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MODULI OF STOKES TORSORS AND SINGULARITIES OF
DIFFERENTIAL EQUATIONS

by

Jean-Baptiste Teyssier

Abstract. — LetM be a meromorphic connection with poles along a smooth divisor
D in a smooth algebraic variety. Let SolM be the solution complex of M. We prove
that the good formal decomposition locus of M coincides with the locus where the
restrictions to D of SolM and Sol EndM are local systems. By contrast to the very
different natures of these loci (the first one is defined via algebra, the second one
is defined via analysis), the proof of their coincidence is geometric. It relies on the
moduli of Stokes torsors.

The main problematic of this paper is to understand how the geometry of the Stokes
phenomenon in any dimension sheds light on the interplay between the singularities
of a differential equation and the singularities of its solutions.

Consider an algebraic linear system M of differential equations with n variables
BX

Bxi
“ ΩiX i “ 1, . . . , n

where Ωi is a square matrix of size r with coefficients into the ring Crx1, . . . , xnsrx
´1
n s

of Laurent polynomials with poles along the hyperplane D in Cn given by xn “ 0.
At a point away from D, the holomorphic solutions of the system M are fully
understood by means of Cauchy’s theorem. At a point of D, the situation is much
more complicated. It is still the source of challenging unsolved problems. We call D
the singular locus of M. Two distinguished open subsets of D where the singularities
of M are mild can be defined.

First, the set GoodpMq of good formal decomposition points of M is the subset
of D consisting of points P at the formal neighbourhood of which M admits a good
decomposition. For P being the origin, and modulo ramification issues that will be
neglected in this introduction, this means roughly that there exists a base change
with coefficients in CJx1, . . . , xnKrx´1

n s splitting M as a direct sum of well-understood
systems easier to work with.

Good formal decomposition can always be achieved in the one variable case [Sv00].
It is desirable in general because it provides a concrete description of the system,
at least formally at a point. In the higher variable case however, it was observed in
[Sab00] that M may not have good formal decomposition at every point of D. Thus,
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the set GoodpMq is a non trivial invariant of M. As proved by André [And07], the
set GoodpMq is the complement in D of a Zariski closed subset F of D either purely
of codimension 1 in D or empty. Traditionally, F is called the Turning locus of M,
by reference to the way the Stokes directions of M move along a small circle in D
going around a turning point. In a sense, the good formal decomposition locus
of M is the open subset of D where the singularities of the system M are
as simple as possible.

To define the second distinguished subset of D associated to M, let us view M
as a D-module, that is a module over the Weyl algebra of differential operators. Let
us denote by SolM the solution complex of the analytification of M. Concretely,
H0 SolM encodes the holomorphic solutions of our differential system while the
higher cohomologies of SolM keep track of higher Ext groups in the category of
D-modules. As proved by Kashiwara [Kas75], the complex SolM is perverse.
From a theorem of Mebkhout [Meb90], the restriction of SolM to D, that is, the
irregularity complex of M along D, denoted by Irr˚DM in this paper, is also perverse.
In particular, pSolMq|D is a local system on D away from a closed analytic subset of
D. The smooth locus of pSolMq|D denotes the biggest open in D on which pSolMq|D
is a local system. In a sense, the smooth locus of pSolMq|D is the open subset
of D where the singularities of the (derived) solutions of M are as simple
as possible.

As observed in [Tey13], the open set GoodpMq is included in the smooth lo-
cus of pSolMq|D and pSol EndMq|D. The reverse inclusion was conjectured in
[Tey13, 15.0.5]. Coincidence of GoodpMq with the smooth locus of pSolMq|D
and pSol EndMq|D seems surprising at first sight, since goodness is an algebraic
notion whereas SolM is transcendental. The main goal of this paper is to prove via
geometric means the following

Theorem 1. — Let X be a smooth complex algebraic variety. Let D be a smooth
divisor in X. Let M be a meromorphic connection on X with poles along D. Then,
the good formal decomposition locus of M is the locus of D where pSolMq|D and
pSol EndMq|D are local systems.

Other criteria detecting good points of meromorphic connections are available in
the literature. Let us mention André’s criterion [And07, 3.4.1] in terms of speciali-
sations of Newton polygons. Let us also mention Kedlaya’s criterion [Ked10, 4.4.2]
in terms of the variation of spectral norms under varying Gauss norms on the ring
of formal power series. This criterion is numerical in nature. By contrast, the new
criterion given by Theorem 1 is transcendental. Its sheaf theoretic flavour makes it
possible to track the existence of turning points in the cohomology of the irregularity
complex. For an application of this observation, let us refer to Theorem 2 below.

The main tool at stake in the proof of Theorem 1 is geometric, via moduli of Stokes
torsors [Tey17]. For a detailed explanation of the line of thoughts that brought them
into the picture, let us refer to 1.1. Before stating an application of Theorem 1 (see
Theorem 2 below), we explain how these moduli are used by giving the main ingre-
dients of the proof of Theorem 1 in dimension 2. In that case, we have to show the
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goodness of a point 0 P D given that pSolMq|D and pSol EndMq|D are local systems
in a neighbourhood of 0. The main problem is to extend the good formal decomposi-
tion of M across 0. This decomposition can be seen as a system of linear differential
equations N defined in a neighbourhood of a small disc ∆˚ of D punctured at 0.

To show that N extends across 0, we first construct via Stokes torsors a moduli
space X parametrizing very roughly systems defined in a neighbourhood of ∆ and
formally isomorphic to M along ∆. A distinguished point of X is given by M itself.
Similarly, we construct a moduli space Y parametrizing roughly systems defined in a
neighbourhood of ∆˚ and formally isomorphic to M|∆˚ along ∆˚. Two distinguished
points of Y are M|∆˚ and N . Restriction from ∆ to ∆˚ provides a morphism of
algebraic varieties res : X ÝÑ Y. The problem of extending N is then the problem
of proving that res hits N . The moduli X and Y have the wonderful property that
the tangent map TM res of res at M is exactly the map

Γp∆,H1 Sol EndMq ÝÑ Γp∆˚,H1 Sol EndMq

associating to s P Γp∆,H1 Sol EndMq the restriction of s to ∆˚. In this geometric
picture, the smoothness of pH1 Sol EndMq|D around 0 thus translates into the fact
that TM res is an isomorphism of vector spaces. Since X and Y are smooth, we
deduce that res is étale at the point M. Thus, the image of res in Y contains a non
empty open set. We prove furthermore (see Theorem 3 below) that res is a closed
immersion, so its image is closed in Y. Since Y is irreducible, we conclude that res is
surjective, which proves the existence of the sought-after extension of N .

Let us now describe an application of Theorem 1. Let X be a smooth variety over a
finite field of characteristic p ą 0. Let ` ‰ p be a prime number. As proved by Deligne
[EK12], there is only a finite number of semi-simple `-adic local systems on X with
prescribed rank, bounded ramification at infinity and up to a twist by a character
coming from the base field. A natural question is to look for a differential analogue of
this finiteness result. Let X be a smooth complex proper algebraic variety. Let M be
a meromorphic connection on X. In this situation, H. Esnault and A. Langer asked
whether it is possible to control the resolution of turning points of M by means of
X, the rank of M and the irregularity of M. In dimension 2, this question amounts
to bound the number of blow-ups needed to eliminate the turning points of M. To
the author’s knowledge, this question is still widely open. If such a bound exists in
dimension 2, the number of turning points of M should in particular be bounded by
a quantity depending only on the surface X, the rank of M and the irregularity of
M. As an application of Theorem 1, we give such a bound in a relative situation,
thus providing the first evidence for a positive answer to H. Esnault and A. Langer’s
question. This is the following

Theorem 2. — Let S be a smooth complex algebraic curve. Let 0 P S. Let p : C ÝÑ
S be a relative smooth proper curve of genus g. Let M be a meromorphic connection
on C with poles along the fibre C0 of p above 0. Let rDpMq be the highest generic
slope of M along C0. Then, the number of turning points of M along C0 is bounded
by 8prankMq2pg ` 1qrDpMq.
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To prove Theorem 2, the main tools are Theorem 1 and a new boundedness result
for nearby slopes [Tey16] suggested by the `-adic picture [HT18]. See remark 5.1.4
for details.

A crucial step in the proof of Theorem 1 is to understand the geometry of the
restriction map for Stokes torsors. This is achieved by Theorem 3 below. To state
it, let X be a smooth complex algebraic variety. Let D be a normal crossing divisor
in X. Let M be a good meromorphic connection on X with poles along D. Let
pD : rX ÝÑ X be the fibre product of the real blow-ups of X along the components
of D. For every subset A Ă D, put BA :“ p´1

D pAq. Let StăDM be the Stokes sheaf of
M (see section 1.6 for details). This is a sheaf of complex unipotent algebraic groups
on BD. Then, we have the following

Theorem 3. — Let U Ă V Ă D be non empty open subsets in D such that V is
connected. Then, the natural morphism

H1pBV,StăDM q // H1pBU,StăDM q

is a closed immersion of affine schemes of finite type over C.

Let us finally give an application of Theorem 3 to degenerations of irregular singu-
larities. Let X be a smooth algebraic variety and let D be a germ of smooth divisor
at 0 P X. Let M be a germ of meromorphic connection defined in a neighbourhood of
D in X and with poles along D. Motivated by Dubrovin’s conjecture and the study
of Frobenius manifolds, Cotti, Dubrovin and Guzzetti [CDG17] studied how much
information on the Stokes data of M can be retrieved from the restriction of M to a
smooth curve C transverse to D and passing through 0.

Under the assumption thatM
pD splits as a direct sum of regular connections twisted

by meromorphic functions a1, . . . , an P OXp˚Dq with simple poles along D, they
proved that the Stokes data of the restriction M|C determine in a bijective way the
Stokes data of M in a small neighbourhood of 0 in D. This is striking, since the
numerators of the ai ´ aj may vanish at 0, thus inducing a discontinuity at 0 in the
configuration of the Stokes directions. Using different methods, this was reproved by
Sabbah in [Sab17b, Th 1.4]. In this paper, we give a short conceptual proof of a
stronger version of Cotti, Dubrovin and Guzzetti’s injectivity theorem: we don’t make
any assumption on the shape of M

pD, nor do we suppose that D is smooth, nor do we
assume that C is transverse to D. The price to pay for this generality is the use of
resolution of turning points, as proved in the fundamental work of Kedlaya [Ked11]
and Mochizuki [Moc11b]. The intuition that the techniques developed in this paper
could be applied to the questions considered by Cotti, Dubrovin and Guzzetti is due
to C. Sabbah.

