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MODULI OF STOKES TORSORS AND SINGULARITIES OF
DIFFERENTIAL EQUATIONS

by

Jean-Baptiste Teyssier

Abstract. — LetM be a meromorphic connection with poles along a smooth divisor
D in a smooth algebraic variety. Let SolM be the solution complex of M. We prove
that the good formal decomposition locus of M coincides with the locus where the
restrictions to D of SolM and Sol EndM are local systems. By contrast to the very
different natures of these loci (the first one is defined via algebra, the second one is
defined via analysis), the proof of their coincidence is geometric. It relies on moduli
of Stokes torsors.

The problematic of this paper is to understand how the geometry of the Stokes
phenomenon in any dimension sheds light on the interplay between the singularities
of a differential equation and the singularities of its solutions.

Consider an algebraic linear system M of differential equations with n variables
BX

Bxi
“ ΩiX i “ 1, . . . , n

where Ωi is a square matrix of size r with coefficients into the ring Crx1, . . . , xnsrx
´1
n s

of Laurent polynomials with poles along the hyperplane D in Cn given by xn “ 0.
At a point away from D, the holomorphic solutions of the system M are fully under-
stood by means of Cauchy’s theorem. At a point of D, the situation is much more
complicated. It is still the source of challenging unsolved problems. We call D the
singular locus of M. Two distinguished open subsets of D where the singularities of
M are mild can be defined.

First, the set GoodpMq of good formal decomposition points of M is the subset
of D consisting of points P at the formal neighbourhood of which M admits a good
decomposition. For P being the origin, and modulo ramification issues that will be
neglected in this introduction, this means roughly that there exists a base change with
coefficients in CJx1, . . . , xnKrx´1

n s splitting M as a direct sum of well-understood sys-
tems easier to work with.

Good formal decomposition can always be achieved in the one variable case [Sv00].
It is desirable in general because it provides a concrete description of the system, at
least formally at a point. In the higher variable case however, it was observed in
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[Sab00] that M may not have good formal decomposition at every point of D. Thus,
the set GoodpMq is a non trivial invariant of M. As proved by André [And07], the
set GoodpMq is the complement in D of a Zariski closed subset F of D either purely
of codimension 1 in D or empty. Traditionally, F is called the Turning point locus
of M, by reference to the way the Stokes directions of M move along a small circle
in D going around a turning point. In a sense, the good formal decomposition
locus of M is the open subset of D where the singularities of the system
M are as simple as possible.

To define the second distinguished subset of D associated to M, let us view M as a
D-module, that is a module over the Weyl algebra of differential operators. Let us de-
note by SolM the solution complex of the analytification ofM. Concretely, H0 SolM
encodes the holomorphic solutions of our differential system while the higher coho-
mologies of SolM keep track of higher Ext groups in the category of D-modules. As
proved by Kashiwara [Kas75], the complex SolM is perverse. From a theorem of
Mebkhout [Meb90], the restriction of SolM to D, that is, the irregularity complex
of M along D, denoted by Irr˚DM in this paper, is also perverse. In particular,
pSolMq|D is a local system on D away from a closed analytic subset of D. The
smooth locus of pSolMq|D denotes the biggest open in D on which pSolMq|D is a
local system. In a sense, the smooth locus of pSolMq|D is the open subset of
D where the singularities of the (derived) solutions of M are as simple as
possible.

As observed in [Tey13], the open set GoodpMq is included in the smooth lo-
cus of pSolMq|D and pSol EndMq|D, and the reverse inclusion was conjectured in
[Tey13, 15.0.5]. Coincidence of GoodpMq with the smooth locus of pSolMq|D and
pSol EndMq|D seems surprising at first sight, since goodness is an algebraic notion
whereas SolM is transcendental. The main goal of this paper is to prove via geometric
means the following

Theorem 1. — The good formal decomposition locus of an algebraic meromorphic
connection M with poles along a smooth divisor D in a smooth algebraic variety is
exactly the locus of D where pSolMq|D and pSol EndMq|D are local systems.

Other criteria detecting good points of meromorphic connections are available in
the literature. Let us mention André’s criterion [And07, 3.4.1] in terms of specialisa-
tions of Newton polygons. Let us also mention Kedlaya’s criterion [Ked10, 4.4.2] in
terms of the variation of spectral norms under varying Gauss norms on rings of formal
power series. This criterion is numerical in nature. By contrast, the new criterion
given by Theorem 1 is transcendental.

The main tool at stake in the proof of Theorem 1 is geometric, via moduli of Stokes
torsors [Tey17]. For a detailed explanation of the line of thoughts that brought them
into the picture, let us refer to 2.1. In this introduction, we explain how these mod-
uli are used by giving the main ingredients of the proof of Theorem 1 in dimension
2. In that case, we have to show the goodness of a point 0 P D provided we know
that pSolMq|D and pSol EndMq|D are local systems in a neighbourhood of 0. The
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main problem is to extend the good formal decomposition of M across 0. This de-
composition can be seen as a system of linear differential equations N defined in a
neighbourhood of a small disc ∆˚ of D punctured at 0.

To show that N extends across 0, we first construct via Stokes torsors a moduli
space X parametrizing very roughly systems defined in a neighbourhood of ∆ and
formally isomorphic to M along ∆. A distinguished point of X is given by M itself.
Similarly, we construct a moduli space Y parametrizing roughly systems defined in a
neighbourhood of ∆˚ and formally isomorphic to M|∆˚ along ∆˚. Two distinguished
points of Y are M|∆˚ and N . Restriction from ∆ to ∆˚ provides a morphism of
algebraic varieties res : X ÝÑ Y. The problem of extending N is then the problem
of proving that res hits N . The moduli X and Y have the wonderful property that
the tangent map TM res of res at M is exactly the map

Γp∆,H1 Sol EndMq ÝÑ Γp∆˚,H1 Sol EndMq

associating to s P Γp∆,H1 Sol EndMq the restriction of s to ∆˚. In this geometric
picture, the smoothness of pH1 Sol EndMq|D around 0 thus translates into the fact
that TM res is an isomorphism of vector spaces. Since X and Y are smooth, we
deduce that res is étale at the point M. Thus, the image of res in Y contains a non
empty open set. We prove furthermore that res is proper, so its image is closed in Y.
Since Y is irreducible, we conclude that res is surjective, which proves the existence
of the sought-after extension of N .

As a by-product of the tools developed to prove Theorem 1, we show furthermore
the following rigidity result refining [Tey17, Th 3]. In a sense, it says that at a singular
point of a divisor, the existence of a non trivial Stokes structure is an exceptional
phenomenon

Theorem 2. — Let N be a good unramified split meromorphic flat bundle in a neigh-
bourhood of the origin in Cn. If the pole locus of N has at least two components, and
if N is very general, then N itself is the only germ of good meromorphic flat bundle
formally isomorphic to N at 0.

In this statement, very general means roughly that the residues of each regular
constituent contributing to N lie away from a countable union of strict Zariski closed
subsets in an affine space. The main idea to prove Theorem 2 is to show that under
the genericity assumption, the moduli of Stokes torsors of N has dimension 0 and is
connected. It is thus reduced to a point.

A last application of the tools developed to prove Theorem 1 deals with degen-
erations of irregular singularities. Let X be a smooth algebraic variety and let D
be a germ of smooth divisor at 0 P X. Let M be a germ of meromorphic connec-
tion defined in a neighbourhood of D in X and with poles along D. Motivated by
Dubrovin’s conjecture and the study of Frobenius manifolds, Cotti, Dubrovin and
Guzzetti [CDG17] studied how much information on the Stokes data of M can be
retrieved from the restriction of M to a smooth curve C transverse to D and passing
through 0.

Under the assumption thatM
pD splits as a direct sum of regular connections twisted

by meromorphic functions a1, . . . , an P OXp˚Dq with simple poles along D, they
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proved that the Stokes data of the restriction M|C determine in a bijective way the
Stokes data of M in a small neighbourhood of 0 in D. This is striking, since the
numerators of the ai ´ aj may vanish at 0, thus inducing a discontinuity at 0 in the
configuration of the Stokes directions. Using different methods, this was reproved
by Sabbah in [Sab17b, Th 1.4]. If X is a surface, we give a short conceptual proof
of a stronger version of Cotti, Dubrovin and Guzzetti’s injectivity theorem, which
generalizes it in several directions: we don’t make any assumption on the shape of
M

pD, nor suppose that D is smooth, nor assume that C is transverse to D. The price
to pay for this generality is the use of resolution of turning points in dimension 2, as
proved in the fundamental work of Kedlaya [Ked10] and Mochizuki [Moc09]. The
intuition that the techniques developed in this paper could be applied to the questions
considered by Cotti, Dubrovin and Guzzetti is due to C. Sabbah.

To state our result, let us recall that a M-marked connection is the data of a couple
pM, isoq where M is a germ of meromorphic connection with poles along D defined
in a neighbourhood of D in X, and where iso : M

pD ÝÑ M
pD is an isomorphism of

formal connections.

Theorem 3. — Let X be a smooth algebraic surface, let 0 P X and let D be a divisor
defined in a neighbourhood of 0. Let M be a germ of meromorphic connection at 0
and with poles along D. Let C be a smooth curve passing through 0 and not contained
in any of the irreducible components of D. If pM1, iso1q and pM2, iso2q are M-marked
connections such that

pM1, iso1q|C » pM2, iso2q|C

then pM1, iso1q and pM2, iso2q are isomorphic in a neighbourhood of 0.

