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MODULI OF STOKES TORSORS AND SINGULARITIES OF
DIFFERENTIAL EQUATIONS

by

Jean-Baptiste Teyssier

Abstract. — Let M be a meromorphic connection with poles along a smooth divisor
D in a smooth algebraic variety. Let Sol M be the solution complex of M. We
prove that the good formal structure locus of M coincides with the locus where the
restrictions to D of Sol M and Sol End M are local systems. By contrast to the very
different natures of these loci (the first one is defined via algebra, the second one
is defined via analysis), the proof of their coincidence is geometric. It relies on the
moduli of Stokes torsors.

The main problematic of this paper is to understand how the geometry of the Stokes
phenomenon in any dimension sheds light on the interplay between the singularities
of a differential equation and the singularities of its solutions.

Consider an algebraic linear system M of differential equations with n variables

0X
=0, X 1=1,...,n
ﬁxi
where (); is a square matrix of size r with coefficients into the ring C[z1, ..., 2, ][2,;!]

of Laurent polynomials with poles along the hyperplane D in C™ given by z,, = 0.
At a point away from D, the holomorphic solutions of the system M are fully
understood by means of Cauchy’s theorem. At a point of D, the situation is much
more complicated. It is still the source of challenging unsolved problems. We call D
the singular locus of M. Two distinguished open subsets of D where the singularities
of M are mild can be defined.

First, the set Good(M) of good formal structure points of M is the subset of
D consisting of points P at the formal neighbourhood of which M admits a good
formal structure. For P being the origin, and modulo ramification issues that will
be neglected in this introduction, this means roughly that there exists a base change
with coefficients in C[x1, ..., z,][x;!] splitting M as a direct sum of well-understood
systems easier to work with.

Good formal structure can always be achieved in the one variable case [Sv00].
It is desirable in general because it provides a concrete description of the system,
at least formally at a point. In the higher variable case however, it was observed in
[Sab00] that M may not have good formal structure at every point of D. Thus, the
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set Good(M) is a non trivial invariant of M. As proved by André [And07], the set
Good(M) is the complement in D of a Zariski closed subset F' of D either purely
of codimension 1 in D or empty. Traditionally, F' is called the Turning locus of M,
by reference to the way the Stokes directions of M move along a small circle in D
going around a turning point. In a sense, the good formal structure locus of
M is the open subset of D where the singularities of the systemm M are as
simple as possible.

To define the second distinguished subset of D associated to M, let us view M
as a D-module, that is a module over the Weyl algebra of differential operators. Let
us denote by Sol M the solution complex of the analytification of M. Concretely,
H° Sol M encodes the holomorphic solutions of our differential system while the
higher cohomologies of Sol M keep track of higher Ext groups in the category of
D-modules. As proved by Kashiwara [Kas75], the complex Sol M is perverse.
From a theorem of Mebkhout [Meb90], the restriction of Sol M to D, that is, the
irreqularity complez of M along D, denoted by Irr’, M in this paper, is also perverse.
In particular, (Sol M)|p is a local system on D away from a closed analytic subset of
D. The smooth locus of (Sol M), denotes the biggest open in D on which (Sol M)|p
is a local system. In a sense, the smooth locus of (Sol M) is the open subset
of D where the singularities of the (derived) solutions of M are as simple
as possible.

As observed in [Tey13], the open set Good(M) is included in the smooth
locus of (SolM)p and (SolEnd M)|p. The reverse inclusion was conjectured in
[Tey13, 15.0.5]. Coincidence of Good(M) with the smooth locus of (Sol M) p
and (SolEnd M) p seems surprising at first sight, since goodness is an algebraic
notion whereas Sol M is transcendental. The main goal of this paper is to prove via
geometric means the following

Theorem 1. — Let X be a smooth complex algebraic variety. Let D be a smooth
divisor in X. Let M be a meromorphic connection on X with poles along D. Then, the
good formal structure locus of M is the locus of D where (Sol M)|p and (Sol End M)|p
are local systems.

Other criteria detecting good points of meromorphic connections are available
in the literature. Let us mention André’s criterion [And07, 3.4.1] in terms of
specialisations of Newton polygons. Let us also mention Kedlaya’s criterion [Ked10,
4.4.2] in terms of the variation of spectral norms under varying Gauss norms on the
ring of formal power series. This criterion is numerical in nature. By contrast, the
new criterion given by Theorem 1 is transcendental. Its sheaf theoretic flavour makes
it possible to track the turning points in the cohomology of the irregularity complex.
For an application of this observation, let us refer to Theorem 2 below.