To state our result, let us recall that a M-marked connection is the data of a pair
pM, isoq where M is a germ of meromorphic connection with poles along D defined
in a neighbourhood of D in X, and where iso : M

pD ÝÑ M
pD is an isomorphism of

formal connections.

Theorem 4. — Let X be a germ of smooth algebraic variety around a point 0. Let D
be a germ of divisor passing through 0. Let M be a germ of meromorphic connection
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at 0 with poles along D. Let C be a smooth curve passing through 0 and not contained
in any of the irreducible components of D. If pM1, iso1q and pM2, iso2q are M-marked
connections such that

pM1, iso1q|C » pM2, iso2q|C

then pM1, iso1q and pM2, iso2q are isomorphic in a neighbourhood of 0.

Let us give an outline of the paper. In section 1, we introduce the global variant of
the moduli of Stokes torsors constructed in [Tey17] suited for the proof of Theorem
1. We then prove Theorem 4. In section 2, we interpret the tangent spaces and the
obstruction theory for these moduli in a transcendental way via the solution complexes
for connections. We then prove Theorem 5. In section 3, we show how to reduce the
proof of Theorem 1 to extending the good formal model of M across the point 0
under study. In section 4, we show that the sought-after extension exists provided
that the moduli of Stokes torsors associated to a resolution of the turning point 0
for M satisfies suitable geometric conditions. Finally, we show that these geometric
conditions are always satisfied when the hypothesis of Theorem 1 are satisfied, thus
concluding the proof of Theorem 1. The last section is devoted to the proof of Theorem
2.

Acknowledgement. — I thank Y. André, P. Boalch, M, Brion, H. Esnault, F. Lo-
ray, C. Sabbah, T. Saito, C. Simpson and T. Mochizuki for interesting discussions
and constructive remarks on a first draft of this work. I thank C. Sabbah for sharing
with me the intuition that the techniques developed in this paper could be applied
to the questions considered in [CDG17]. I thank H. Hu for stimulating exchanges
on nearby slopes. I thank N. Budur and W. Veys for constant support during the
preparation of this paper. This work has been funded by the long term structural
funding-Methusalem grant of the Flemish Government. I thank KU Leuven for pro-
viding outstanding working conditions. This paper benefited from a one month stay
at the Hausdorff Research Institute for Mathematics, Bonn. I thank the Hausdorff
Institute for providing outstanding working conditions.

1. Moduli of Stokes torsors. Global aspects

1.1. Why moduli of Stokes torsors?— Let us explain in this subsection how the
moduli of Stokes torsors were found to be relevant to the proof of Theorem 1. We use
the notations from the introduction and work in dimension 2. We suppose that 0 P D
lies in the smooth locus of pSolMq|D and pSol EndMq|D, and we want to prove that
0 is a good formal decomposition point for M.

From a theorem of Kedlaya [Ked10][Ked11] and Mochizuki [Moc09][Moc11b],
our connection M acquires good formal decomposition at any point after pulling-back
by a suitable sequence of blow-ups above D. To test the validity of the conjecture
[Tey13, 15.0.5], a natural case to consider was the case where only one blow-up is
needed. Using results of André [And07], it was shown in [Tey14] that the conjecture
reduces in this case to the following
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Question. — Given two good meromorphic connections M and N with poles along
the coordinate axis in C2 and formally isomorphic at 0, is it true that

(1.1.1) dimpH1 Sol EndMq0 “ dimpH1 Sol EndN q0 ?

It turns out that each side of (1.1.1) appeared as dimensions of moduli spaces of
Stokes torsors constructed by Babbitt-Varadarajan in [BV89]. These moduli were
associated with germs of meromorphic connections in dimension 1. Babbitt and
Varadarajan proved that they are affine spaces. This suggested the existence of a
moduli X with two points P,Q P X such that the left-hand side of (1.1.1) would be
dimTPX and the right-hand side of (1.1.1) would be dimTQX . The equality (1.1.1)
would then follow from the smoothness and connectedness of the putative moduli.
This is what led to [Tey17], but the question of smoothness and connectedness was
left open. In the meantime, a positive answer to the above question was given by
purely analytic means by C. Sabbah in [Sab17a].

1.2. Relation with [Tey17]. — In [Tey17], a moduli for local Stokes torsors was
constructed in any dimension. This moduli suffers two drawbacks in view of the
proof of Theorem 1. First, the Stokes sheaf used in [Tey17] only makes sense at a
neigbourhood of a point, whereas our situation will be global as soon as we apply
Kedlaya-Mochizuki’s resolution of turning points. Second, the relation between Irreg-
ularity and the tangent spaces of the moduli from [Tey17] only holds in particular
cases. To convert the hypothesis on Irregularity appearing in Theorem 1 into a geo-
metric statement pertaining to moduli of torsors, we need to replace the Stokes sheaf
StM of a connection M by a subsheaf denoted by StăDM . We will abuse terminology be
also calling the torsors under StăDM Stokes torsors. The sheaf StăDM has the advantage
of being globally defined when M is globally defined. Along the smooth locus of D,
the sheaf StăDM is the usual Stokes sheaf. The only difference between StM and StăDM
appears at a singular point of D.

1.3. Geometric setup. — In this subsection, we introduce basic notations. Let X
be a smooth complex algebraic variety of dimension n. Let D be a normal crossing
divisor in X. For a quasi-coherent sheaf F on X, we denote by F|D the sheaf of germs
of sections of F along D. Let D1, . . . , Dm be the irreducible components of D. For
I Ă J1,mK, set

DI :“
č

iPI

Di and D˝I :“ DIz
ď

iRI

Di

Let ρ be a metric on X. For I Ă J1,mK and for ε ą 0 small enough, put

∆I :“ tx P D|Dy P DI with ρpx, yq ă εu

and
∆˝I :“ ∆Iz

ď

iRI

Di

The ∆˝I , I Ă J1,mK form an open cover of D. Since ε will not play any explicit role
in the sequel, we will slightly abuse terminology by replacing the expression "at the
cost of shrinking ε" by "at the cost of shrinking the ∆I".
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1.4. Functions with asymptotic expansion along D. — For i “ 1, . . . ,m, let
rXi ÝÑ X be the real blow-up of X along Di. Let pD : rX ÝÑ X be the fibre product
of the rXi, i “ 1, . . . ,m above X. For every subset A Ă D, put BA :“ p´1

D pAq. Let
ιA : BA ÝÑ BD be the canonical inclusion.

Let A be the sheaf of functions on BD admitting an asymptotic expansion along
D [Sab00]. For a closed subset Z in D, let A

pZ be the completion of A along the
pull-back by pD of the ideal sheaf of Z. Put AăZ :“ KerpA ÝÑ A

pZq. When Z “ D,
the sheaf AăD can be concretely described locally as follows (see [Sab00, II 1.1.11]
for a proof). Let px1, . . . , xnq be local coordinates centred at 0 P D such that D is
defined around 0 by x1 ¨ ¨ ¨xl “ 0 for some l P J1,mK. Then, the germ of AăD at
θ P B0 is given by those holomorphic functions u defined over the trace on XzD of
a neighbourhood Ω of θ in rX, and such that for every compact K Ă Ω, for every
N :“ pN1, . . . , Nlq P N

l, there exists a constant CK,N ą 0 satisfying

|upxq| ď CK,N |x1|
N1 ¨ ¨ ¨ |xl|

Nl for every x P K X pXzDq

1.5. Torsors. — Let M be a manifold. Let G be a sheaf of groups on M . We recall
that a torsor under G is a sheaf F on M endowed with a left action of G such that
there exists a cover U by open subsets ofM such that for every U P U , there exists an
isomorphism of sheaves F|U » G|U commuting with the action of G, where G acts on
itself by multiplication on the left. It is a standard fact that isomorphism classes of
G-torsors are in bijection with H1pM,Gq, the set of non abelian cohomology classes
of G.

1.6. Stokes torsors and the functor of relative Stokes torsors. — Let M
be a good meromorphic connection defined in a neighbourhood of D and with poles
along D. We set

BM “ Abp´1
D OX|D p

´1
D M

and
BM

pD “ A
pD bp´1

D OX|D p
´1
D M

Let DX be the sheaf of differential operators on X. The sheaf A is endowed with an
action of p´1

D DX|D. Hence, so does BM. We can thus form the De Rham complex of
M with coefficients in A as

BM // p´1
D Ω1

X|D bp´1
D OX|D BM

// ¨ ¨ ¨ // p´1
D ΩnX|D bp´1

D OX|D BM

It is denoted by DR BM. Similarly, we denote by DRăDM the De Rham complex of
M with coefficients in AăD.

Let Z be a closed subset of D. Let StăZM be the subsheaf of H0 DR BEndM of
sections asymptotic to the Identity along Z, that is of the form Id`f where f has
coefficients in AăZ . The sheaf StăZM is a sheaf of complex unipotent algebraic groups
on BZ. This is the Stokes sheaf of M along Z.

Since StăZM is a sheaf of complex algebraic groups, for every R P C-alg, the sheaf of
R-points of StăZM is a well-defined sheaf of groups on BZ. It is denoted by StăZM pRq.
This is the Stokes sheaf of M along Z relative to R. Torsors under StăZM pRq are the
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Stokes torsors along Z relative to R. For every subset A Ă Z, let H1pBA,StăZM q be
the functor

C-alg ÝÑ Set

R ÝÑ H1pBA,StăZM pRqq

From [Tey17, Th. 1], the functor H1pBP,StăPM q is an affine scheme of finite type over
C for every P P D. The main goal of this section to prove that H1pBD,StăDM q is also
an affine scheme of finite type over C. Note that in the rank 2 case, this scheme is
known to be an affine space [Tey19]. We start with the following

Lemma 1.6.1. — Torsors under StăDM have no non trivial automorphisms.