Let us give an outline of the paper. In section 1, we recall the Level filtration
for the Stokes sheaf in any dimension. We then apply it to prove Theorem 2. In
section 2, we introduce the global variant of the moduli of Stokes torsors constructed
in [Tey17] suited for the proof of Theorem 1. We then prove Theorem 3. In section
3, we show how to reduce the proof of Theorem 1 to the dimension 2 case. We then
show in dimension 2 that Theorem 1 reduces to extending the good formal model of
M across the point 0 under study. In the last section, we show that the sought-after
extension exists provided the moduli of Stokes torsors associated to a resolution of
the turning point 0 for M satisfies suitable geometric conditions. Finally, we show
that these geometric conditions are always satisfied when the hypothesis of Theorem
1 are satisfied, thus concluding the proof of Theorem 1.

Acknowledgement. — I thank Y. André, P. Boalch, F. Loray, C. Sabbah, C.
Simpson and T. Mochizuki for interesting discussions and constructive remarks on a
first draft of this work. I thank C. Sabbah for sharing with me the intuition that
the techniques developed in this paper could be applied to the questions consid-
ered in [CDG17]. I thank N. Budur and W. Veys for constant support during the
preparation of this paper. This work has been funded by the long term structural
funding-Methusalem grant of the Flemish Government. The author would like to
thank KU Leuven for providing outstanding working conditions. The finalization
of this paper benefited from a one month stay at the Hausdorff Research Institute
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1. Level filtration and application

We first introduce some notations and recall some definitions. A reference for good
meromorphic flat bundles is Part I, Chapter 2 from [Moc11b]. For basics concerning
Stokes torsors in any dimension, we refer to [Tey17].

1.1. Irregular values and truncation. — Let D be the germ of normal crossing
divisor at 0 P Cn given by z1 ¨ ¨ ¨ zm “ 0. We endow Zm with the order given by
m ď m1 if and only if mi ď m1i for every i “ 1, . . .m. For a P OCnp˚Dq{OCn , we
write a “

ř

mPZm amz
m and denote by ord a the minimum of

tm P Zmď0 such that am ‰ 0u

when it exists.
Let I be a good set of irregular values with poles contained in D. By definition, I

is a subset of OCnp˚Dq{OCn such that

– For every non zero a P I, ord a exists and aord a is invertible in a neighbourhood
of 0.

– For every distinct a, b P I, ord a ´ b exists and pa ´ bqord a´b is invertible in a
neighbourhood of 0.

– The set ΦpIq :“ tord a´ b, a, b P I distinctu is totally ordered.

The elements of ΦpIq are the levels of I. In particular, the set tord a, a P Iu is totally
ordered. Let mp0q be its minimum. Let pmp0q, . . . ,mpLq,mpL` 1qq be an auxiliary
sequence for I. This means that mpi ` 1q “ mpiq ` p0, . . . , 1, . . . , 0q with 1 located
in position hi ď m, that ΦpIq Ă tmp0q, . . . ,mpL ` 1qu and that mpL ` 1q “ 0 by
convention. We set for every a P I and every i “ 0, . . . , L` 1,

ξmpiqpaq :“
ÿ

nğmpiq

anz
n

and aěmpiq :“ a´ ξmpiqpaq.

1.2. Real blow-up. — Let p : rX ÝÑ Cn be the fiber product of the real blow-ups
of Cn along the zi “ 0, i “ 1, . . . ,m. We have

rX » pr0,`8rˆS1qm ˆ Cn´m

and p reads

pprk, θkqk, yq ÝÑ pprke
iθkqk, yq

In particular, T :“ p´1p0q is a torus. Let π : Rm ÝÑ T be the canonical projection.
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1.3. Good unramified split bundle. — For every a P I, set Ea “ pOCn,0p˚Dq, d´
daq. We fix once for all a germ of split unramified good meromorphic flat bundle of
rank r with poles along D

N :“
à

aPI
Ea bRa

where the Ra are regular. Let ia : EabRa ÝÑ N be the canonical inclusion and pa :
N ÝÑ EabRa the canonical projection. For i “ 0, . . . , L` 1, we set Ipiq :“ ξmpiqpIq
and

N piq :“
à

aPI
Eξmpiqpaq bRa

The levels of N piq belong to tmp0q, . . . ,mpi´ 1qu. For α P Ipiq, we set

Nα :“
à

aPI,ξmpiqpaq“α
Ea bRa

The levels of Nα belong to tmpiq, . . . ,mpL` 1qu.

1.4. The Stokes sheaf. — Let StN be the Stokes sheaf of N . This is a sheaf of
complex unipotent algebraic groups over T. By definition, the germs of StN at θ P T
are the automorphisms of N defined on small sectors emanating from 0 containing the
direction θ and asymptotic to id at 0 along the direction θ. For a formal definition,
let us refer to [Tey17, 1.4].

1.5. The level filtration. — We recall the definition of the level filtration on the
Stokes sheaf StN of a good unramified split bundle N as in 1.3. It is a straightforward
generalization of [BV89, II 3.2.1]. We include it for the reader’s convenience due to
a lack of reference in the higher dimensional case. For i “ 0, . . . , L` 1, let us set

StiN :“ tg P StN |e
apg ´ idq has rapid decay for every a with ord a ąmpi´ 1qu

The sheaf StiN is a sheaf of normal algebraic subgroups of StN . Let us define two
diagonal matrices M :“ Diagpea, i P Iq and Mě :“ Diagpeaěmpiq , i P Iq. The sheaf
StiN admits the following Stokes theoretic description:

Lemma 1.5.1. — The map

ϕ : StN piq ÝÑ StN

s ÝÑ eMěse´Mě

induces an isomorphism between StN piq and StiN .

Proof. — The statement is local. Hence, it is enough to work on an open set S con-
tained in a product of strict open intervals. For such an open, a choice of fundamental
matrix F of flat sections for

À

aPI Ra yields a commutative diagram with injective
arrows

(1.5.2) ΓpS,StN piqq //

''

ΓpS,StN q

ι

��

GLr
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where ι is given by s ÝÑ e´MF´1sFeM . By definition, ιpΓpS,StN qq is the subgroup
of elements g P GLr such that for every a, b P I,

"

gaa “ id
gab “ 0 if a ‰ b and a ćS b

Throughout the diagonal arrow of (1.5.2), the group ΓpS,StN piqq identifies with the
subgroup of elements of g P GLr such that for every a, b P I,

$

&

%

gaa “ id
gab “ 0 if ξmpiqpaq ‰ ξmpiqpbq and ξmpiqpaq ćS ξmpiqpbq
gab “ 0 if a ‰ b and ξmpiqpaq “ ξmpiqpbq

Note that if a, b P I with ξmpiqpaq ‰ ξmpiqpbq, then

a ćS b if and only if ξmpiqpaq ćS ξmpiqpbq

Hence, ΓpS,StN piqq identifies with the subgroup of elements g P ιpΓpS,StN qq such
that for every a, b P I,

gab “ 0 if ξmpiqpaq “ ξmpiqpbq and a ‰ b

Let s P ΓpS,StiN q, and let a, b P I with a ‰ b. If ξmpiqpaq “ ξmpiqpbq, then

ιpsqab “ eb´aF´1
a sabFb “ F´1

a peběmpiq´aěmpiqsabqFb

By definition, eběmpiq´aěmpiqsab has rapid decay. Since Fa and Fb have moderate
growth at 0, we deduce that the constant matrix ιpsqab has rapid decay. Hence,
ιpsqab “ 0. Thus StiN Ă ϕpStN piqq. On the other hand, let s P ϕpStN piqq and let c
with ord c ąmpi´ 1q. We have to show that for every a, b P I with a ‰ b,

ecsab “ ec`a´bFaϕpsqabF
´1
b

has rapid decay. We can suppose ξmpiqpaq ăS ξmpiqpbq. In particular a ăS b. Since the
leading term of c`a´ b is the leading term of a´ b, the exponential ec`a´b has rapid
decay on S. Thus, so does ecsab. Hence, s P StiN and we deduce StiN “ ϕpStN piqq.

