Irr'y M

where L is a local system on the complement of D. Hence, the characteristic cycle of
Sol M is supported on the union of T5 X with T/ X. From a theorem of Kashiwara
and Schapira [KS90, 11.3.3], so does the characteristic cycle of M. Hence, any
smooth hypersurface transverse to D and passing through 0 is non characteristic with
respect to M in a neighbourhood of 0. Let us choose such a hypersurface Z and let
iz :+ Z —> X be the canonical inclusion. From [And07, 3.4.3], the turning point
locus of M is a closed subset of D which is either empty or purely of codimension 1
in D. Since n > 2, the hypersurface Z can consequently be chosen such that M and
End M have good formal decomposition generically along Z n D. The connection
Z}M is a meromorphic connection with poles along Z n D. It satisfies the hypothesis
of Theorem 1 at the point 0. Indeed by Kashiwara’s restriction theorem [Kas95],

IrrEmD Z}M = (SOIZ}M)\Z(\D = (SOIM)\ZGD

and similarly for End M. Hence, Irt% ., M and Irr%, . , End M are local systems in
a neighbourhood of 0 in Z n D. By recursion hypothesis, i, M is good at 0. In
particular, the Newton polygon of z}/\/t at 0 (which is also the Newton polygon of
M at 0) is the generic Newton polygon of 2}/\/1 along Z n D. From our choice for Z,
the generic Newton polygon of i}, M along Z n D is the generic Newton polygon of
M along D. Hence, the Newton polygon of M at 0 is the generic Newton polygon
of M along D, and similarly with End M. By a theorem of André [And07, 3.4.1],
we deduce that M has good formal decomposition at 0, which proves the reduction
4.1.1.

O

4.2. Setup and recollections. — From now on, we restrict to dimension 2. We
use coordinates (z,y) on A? and set D, := {y = 0},D, := {x = 0}. Let D be a
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neighbourhood of 0 in D, and let C[D] be the coordinate ring of D. Set D* := D\{0}.

Let M be an algebraic meromorphic flat bundle on a neighbourhood of D in A2
with poles along D. In algebraic terms, Mz defines a C[D]((y))-differential module.
At the cost of shrinking D if necessary, we can suppose that the restriction M* of M
to a neighbourhood of D* has good formal decomposition at every point of D*.

There is a ramification v = y*/?, d > 1 and a finite Galois extension L/C(z) such
that the set Z of generic irregular values for M lies in Frac L(v). If p: Dy, — D is
the normalization of D in L, the generic irregular values of M are thus meromorphic
functions on Dy x Al. We have

(4.2.1) L(v) @M =~PE @R,

ael

where the R, are regular. Following [And07, 3.2.4], we recall the following

Definition 4.2.2. — We say that M is semi-stable at P € D if

(1) We have T < C[Dr]p((v)).
(2) The decomposition (4.2.1) descends to C[Drp]p((v)) ® M.

In this definition, C[Dy]p denotes the localization of C[Dy] above P. This is a
semi-local ring. Let 7, € L((v)) ® End M be the projector on the factor £* @ R,. As
explained in [And07, 3.2.2], the point P is stable if and only if the generic irregular
values of M and the coefficients of the 7, in a basis of End M belong to C[Dr]p((v)).
Since M has good formal decomposition at any point of D*, the generic irregular
values of M and the coefficients of the 7, in a basis of End M belong to C[D]p((v))
for every P € D*. Hence, they belong C[D%]((v)) where D} := D\p~'(0). Thus

(4.2.3) CIDI]I((v)) ® M ~ C[DL]((v)) ® N
where
Ni=@PE ®Ra

is a germ of meromorphic connection defined on a neighbourhood of D¥ in Dy, x Al
and with poles along D¥. The action of

Gal(L/C(x)) x Z/dZ

on the left-hand side of (4.2.3) induces an action on Nf. Taking the invariants yields
a meromorphic flat bundle N'* defined on a neighbourhood € of D* in A2. By Galois
descent, (4.2.3) descents to an isomorphism iso* between the formalizations of M*
and AN'* along D*.

4.3. Reduction to the problem of extending the formal model. — The
goal of this subsection is to show that Theorem 1 reduces to prove that the M*-
marked connection (N*,iso™) defined in 4.2 extends into a M-marked connection in
a neighbourhood of 0. To do this, we need three preliminary lemmas.