Proof. — It is enough to show that StăDM -torsors above a point P P D have no non
trivial automorphisms. To do this, we can suppose that M is unramified. Let T be
a StăDM -torsor on BP . Let φ : T ÝÑ T be an automorphism of StăDM -torsors. Since
AăD is a subsheaf of AăP , there is an injection ι : StăDM ÝÑ StăPM . To show that
φ is the identity of T amounts to show that the push-forward ι˚φ : ι˚T ÝÑ ι˚T is
the identity of the StăPM -torsor ι˚T . This last assertion is a consequence of [Tey17,
1.8.1]. This finishes the proof of lemma 1.6.1.

As a straighforward consequence of lemma 1.6.1, we deduce the following

Corollary 1.6.2. — The presheaf of functors R1pD˚ StăDM defined as

OpenpDq ÝÑ Set

U ÝÑ H1pBU,StăDM q

is a sheaf of functors. That is, for every cover U of D by open subsets, the first arrow
in the following diagram of pointed functors

H1pBD,StăDM q //
ś

UPU H
1pBU,StăDM q //

// ś

U,V PU H
1pBU X BV,StăDM q

is an equalizer.

The first goal of this section is to prove the following representability theorem

Theorem 5. — The functor H1pBD,StăDM q is representable by an affine scheme of
finite type over C.

In particular, Theorem 5 says that the sheaf of functors R1pD˚ StăDM on D is a
sheaf of affine schemes of finite type over C. In order to prove Theorem 1, we will
need to understand the geometry of the transition maps of the sheaf R1pD˚ StăDM .
The second goal of this section is thus to prove Theorem 3.
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1.7. Representability by a scheme. — To prove Theorem 5, the idea is to anal-
yse separately the contributions coming from each stratum of D. At the cost of
shrinking the ∆I , Mochizuki’s local extension lemma [Moc11a, 3.17] implies that
ι´1
D˝I

StăDM -torsors extend canonically to B∆˝I for every I Ă J1,mK. Hence, there is a
canonical isomorphism of functors

H1pBD˝I ,StăDM q
„ // H1pB∆˝I ,StăDM q

Applying corollary 1.6.2 to the open cover of D formed by the ∆˝I , I Ă J1,mK, we
deduce that H1pBD,StăDM q is a finite limit of the functors H1pBD˝I ,StăDM q, I Ă J1,mK.
Hence, Theorem 5 is a consequence of the following

Proposition 1.7.1. — Let I Ă J1,mK be non empty. Suppose that D˝I is connected
and pick P P D˝I . Then, the functors H1pBD˝I ,StăDM q and H1pBP,StăDM q are affine
schemes of finite type over C. The natural morphism

H1pBD˝I ,StăDM q // H1pBP,StăDM q

is a closed immersion.

Proof. — Let p˝I be the restriction of pD to BD˝I . Let B be a ball in D˝I . Let U, V Ă B
be connected open subsets such that U Ă V . Let Q P U . From Mochizuki’s extension
theorem [Moc11a, 3.9]p1q, the restriction morphisms in

H1pBV,StăDM q //

((

H1pBU,StăDM q

��

H1pBQ,StăDM q

are isomorphisms of functors. Hence, R1p˝I˚ StăDM is a local system of functors on
D˝I in the sense of [Sim94], and the stalk of R1p˝I˚ StăDM at P is H1pBP,StăDM q.
Thus, H1pBD˝I ,StăDM q is the functor of invariants for the action of π1pD

˝
I , P q on

H1pBP,StăDM q. That is, if pγ1, . . . , γN q denotes a set of generators for π1pD
˝
I , P q,

the following diagram of functors

H1pBD˝I ,StăDM q //

��

H1pBP,StăDM q

pId,γ1,...,γN q

��

H1pBP,StăDM q
Diagonal

// H1pBP,StăDM qN`1

is cartesian. To prove Theorem 5, we are thus left to prove that H1pBP,StăDM q is an
affine scheme of finite type over C. We argue recursively on the cardinality of I. If I
is a singleton, this is a consequence of Babbit-Varadarajan’s representability theorem
[BV89]. In general, this is a consequence of the recursion hypothesis combined with
the proposition 1.7.2 below.

p1qSee also [Sab02, II 6.1] for the case where I is a singleton.
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Proposition 1.7.2. — Let I Ă J1,mK with at least two elements. Let P P D˝I . Let
i P I such that the difference of any two distinct irregular values for M at P has poles
along Di

p2q. Then, for a small enough neighbourhood ∆ of P in DIztiu, extension-
restriction of torsors

(1.7.3) H1pBP,StăDM q // H1pB∆˚,StăDM q

is an isomorphism of functors, where ∆˚ “ ∆zDi Ă D˝Iztiu.

Proof. — By Galois descent, it is enough to treat the case where M is unramified. At
the cost of reindexing the components of D, we can take local coordinates px1, . . . , xnq
centred at P such that D is given by x1 ¨ ¨ ¨xl “ 0 in a neighbourhood of P and such
that i “ l. In particular,

rX » pr0,`8rˆS1ql ˆ Cn´l

and pD reads
pprk, θkqk, yq ÝÑ pprke

iθkqk, yq

Let ∆ be a small enough polydisc in DIztiu such that any StăDM -torsor on BP extends
canonically to B∆. The map (1.7.3) is then defined as the composition map

H1pBP,StăDM q
„ // H1pB∆,StăDM q // H1pB∆˚,StăDM q

Let j : B∆˚ ÝÑ BD be the canonical inclusion.

Lemma 1.7.4. — For every T P H1pB∆˚,StăDM q, the sheaf ι´1
P j˚T is a ι´1

P j˚j
´1 StăDM -

torsor on BP .

Proof. — Let pθ0, 0q P BP . Let I1, . . . , Il be intervals in S1 such that θ0 P I1ˆ¨ ¨ ¨ˆIl.
Set

S “ pr0, rrˆI1q ˆ ¨ ¨ ¨ ˆ pr0, rrˆIlq ˆ∆1

where r ą 0 and where ∆1 is a neighbourhood of 0 in Cn´l. To prove lemma 1.7.4,
we have to prove that T is the trivial StăDM -torsor on S X B∆˚ for S small enough.
For S small enough, we have

S X B∆˚ “ pt0u ˆ I1q ˆ ¨ ¨ ¨ ˆ pt0u ˆ Il´1q ˆ ps0, rrˆIlq ˆ∆1

Let a, b be distinct irregular values for M at P . Put Fa,b :“ Repa´bq|z´ ordpa´bq| and
put ordpa ´ bq “ ´pαabp1q, . . . , αabplqq P Z

l
ď0. By definition, the Stokes hyperplanes

for pa, bq are the connected components of Fa,b ˝ pD “ 0. They are of the form

θabpzq ´
l

ÿ

i“1

αabpiqθi “
π

2
` kπ

where k P Z and where θab is a continuous function defined in a neigbourhood of 0
in Cn. For S small enough, the open set S X B∆˚ thus meets at most one Stokes

p2qSuch a component exists by goodness property of the irregular values of M.
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hyperplane for pa, bq. From Mochizuki’s splitting lemma [Moc11b, 4.1.5], we deduce
that T is trivial on S X B∆˚. This finishes the proof of lemma 1.7.4.

From lemma 1.7.4, ι´1
P j˚ induces a morphism of functors

(1.7.5) H1pB∆˚,StăDM q // H1pBP, ι´1
P j˚j

´1 StăDM q

If we prove that the adjunction morphism

(1.7.6) ι´1
P StăDM

// ι´1
P j˚j

´1 StăDM

is an isomorphism, then (1.7.5) will provide us with an inverse for (1.7.3). We now
prove that (1.7.6) is an isomorphism. Injectivity is obvious, so we are left to prove
surjectivity. This is a local statement on BP . Hence, Mochizuki’s asymptotic devel-
opment theorem [Moc11b, 3.2.10] reduces the question to the case where M is split
unramified. If I denotes the set of irregular values for M at P , this means that

M “
à

aPI
Ea bRa

where Ea “ pOXp˚Dq, d ´ daq and where Ra is regular. Let ia : Ea bRa ÝÑ N be
the canonical inclusion and let pa : N ÝÑ Ea bRa be the canonical projection. Let
I1, . . . , Il be intervals in S1. Set

S “ pr0, rrˆI1q ˆ ¨ ¨ ¨ ˆ pr0, rrˆIlq ˆ∆1

where r ą 0 is small enough and where ∆1 is a small enough neighbourhood of 0 in
Cn´l. Sections of StăDM on S X BD are automorphisms of M on S X pXzDq of the
form Id`f where pafib “ 0 unless

(1.7.7) ea´b P ΓpS X BD,AăDq

Sections of StăDM on

S X B∆˚ “ pt0u ˆ I1q ˆ ¨ ¨ ¨ ˆ pt0u ˆ Il´1q ˆ ps0, rrˆIlq ˆ∆1

are automorphisms of M on S X pXzDq of the form Id`f where pafib “ 0 unless

(1.7.8) ea´b P ΓpS X B∆˚,AăDq
We thus have to show that for every distinct irregular values a, b for M, the conditions
(1.7.7) and (1.7.8) are equivalent for a small enough choice of S. A change of variable
reduces the problem to the case where a ´ b “ 1{xα1

1 ¨ ¨ ¨xαll where pα1, . . . , αlq P

Nl´1 ˆ N˚. Note that condition (1.7.7) trivially implies condition (1.7.8). Suppose
that e1{x

α1
1 ¨¨¨x

αl
l P ΓpS X B∆˚,AăDq. At the cost of shrinking S, this implies that

there exists a constant C ą 0 such that for every

px1, . . . , xnq P ps0, rrˆI1q ˆ ¨ ¨ ¨ ˆ ps0, rrˆIl´1q ˆ pr
r

2
, rrˆIlq ˆ∆1

we have
|e1{x

α1
1 ¨¨¨x

αl
l | ď C|x1| ¨ ¨ ¨ |xl´1|

Writing xi “ pri, θiq for i “ 1, . . . , l ´ 1, this means

ecospα1θ1`¨¨¨`αlθlq{r
α1
1 ¨¨¨r

αl
l ď Cr1 ¨ ¨ ¨ rl´1
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In particular, αi ą 0 for i “ 1, . . . , l ´ 1 and cospα1θ1 ` ¨ ¨ ¨ ` αlθlq ă 0 for every
pθ1, . . . , θlq P I1 ˆ ¨ ¨ ¨ ˆ Il. At the cost of shrinking S further, there exists c ą 0 such
that cospα1θ1 ` ¨ ¨ ¨ ` αlθlq ă ´c on I1 ˆ ¨ ¨ ¨ ˆ Il. Then, we have

|e1{x
α1
1 ¨¨¨x

αl
l | ď e´c{|x1|

α1 ¨¨¨|xl|
αl

on S. Since αi ą 0 for i “ 1, . . . , l, we deduce that (1.7.8) holds, which proves
the equivalence between conditions (1.7.7) and (1.7.8). This finishes the proof of
proposition 1.7.3, and thus the proof of Theorem 5.