1.6. Quotients of the level filtration. —

Lemma 1.6.1. — There is a split exact sequence of sheaves of algebraic groups

1 // StN piq
ϕ
// StN

ψ
//
ź

αPIpiq
StNα // 1

In particular, Gri StN :“ Sti`1
N {StiN »

ź

αPIpiq
StN pi`1qα

Proof. — Let us define

ψ : StN ÝÑ
ź

αPIpiq
StNα

s ÝÑ ˆpsabqξmpiqpaq“α
ξmpiqpbq“α

From the local description of StN piq given in the proof of 1.5.1, we see that the only
a priori non obvious thing to prove is the fact that ψ is a group homomorphism.
Let S be an open of T, let s, t P ΓpS,StN q, let α P Ipiq and let a, b P I such that
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ξmpiqpaq “ ξmpiqpbq “ α. Let us denote by ψα the component of ψ associated to α.
Then

pψαpstqqab “
ÿ

cPI
sactcb “

ÿ

cPI
aďScďSb

sactcb

If cďm ‰ α, the leading coefficient of c´a is that of ξmpiqpcq´ξmpiqpaq “ ξmpiqpcq´α.
Hence, a ďS c if and only if α ăS ξmpiqpcq. Similarly, c ďS b if and only if ξmpiqpcq ăS
α. Hence, for ξmpiqpcq ‰ α, the condition a ďS c ďS b is empty. Thus

pψσpstqqab “
ÿ

cPI
ξmpiqpcq“α

sactcb “ pψαpsqψαptqqab

1.7. Action of the fundamental group in the one level case. — We consider
in this paragraph the case where N has a unique level m and we fix a smooth curve
C passing through 0 as in 1.2. We denote by S1

C Ă T the circle of directions in
C emanating from 0. For an hyperplane H of Rn and for an interval I of S1

C , set
TpH, Iq :“ πpH ` π´1pIqq. For m P Zmď0, we set

Tpm, Iq :“ Tp
ÿ

i

mixi “ 0, Iq

For every x P T, the translation tx by x provides an isomorphism π1pTpm, 0q, 0q ÝÑ
π1px ` Tpm, 0q, xq. Hence, π1pTpm, 0q, 0q acts on StNC » pStMq|S1

C
via the par-

allel transport. We deduce that π1pTpm, 0q, 0q acts on H1pS1
C ,StNC q. To simplify

notations, we will denote by H1pS1
C ,StNC q

π1 the set of invariants of the action of
π1pTpm, 0q, 0q on H1pS1

C ,StNC q.
For a connected open S Ă T, the path γ acts on ΓpS,LpN qq via a linear map ρpγq.

The induced action on ΓpS,LpEndN qq is the conjugation by ρpγq.

Lemma 1.7.1. — Let C be a smooth curve passing through the origin. For every
cover I “ pIiqiPZ{NZ of S1

C adapted to NC , the morphisms in the commutative triangle

H1pT,StN q // H1pS1
C ,StNC q

π1

Z1pTpm, Iq,StN q

hh 55

are isomorphisms. In particular, H1pT,StN q is an affine space.

For a single level connection in dimension 1, an adapted cover is a cover by con-
secutive intervals with empty triple intersections such that every I P I and every pair
of irregular values a, b, the interval I contains exactly one Stokes direction associated
to a´ b.
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Proof. — Since N has only one level, the same holds for NC . Let T P H1pT,StN q.
From [BV89], the restriction TS1

C
P H1pS1

C ,StNC q of T to S1
C admits a unique trivi-

alisation ti on each Ii, i P Z{NZ and

(1.7.2) Z1pI,StNC q
„ // H1pS1

C ,StNC q

Since StN has no non trivial global section on Tpm, Iiq, the section ti extends uniquely
into a section of T on Tpm, Iiq. Hence, the cocycle corresponding to TS1

C
via (1.7.2)

extends uniquely into a cocycle for T relative to the cover Tpm, Iq. In particular, the
upper horizontal arrow of the diagram

(1.7.3) Z1pTpm, Iq,StN q //

��

H1pT,StN q

resC

��

Z1pI,StNC q
„ // H1pS1

C ,StNC q

is surjective. Every section of StN on a connected open is determined by its germ
at a point. Hence, the left vertical arrow of (1.7.3) is injective. We deduce that the
upper horizontal arrow of (1.7.3) is a bijection and that resC is injective. Tauto-
logically, the image of the left vertical arrow is exactly formed by those collections
of g P Z1pI,StNC q extending to Tpm, Iq. These are exactly the invariants under the
action of π1pTpm, 0q, 0q constructed in 1.7.

To conclude, we observe that StN being a sheaf of unipotent algebraic groups,
the scheme ΓpU,StN q is an affine space for every open subset U Ă T. Since
Z1pTpm, Iq,StN q is a product of such schemes, it is also an affine space.

1.8. Proof of Theorem 2. — We are now in position to prove Theorem 2. This
is a local statement, so we work in a neighbourhood of 0 in Cn and use notations
from section 1. We argue recursively on the number of levels of N . Suppose that N
has only one level. From 1.7.1, we know that H1pT,StN q is an affine space. From
[Tey17, Th 3], we know that H1pT,StN q has dimension 0. Hence, H1pT,StN q is a
point, so Theorem 2 is proved in the single level case. Suppose that N has at least
two levels. Let pmp0q, . . . ,mpLq,mpL ` 1qq be an auxiliary sequence for I. Then,
there is an index i such that N piq has only one level and such that the number of
levels of StNα is strictly less than number of levels of N for every α P Ipiq. Since the
Nα are direct summands of N , they are also very generic. By recursion hypothesis
applied to the Nα, we obtain that the right term of the exact sequence of pointed sets

H1pT,StN piqq // H1pT,StN q //
ź

αPIpiq
H1pT,Nαq

deduced from 1.6.1 is trivial. Hence H1pT,StN q » H1pT,StN piqq. Since N is very
generic, so is N piq. Since N piq has only one level, H1pT,StN piqq is a point. This
finishes the proof of Theorem 2.
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2. Moduli of Stokes torsors. Global aspects

2.1. Why moduli of Stokes torsors?— Let us explain in this subsection how the
moduli of Stokes torsors were found to be relevant to the proof of Theorem 1. We use
the notations from the introduction and work in dimension 2. We suppose that 0 P D
lies in the smooth locus of pSolMq|D and pSol EndMq|D, and we want to prove that
0 is a good formal decomposition point for M.

From a theorem of Kedlaya [Ked10][Ked11] and Mochizuki [Moc09][Moc11b],
our connection M acquires good formal decomposition at any point after pulling-back
by a suitable sequence of blow-ups above D. To test the validity of the conjecture
[Tey13, 15.0.5], a natural case to consider was the case where only one blow-up is
needed. Using results of André [And07], it was shown in [Tey14] that the conjecture
reduces in this case to the following

Question. — Given two good meromorphic connections M and N with poles along
the coordinate axis in C2 and formally isomorphic at 0, is it true that

(2.1.1) dimpH1 Sol EndMq0 “ dimpH1 Sol EndN q0 ?

It turns out that each side of (2.1.1) appeared as dimensions of moduli spaces of
Stokes torsors constructed by Babbitt-Varadarajan in [BV89]. These moduli were
associated with germs of meromorphic connections in dimension 1. Babbitt and
Varadarajan proved that they are affine spaces. This suggested the existence of a
moduli X with two points P,Q P X such that the left-hand side of (2.1.1) would be
dimTPX and the right-hand side of (2.1.1) would be dimTQX . The equality (2.1.1)
would then follow from the smoothness and connectedness of the putative moduli.
This is what led to [Tey17], but the question of smoothness and connectedness was
left open. In the meantime, a positive answer to the above question was given by
purely analytic means by C. Sabbah in [Sab17a].

2.2. Relation with [Tey17]. — In [Tey17], a moduli for local Stokes torsors was
constructed in any dimension. This moduli suffers two drawbacks in view of the
proof of Theorem 1. First, the Stokes sheaf used in [Tey17] only makes sense at a
neigbourhood of a point, whereas our situation will be global as soon as we apply
Kedlaya-Mochizuki’s resolution of turning points. Second, the relation between Irreg-
ularity and the tangent spaces of the moduli from [Tey17] only holds in particular
cases. To convert the hypothesis on Irregularity appearing in Theorem 1 into a ge-
ometric statement on a moduli of torsors, we need to replace the Stokes sheaf StM
of a connection M by a subsheaf denoted by StăDM . We will abuse terminology be
also calling the torsors under StăDM Stokes torsors. The sheaf StăDM has the advantage
of being globally defined when M is globally defined. Along the smooth locus of D,
the sheaf StăDM is the usual Stokes sheaf. The only difference between StM and StăDM
appears at a singular point of D.

Note that the only global moduli of Stokes torsors needed in this paper come from
the case where X is a surface. Hence, this case is of independent interest regarding
the general theory and thus deserves a special treatment. To keep the level of techni-
cality as low as possible, we will thus stick to the case of surfaces. The general case



MODULI OF STOKES TORSORS AND SINGULARITIES OF DIFFERENTIAL EQUATIONS 11

will appear in a subsequent work, along with applications of different nature than the
one we aim at in the present paper.

2.3. Geometric setup. — In this section, D denotes a normal crossing divisor in
a smooth algebraic surface X. Let D1, . . . , Dn be the irreducible components of D.
For every sheaf of OX -module F , we set

F
pD “ O

zX|D
bOX F

Let D˝i be the complement in Di of the singular locus SingpDq of D. Let p : rX ÝÑ X
be the real blow-up of X along D. For every subset A Ă X, we set BA :“ p´1pAq X
p´1pDq and denote by ιA : BA ÝÑ BD the canonical inclusion. We denote by A
the sheaf of functions on BD admitting an asymptotic development along D [Sab00].
We denote by AăD Ă A the sheaf of functions on BD with rapid decay along D.
Concretely, this means the following. Let px1, x2q be local coordinates such that D is
defined locally by x1xi “ 0 with i P t1, 2u. Then, the germ of AăD at θ P B0 is given
by those holomorphic functions u defined over the trace on XzD of a neighbourhood
Ω of θ in rX, and such that for every compact K Ă Ω, for every N1, Ni P N, there
exists a constant CN1,Ni ą 0 such that

|upxq| ď CN1,Ni |x1|
N1 |xi|

Ni for any x P K X pXzDq

2.4. Definition of the moduli. — Let M be a good meromorphic connection
defined in a neighbourhood of D with poles along D. We set

BM “ Abp´1OX p
´1M

We define StăDM as the subsheaf of H0 DR BEndM of sections asymptotic to the
Identity along D, that is of the form Id`f where f has coefficients in AăD.