The main tool at stake in the proof of Theorem 1 is geometric, via moduli of
Stokes torsors [Tey19]. For a detailed explanation of the line of thoughts that
brought them into the picture, let us refer to 2.1. Before stating an application of
Theorem 1 (see Theorem 2 below), we explain how these moduli are used by giving
the main ingredients of the proof of Theorem 1 in dimension 2. In that case, we
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have to show the goodness of a point 0 € D given that (Sol M) p and (Sol End M)|p
are local systems in a neighbourhood of 0. The main problem is to extend the good
formal structure of M across 0. This decomposition can be seen as a system of
linear differential equations N defined in a neighbourhood of a small disc A* of D
punctured at 0.

To show that N extends across 0, we first construct via Stokes torsors a moduli
space X parametrizing very roughly systems defined in a neighbourhood of A and
formally isomorphic to M along A. A distinguished point of X is given by M itself.
Similarly, we construct a moduli space ) parametrizing roughly systems defined in a
neighbourhood of A* and formally isomorphic to M|a# along A*. Two distinguished
points of Y are Mjax and N. Restriction from A to A* provides a morphism of
algebraic varieties res : X — ). The problem of extending A is then the problem
of proving that res hits A/. The moduli X and ) have the wonderful property that
the tangent map T'h res of res at M is exactly the map

I'(A, #' Sol End M) — T'(A*, H! Sol End M)

associating to s € I'(A, H! Sol End M) the restriction of s to A*. In this geometric
picture, the smoothness of (H!Sol End M) p around 0 thus translates into the fact
that T\ res is an isomorphism of vector spaces. Since X and ) are smooth, we
deduce that res is étale at the point M. Thus, the image of res in ) contains a non
empty open set. We prove furthermore (see Theorem 3 below) that res is a closed
immersion, so its image is closed in ). Since ) is irreducible, we conclude that res is
surjective, which proves the existence of the sought-after extension of N.

Let us now describe an application of Theorem 1. Let X be a smooth variety over a
finite field of characteristic p > 0. Let £ # p be a prime number. As proved by Deligne
[EK12], there is only a finite number of semi-simple ¢-adic local systems on X with
prescribed rank, bounded ramification at infinity and up to a twist by a character
coming from the base field. A natural question is to look for a differential analogue of
this finiteness result. Let X be a smooth complex proper algebraic variety. Let M be
a meromorphic connection on X. In this situation, H. Esnault and A. Langer asked
whether it is possible to control the resolution of turning points of M by means of
X, the rank of M and the irregularity of M. In dimension 2, this question amounts
to bound the number of blow-ups needed to eliminate the turning points of M. To
the author’s knowledge, this question is still widely open. If such a bound exists in
dimension 2, the number of turning points of M should in particular be bounded by
a quantity depending only on the surface X, the rank of M and the irregularity of
M. As an application of Theorem 1, we give such a bound in a relative situation,
thus providing the first evidence for a positive answer to H. Esnault and A. Langer’s
question. This is the following

Theorem 2. — Let S be a smooth complex algebraic curve. Let 0 € S. Letp:C —
S be a relative smooth proper curve of genus g. Let M be a meromorphic connection
on C with poles along the fibre Co of p above 0. Let rp(M) be the highest generic
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slope of M along Cy. Then, the number of turning points of M along Cy is bounded
by 8(rank M)?(g + 1)rp(M).

To prove Theorem 2, the main tools are Theorem 1 and a new boundedness result
for nearby slopes [Tey16] suggested by the ¢-adic picture [HT21]. See remark 7.1.4
for details.

A crucial step in the proof of Theorem 1 is to understand the geometry of the
restriction map for Stokes torsors. This is achieved by Theorem 3 below. To state it,
let X be a smooth complex algebraic variety. Let D be a normal crossing divisor in
X. Let M be a meromorphic connection on X with poles along D. Suppose that M
has good formal structure in the sense of Mochizuki 1.5. Let pp : X — X be the
fibre product of the real blow-ups of X along the components of D. For every subset
A c D, put 0A := p5'(A). Let St3f be the Stokes sheaf of M (see section 2.3 for
details). This is a sheaf of complex unipotent algebraic groups on ¢D. Then, we have
the following

Theorem 3. — Let U ¢ V < D be non empty open subsets in D such that V is
connected. Then, the natural morphism

HY(0V,St3f) — H'(0U,St3f)
is a closed immersion of affine schemes of finite type over C.

Let us finally give an application of Theorem 3 to degenerations of irregular
singularities. Let X be a smooth algebraic variety and let D be a germ of smooth
divisor at 0 € X. Let M be a germ of meromorphic connection defined in a
neighbourhood of D in X and with poles along D. Motivated by Dubrovin’s
conjecture and the study of Frobenius manifolds, Cotti, Dubrovin and Guzzetti
[CDG19] studied how much information on the Stokes data of M can be retrieved
from the restriction of M to a smooth curve C transverse to D and passing through
0.