We store the following immediate corollary from proposition 1.7.1 for later use.

Corollary 1.7.9. — Let I Ă J1,mK. Let U Ă V Ă D˝I be non empty open subsets in
D˝I such that V is connected. Then, the natural morphism

H1pBV,StăDM q // H1pBU,StăDM q

is a closed immersion.

Proof. — Choose a point P P U . Then, there is a factorization

H1pBV,StăDM q

((

// H1pBU,StăDM q

��

H1pBP,StăDM q

From proposition 1.7.1, the diagonal arrow is a closed immersion between affine
schemes. Hence, the horizontal arrow is a closed immersion.

1.8. Passing from one stratum to an other stratum is a closed immersion.
— The next proposition is the technical core of this paper.

Proposition 1.8.1. — Let I Ă J1,mK non empty. Let i P I. Let P P D˝I . Then, for
a small enough neighbourhood ∆ of P in Di, the morphism of schemes

(1.8.2) H1pBP,StăDM q // H1pB∆˚,StăDM q

is a closed immersion, where ∆˚ “ ∆z
Ť

jPIztiuDj Ă D˝i .

Proof. — Note that both functors appearing in (1.8.2) are affine schemes as a con-
sequence of proposition 1.7.1. Let j : B∆˚ ÝÑ BD be the canonical inclusion. The
sheaf of algebraic groups ι´1

Di
StăDM is distinguished in StăDiM . We thus have an exact

sequence of sheaves of algebraic groups on BDi

1 // ι´1
Di

StăDM
ι // StăDiM

// Q // 1

There is an adjunction morphism

(1.8.3) ι´1
P StăDiM

// ι´1
P j˚j

´1 StăDiM “ ι´1
P j˚j

´1 StăDM
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Hence, there is a factorization

(1.8.4) H1pBP,StăDM q

((

ι˚
// H1pBP,StăDiM q

��

H1pB∆˚,StăDM q

From a similar argument to that in proposition 1.7.2, the adjunction morphism (1.8.3)
is an isomorphism of sheaves on BP . Hence, the vertical arrow in (1.8.4) is an iso-
morphism of functors. From proposition 1.7.1, we deduce first that H1pBP,StăDiM q is
an affine scheme of finite type over C. Second, we deduce that to prove proposition
1.8.1, it is enough to prove that

ι˚ : H1pBP,StăDM q // H1pBP,StăDiM q

is a closed immersion. From [Fre57, I.2], there is an exact sequence of pointed functors

(1.8.5) H0pBP,Qq // H1pBP,StăDM q
ι˚
// H1pBP,StăDiM q // H1pBP,Qq

Let us prove that H0pBP,Qq is trivial. The complex of sheaves

StăDiM
// BEndM

pD
// BEndM

xDi

induces a sequence of sheaves

(1.8.6) Q �
�

// BEndM
pD

// BEndM
xDi

By applying pD˚ and then looking at the germs at P , we deduce from [Sab00, p44]
the following sequence

(1.8.7) 0 // H0pBP,Qq // EndM
pD,P

// EndM
xDi,P

By flatness of EndM over OX , the second map in (1.8.7) is injective. Hence,
H0pBP,Qq is trivial. Thus, the following diagram of functors

(1.8.8) H1pBP,StăDM q

ι˚

��

// ˚

��

H1pBP,StăDiM q // H1pBP,Qq

is cartesian, where ˚ denotes the trivial Q-torsor. If we knew that H1pBP,Qq is a
scheme, we would directly obtain that ι˚ is a closed immersion. This question does
not seem to follow from the use of skeletons in [Tey17]. We will circumvent this
problem with a group theoretic argument.

The Stokes hyperplanes of M above P form a finite family of closed subsets in
BP . Note that the associated stratification of BP is such that the restriction of StăDiM
to each stratum is locally constant. Hence, the same argument as in [Tey17, 1.9.1]
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applies. In particular, there exists a cover U of BP by open subsets such that the
morphism of affine schemes

(1.8.9) Z1pU ,StăDiM q // H1pBP,StăDiM q

is surjective at the level of R-points for every R P C-alg. From [BV89, 2.7.3], the
morphism (1.8.9) admits a section. Composing this section with

Z1pU ,StăDiM q // Z1pU ,Qq

gives rise to a commutative triangle of functors

(1.8.10) H1pBP,StăDiM q //

''

H1pBP,Qq

Z1pU ,Qq

OO

The algebraic group

GU :“
ź

UPU
ΓpU,Qq

acts on Z1pU ,Qq. Let

(1.8.11) GU ÝÑ Z1pU ,Qq

be the morphism of schemes obtained by restricting the action of GU to the trivial
cocycle. Since H0pBP,Qq » 0, the morphism (1.8.11) is a monomorphism. There is a
commutative diagram

(1.8.12) H1pBP,StăDM q

ι˚

��

GU

��

// ˚

��

H1pBP,StăDiM q // Z1pU ,Qq // H1pBP,Qq

We would like to reduce the problem of proving that ι˚ is a closed immersion to the
problem of proving that (1.8.11) is a closed immersion. To do this, we would like to
fill the left diagram in (1.8.12) into a cartesian square. Note that the right square
in (1.8.12) may not be cartesian since there may be cocycles in Z1pU ,Qq that are
cohomologous to the trivial cocycle only after passing to a refinement of U . To treat
this problem, we argue by using the universal torsor under StăDM on BP .

Let T univ be the universal torsor under StăDM on BP . Let A be the ring of func-
tions of H1pBP,StăDM q. From the commutativity of (1.8.10), the image γ of T univ in
Z1pU ,QpAqq induces the trivial QpAq-torsor. Hence, there exists a refinement V of U
such that γ|V is cohomologous to the trivial cocycle, that is, such that γ|V lies in the
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image of GVpAq ÝÑ Z1pV,QpAqq. Hence, there is a commutative square

(1.8.13) H1pBP,StăDM q //

ι˚

��

GV

��

H1pBP,StăDiM q // Z1pV,Qq

This square is cartesian. Indeed, let F be the fibre product of H1pBP,StăDiM q with
GV over Z1pV,Qq. By definition, there is a commutative diagram of functors

(1.8.14) H1pBP,StăDM q //

ι˚
((

F

��

H1pBP,StăDiM q

Since the right vertical arrow in (1.8.13) is a monomorphism, F is a sub-functor of
H1pBP,StăDiM q. Hence, all maps in (1.8.14) are inclusions of functors. We are thus left
to prove that F is a sub-functor of H1pBP,StăDM q. This is an immediate consequence
of the fact that H1pBP,StăDM q is the functor of torsors T P H1pBP,StăDiM q inducing
the trivial Q-torsor.

Hence, to prove that ι˚ is a closed immersion, we are left to show that (1.8.11) for
V is a closed immersion. From the general theory of algebraic group actions, the map
(1.8.11) factors as

GV
α // O

β
// Z1pV,Qq

where α is faithfully flat, where O is the orbit of the trivial cocycle under GV and
where β is an immersion of schemes. Since smoothness is a local property for the fppf
topology [SPD, 05B5], the smoothness of GV implies that O is smooth. By definition,
α is an isomorphism at the level of C-points. Hence, α is an isomorphism of varieties.
We are thus left to show that O is closed in Z1pV,Qq. It is enough to show that O is
closed in Z1pV,Qqred. From Kostant-Rosenlicht theorem [Bor91, I 4.10], it is enough
to show that GV is a unipotent algebraic group, which is a consequence of the fact
that the Stokes sheaves are sheaves of unipotent algebraic groups. This concludes the
proof of proposition 1.8.1.

1.9. Proof of Theorem 3. — Let U Ă V Ă D be non empty open subsets in D
such that V is connected. We want to show that the natural morphism

(1.9.1) H1pBV,StăDM q // H1pBU,StăDM q

is a closed immersion of affine schemes of finite type over C. Let A be the set of open
subsets U 1 in V containing U and such that the natural morphism

H1pBU 1,StăDM q ÝÑ H1pBU,StăDM q
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is a closed immersion. We want to show that A contains V . Note that A is not empty
since it contains U . Let B be a subset of A which is totally ordered for the inclusion.
Let R be the ring of functions of H1pBU,StăDM q. For U 1 P B, let IU 1 be the ideal
of functions of H1pBU 1,StăDM q in H1pBU,StăDM q. By assumption on B, the family of
ideals pIU 1qU 1PB is totally ordered for the inclusion. Hence, I :“

Ť

U 1PIU1
is an ideal

in R. Since R is noetherian, there exists U 10 P B such that I “ IU 10 . In particular,
IU 1 “ IU 10 for every U 1 P B containing U 10. Set V 1 :“

Ť

U 1PB U
1. From lemma 1.6.2,

we deduce

H1pBV 1,StăDM q » lim
U 1PB

H1pBU 1,StăDM q

» lim
U 1PB,U 10ĂU

1
H1pBU 1,StăDM q

» H1pBU 10,StăDM q

Thus, V 1 P A. From Zorn lemma, we deduce that A admits a maximal element W . If
W is closed in V , then we have W “ V by connectedness of V . Suppose now that W
is not closed in V . Let P PW zW and let B be a small ball in V containing P and such
that H1pBB, StăDM q ÝÑ H1pBP,StăDM q is an isomorphism. Set W 1 :“ W Y B Ă V .
We are going to show that W 1 P A, which contradicts the fact that W is maximal in
A. From the factorization

(1.9.2) H1pBW 1,StăDM q // H1pBW, StăDM q // H1pBU,StăDM q

we are left to show that the first arrow in (1.9.2) is a closed immersion. From lemma
1.6.2, the following diagram

(1.9.3) H1pBW 1,StăDM q //

��

H1pBB, StăDM q

��

H1pBW, StăDM q // H1pBpW XBq,StăDM q

is cartesian. Hence, it is enough to show that the right vertical arrow in (1.9.3) is a
closed immersion. Let pPnqnPN be a sequence of points in W converging to P . Since
W is open, the sequence pPnqnPN can be supposed to lie in some D˝i for i P J1,mK. Let
∆ Ă B be a small enough neighbourhood of P in Di. Set ∆˚ “ ∆z

Ť

jPIztiuDj Ă D˝i .
From our choice for i, the open set W X ∆˚ is not empty. We have the following
commutative diagram

(1.9.4) H1pBB, StăDM q //

��

H1pB∆˚,StăDM q

��

H1pBpW XBq,StăDM q // H1pBpW X∆˚q,StăDM q

From proposition 1.8.1, the top horizontal arrow in (1.9.4) is a closed immersion. From
corollary 1.7.9, the right vertical arrow in (1.9.4) is a closed immersion. Hence, the
left vertical arrow in (1.9.4) is a closed immersion. Hence, W 1 P A, which contradicts
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the fact that W is maximal in A. Thus, W “ V P A, which finishes the proof of
Theorem 3.