The sheaf StăDM is a sheaf of complex unipotent algebraic groups. In particular,
StăDM pRq is defined as a sheaf of groups on BD for every R P C-alg. For every subset
A Ă D, we denote by H1pBA,StăDM q the functor

C-alg ÝÑ Set

R ÝÑ H1pBA,StăDM pRqq

2.5. Representability by a scheme. — The purpose of this subsection is to prove
that H1pBD,StăDM q is representable by an affine scheme of finite type over C. To do
this, the idea is to analyse separately the contributions coming from each stratum of
D. On the smooth locus of D, representability will essentially be a consequence of
Babbitt-Varadarajan’s works [BV89]. At a singular point P of D, representability
will be achieved by comparison with the situation on a well-chosen component passing
through P .

Let P P SingpDq and let Di be a component of D containing P . Then, there exists
a disc ∆Di,P Ă Di centred at P such that any ι´1

P StăDM -torsor extends above ∆Di,P .
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Set ∆˚Di,P “ ∆Di,P ztP u. Let ji,P : B∆˚Di,P ÝÑ BD be the canonical inclusion. Hence,
there is a canonical morphism of functors

(2.5.1) H1pBP,StăDM q // H1pB∆˚Di,P ,StăDM q

On the other hand, restriction of torsors provides a morphism of functors

(2.5.2) H1pBD˝i ,StăDM q // H1pB∆˚Di,P ,StăDM q

The collection of morphisms (2.5.1) and (2.5.2) defines a finite diagram of functors.
Since Stokes torsors have no non trivial automorphisms [Tey17, 1.8.1], the limit of
this diagram is H1pBD,StăDM q. In particular, to understand H1pBD,StăDM q amounts
to understand what happens at a singular point ofD and what happens on the smooth
locus.

Lemma 2.5.3. — For every i “ 1, . . . , n, the functor H1pBD˝i ,StăDM q is a scheme of
finite type over C. The restriction morphism (2.5.2) is a closed immersion.

Proof. — Let R P C-alg. Since Stokes torsors have no non trivial automorphisms, the
relative non abelian cohomology functor

R1p˚ StăDM pRq : OpenpDq ÝÑ Set

U ÝÑ H1pBU,StăDM pRqq

is a sheaf of sets on D. From [Sab02, II 6.1] (see also [Mal83a] for the one level
case), the restriction of R1p˚ StăDM pRq to D˝i is a local system on D˝i whose stack at
P P D˝i is H1pBP,StăDM pRqq. Hence, for a ball B in D˝i , for every connected open set
U Ă B and every P P U , restriction induces an identification

ΓpU,R1p˚ StăDM pRqq
„ // H1pBP,StăDM pRqq

functorial inR. From works of Babbit-Varadarajan [BV89], the functorH1pBP,StăDM q

is an affine space. Hence, the restriction of R1p˚ StăDM to D˝i is a local system of
schemes in the sense of [Sim94]. Let P P D˝i . Since

H1pBD˝i ,StăDM q “ ΓpD˝i , R
1p˚ StăDM q

the functor H1pBD˝i ,StăDM q identifies with the invariants of the action of π1pD
˝
i , P q

on H1pBP,StăDM q. Since this action is functorial in R, Yoneda lemma implies that
π1pD

˝
i , P q acts on the scheme H1pBP,StăDM q via algebraic maps. Hence, its invariants

form a closed sub-scheme in H1pBP,StăDM q. In particular, H1pBD˝i ,StăDM q is a scheme.
The fact that (2.5.2) is a closed immersion is an immediate consequence of the fact

that H1pBD˝i ,StăDM q // H1pBP,StăDM q is a closed immersion.

Proposition 2.5.4. — For every P P SingpDq, the functor H1pBP,StăDM q is a
scheme of finite type over C.



MODULI OF STOKES TORSORS AND SINGULARITIES OF DIFFERENTIAL EQUATIONS 13

Proof. — If M has only one irregular value at P , then H1pBP,StăDM q is the trivial
scheme so there is nothing to do. Suppose that M has at least two irregular values at
P . Goodness implies that there is a component of D passing through P such that the
difference of any two irregular values of M at P has poles along this component. Let
Di be the other component of D passing through P . We take local coordinates px, yq
such that Di is given by x “ 0. For every T P H1pB∆˚Di,P ,StăDM q, the sheaf ι´1

P ji,P˚T
is a ι´1

P ji,P˚ StăDM -torsor on BP . So if we prove that the adjunction morphism

(2.5.5) ι´1
P StăDM

// ι´1
P ji,P˚j

´1
i,P StăDM

is an isomorphism, then ι´1
P ji,P˚ will provide us with an inverse for (2.5.1), and 2.5.4

will be a consequence of 2.5.3. We now prove that (2.5.5) is an isomorphism. By
a standard Galois argument, we can suppose that M is unramified. Injectivity of
(2.5.5) is obvious so we are left to prove surjectivity. Since this is a local statement
on BP , Mochizuki’s asymptotic development theorem [Moc11b, 3.2.10] reduces the
question to the case where M is split unramified. We thus treat that case and borrow
the notations from 1.3. We put

S “ pr0, rrˆI1q ˆ pr0, rrˆI2q

where I1, I2 are intervals. Sections of StăDM on BS :“ S X BD are automorphisms of
M on S X pXzDq of the form Id`f where pafib “ 0 unless

(2.5.6) ea´b P ΓpBS,AăDq

Sections of StăDM over

BS˝i :“ BS X B∆˚Di,P “ pt0u ˆ I1q ˆ ps0, rrˆI2q

are automorphisms of M on S X pXzDq of the form Id`f where pafib “ 0 unless

(2.5.7) ea´b P ΓpBS˝i ,AăDq
We thus have to show that for every distinct irregular values a, b, the conditions
(2.5.7) and (2.5.6) are equivalent for a small enough choice of S. A change of variable
reduces the problem to the case where a´ b “ 1{xαyβ where pα, βq P NˆN˚. Since
AăD is a sheaf, condition (2.5.6) trivially implies condition (2.5.7). Suppose that
e1{xαyβ P ΓpBS˝i ,AăDq. At the cost of shrinking S, this means that for every N P N,
every ε ą 0, there exists a constant C ą 0 such that for

px, yq P ps0, rrˆI1q ˆ psε, rrˆI2q

we have
|e1{xαyβ | ď C|x|N

Writing x “ pr1, θ1q and y “ pr2, θ2q, this means

ecospαθ1`βθ2q{r
α
1 r
β
2 ď CrN1

In particular, α ą 0 and cospαθ1 ` βθ2q ă 0 for every pθ1, θ2q P I1 ˆ I2. Let c ą 0
such that cospαθ1 ` βθ2q ă ´c on I1 ˆ I2. Then, we have

|e1{xαyβ | ď e´c{|x|
α
|y|β
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on S. Since α ą 0 and since β ą 0 from our choice of component Di, we deduce that
(2.5.7) holds, which proves the equivalence between conditions (2.5.7) and (2.5.6).

Putting 2.5.3 and 2.5.4 together gives the following

Proposition 2.5.8. — The functor H1pBD,StăDM q is an affine scheme of finite type
over C.

We have the following

Proposition 2.5.9. — For very P P SingpDq and every component Di of D passing
through P , the restriction morphism (2.5.1) is a closed immersion.

Proof. — We can suppose that M is unramified in a neighbourhood of P . If not all
the two by two differences of M’s irregular values at P have poles along Di, then the
proof of 2.5.4 shows that (2.5.1) is an isomorphism, so 2.5.9 is true in that case. Let
us suppose that the difference of any two distinct irregular values for M at P has
poles along Di. Let StMP

be the Stokes sheaf of M on BP as defined in [Tey17].
Then, StăDM is distinguished in StMP

. We thus have an exact sequence of sheaves of
algebraic groups on BP

1 // StăDM
ι // StMP

// Q // 1

At the cost of restricting ∆˚Di,P , any section of StMP
extends to B∆˚Di,P . We thus

have an adjunction morphism

(2.5.10) StMP
// ι´1
P ji,P˚j

´1
i,P StMP

“ ι´1
P ji,P˚j

´1
i,P StăDM

Hence, there is a factorization

(2.5.11) H1pBP,StăDM q

((

ι˚
// H1pBP,StMP

q

o
��

H1pB∆˚Di,P ,StăDM q

From an argument similar to that in 2.5.4, the map (2.5.10) is an isomorphism of
sheaves on BP . Hence, the vertical arrow in (2.5.11) is an isomorphism of schemes.
To prove 2.5.9, it is enough to prove that

ι˚ : H1pBP,StăDM q // H1pBP,StMP
q

is a closed immersion. From [Fre57, I.2], there is an exact sequence of pointed functors

(2.5.12) H0pBP,Qq // H1pBP,StăDM q
ι˚
// H1pBP,StMP

q // H1pBP,Qq

The complex of sheaves

StMP
// BEndM

pD
// BEndM

p0
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induces a sequence

(2.5.13) Q �
�

// BEndM
pD

// BEndM
p0

Taking global sections, we deduce via [Sab00, p 44] the following sequence

(2.5.14) 0 // H0pBP,Qq // EndM
pD,0

// EndM
p0

By flatness, the second map of (2.5.14) is injective. Hence, H0pBP,Qq is trivial. From
the exactness of (2.5.12), we deduce that the following diagram of functors

(2.5.15) H1pBP,StăDM q

ι˚

��

// ˚

��

H1pBP,StMP
q // H1pBP,Qq

is cartesian, where ˚ denotes the trivial Q-torsor. If we knew that H1pBP,Qq is a
scheme, we would directly obtain that ι˚ is a closed immersion. This question does
not seem to follow from the use of skeletons [Tey17]. We will circumvent this problem
with a group theoretic argument.