Lemma 4.3.1. — Suppose that N* extends into a meromorphic flat bundle N de-
fined in a neighbourhood of D in A% and with poles along D. Then, N is semi-stable
at 0.
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Proof. — It is enough to treat the case where K = C(z) and d = 1. In that case,
discussion 4.2 shows that on a neighbourhood  of D* in A2, we have
N* = PN
ael

where N¥ is a meromorphic connection on  with poles along D* and with single
irregular value a. The open D x A! retracts on the small neighbourhood on which N
is defined. Since A is smooth away from D, we deduce that N extends canonically
into a meromorphic connection on D x A' with poles along D.

Let a € Z. The restriction of the projector 7, to the complement of D* in § is a flat
section of End . Since D* x A! retracts on (2, parallel transport allows to extend
7, canonically to D* x A'. We still denote by 7, this extension. Hence, N¥ extends
into a meromorphic connection on D* x A! with poles along D*. Let v be a small
loop in © going around the axis D,. By assumption, the monodromy of A along ~y
is trivial. Thus, 7, is invariant under the monodromy of End N along v. Hence, 7,
extends canonically to (D x A')\{0}. By Hartog’s property, it extends further into a
section w, of End M on D x Al.

Set N, := @, (N) € N for every a € Z. We have w? = w, and Y, ., @, = ldy
because these equalities hold on a non empty open set. Hence, N' = @quezN,. Since
w, is flat, the connection on A preserves each A,. Let us prove that the N, are
locally free as Opy a1 (*D)-modules.

Let E be a Deligne-Malgrange lattice [Mal96] for A/. Since we work in dimension
2, we know from [Mal96, 3.3.2] that F is a vector bundle. We observe that w,
stabilizes E away from 0. By Hartog’s property, we deduce that w, stabilizes E.
Hence, w,(E) is a direct factor of E. So w,(F) is a vector bundle. Thus,

Na = wa(N) = wa(E(*D)) = (wa(E))(*D)

is a locally free Opy a1 (*D)-module of finite rank with connection extending N*. To
prove 4.3.1, we are thus left to consider the case where Z = {a}.

If Z = {a}, then [And07, 3.3.1] implies a € C[D]((y)). Hence, R := £~ *QNp is a
formal meromorphic connection with poles along D. By assumption, R is generically
regular along D. From [Del70, 4.1|, we deduce that R is regular. Hence, N = E°®@R
with R regular, which concludes the proof of 4.3.1. O

Lemma 4.8.2. — Let N be a meromorphic flat connection with poles along D. We
suppose that N is semi-stable at 0 and that Irrsy N and Irr’y End N are local systems
in a neighbourhood of 0. Then, N has good formal decomposition at 0.

Proof. — Let Z be the set of irregular values of AV at 0. There is a ramification
v =y d > 1 and a finite Galois extension L/C(z) such that T < L((v)). Let
Dy —> D be the normalization of D in L. At the cost of shrinking D, we can
suppose that every point of D is semi-stable for A/. Hence, Z < C[Dp]((v)) and
C[D[J((’U)) @N = @ o ®Ra
ael
where the connections R, are regular. As seen in the proof of 4.1.1, the assumption
on Irr}, implies that any smooth curve transverse to D is non characteristic for A/.
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Taking the axis D, yields
dim H' Irr§ N p, = dim(H' Ity N)o = Z (ord, a)rk R,

ael

On the other hand, choose a point P € Dy above 0. Then, the irregular values of
Np, are the a(P), a € Z. Thus,

H' I Nip, = Z ord, a(P)rk R,
ael
Hence, ord, a(P) = ord, a for every a € Z. In particular, the coefficient function of
the highest power of 1/v contributing to a € Z does not vanish at P. Arguing similarly
for End NV, we obtain that A has good formal decomposition at 0. O

Lemma 4.8.8. — Suppose that Irr’sy M is a local system. For every M-marked con-
nection (N, iso), the complex Irr’yy N is a local system.

Proof. — Let x(D,Irrj, M) : D —> Z be the local Euler-Poincaré characteristic
of Trr}y M. By local index theorem [Kas73|[Mal81|, the value of x(D,Irr}, M) at
P € D only depends on the multiplicities of the components of the characteristic cycle
of M passing through P. These multiplicities can be computed at the level of the
formal neighbourhood of P in C2. Since M and N are formally isomorphic at P, we
have
x(D, Ity M) = x(D, Irrh N)

Hence, x(D,Irr}, N) is constant. On the other hand, we know from [Meb90] that
Irr§, NV is perverse. We conclude with the fact that a perverse sheaf with constant
local Euler-Poincaré characteristic is a local system [Tey13, 13.1.6]. O

Using notations from 4.2, we are now in position to prove the sought-after

Proposition 4.3.4. — Suppose that Irr’y M and Irr’sy End M are local systems in a
neighbourhood of 0. If (N*iso™) extends into a M-marked connection (N ,iso), then
M has good formal decomposition at 0.