2. Stokes torsors and marked connections

2.1. Notations. — In this section, let X be a smooth complex algebraic variety.
Let D be a normal crossing divisor in X. Let M be a good meromorphic flat bundle
on X with poles along D.

2.2. Definition of marked connections and relation with Stokes torsors. —
Let us recall that a M-marked connection is the data of a couple pM, isoq where M
is a germ of meromorphic connection with poles along D defined in a neighbourhood
of D in X, and where iso : M

pD ÝÑ M
pD is an isomorphism of formal connections.

We denote by IsomisopM,Mq the StăDM pCq-torsor of isomorphisms between BM and
BM which are asymptotic to iso along D. The proof of the following statement was
suggested to me by T. Mochizuki. I thank him for kindly sharing it. When D is
smooth, it was known to Malgrange [Mal83a]. See also [Sab02, II 6.3].

Lemma 2.2.1. — The map associating to every isomorphism class of M-marked
connection pM, isoq the StăDM pCq-torsor IsomisopM,Mq is bijective.

Proof. — Let us construct an inverse. Take T P StăDM pCq and let g “ pgijq be a
cocycle for T associated to a cover pUiqiPI of BD. Let L be the Stokes filtered local
system on BD associated to M. Set Li :“ L|Ui . Then, g allows to glue the Li into
a Stokes filtered local system LT on BD independent of the choice of g. From the
irregular Riemann-Hilbert correspondence [Moc11a, 4.11], LT is the Stokes filtered
local system associated to a unique (up to isomorphism) good meromorphic connection
MT defined in a neighbourhood of D and with poles along D. By construction, the
isomorphism LT |Ui ÝÑ L|Ui corresponds to an isomorphism BMT |Ui ÝÑ BM|Ui .
We thus obtain a formal isomorphism isoi : BMT , pD|Ui,

ÝÑ BM
pD|Ui

. On Uij , the
discrepancy between isoi and isoj is measured by the asymptotic of gij along D.
By definition, this asymptotic is Id. Hence, the isoi glue into a globally defined
isomorphism BMT , pD ÝÑ BM

pD. Applying pD˚ thus yields an isomorphism iso :

MT , pD ÝÑ M
pD. It is then standard to check that the map T ÝÑ pMT , isoq is the

sought-after inverse.

2.3. Proof of Theorem 4. — We are now in position to prove Theorem 4. Let X
be a germ of smooth algebraic variety around a point 0. Let D be a germ of divisor
passing through 0. Let M be a germ of meromorphic connection at 0 with poles
along D. Let C be a smooth curve passing through 0 and not contained in any of the
irreducible components of D. Let pM1, iso1q and pM2, iso2q be M-marked connections
such that

pM1, iso1q|C » pM2, iso2q|C

We want to show that pM1, iso1q and pM2, iso2q are isomorphic in a neighbourhood
of 0. Let π : Y ÝÑ X be a resolution of turning points for M around 0. Such
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a resolution exists by works of Kedlaya [Ked11] and Mochizuki [Moc11b]. Set
E :“ π´1pDq. At the cost of blowing up further, we can suppose that the strict
transform C 1 of C is transverse to E at a point P in the smooth locus of E. Note that
E is connected. From lemma 2.2.1, the π`M-marked connections pπ`M1, π

` iso1q

and pπ`M2, π
` iso2q define two C-points of H1pBE,StăEπ`Mq. Since

pπ`π
`Mi, π`π

` isoiq » pMi, isoiq

for i “ 1, 2, it is enough to show pπ`M1, π
` iso1q » pπ

`M2, π
` iso2q. By assumption,

pπ`M1, π
` iso1q|C1 » pM1, iso1q|C

» pM2, iso2q|C

» pπ`M2, π
` iso2q|C1

In particular, the image of pπ`M1, π
` iso1q and pπ`M2, π

` iso2q by the restriction
map

(2.3.1) H1pBE,StăEπ`Mq
// H1pBP,StăEπ`Mq

are the same. From Theorem 3, the map (2.3.1) is a closed immersion. Hence,
pπ`M1, π

` iso1q » pπ
`M2, π

` iso2q, which concludes the proof of Theorem 4.

2.4. Obstruction theory and tangent space. — We use the notations
from 2.1. Let us compute the obstruction theory of H1pBD,StăDM q at a point
T0 P H

1pBD,StăDN pCqq. We fix a morphism of infinitesimal extensions of C-algebras

R1 ÝÑ R ÝÑ C, I :“ KerR1 ÝÑ R

such that I is annihilated by KerR1 ÝÑ C. In particular, I2 “ 0 and I is endowed
with a structure of C-vector space, which we suppose to be finite dimensional. Let
T P H1pBD,StăDM pRqq lifting T0. Choose a cover U “ pUiqiPK of BD such that T comes
from a cocycle g “ pgijqi,jPK . Set LipRq :“ Lie StăDM pRq|Ui . The identifications

LipRq|Uij
„
ÝÑ LjpRq|Uij

M ÝÑ g´1
ij Mgij

allow to glue the LipRq into a sheaf of R-Lie algebras over BD denoted by
Lie StăDM pRqT and depending only on T and not on g. For t “ ptijkq P

Č2pU ,Lie StăDM pRqT q, we denote by sijk the unique representative of tijk in
ΓpUijk, LipRqq. Then

pdtqijkl “ tjkl ´ tikl ` tijl ´ tijk

“ rgijsjklg
´1
ij ´ sikl ` sijl ´ sijks

We have the following

Lemma 2.4.1. — There exists

obpT q P I bC Ȟ2pBD,Lie StăDM pCqT0q

such that obpT q “ 0 if and only if T lifts to H1pBD,StăDM pR1qq.
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Proof. — For every i, j P K, let hij P ΓpUij ,StăDM pR1qq be an arbitrary lift of gij
to R1. We can always choose the hij to satisfy hii “ Id and hijhji “ Id. Since
Lie StăDM pR1q is locally free,

I ¨ Lie StăDM pR1q » I bR1 Lie StăDM pR1q » I bC Lie StăDM pCq

We will use both descriptions without mention. We set

sijk :“ hijhjkhki ´ Id P ΓpUijk, I ¨ Lie StăDM pR1qq

We see sijk as a section of I bC LipCq over Uijk and denote by rsijks its class in
IbCLie StăDM pCqT0 . We want to prove that the rsijks define a cocycle. As seen above,
this amounts to prove the following equality in ΓpUijk, I bC Lie StăDM pCqq

(2.4.2) gijp0qsjklg
´1
ij p0q ´ sikl ` sijl ´ sijk “ 0

Where gijp0q is the image of gij by R ÝÑ C. We have

gijp0qsjklg
´1
ij p0q “ hijhjkhklhljhji ´ Id

“ phijhjk ´ hik ` hikqhklhljhji ´ Id

“ phijhjk ´ hikqgklp0qgljp0qgjip0q ` hikhklhljhji ´ Id

“ phijhjk ´ hikqgkip0q ` hikhklhljhji ´ Id

“ phijhjk ´ hikqhki ` hikhklhljhji ´ Id

“ hijhjkhki ` hikhklhljhji ´ 2 Id

We now see how the second term of the last line above interacts with the second term
of the left-hand side of (2.4.2).

hikhklhljhji ´ sikl “ hikhklhljhji ´ hikhklhli ` Id

“ hikhklphljhji ´ hliq ` Id

“ gikp0qgklp0qphljhji ´ hliq ` Id

“ gilp0qphljhji ´ hliq ` Id

“ hilhljhji

Hence,

gijp0qsjklg
´1
ij p0q ´ sikl ` sijl ´ sijk “ hilhljhji ` hijhjlhli ´ 2 Id

“ phijhjlhliq
´1 ` hijhjlhli ´ 2 Id

“ phijhjlhliq
´1pphijhjlhliq

2 ´ 2hijhjlhli ` Idq

“ phijhjlhliq
´1s2

ijl

“ 0

where the last equality comes from I2 “ 0. Hence, the rsijks define a cocycle of
I bC Lie StăDM pCqT0 . An other choice of lift gives rise to homologous cocycles. We
denote by obpT q the class of prsijksqijk in Ȟ2pBD, IbCLie StăDM pCqT0q. It is standard
to check that obpT q has the sought-after property.
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Corollary 2.4.3. — Let pM, isoq be a M-marked connection. Then, the space
H2pD, Irr˚D EndMqq is an obstruction theory for H1pBD,StăDM q at IsomisopM,Mq.

Proof. — Set T :“ IsomisopM,Mq. As observed in [Tey17, 5.2], the canonical iden-
tification

H0 DRăD EndM „ // Lie StăDM pCqT

induces

ȞipBD,Lie StăDM pCqT q » HipBD,Lie StăDM pCqT q

» HipBD,H0 DRăD EndMq

» HipBD,DRăD EndMq

» HipD, Irr˚D EndMq

The second identification comes from the fact [Hie09, Prop. 1] that DRăD EndM is
concentrated in degree 0. The third identification comes from [Sab17a, 2.2]. Then,
corollary 2.4.3 follows from lemma 2.4.1.