From [Tey17, 1.9.1], any cover U of BP by good open subsets induces a morphism
of schemes

(2.5.16) Z1pU ,StMP
q // H1pBP,StMP

q

which is surjective at the level of R-points for every R P C-alg. From [BV89, 2.7.3],
the morphism (2.5.16) admits a section. Composing this section with

Z1pU ,StMP
q // Z1pU ,Qq

gives rise to a commutative triangle of functors

H1pBP,StMP
q //

''

H1pBP,Qq

Z1pU ,Qq

OO

The algebraic group

G :“
ź

UPU
ΓpU,Qq

acts on Z1pU ,Qq. Let

(2.5.17) G ÝÑ Z1pU ,Qq

be the morphism of schemes obtained by restricting the action of G to the trivial
cocycle. Since H0pBP,Qq » 0, the morphism (2.5.17) is a monomorphism. The
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diagram (2.5.15) thus splits into cartesian diagrams of functors

H1pBP,StăDM q

ι˚

��

// G

��

// ˚

��

H1pBP,StMP
q // Z1pU ,Qq // H1pBP,Qq

We are thus left to show that (2.5.17) is a closed immersion. From the general theory
of algebraic group actions, (2.5.17) factors into

G
α // O

β
// Z1pU ,Qq

where α is faithfully flat, where O denotes the orbit of the trivial cocycle under G
and where β is an immersion of schemes. Since smoothness is a local property for
the fppf topology, smoothness of G implies that O is smooth. By definition, α is an
isomorphism at the level of C-points. Hence, α is an isomorphism of varieties. We
are thus left to show that O is closed in Z1pU ,Qq. It is enough to show that O is
closed in Z1pU ,Qqred. From Kostant-Rosenlicht theorem [Bor91, I 4.10], it is enough
to show that G is a unipotent algebraic group.

Let N be the good split unramified bundle formally isomorphic to M at 0. Let
us choose a formal isomorphism iso : M

p0 ÝÑ N
p0. At the cost of refining U , we can

suppose that there exists an isomorphism θU : BM|U ÝÑ BN|U asymptotic to iso for
every U P U . Then, conjugation by θU provides an isomorphism StMP |U

ÝÑ StNP |U
carrying StăDM|U to StăDN |U . To prove that ΓpU,Qq is unipotent, we can thus suppose
that M is good split unramified.

Let pmp0q, . . . ,mpLq,mpL ` 1qq be an auxiliary sequence for the good set of ir-
regular values of M at P . If i denotes the smallest index for which mpiq does not
have poles along every component of D passing through P , then StăDM|BP “ StMP piq.
From the description 1.6.1 of the quotients of the level filtration on StMP

, we deduce
that Q is a product of Stokes sheaves. Since Stokes sheaves are sheaves of unipotent
algebraic groups, we conclude that G is a unipotent algebraic group. This concludes
the proof of 2.5.9.

Since H1pBD,StăDM q is a limit of morphisms of the form (2.5.1) and (2.5.2), lemmas
2.5.3 and 2.5.9 give the following

Corollary 2.5.18. — For every P P D, the restriction morphism

H1pBD,StăDM q // H1pBP,StăDM q

is a closed immersion.

2.6. Stokes torsors and marked connections. — Let us recall that a M-
marked connection is the data of a couple pM, isoq where M is a germ of mero-
morphic connection with poles along D defined in a neighbourhood of D in X, and
where iso : M

pD ÝÑ M
pD is an isomorphism of formal connections. We denote by
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IsomisopM,Mq the StăDM pCq-torsor of isomorphisms between BM and BM which are
asymptotic to iso along D.

The proof of the following statement was suggested to me by T. Mochizuki. I
thank him for kindly sharing it. When D is smooth, It it was known to Malgrange
[Mal83b]. See also [Sab02, II 6.3].

Lemma 2.6.1. — The map associating to every isomorphism class of M-marked
connection pM, isoq the StăDM pCq-torsor IsomisopM,Mq is bijective.

Proof. — Let us construct an inverse. Take T P StăDM pCq and let g “ pgijq be a
cocycle for T associated to a cover pUiqiPI of BD. Let L be the Stokes filtered local
system on BD associated to M. Set Li :“ L|Ui . Then, g allows to glue the Li into
a Stokes filtered local system LT on BD independent of the choice of g. From the
irregular Riemann-Hilbert correspondence [Moc11a, 4.11], LT is the Stokes filtered
local system associated to a unique (up to isomorphism) good meromorphic connec-
tion MT defined in a neighbourhood of D and with poles along D. By construction,
the isomorphism LT |Ui ÝÑ L|Ui corresponds to an isomorphism BMT |Ui ÝÑ BM|Ui .
We thus obtain a formal isomorphism isoi : BMT , pD|Ui,

ÝÑ BM
pD|Ui

. On Uij , the dis-
crepancy between isoi and isoj is measured by the asymptotic of gij along D. By def-
inition, this asymptotic is Id. Hence, the isoi glue into a globally defined isomorphism
BMT , pD ÝÑ BM

pD. Applying p˚ thus yields an isomorphism iso : MT , pD ÝÑ M
pD.

It is then standard to check that the map T ÝÑ pMT , isoq is the sought-after in-
verse.

2.7. Proof of Theorem 3. — We are now in position to prove Theorem 3, whose
notations we use. Let π : Y ÝÑ X be a resolution of the turning point 0 for M.
Such a resolution exists by works of Kedlaya [Ked10] and Mochizuki [Moc09]. Set
E :“ π´1pDq. At the cost of blowing up further, we can suppose that the strict
transform C 1 of C is transverse to E at a point P in the smooth locus of E.

From 2.6.1, the π`M-marked connections pπ`M1, π
` iso1q and pπ`M2, π

` iso2q

define two C-points of H1pBE,StăEπ`Mq. Since

pπ`π
`Mi, π`π

` isoiq » pMi, isoiq

for i “ 1, 2, it is enough to show pπ`M1, π
` iso1q » pπ

`M2, π
` iso2q.

By assumption,

pπ`M1, π
` iso1q|C1 » pM1, iso1q|C

» pM2, iso2q|C

» pπ`M2, π
` iso2q|C1

In particular, the image of pπ`M1, π
` iso1q and pπ`M2, π

` iso2q by the restriction
map

(2.7.1) H1pBE,StăEπ`Mq
// H1pBP,StăEπ`Mq

are the same. From 2.5.18, the map (2.7.1) is a closed immersion. Hence,
pπ`M1, π

` iso1q » pπ
`M2, π

` iso2q, which concludes the proof of Theorem 3.
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2.8. Obstruction theory and tangent space. — Let us compute the obstruction
theory of H1pBD,StăDM q at a point T0 P H

1pBD,StăDN pCqq. We fix a morphism of
infinitesimal extensions of C-algebras

R1 ÝÑ R ÝÑ C, I :“ KerR1 ÝÑ R

such that I is annihilated by KerR1 ÝÑ C. In particular, I2 “ 0 and I is endowed
with a structure of C-vector space, which we suppose to be finite dimensional. Let
T P H1pBD,StăDM pRqq lifting T0. Choose a cover U “ pUiqiPK of BD such that T comes
from a cocycle g “ pgijqi,jPK . Set LipRq :“ Lie StăDM pRq|Ui . The identifications

LipRq|Uij
„
ÝÑ LjpRq|Uij

M ÝÑ g´1
ij Mgij

allow to glue the LipRq into a sheaf of R-Lie algebras over BD denoted by
Lie StăDM pRqT and depending only on T and not on g. For t “ ptijkq P

Č2pU ,Lie StăDM pRqT q, we denote by sijk the unique representative of tijk in
ΓpUijk, LipRqq. Then

pdtqijkl “ tjkl ´ tikl ` tijl ´ tijk

“ rgijsjklg
´1
ij ´ sikl ` sijl ´ sijks

We have the following

Lemma 2.8.1. — There exists

obpT q P I bC Ȟ2pBD,Lie StăDM pCqT0q

such that obpT q “ 0 if and only if T lifts to H1pBD,StăDM pR1qq.