Proof. — From 4.3.1, the extension N is semi-stable at 0. From 4.3.3, we know that
I, N and Irry, End NV are local systems in a neighbourhood of 0. From 4.3.2, we
deduce that N has good formal decomposition at 0. Hence, so does M. O

5. Extension via moduli of Stokes torsors

5.1. A geometric extension criterion. — We keep notations from 4.2. We first
relate moduli of Stokes torsors to the problem of extending marked connections. Let
7 : X —> C? be a resolution of the turning point 0 for M. Such a resolution exists
by works of Kedlaya [Ked10] and Mochizuki [Moc09]. Set E := 7~!(D) and pick
P e D*. Let

®: HY(OE,St=F, ) —— H'(OP,St30)

be the restriction morphism of Stokes torsors.
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Lemma 5.1.1. — Let (N*,is0™) be a M*-marked connection such that (N}, isop)
lies in the image of ®. Then, (N*,iso™) extends into an M-marked connection in a
neighbourhood of 0.

Proof. — From 2.6.1, any C-point of H'(0F,St=F,,) comes from a unique 7+ M-
marked connection. Hence, there exists (N’,iso’) € H'(0E,St:F,,) such that
PN iso') = (Np,isop). From [Meb04, 3.6-4], the D-module N := 7, N’ is a
meromorphic connection with poles along D. By flat base change

Np =~ Ogzip ® By (Dx e QN')
~ Ry (0575 ® Dx sz @N)
~ Ry (Dx o2 @ NG)
~ i Np

and similarly Mz ~ 7, (7t M)z, Hence, iso := 7y iso’ defines an isomorphism
between N7 and Mpa. So (N, iso) is a M-marked connection. By definition, the
germ of (N, iso) at P is (N3,iso%). Since Rpy Stif is a local system on D*, we
deduce

(N ps#,iso|px ) = (N*,is0¥)
Hence, (N, iso) extends (N*,iso™) in a neighbourhood of 0. So 5.1.1 is proved. [

Combining 4.3.4 with 5.1.1 and the following proposition will finish the proof of
Theorem 1.

Proposition 5.1.2. — If the perverse complex Irr’yy End M is a local system on D,
then ® induces an isomorphism between each irreducible component of H'(0F, St=£,,)

and H'(OP,St37).

Proof. — From [BV89|, we know that H'(0P, St} ) is an affine space. Since affine
spaces in characteristic 0 have no non trivial finite étale covers, it is enough to prove
that ® is finite étale. From 2.5.18, the morphism & is a closed immersion. We are
thus left to show that ® is étale.

Etale morphisms between smooth schemes of finite type over C are those mor-
phisms inducing isomorphisms on the tangent spaces. Hence, we are left to prove that
HY(0E, St=F ‘\) 1s smooth and that @ induces isomorphisms on the tangent spaces.
Let (M,is0) be a mT M-marked connection. From 2.8.3, an obstruction theory to
lifting infinitesimally the Stokes torsor of (M, iso) is given by

H*(E,Trr, End M) ~ H*(D,Trr%, 7, End M) ~ 0

The first identification expresses the compatibility of irregularity with proper push-
forward. From 4.3.3 applied to the End M-marked connection (7w, End M, 7, iso),
the perverse complex Irr, 7, End M is a local system in a neighbourhood of 0 and
concentrated in degree 1. This implies the vanishing. Hence, H'(0F, St:fM) is
smooth at (M, iso). From 2.6.1, any C-point of H'(0E, St=F,,) is of the form (M, iso).
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Thus, H'(0E, St=F,,) is smooth.

Furthermore, we have a commutative diagram
T(atiso) H' (OF, St 0) —— T(atp isop) H (0P, St 1)
2 2
HY(E, It End M) ——— (H' I}, End M) p
2 |
HY(D,Irr}y 7 End M) ——— (H! Irr}, End M) p

! |

HY(D,H'Trr}, 7y End M) ——— (H! v}, End M) p

The first vertical maps are isomorphisms by 2.8.4. As already proved, Irr’, 7, End M
is a local system concentrated in degree 1. Hence, the last vertical and the bottom
arrows are isomorphisms. Thus, the tangent map of ® at (M, iso) is an isomorphism.
This finishes the proof of proposition 5.1.2, and thus the proof of Theorem 1.

O
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