Reasoning exactly as in [Tey17, 5.2.1], we prove the following

Lemma 2.4.4. — For every M-marked connection pM, isoq, the tangent space of
H1pBD,StăDM q at pM, isoq identifies canonically to H1pD, Irr˚D EndMq.

3. Reduction of Theorem 1 to extending the formal model

3.1. Reduction to the dimension 2 case. — In this subsection, we reduce the
proof of Theorem 1 to the dimension 2 case. The main tool is André’s goodness
criterion [And07, 3.4.3] in terms of Newton polygons. This reduction does not seem
superfluous. Of crucial importance for the sequel of the proof will be indeed the fact
that when X is an algebraic surface and D a smooth divisor in X, then for every point
0 P D and every meromorphic connection M on X with poles along D, the formal
model of M splits on a small enough punctured disc around 0. This fact is specific to
dimension 2, since it pertains to the property that turning points in dimension 2 are
isolated.

Lemma 3.1.1. — The converse inclusion in Theorem 1 is true in any dimension if
it is true in dimension 2.

Proof. — Take n ą 2. We argue recursively by supposing that Theorem 1 holds in
dimension strictly less than n and we prove that Theorem 1 holds in dimension n.
Let X be a smooth complex algebraic variety of dimension n. Let D be a smooth
divisor in X. Let M be an algebraic meromorphic connection on X with poles along
D. Let 0 P D and suppose that Irr˚DM and Irr˚D EndM are local systems in a
neighbourhood of 0. If j : XzD ÝÑ X and i : D ÝÑ X are the canonical inclusions,
we have a distinguished triangle

j!L // SolM // i˚ Irr˚DM
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where L is a local system on the complement of D. Hence, the characteristic cycle of
SolM is supported on the union of T˚XX with T˚DX. From a theorem of Kashiwara
and Schapira [KS90, 11.3.3], so does the characteristic cycle of M. Hence, any
smooth hypersurface transverse to D and passing through 0 is non characteristic with
respect to M in a neighbourhood of 0. Let us choose such a hypersurface Z and let
iZ : Z ÝÑ X be the canonical inclusion. From [And07, 3.4.3], the turning locus
of M is a closed subset of D which is either empty or purely of codimension 1 in
D. Since n ą 2, the hypersurface Z can consequently be chosen such that M and
EndM have good formal decomposition generically along Z X D. The connection
i`ZM is a meromorphic connection with poles along ZXD. It satisfies the hypothesis
of Theorem 1 at the point 0. Indeed by Kashiwara’s restriction theorem [Kas95],

Irr˚ZXD i
`
ZM “ pSol i`ZMq|ZXD » pSolMq|ZXD

and similarly for EndM. Hence, Irr˚ZXD i
`
ZM and Irr˚ZXD End i`ZM are local systems

in a neighbourhood of 0 in Z X D. By recursion hypothesis, i`ZM is good at 0. In
particular, the Newton polygon of i`ZM at 0 (which is also the Newton polygon of
M at 0) is the generic Newton polygon of i`ZM along Z XD. From our choice for Z,
the generic Newton polygon of i`ZM along Z XD is the generic Newton polygon of
M along D. Hence, the Newton polygon of M at 0 is the generic Newton polygon of
M along D, and similarly with EndM. By a theorem of André [And07, 3.4.1], we
deduce that M has good formal decomposition at 0, which proves lemma 3.1.1.

3.2. Setup and recollections. — From now on, we restrict the situation to di-
mension 2. We use coordinates px, yq on A2

C and set Dx :“ ty “ 0u, Dy :“ tx “ 0u.
Let D be a neighbourhood of 0 in Dx and let CrDs be the coordinate ring of D. Set
D˚ :“ Dzt0u.

Let M be an algebraic meromorphic flat bundle on a neighbourhood of D in A2
C

with poles along D. In algebraic terms, M
pD defines a CrDsppyqq-differential module.

At the cost of shrinking D if necessary, we can suppose that the restriction M˚ of M
to a neighbourhood of D˚ has good formal decomposition at every point of D˚.

There is a ramification v “ y1{d, d ě 1 and a finite Galois extension L{Cpxq such
that the set I of generic irregular values for M lies in FracLpvq. If p : DL ÝÑ D is
the normalization of D in L, the generic irregular values of M are thus meromorphic
functions on DL ˆA

1
v. We have

(3.2.1) Lppvqq bM »
à

aPI
Ea bRa

where the Ra are regular. Following [And07, 3.2.4], we recall the following

Definition 3.2.2. — We say that M is semi-stable at P P D if
(1) We have I Ă CrDLsP ppvqq.
(2) The decomposition (3.2.1) descends to CrDLsP ppvqq bM.

In this definition, CrDLsP denotes the localization of CrDLs above P . This is a
semi-local ring. Let πa P Lppvqq bEndM be the projector on the factor EabRa. As
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explained in [And07, 3.2.2], the point P is stable if and only if the generic irregular
values of M and the coefficients of the πa in a basis of EndM belong to CrDLsP ppvqq.
Since M has good formal decomposition at any point of D˚, the generic irregular
values of M and the coefficients of the πa in a basis of EndM belong to CrDLsP ppvqq
for every P P D˚. Hence, they belong CrD˚Lsppvqq where D

˚
L :“ Dzp´1p0q. Thus

(3.2.3) CrD˚Lsppvqq bM » CrD˚Lsppvqq bN ˚
L

where
N ˚
L “

à

aPI
Ea bRa

is a germ of meromorphic connection defined on a neighbourhood of D˚L in DL ˆA
1
v

and with poles along D˚L. The action of

GalpL{Cpxqq ˆZ{dZ

on the left-hand side of (3.2.3) induces an action on N ˚
L . Taking the invariants yields

a meromorphic flat bundle N ˚ defined on a neighbourhood Ω of D˚ in A2
C. By Galois

descent, (3.2.3) descents to an isomorphism iso˚ between the formalizations of M˚

and N ˚ along D˚.

3.3. Reduction to the problem of extending the formal model. — The
goal of this subsection is to show that Theorem 1 reduces to prove that the M˚-
marked connection pN ˚, iso˚q defined in 3.2 extends into a M-marked connection in
a neighbourhood of 0. To do this, we need three preliminary lemmas. The notations
and constructions from 3.2 are in use.

Lemma 3.3.1. — Suppose that N ˚ extends into a meromorphic flat bundle N de-
fined in a neighbourhood of D in A2

C and with poles along D. Then, N is semi-stable
at 0.

Proof. — It is enough to treat the case where K “ Cpxq and d “ 1. In that case,
discussion 3.2 shows that on a neighbourhood Ω of D˚ in A2

C, we have

N ˚ “
à

aPI
N ˚
a

where N ˚
a is a meromorphic connection on Ω with poles along D˚ and with single

irregular value a. The open DˆA1
C retracts on the small neighbourhood on which N

is defined. Since N is smooth away from D, we deduce that N extends canonically
into a meromorphic connection on D ˆA1

C with poles along D.
Let a P I. The restriction of the projector πa to the complement of D˚ in Ω is

a flat section of EndN . Since D˚ ˆ A1
C retracts on Ω, parallel transport allows to

extend πa canonically to D˚ ˆ A1
C. We still denote by πa this extension. Hence,

N ˚
a extends into a meromorphic connection on D˚ ˆ A1

C with poles along D˚. Let
γ be a small loop in Ω going around the axis Dy. By assumption, the monodromy
of N along γ is trivial. Thus, πa is invariant under the monodromy of EndN along
γ. Hence, πa extends canonically to pD ˆA1

Cqzt0u. By Hartog’s property, it extends
further into a section $a of EndN on D ˆA1

C.
Set Na :“ $apN q Ă N for every a P I. We have $2

a “ $a and
ř

aPI $a “ IdN
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because these equalities hold on a non empty open set. Hence, N “ ‘aPINa. Since
$a is flat, the connection on N preserves each Na. Let us prove that the Na are
locally free as ODˆA1

C
p˚Dq-modules.

Let E be a Deligne-Malgrange lattice [Mal96] for N . Since we work in dimension
2, we know from [Mal96, 3.3.2] that E is a vector bundle. We observe that $a

stabilizes E away from 0. By Hartog’s property, we deduce that $a stabilizes E.
Hence, $apEq is a direct factor of E. So $apEq is a vector bundle. Thus,

Na “ $apN q “ $apEp˚Dqq “ p$apEqqp˚Dq

is a locally free ODˆA1
C
p˚Dq-module of finite rank with connection extending N ˚

a . To
prove lemma 3.3.1, we are thus left to consider the case where I “ tau.

If I “ tau, then [And07, 3.3.1] implies a P CrDsppyqq. Hence, R :“ E´abN
pD is a

formal meromorphic connection with poles along D. By assumption, R is generically
regular alongD. From [Del70, 4.1], we deduce thatR is regular. Hence, N

pD “ EabR
with R regular, which concludes the proof of lemma 3.3.1.

Lemma 3.3.2. — Let N be a meromorphic flat connection with poles along D. We
suppose that N is semi-stable at 0 and that Irr˚DN and Irr˚D EndN are local systems
in a neighbourhood of 0. Then, N has good formal decomposition at 0.

Proof. — Let I be the set of irregular values of N at 0. There is a ramification
v “ y1{d, d ě 1 and a finite Galois extension L{Cpxq such that I Ă Lppvqq. Let
DL ÝÑ D be the normalization of D in L. At the cost of shrinking D, we can
suppose that every point of D is semi-stable for N . Hence, I Ă CrDLsppvqq and

CrDLsppvqq bN “
à

aPI
Ea bRa

where the connections Ra are regular. As seen in the proof of lemma 3.1.1, the as-
sumption on Irr˚D implies that any smooth curve transverse to D is non characteristic
for N . Taking the axis Dy yields

dimH1 Irr˚0 N|Dy “ dimpH1 Irr˚DN q0 “
ÿ

aPI
pordy aq rkRa

On the other hand, choose a point P P DL above 0. Then, the irregular values of
N|Dy are the apP q, a P I. Thus,

H1 Irr˚0 N|Dy “
ÿ

aPI
ordy apP q rkRa

Hence, ordy apP q “ ordy a for every a P I. In particular, the coefficient function of
the highest power of 1{v contributing to a P I does not vanish at P . Arguing similarly
for EndN , we obtain that N has good formal decomposition at 0.