Proof. — For every i, j P K, let hij P ΓpUij ,StăDM pR1qq be an arbitrary lift of gij
to R1. We can always choose the hij to satisfy hii “ Id and hijhji “ Id. Since
Lie StăDM pR1q is locally free,

I ¨ Lie StăDM pR1q » I bR1 Lie StăDM pR1q » I bC Lie StăDM pCq

We will use both descriptions without mention. We set

sijk :“ hijhjkhki ´ Id P ΓpUijk, I ¨ Lie StăDM pR1qq

We see sijk as a section of I bC LipCq over Uijk and denote by rsijks its class in
IbCLie StăDM pCqT0 . We want to prove that the rsijks define a cocycle. As seen above,
this amounts to prove the following equality in ΓpUijk, I bC Lie StăDM pCqq

(2.8.2) gijp0qsjklg
´1
ij p0q ´ sikl ` sijl ´ sijk “ 0
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Where gijp0q is the image of gij by R ÝÑ C. We have

gijp0qsjklg
´1
ij p0q “ hijhjkhklhljhji ´ Id

“ phijhjk ´ hik ` hikqhklhljhji ´ Id

“ phijhjk ´ hikqgklp0qgljp0qgjip0q ` hikhklhljhji ´ Id

“ phijhjk ´ hikqgkip0q ` hikhklhljhji ´ Id

“ phijhjk ´ hikqhki ` hikhklhljhji ´ Id

“ hijhjkhki ` hikhklhljhji ´ 2 Id

We now see how the second term of the last line above interacts with the second term
of the left-hand side of (2.8.2).

hikhklhljhji ´ sikl “ hikhklhljhji ´ hikhklhli ` Id

“ hikhklphljhji ´ hliq ` Id

“ gikp0qgklp0qphljhji ´ hliq ` Id

“ gilp0qphljhji ´ hliq ` Id

“ hilhljhji

Hence,

gijp0qsjklg
´1
ij p0q ´ sikl ` sijl ´ sijk “ hilhljhji ` hijhjlhli ´ 2 Id

“ phijhjlhliq
´1 ` hijhjlhli ´ 2 Id

“ phijhjlhliq
´1pphijhjlhliq

2 ´ 2hijhjlhli ` Idq

“ phijhjlhliq
´1s2

ijl

“ 0

where the last equality comes from I2 “ 0. Hence, the rsijks define a cocycle of
I bC Lie StăDM pCqT0 . An other choice of lift gives rise to homologous cocycles. We
denote by obpT q the class of prsijksqijk in Ȟ2pBD, IbCLie StăDM pCqT0q. It is standard
to check that obpT q has the sought-after property.

Corollary 2.8.3. — Let pM, isoq be a M-marked connection. Then, the space
H2pD, Irr˚D EndMqq is an obstruction theory for H1pBD,StăDM q at IsomisopM,Mq.

Proof. — Set T :“ IsomisopM,Mq. As observed in [Tey17, 5.2], the canonical iden-
tification

H0 DRăD EndM „ // Lie StăDM pCqT

induces

ȞipBD,Lie StăDM pCqT q » HipBD,Lie StăDM pCqT q

» HipBD,H0 DRăD EndMq

» HipBD,DRăD EndMq

» HipD, Irr˚D EndMqq
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The second identification comes from the fact [Hie09, Prop. 1] that DRăD EndM is
concentrated in degree 0. The third identification comes from [Sab17a, 2.2]. Then,
corollary 2.8.3 follows from 2.8.1.

Reasoning exactly as in [Tey17, 5.2.1], we prove the following

Lemma 2.8.4. — For every M-marked connection pM, isoq, the tangent space of
H1pBD,StăDM q at pM, isoq identifies canonically to H1pD, Irr˚D EndMq.

3. Moduli of Stokes torsors in the one level case

3.1. Roadmap. — The goal of this section is to describe the moduli of Stokes tor-
sors in the case where the irregular values have only one level. To do this, we compare
a relative version of the absolute Stokes groups from [MR91][Lod94] with the rel-
ative non abelian cohomology of the Stokes sheaf defined in 2.5.3. For the problem
raised by this comparison in the multi-level case, we refer to 3.5. Note that over a
smooth base (corresponding in this paper to the case where D is smooth), relative
Stokes groups appeared in the one level case in [JMU81] and in more generality
in [Boa02]. In particular, over a smooth base, they were already considered in the
multi-level case in [Boa14].

The reader interested only in the proof of Theorem 1 can skip this part, since it
will not be used in the sequel.

3.2. Relative Stokes groups. — We keep the setup and notations from 2.3 and
2.4. We recall that M stands for a good meromorphic connection defined in a neigh-
bourhood of a normal crossing divisor D in an algebraic surface X and with poles
along D. Let I be the sheaf of irregular values of M. We first suppose that M is
unramified. In that case, I is a subsheaf of OXp˚Dq{OX . For a, b P I, the function
Ga,b :“ pa ´ bq{|a ´ b| induces a C8-function BGa,b on BD. The anti-Stokes lines of
pa, bq are the connected components of

Hăab :“ tθ P BD such that BGa,bpθq P R´u

The set Hăab is a smooth C8-hypersurface in BD. Let Hă be the union of all Hăab,
a, b P I distinct. Let ı : Hă ÝÑ BD be the inclusion. Let StoM be the subsheaf of
ι˚ι

´1 StăDM whose germ at θ P BD is

StoM,θ “ tg P StăDM,θ such that for every a, b P I distinct, gab “ 0 unless θ P Hăabu

We call p˚StoM the relative Stokes group of M. For a possibly ramified connection
M, we define the relative Stokes group of M via Galois descent from the unramified
case.

Suppose that D is smooth. Then, for every a, b P I, the Stokes lines of pa, bq are
parallel to the anti-Stokes lines of pa, bq. Hence, Hăab does not meet any Stokes line of
pa, bq. Thus, for any θ P BD and any g P StoM,θ, the section g extends uniquely on a
small product ∆ˆ I containing θ, where ∆ is a disc in D centred at ppθq and where
I is an interval of S1. This product only depends on θ and not on g. We deduce that
when D is smooth, p˚StoM is a local system on D.
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3.3. One level along the smooth locus of D. —

Lemma 3.3.1. — We suppose that D is smooth and that M admits a unique level.
Then, the sheaf p˚StoM is canonically isomorphic to R1p˚ StăDM .

Proof. — Since D is smooth, the sheaves p˚StoM and R1p˚ StăDM are local systems
on BD. For every P P D, we have a diagram with canonical vertical arrows

(3.3.2) pp˚StoMqP //

o
��

pR1p˚ StăDM qP

o
��

ΓpBP,StoMq
LRP

// H1pBP,StăDM q

where LRP is the isomorphism constructed by Loday-Richaud [Lod94, II 1.9], and
where the upper arrow makes (3.3.2) commutative. To prove 3.3.1, we have to show
that the identifications LRP glue into an isomorphism of local systems. This amounts
to show that the LRP are compatible with the parallel transports of p˚StoM and
R1p˚ StăDM . That is, for every P,Q P D and every continuous path γ in D joining P
to Q, the following diagram commutes

(3.3.3) ΓpBP,StoMq //

LRP
��

ΓpBQ,StoMq

LRQ

��

H1pBP,StăDM q // H1pBQ,StăDM q

where the horizontal arrows are the parallel transports along γ. This compatibility
question is a local question on D. Let us thus suppose that P and Q belong to a small
disc ∆ in D. By Galois descent, we can suppose that M is unramified. Via a local
rectification B∆ » ∆ˆS1 as in [Sab02, 6.8], the anti-Stokes hyperplanes of M above
∆ can be pictured as follows. Let us order the connected components of B∆ X Hă

cyclically α1, . . . , αd and denote by αipxq the point αiXBx for every x P ∆. For ε ą 0
small enough and for i P Z{dZ , consider the open sector Si “ ∆ˆsαi ´ ε, αi`1 ` εr.
Set S :“ pSiqiPZ{dZ. Take g “ pgi P StoM,αipP qqiPZ{dZ. Since ε has been chosen small
enough, gi can be seen as a section of StăDM above sαipP q´ε, αipP q`εr. By definition,
LRP pgq is the Stokes torsor on BP associated to the cocycle g P Z1pS X BP,StăDM q.
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The image of LRP pgq by the parallel transport of R1p˚ StăDM is the restriction to
BQ of the unique T P H1pB∆,StăDM q such that T|BP “ LRP pgq. But g extends
uniquely into rg “ prgiq P Z

1pS,StăDM q. Thus, T is the Stokes torsor associated to rg.
Hence, travelling down the diagram (3.3.3) produces the torsor over BQ associated to
rg|BQ P Z

1pS X BQ,StăDM q. On the other hand, we observe that the parallel transport
of g as a section of the relative Stokes sheaf is prgi,αipQqqi. Since LRQpprgi,αipQqqiq is
the Stokes torsor associated to rg|BQ, the commutativity of (3.3.3) is proved.

3.4. One level at a singular point of D. — In this paragraph, we restrict our
attention to what happens at a point P P SingpDq.