Lemma 3.3.3. — Suppose that Irr˚DM is a local system. For every M-marked con-
nection pN , isoq, the complex Irr˚DN is a local system.

Proof. — From [Meb90], the complex Irr˚DN is perverse. To prove that it is a
local system, it is thus enough to prove that the local Euler Poincaré characteris-
tic χpD, Irr˚DN q : D ÝÑ Z of Irr˚DN is constant. From the local index theorem
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[Kas73][Mal81], the local Euler Poincaré characteristic of Irr˚DN depends only on
the characteristic cycle of N . Since the characteristic cycle of N depends only on N
via N

pD, we have

χpD, Irr˚DN q “ χpD, Irr˚DMq

By assumption, χpD, Irr˚DMq is constant. Hence, χpD, Irr˚DN q is constant, which
finishes the proof of lemma 3.3.3.

Proposition 3.3.4. — Let D be an open neighbourhood of 0 in an hyperplane of A2
C.

Let M be an algebraic meromorphic flat bundle on a neighbourhood of D with poles
along D. Set D˚ “ Dzt0u and let M˚ be the restriction of M to a neighbourhood
of D˚. Let pN ˚, iso˚q be the M˚-marked connection constructed in 3.2. Suppose
that Irr˚DM and Irr˚D EndM are local systems in a neighbourhood of 0. Then, if
pN ˚, iso˚q extends into a M-marked connection, M has good formal decomposition
at 0.

Proof. — Let pN , isoq be a M-marked connection extending pN ˚, iso˚q. From lemma
3.3.1, the extension N is semi-stable at 0. From lemma 3.3.3, we know that Irr˚DN
and Irr˚D EndN are local systems in a neighbourhood of 0. From lemma 3.3.2, we
deduce that N has good formal decomposition at 0. Hence, so does M.

4. Extension via moduli of Stokes torsors

4.1. A geometric extension criterion. — In this subsection, we relate the mod-
uli of Stokes torsors to the problem of extending marked connections. Let D be an
open subset of a hyperplane in A2

C. Pick P P D. Set D˚ :“ DztP u. Let M be
an algebraic meromorphic flat bundle in a neighbourhood U of D in A2

C and with
poles along D. Let M˚ be the restriction of M to UztP u. Let π : Y ÝÑ A2

C be a
resolution of the turning point P for M. Such a resolution exists by works of Kedlaya
[Ked10] and Mochizuki [Moc09]. Let ∆ be an open disc of D containing P . Set
∆˚ “ ∆ztP u. Set E :“ π´1p∆q and pick Q P ∆˚. Let

Φ : H1pBE,StăEπ`Mq
// H1pBQ,Stă∆

M q

be the restriction morphism of Stokes torsors.

Lemma 4.1.1. — Let pN ˚, iso˚q be a M˚-marked connection such that pN ˚
Q, iso

˚
Qq

lies in the image of Φ. Then, pN ˚, iso˚q extends into an M-marked connection.

Proof. — From lemma 2.2.1, any C-point of H1pBE,StăEπ`Mq comes from a unique
π`M-marked connection. Hence, there exists pN 1, iso1q P H1pBE,StăEπ`Mq such that
ΦpN 1, iso1q “ pN ˚

P , iso
˚
P q. From [Meb04, 3.6-4], the D-module N :“ π`N 1 is a

meromorphic connection defined in a neighbourhood of ∆ and and with poles along
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∆. By flat base change

N
p∆ » O

{A2
C
|∆
bRπ˚pDXÑA2

C
bN 1q

» Rπ˚pO
zX|E

bDXÑA2
C
bN 1q

» Rπ˚pDXÑA2
C
bN 1

pE
q

» π`N 1
pE

and similarly M
p∆ » π`pπ

`Mq
pE . Hence, iso :“ π` iso1 defines an isomorphism

between N
p∆ and M

p∆. So pN , isoq is a M-marked connection in a neighbourhood of
∆. By definition, the germ of pN , isoq at Q is pN ˚

Q, iso
˚
Qq. Since R1p∆˚ Stă∆˚

M is a
local system on ∆˚, we deduce

pN , isoq|∆˚ “ pN ˚, iso˚q|∆˚

Hence, the gluing of pN , isoq with pN ˚, iso˚q provides the sought-after extension of
pN ˚, iso˚q into an M-marked connection. So lemma 4.1.1 is proved.

Let us now give a sufficient condition for the surjectivity of Φ in terms of the
irregularity complex.

Proposition 4.1.2. — With the notations from 4.1, suppose furthermore that the
perverse complex Irr˚D EndM is a local system on ∆. Then Φ induces an isomorphism
between each irreducible component of H1pBE,StăEπ`Mq and H

1pBQ,Stă∆
M q.

Proof. — From [BV89], we know that H1pBQ,Stă∆
M q is an affine space. Since affine

spaces in characteristic 0 have no non trivial finite étale covers, it is enough to prove
that Φ is finite étale. From Theorem 3, the morphism Φ is a closed immersion. We
are thus left to show that Φ is étale.

Etale morphisms between smooth schemes of finite type over C are those mor-
phisms inducing isomorphisms on the tangent spaces. Hence, we are left to prove that
H1pBE,StăEπ`Mq is smooth and that Φ induces isomorphisms on the tangent spaces.
Let pM, isoq be a π`M-marked connection. From corollary 2.4.3, an obstruction
theory to lifting infinitesimally the Stokes torsor of pM, isoq is given by

(4.1.3) H2pE, Irr˚E EndMq » H2p∆, Irr˚D π` EndMq » 0

The first identification expresses the compatibility of irregularity with proper push-
forward. Furthermore, from lemma 3.3.3 applied to the EndM-marked connection
pπ` EndM,π` isoq, the perverse complex Irr˚D π` EndM is a local system concen-
trated in degree 1. This implies the vanishing (4.1.3). Hence, H1pBE,StăEπ`Mq is
smooth at pM, isoq. From lemma 2.2.1, any C-point of H1pBE,StăEπ`Mq is of the form
pM, isoq. Thus, H1pBE,StăEπ`Mq is smooth. Furthermore, we have a commutative
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diagram

TpM,isoqH
1pBE,StăEπ`Mq

//

o
��

TpMQ,isoQqH
1pBQ,Stă∆

M q

o
��

H1pE, Irr˚E EndMq //

o
��

pH1 Irr˚D EndMqQ

|

��

H1p∆, Irr˚D π` EndMq //

o
��

pH1 Irr˚D EndMqQ

|

��

H0p∆,H1 Irr˚D π` EndMq // pH1 Irr˚D EndMqQ

The first vertical maps are isomorphisms by lemma 2.4.4. As already seen,
Irr˚D π` EndM is a local system concentrated in degree 1. Hence, the last ver-
tical and the bottom arrows are isomorphisms. Thus, the tangent map of Φ at
pM, isoq is an isomorphism. This finishes the proof of proposition 4.1.2.

4.2. Proof of Theorem 1. — Let X be a smooth complex algebraic variety. Let
D be a smooth divisor in X. Let M be an algebraic meromorphic connection with
poles along D.

We first prove the direct inclusion in Theorem 1. Suppose that M has good formal
decomposition at a closed point P P D. Since the good formal decomposition locus
of M is open in D [And07], we can suppose at the cost of restricting the situation
that M has good formal decomposition along D. By Mebkhout’s theorem [Meb90],
the complexes Irr˚DM and Irr˚D EndM are perverse. To prove that they are local
systems on D, it is thus enough to prove that their local Euler Poincaré characteristic
is constant. From the local index theorem [Kas73][Mal81], the local Euler Poincaré
characteristic of Irr˚DM depends only on the characteristic cycle of M. Since the
characteristic cycle of M depends only on M via M

pD, we are reduced to treat the
case where M “ EabR where a P OXp˚Dq is good and where R is a regular singular
meromorphic connection with poles along D. Since Irr˚D is exact, we can suppose
further that the rank of R is one. In that case, a standard computation shows that
the characteristic cycle of M is supported on the union of T˚XX with T˚DX. Hence,
any smooth transverse curve to D is non-characteristic for M. Let P P D and let C
be a smooth transverse curve to D passing through P . From [Kas95], we have

pIrr˚DMqP » Irr˚P M|C » C
ordD ar´1s

Hence, the local Euler-Poincaré characteristic of Irr˚DM is constant and similarly for
Irr˚D EndM. This finishes the proof of the direct inclusion in Theorem 1.

We now prove the converse inclusion in Theorem 1. From lemma 3.1.1, we can
suppose that X is a surface. Let P P D such that Irr˚DM and Irr˚D EndM are local
systems in a neighbourhood of P in D. At the cost of taking local coordinates around
P , we can suppose thatD is an open subset of a hyperplane inA2

C. PutD
˚ :“ DztP u.
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Let M˚ be the restriction of M to a small neighbourhood of D˚ in X. Let pN ˚, iso˚q
be the M˚-marked connection defined in 3.2. Such a connection exists at the cost
of replacing X by a small enough neighbourhood of P in X. From proposition 3.3.4,
we are left to show that pN ˚, iso˚q extends into a M-marked connection. Let ∆ be
a small enough disc in D containing P such that Irr˚DM and Irr˚D EndM are local
systems on ∆. Put ∆˚ :“ ∆ztP u. Let π : Y ÝÑ X be a resolution of turning points
for M at P . Set E :“ π´1p∆q and pick Q P ∆˚. Let

Φ : H1pBE,StăEπ`Mq
// H1pBQ,Stă∆

M q

be the restriction morphism of Stokes torsors. From lemma 4.1.1, to prove that
pN ˚, iso˚q extends into a M-marked connection, it is enough to prove that pN ˚

Q, iso
˚
Qq

lies in the image of Φ. This is indeed the case by lemma 4.1.2, which finishes the proof
of Theorem 1.

5. A boundedness theorem for turning points

5.1. Nearby slopes. — Let X be a smooth complex algebraic variety and let
M be an holonomic DX -module. Let f P OX be a non constant function. Let
ψf be the nearby cycle functor associated to f [Kas83][Mal83b][Meb89][MM04].
Following [Tey16], we recall that the nearby slopes of M associated to f are the
rational numbers r P Qě0 such that there exists a germ N of meromorphic connection
at 0 P A1

C with slope r such that

(5.1.1) ψf pMb f`Nq ‰ 0

We denote by Slnb
f pMq the set of nearby slopes of M associated to f . In dimension 1,

the nearby slopes of M associated to a local coordinate centred at a point 0 are the
usual slopes of M at 0. See [Tey16, 3.3.1] for a proof. In general, the set Slnb

f pMq is
finite [Del07]. If M is a meromorphic connection, an explicit bound for Slnb

f pMq is
given in [Tey16] in terms of a resolution of turning points of M. This bound behaves
poorly with respect to restriction. We will need a sharper bound in the case where f
is a smooth morphism. It will be provided by the following more general proposition.

Proposition 5.1.2. — Let M be a germ of meromorphic connection at 0 P An with
poles along the divisor D given by f :“ x1 ¨ ¨ ¨xd “ 0. Let ri be the highest generic
slope of M along xi “ 0. Put rDpMq “ Maxtr1, . . . , rdu. Then,

Slnb
f pMq Ă r0, rDpMqs

Proof. — To prove proposition 5.1.2, take r ą rDpMq and let N be a germ of mero-
morphic connection at 0 P A1

C with slope r. We want to show the vanishing (5.1.1) in
a neigbourhood of 0. By a standard Galois argument, one reduces to the case where r
and the ri, i “ 1, . . . , d are integers. Since ψf is a formal invariant, we can further sup-
pose that N “ tαE1{tr where α P C. Let us accept for a moment that M is generated
as a DX -module by a coherent OX -submodule F stable by frDpMqxiBxi , i “ 1, . . . , d
and such that M “ F p˚Dq. Let pe1, . . . , eN q be a generating family for F in a neigh-
bourhood of 0. Then, the fαe1{frei, i “ 1, . . . , N generateMbf`N as a DX -module.



28 J.-B. TEYSSIER

Let ι : Cn ÝÑ CnˆCt be the graph of f . Set δ :“ δpt´fq. Then, the si “ fαe1{freiδ,
i “ 1, . . . , N generate ι`pM b f`Nq. To show that the germ of ψf pM b f`Nq at
0 vanishes, we are thus left to prove that si belongs to V´1pDCnˆCtqι`F for every
i “ 1, . . . , N , where V‚pDCnˆCtq is the Kashiwara-Malgrange filtration on DCnˆCt .
For i “ 1, . . . , N , we have

frDpMqx1Bx1si “ frDpMqpα´
r

fr
qsi `

d
ÿ

j“1

gjsj ´ f
rDpMq`1Btsi, gj P OX

Hence,

rsi “ αtrsi ` t
r´rDpMq

d
ÿ

j“1

gjsj ´ f
rx1Bx1si ´ f

r`1Btsi

Since r ą rDpMq, we have

tr´rDpMq

d
ÿ

j“1

gjsj P V´1pDCnˆCtqι`F

Note furthermore that

frx1Bx1
si “ x1Bx1

frsi ´ rf
rsi “ trpx1Bx1

´ rqsi P V´1pDCnˆCtqsi

and that

fr`1Btsi “ Btt
r`1si “ pr ` 1qtrsi ` t

rtBtsi P V´1pDCnˆCtqsi

Hence, si P V´1pDCnˆCtqι`F , which proves the sought-after vanishing. We are thus
left to prove the lemma 5.1.3 below.

Lemma 5.1.3. — Let M be a germ of meromorphic connection at 0 P AnC with poles
along the divisor D given by f :“ x1, ¨ ¨ ¨xd “ 0. Let ri be the highest generic slope of
M along xi “ 0. Suppose that the ri are integers and put rDpMq “ Maxtr1, . . . , rdu.
Then, M is generated as a DX-module by a coherent OX-submodule F stable by
frDpMqxiBxi for every i “ 0, . . . , d and such that M “ F p˚Dq.

Proof. — Let E be a lattice in M as constructed by Malgrange in [Mal96]. By con-
struction, M “ Ep˚Dq. Since holonomic DX -modules are noetherian, M “ DXf´kE
for k big enough. Let us show that F “ f´kE fits our purpose. For m P E, we have

frDpMqxiBxipf
´kmq “ ´kfrDpMqpf´kmq ` f´kpfrDpMqxiBximq

Hence, it is enough to show that E is stable by frDpMqxiBxi , i “ 0, . . . , d. Since
OXan,x is faithfully flat over OX,x for every x P D, we have E “ M X Ean in Man.
Hence, it is enough to show that Ean is stable by frDpMqxiBxi , i “ 0, . . . , d. Let
j : U ÝÑ Xan be the complement in X of the union of the singular locus of D with
the turning locus of M. By construction of the Deligne-Malgrange lattices, a section
of M belongs to Ean if and only if its restriction to U belongs to Ean

|U . Hence, we can
suppose that D is smooth and that M has good formal structure along D. We can
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further suppose that M is unramified along D. Since OXan, pD is faithfully flat over
OXan|D, we can suppose that M splits, that is

M “
à

aPOXan prDpMqDq

Ea bRa

where the Ra are regular meromorphic connections with poles along D. In that case,
E is by definition a direct sum of the form

À

Ea where Ea is a Deligne lattice [Del70]
in Ra. In that case, the sought-after stability is obvious. This finishes the proof of
lemma 5.1.3.

Remark 5.1.4. — The bound for nearby slopes proved in proposition 5.1.2 was sug-
gested by the `-adic picture [HT18]. In loc. it. indeed, a similar bound was obtained
for `-adic nearby slopes of smooth morphisms [Tey15]. In that setting, the main tools
are Beilinson’s and Saito’s work on the singular support [Bei16] and the characteristic
cycle [Sai17] for `-adic sheaves, as well as semi-continuity properties [HE17][Hu17]
for various ramification invariants produced by Abbes and Saito’s ramification theory
[AS02]. From this perspective, proposition 5.1.2 is a positive answer to a local variant
for differential equations of a conjecture in [Lea16] on the ramification of the étale
cohomology groups for local systems on the generic fiber of a strictly semi-stable pair.
See Conjecture 5.8 from [HT18] for a precise statement.

5.2. Boundedness of the turning locus in the case of smooth proper relative
curves. — This subsection is devoted to the proof of Theorem 2. Let S be a smooth
complex algebraic curve. Let p : C ÝÑ S be a relative smooth proper curve of genus
g. Let M be a meromorphic connection of rank r on C with poles along the fibre
C0. Let ZpMq be the subset of points in C0 at which M does not have good formal
structure (that is, the turning locus of M). Let irrC0

M be the generic irregularity of
M along C0. Let rDpMq be the highest generic slope of M along C0. We put

K :“ pSolMq|C0
r1s ‘ pSol EndMq|C0

r1s

Then, K is a complex of C-vector spaces on C0 with constructible cohomology. It is
concentrated in degree 0 and 1. The generic rank of K is

rK “ irrC0
M` irrC0

EndM
ď rrDpMq ` r2rDpEndMq

ď 2r2rDpMq

where the last inequality comes from rDpEndMq ď rDpMq. The Euler-Poincaré
characteristic formula [Lau87, Th. 2.2.1.2] applied to K gives

χpC0,Kq “ p2´ 2gqrK ´
ÿ

xPSingK

prK ´ dimH0Kxq ` dimH1Kx

where SingK denotes the singular locus of K, that is the subset of points in C0 in
the neighbourhood of which K is not a local system concentrated in degree 0. From
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Mebkhout perversity theorem [Meb90], the complex K is perverse. In particular,
H0K does not have sections with punctual support. Thus,

rK ´ dimH0Kx ě 0

for every x P SingK. From perversity again [Tey13, 13.1.6], the local Euler-Poincaré
characteristic of K at x P SingK differs from its generic value rK . Hence, for x P
SingK, the quantity

prK ´ dimH0Kxq ` dimH1Kx

is positive and non zero. It is thus strictly positive. Hence, we have a bound

|SingK| ď p2´ 2gqrK ´ χpC0,Kq

From Theorem 1, the singular points of K are exactly the points in C0 at which M
does not have good formal structure. Hence

|ZpMq| ď 2rK ` |χpC0,Kq|

We are now left to bound χpC0,Kq. Since the irregularity complex is compatible with
proper push-forward [Meb04, 3.6-6], we have

|χpC0, pSolMq|C0
q| “ |χp0, Rp˚pSolMq|C0

q|

“ |χp0, pSol p`Mq|0q|

“ |
ÿ

i

p´1qi irr0 Hip`M|

ď
ÿ

i

irr0 Hip`M

ď
ÿ

i

rkHip`MˆMax Slnb
t pHip`Mq

ď
ÿ

i

rkHip`MˆMax Slnb
t pp`Mq

Since nearby slopes are compatible with proper push-forward [Tey16, Th. 3 piiq], we
have Slnb

t pp`Mq Ă Slnb
p pMq. Since p is smooth, proposition 5.1.2 yields

|χpC0, pSolMq|C0
q| ď rDpMq

ÿ

i

rkHip`M

For a generic point s P S, we have furthermore
ÿ

i

rkHip`M “
ÿ

i

dimpSolHip`Mqs

“
ÿ

i

dimpHi Sol p`Mqs

“
ÿ

i

dimpRip˚ SolMqs

“
ÿ

i

dimHipCs,Lq
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where L denotes the local system of solutions of M|Cs . Then H
ipCs,Lq “ 0 for every

i ‰ 0, 1, 2 and we have

dimH0pCs,Lq ď rkL “ rkM|Cs “ r

From Poincaré-Verdier duality, we have

dimH2pCs,Lq “ dimH0pCs,L˚q ď rkL˚ “ rkM|Cs “ r

Finally,

dimH1pCs,Lq “ ´χpCs,Lq ` dimH0pCs,Lq ` dimH2pCs,Lq
“ ´χpCs,Cq rkL` dimH0pCs,Lq ` dimH2pCs,Lq
ď 2rpg ` 1q

Putting everything together yields

|ZpMq| ď 8r2pg ` 1qrDpMq

This finishes the proof of Theorem 2.
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