Proposition 3.4.1. — Suppose that M admits a unique level at P . Then, there is
a canonical isomorphism

ΓpBP,StoMq // H1pBP,StMq

Proof. — By Galois descent, we can suppose that M is unramified. We denote by
m its level. Let us choose local coordinates centred at P and let us denote by C
the diagonal. Then, MC admits only one level. Let I be a cover of S1

C à la Loday-
Richaud for MC . By definition, this is a cover by intervals with non empty triple
intersection such that any of these interval contains exactly two consecutive anti-
Stokes directions. An element of ΓpBP,StoMq defines a cocycle in Z1pBP pm, Iq,StMq
from which we deduce a StM-torsor on BP . The same construction holds on S1

C .
Hence, there is a commutative diagram

(3.4.2) ΓpBP,StoMq //

��

ΓpS1
C ,StoMC

q

��

H1pBP,StMq resC
// H1pS1

C ,StMC
q

From [Lod94], the right vertical map of (3.4.2) is an isomorphism. Taking the invari-
ants under the action of π1pTpm, 0q, 0q on the right part of (3.4.2) gives a commutative
diagram

(3.4.3) ΓpBP,StoMq
„ //

��

ΓpS1
C ,StoMC

qπ1

o
��

H1pBP,StMq // H1pS1
C ,StMC

qπ1

From 1.7.1, the bottom arrow of (3.4.3) is an isomorphism. Hence, the left vertical
arrow of (3.4.3) is an isomorphism. This concludes the proof of 3.4.1.

In simple cases, the previous lemmas tell precisely what the moduli of Stokes torsor
looks like.

Corollary 3.4.4. — Suppose that M has rank 2. Then, H1pBD,StăDM q is an affine
space.
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Proof. — It is enough to show that the morphisms (2.5.2) and (2.5.1) are linear
inclusions of affine spaces. Relative Stokes groups are sheaves of unipotent algebraic
groups. The underlying scheme of a unipotent algebraic group is an affine space.
Then, corollary 3.4.4 is an immediate consequence of the description 3.3.1 and 3.4.1
of Stokes torsors in terms of relative Stokes groups in the one level case.

3.5. A remark on the multi-level case. — In this subsection, we restrict to the
case whereD is smooth. The question whether R1p˚ StăDM and p˚StoM are isomorphic
seems to be fruitful, since it would imply that when D is smooth, moduli of Stokes
torsors are affine spaces. This last assertion is known in dimension 1 from [BV89].
We thus formulate the following

Conjecture. — Suppose that D is smooth. Then, the local systems R1p˚ StăDM and
p˚StoM are isomorphic.

In the several level case, the main difficulty comes from the fact that the parallel
transports for R1p˚ StăDM and p˚StoM produce different cocycles that are not equal
on the nose, but might be cohomologous. The following picture illustrates this phe-
nomenon. The picture on the left features part of our initial element of the Stokes

group above P . In this situation, two anti-Stokes lines L1 and L2 intersect once along
the path joining P to Q. Let us call x the intersection point. Since anti-Stokes lines
are parallel to Stokes lines, there is a neighbourhood Ω of x in BD not meeting any
Stokes line coming from the differences of irregular values giving rise to L1 and L2. In
particular, g1 and g2 extend uniquely into sections rg1 and rg2 of StăDM over Ω. When
applying the parallel transport for R1p˚ StăDM , we end up with the cocycle in the
upper right picture. The bottom right picture represents the effect of the parallel
transport for p˚StoM. Finally, one passes from one cocycle to the other by permuting
rg1 and rg2. Since the Stokes sheaf is not commutative, it is not a priori clear that
these cocycles are cohomologous.
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4. Reduction of Theorem 1 to extending the formal model

4.1. Reduction to the dimension 2 case. — In this subsection, we reduce the
proof of Theorem 1 to the dimension 2 case. The main tool is André’s goodness
criterion [And07, 3.4.3] in terms of Newton polygons. This reduction does not seem
superfluous. Of crucial importance for the sequel of the proof (see 4.3.1) will be indeed
the fact that for an unramified meromorphic connection M with poles along a divisor
D and for a point 0 P D, the formal model of M splits on a small enough punctured
disc around 0. This fact is specific to dimension 2, since it pertains to the property
that turning points of connections in dimension 2 are isolated.

Lemma 4.1.1. — Theorem 1 is true in any dimension if it is true in dimension 2.

Proof. — Take n ą 2. We argue recursively by supposing that Theorem 1 holds
in dimension strictly less than n and we prove that Theorem 1 holds in dimension
n. Let 0 P D and suppose that Irr˚DM and Irr˚D EndM are local systems in a
neighbourhood of 0. If j : XzD ÝÑ X and i : D ÝÑ X are the canonical inclusions,
we have distinguished triangle

j!L // SolM // i˚ Irr˚DM

where L is a local system on the complement of D. Hence, the characteristic cycle of
SolM is supported on the union of T˚XX with T˚DX. From a theorem of Kashiwara
and Schapira [KS90, 11.3.3], so does the characteristic cycle of M. Hence, any
smooth hypersurface transverse to D and passing through 0 is non characteristic with
respect to M in a neighbourhood of 0. Let us choose such a hypersurface Z and let
iZ : Z ÝÑ X be the canonical inclusion. From [And07, 3.4.3], the turning point
locus of M is a closed subset of D which is either empty or purely of codimension 1
in D. Since n ą 2, the hypersurface Z can consequently be chosen such that M and
EndM have good formal decomposition generically along Z X D. The connection
i`ZM is a meromorphic connection with poles along ZXD. It satisfies the hypothesis
of Theorem 1 at the point 0. Indeed by Kashiwara’s restriction theorem [Kas95],

Irr˚ZXD i
`
ZM “ pSol i`ZMq|ZXD » pSolMq|ZXD

and similarly for EndM. Hence, Irr˚ZXDM and Irr˚ZXD EndM are local systems in
a neighbourhood of 0 in Z X D. By recursion hypothesis, i`ZM is good at 0. In
particular, the Newton polygon of i`ZM at 0 (which is also the Newton polygon of
M at 0) is the generic Newton polygon of i`ZM along Z XD. From our choice for Z,
the generic Newton polygon of i`ZM along Z XD is the generic Newton polygon of
M along D. Hence, the Newton polygon of M at 0 is the generic Newton polygon
of M along D, and similarly with EndM. By a theorem of André [And07, 3.4.1],
we deduce that M has good formal decomposition at 0, which proves the reduction
4.1.1.

4.2. Setup and recollections. — From now on, we restrict to dimension 2. We
use coordinates px, yq on A2 and set Dx :“ ty “ 0u, Dy :“ tx “ 0u. Let D be a
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neighbourhood of 0 in Dx and let CrDs be the coordinate ring of D. Set D˚ :“ Dzt0u.
Let M be an algebraic meromorphic flat bundle on a neighbourhood of D in A2

with poles along D. In algebraic terms, M
pD defines a CrDsppyqq-differential module.

At the cost of shrinking D if necessary, we can suppose that the restriction M˚ of M
to a neighbourhood of D˚ has good formal decomposition at every point of D˚.

There is a ramification v “ y1{d, d ě 1 and a finite Galois extension L{Cpxq such
that the set I of generic irregular values for M lies in FracLpvq. If p : DL ÝÑ D is
the normalization of D in L, the generic irregular values of M are thus meromorphic
functions on DL ˆA

1
v. We have

(4.2.1) Lppvqq bM »
à

aPI
Ea bRa

where the Ra are regular. Following [And07, 3.2.4], we recall the following

Definition 4.2.2. — We say that M is semi-stable at P P D if
(1) We have I Ă CrDLsP ppvqq.
(2) The decomposition (4.2.1) descends to CrDLsP ppvqq bM.

In this definition, CrDLsP denotes the localization of CrDLs above P . This is a
semi-local ring. Let πa P Lppvqq bEndM be the projector on the factor EabRa. As
explained in [And07, 3.2.2], the point P is stable if and only if the generic irregular
values of M and the coefficients of the πa in a basis of EndM belong to CrDLsP ppvqq.
Since M has good formal decomposition at any point of D˚, the generic irregular
values of M and the coefficients of the πa in a basis of EndM belong to CrDLsP ppvqq
for every P P D˚. Hence, they belong CrD˚Lsppvqq where D

˚
L :“ Dzp´1p0q. Thus

(4.2.3) CrD˚Lsppvqq bM » CrD˚Lsppvqq bN ˚
L

where
N ˚
L “

à

aPI
Ea bRa

is a germ of meromorphic connection defined on a neighbourhood of D˚L in DL ˆA
1
v

and with poles along D˚L. The action of

GalpL{Cpxqq ˆZ{dZ

on the left-hand side of (4.2.3) induces an action on N ˚
L . Taking the invariants yields

a meromorphic flat bundle N ˚ defined on a neighbourhood Ω of D˚ in A2. By Galois
descent, (4.2.3) descents to an isomorphism iso˚ between the formalizations of M˚

and N ˚ along D˚.

4.3. Reduction to the problem of extending the formal model. — The
goal of this subsection is to show that Theorem 1 reduces to prove that the M˚-
marked connection pN ˚, iso˚q defined in 4.2 extends into a M-marked connection in
a neighbourhood of 0. To do this, we need three preliminary lemmas.

Lemma 4.3.1. — Suppose that N ˚ extends into a meromorphic flat bundle N de-
fined in a neighbourhood of D in A2 and with poles along D. Then, N is semi-stable
at 0.
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Proof. — It is enough to treat the case where K “ Cpxq and d “ 1. In that case,
discussion 4.2 shows that on a neighbourhood Ω of D˚ in A2, we have

N ˚ “
à

aPI
N ˚
a

where N ˚
a is a meromorphic connection on Ω with poles along D˚ and with single

irregular value a. The open DˆA1 retracts on the small neighbourhood on which N
is defined. Since N is smooth away from D, we deduce that N extends canonically
into a meromorphic connection on D ˆA1 with poles along D.

Let a P I. The restriction of the projector πa to the complement of D˚ in Ω is a flat
section of EndN . Since D˚ ˆA1 retracts on Ω, parallel transport allows to extend
πa canonically to D˚ ˆA1. We still denote by πa this extension. Hence, N ˚

a extends
into a meromorphic connection on D˚ ˆA1 with poles along D˚. Let γ be a small
loop in Ω going around the axis Dy. By assumption, the monodromy of N along γ
is trivial. Thus, πa is invariant under the monodromy of EndN along γ. Hence, πa
extends canonically to pDˆA1qzt0u. By Hartog’s property, it extends further into a
section $a of EndN on D ˆA1.

Set Na :“ $apN q Ă N for every a P I. We have $2
a “ $a and

ř

aPI $a “ IdN
because these equalities hold on a non empty open set. Hence, N “ ‘aPINa. Since
$a is flat, the connection on N preserves each Na. Let us prove that the Na are
locally free as ODˆA1p˚Dq-modules.

Let E be a Deligne-Malgrange lattice [Mal96] for N . Since we work in dimension
2, we know from [Mal96, 3.3.2] that E is a vector bundle. We observe that $a

stabilizes E away from 0. By Hartog’s property, we deduce that $a stabilizes E.
Hence, $apEq is a direct factor of E. So $apEq is a vector bundle. Thus,

Na “ $apN q “ $apEp˚Dqq “ p$apEqqp˚Dq

is a locally free ODˆA1p˚Dq-module of finite rank with connection extending N ˚
a . To

prove 4.3.1, we are thus left to consider the case where I “ tau.
If I “ tau, then [And07, 3.3.1] implies a P CrDsppyqq. Hence, R :“ E´abN

pD is a
formal meromorphic connection with poles along D. By assumption, R is generically
regular alongD. From [Del70, 4.1], we deduce thatR is regular. Hence, N

pD “ EabR
with R regular, which concludes the proof of 4.3.1.

Lemma 4.3.2. — Let N be a meromorphic flat connection with poles along D. We
suppose that N is semi-stable at 0 and that Irr˚DN and Irr˚D EndN are local systems
in a neighbourhood of 0. Then, N has good formal decomposition at 0.

Proof. — Let I be the set of irregular values of N at 0. There is a ramification
v “ y1{d, d ě 1 and a finite Galois extension L{Cpxq such that I Ă Lppvqq. Let
DL ÝÑ D be the normalization of D in L. At the cost of shrinking D, we can
suppose that every point of D is semi-stable for N . Hence, I Ă CrDLsppvqq and

CrDLsppvqq bN “
à

aPI
Ea bRa

where the connections Ra are regular. As seen in the proof of 4.1.1, the assumption
on Irr˚D implies that any smooth curve transverse to D is non characteristic for N .
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Taking the axis Dy yields

dimH1 Irr˚0 N|Dy “ dimpH1 Irr˚DN q0 “
ÿ

aPI
pordy aq rkRa

On the other hand, choose a point P P DL above 0. Then, the irregular values of
N|Dy are the apP q, a P I. Thus,

H1 Irr˚0 N|Dy “
ÿ

aPI
ordy apP q rkRa

Hence, ordy apP q “ ordy a for every a P I. In particular, the coefficient function of
the highest power of 1{v contributing to a P I does not vanish at P . Arguing similarly
for EndN , we obtain that N has good formal decomposition at 0.

Lemma 4.3.3. — Suppose that Irr˚DM is a local system. For every M-marked con-
nection pN , isoq, the complex Irr˚DN is a local system.

Proof. — Let χpD, Irr˚DMq : D ÝÑ Z be the local Euler-Poincaré characteristic
of Irr˚DM. By local index theorem [Kas73][Mal81], the value of χpD, Irr˚DMq at
P P D only depends on the multiplicities of the components of the characteristic cycle
of M passing through P . These multiplicities can be computed at the level of the
formal neighbourhood of P in C2. Since M and N are formally isomorphic at P , we
have

χpD, Irr˚DMq “ χpD, Irr˚DN q
Hence, χpD, Irr˚DN q is constant. On the other hand, we know from [Meb90] that
Irr˚DN is perverse. We conclude with the fact that a perverse sheaf with constant
local Euler-Poincaré characteristic is a local system [Tey13, 13.1.6].

Using notations from 4.2, we are now in position to prove the sought-after

Proposition 4.3.4. — Suppose that Irr˚DM and Irr˚D EndM are local systems in a
neighbourhood of 0. If pN ˚, iso˚q extends into a M-marked connection pN , isoq, then
M has good formal decomposition at 0.

Proof. — From 4.3.1, the extension N is semi-stable at 0. From 4.3.3, we know that
Irr˚DN and Irr˚D EndN are local systems in a neighbourhood of 0. From 4.3.2, we
deduce that N has good formal decomposition at 0. Hence, so does M.

5. Extension via moduli of Stokes torsors

5.1. A geometric extension criterion. — We keep notations from 4.2. We first
relate moduli of Stokes torsors to the problem of extending marked connections. Let
π : X ÝÑ C2 be a resolution of the turning point 0 for M. Such a resolution exists
by works of Kedlaya [Ked10] and Mochizuki [Moc09]. Set E :“ π´1pDq and pick
P P D˚. Let

Φ : H1pBE,StăEπ`Mq
// H1pBP,StăDM q

be the restriction morphism of Stokes torsors.
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Lemma 5.1.1. — Let pN ˚, iso˚q be a M˚-marked connection such that pN ˚
P , iso

˚
P q

lies in the image of Φ. Then, pN ˚, iso˚q extends into an M-marked connection in a
neighbourhood of 0.

Proof. — From 2.6.1, any C-point of H1pBE,StăEπ`Mq comes from a unique π`M-
marked connection. Hence, there exists pN 1, iso1q P H1pBE,StăEπ`Mq such that
ΦpN 1, iso1q “ pN ˚

P , iso
˚
P q. From [Meb04, 3.6-4], the D-module N :“ π`N 1 is a

meromorphic connection with poles along D. By flat base change

N
pD » O

{C2|D
bRπ˚pDXÑC2 bN 1q

» Rπ˚pO
zX|E

bDXÑC2 bN 1q

» Rπ˚pDXÑC2 bN 1
pE
q

» π`N 1
pE

and similarly M
pD » π`pπ

`Mq
pE . Hence, iso :“ π` iso1 defines an isomorphism

between N
pD and M

pD. So pN , isoq is a M-marked connection. By definition, the
germ of pN , isoq at P is pN ˚

P , iso
˚
P q. Since Rp˚ StăDM is a local system on D˚, we

deduce
pN|D˚ , iso|D˚q “ pN ˚, iso˚q

Hence, pN , isoq extends pN ˚, iso˚q in a neighbourhood of 0. So 5.1.1 is proved.

Combining 4.3.4 with 5.1.1 and the following proposition will finish the proof of
Theorem 1.

Proposition 5.1.2. — If the perverse complex Irr˚D EndM is a local system on D,
then Φ induces an isomorphism between each irreducible component of H1pBE,StăEπ`Mq

and H1pBP,StăDM q.

Proof. — From [BV89], we know that H1pBP,StăDM q is an affine space. Since affine
spaces in characteristic 0 have no non trivial finite étale covers, it is enough to prove
that Φ is finite étale. From 2.5.18, the morphism Φ is a closed immersion. We are
thus left to show that Φ is étale.

Etale morphisms between smooth schemes of finite type over C are those mor-
phisms inducing isomorphisms on the tangent spaces. Hence, we are left to prove that
H1pBE,StăEπ`Mq is smooth and that Φ induces isomorphisms on the tangent spaces.
Let pM, isoq be a π`M-marked connection. From 2.8.3, an obstruction theory to
lifting infinitesimally the Stokes torsor of pM, isoq is given by

H2pE, Irr˚E EndMq » H2pD, Irr˚D π` EndMq » 0

The first identification expresses the compatibility of irregularity with proper push-
forward. From 4.3.3 applied to the EndM-marked connection pπ` EndM,π` isoq,
the perverse complex Irr˚D π` EndM is a local system in a neighbourhood of 0 and
concentrated in degree 1. This implies the vanishing. Hence, H1pBE,StăEπ`Mq is
smooth at pM, isoq. From 2.6.1, any C-point ofH1pBE,StăEπ`Mq is of the form pM, isoq.
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Thus, H1pBE,StăEπ`Mq is smooth.
Furthermore, we have a commutative diagram

TpM,isoqH
1pBE,StăEπ`Mq

//

o
��

TpMP ,isoP qH
1pBP,StăDM q

o
��

H1pE, Irr˚E EndMq //

o
��

pH1 Irr˚D EndMqP

|

��

H1pD, Irr˚D π` EndMq //

o
��

pH1 Irr˚D EndMqP

|

��

H0pD,H1 Irr˚D π` EndMq // pH1 Irr˚D EndMqP

The first vertical maps are isomorphisms by 2.8.4. As already proved, Irr˚D π` EndM
is a local system concentrated in degree 1. Hence, the last vertical and the bottom
arrows are isomorphisms. Thus, the tangent map of Φ at pM, isoq is an isomorphism.
This finishes the proof of proposition 5.1.2, and thus the proof of Theorem 1.
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