Under the assumption that Mg splits as a direct sum of regular connections
twisted by meromorphic functions ay,...,a, € Ox(*D) with simple poles along D,
they proved that the Stokes data of the restriction Mc determine in a bijective way
the Stokes data of M in a small neighbourhood of 0 in D. This is striking, since the
numerators of the a; — a; may vanish at 0, thus inducing a discontinuity at 0 in the
configuration of the Stokes directions. Using different methods, this was reproved by
Sabbah in [Sab, Th 1.4]. In this paper, we give a short conceptual proof of a stronger
version of Cotti, Dubrovin and Guzzetti’s injectivity theorem: we don’t make any
assumption on the shape of M, nor do we suppose that D is smooth, nor do we
assume that C' is transverse to D. The price to pay for this generality is the use of
resolution of turning points, as proved in the fundamental work of Kedlaya [Ked11]
and Mochizuki [Moc11b]. The intuition that the techniques developed in this paper
could be applied to the questions considered by Cotti, Dubrovin and Guzzetti is due
to C. Sabbah.

To state our result, let us recall that a M-marked connection is the data of a pair
(M, iso) where M is a germ of meromorphic connection with poles along D defined
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in a neighbourhood of D in X, and where iso : Mp — Mp is an isomorphism of
formal connections.

Theorem 4. — Let X be a germ of smooth algebraic variety around a point 0. Let D
be a germ of divisor passing through 0. Let M be a germ of meromorphic connection
at 0 with poles along D. Let C' be a smooth curve passing through 0 and not contained
in any of the irreducible components of D. If (Mj,iso1) and (Ms,is02) are M-marked
connections such that

(M1,1801)|C ~ (MQ, iSOQ)‘C

then (Mj,iso1) and (Mas,is02) are isomorphic in a neighbourhood of 0.

Let us give an outline of the paper. In section 1, we introduce some background
material on asymptotic analysis and on the Stokes sheaf. In section 2, we introduce
the sheaf of relative Stokes torsors and prove its constructibility. In section 3, we
prove the representability of the moduli of Stokes torsors. We then prove Theorem
3. In section 4, we interpret the tangent spaces and the obstruction theory for these
moduli in a transcendental way via the solution complexes for connections. We then
prove Theorem 4. In section 5, we show how to reduce the proof of Theorem 1 to
extending the good formal model of M across the point 0 under study. In section 6, we
show that the sought-after extension exists provided that the moduli of Stokes torsors
associated to a resolution of the turning point 0 for M satisfies suitable geometric
conditions. Finally, we show that these geometric conditions are always satisfied when
the hypothesis of Theorem 1 are satisfied, thus concluding the proof of Theorem 1.
Section 7 is devoted to the proof of Theorem 2. We collect in an appendix some
elementary facts about torsors and Stokes filtered local systems. Note that our use of
Stokes filtered local systems in this paper is a purely technical detour to obtain the
triviality criterion 8.4.1.

Acknowledgement. — I thank Y. André, P. Boalch, M, Brion, H. Esnault, F.
Loray, C. Sabbah, T. Saito, C. Simpson and T. Mochizuki for interesting discussions
and constructive remarks on a first draft of this work. I thank C. Sabbah for sharing
with me the intuition that the techniques developed in this paper could be applied
to the questions considered in [CDG19]. I thank H. Hu for stimulating exchanges
on nearby slopes. I thank N. Budur and W. Veys for constant support during
the preparation of this paper. I thank an anonymous referee for useful remarks
and for pointing out the discrepancy between the notion of good formal structure
of Kedlaya and that of Mochizuki. This work has been funded by the long term
structural funding-Methusalem grant of the Flemish Government. I thank KU Leuven
for providing outstanding working conditions. This paper benefited from a one
month stay at the Hausdorff Research Institute for Mathematics, Bonn. I thank
the Hausdorff Institute for providing outstanding working conditions.

1. The Stokes sheaf. Global aspects

1.1. Geometric setup. — In this subsection, we introduce basic notations. In this
paper, a regular pair (X, D) will be the data of a smooth complex algebraic variety
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X and of a strict normal crossing divisor D in X. For a quasi-coherent sheaf F on
X, we denote by F|p the sheaf of germs of sections of F along D. Let Dy,..., Dy,
be the irreducible components of D. For I c [1,m], set

Dy :=()D; and D5 := DA\ D;
iel it

1.2. Functions with asymptotic expansion along D. — For i =1,...,m, let
)?i — X be the real blow-up of X along D;. Let pp : X —> X be the fibre product
of the )Z'i, i =1,...,m above X. For every subset A c D, put 0A := pBl(A). Let
ta: 0A — 0D be the canonical inclusion.

Let A be the sheaf of functions on 0D admitting an asymptotic expansion along
D [Sab00]. For a closed subset Z in D, let A5 be the completion of A along the
pull-back by pp of the ideal sheaf of Z. Put A% := Ker(4 — Az). When Z = D,
the sheaf A< can be concretely described locally as follows (see [Sab00, I 1.1.11]
for a proof). Let (x1,...,x,) be local coordinates centred at 0 € D such that D is
defined around 0 by z;---2; = 0 for some | € [1,m]. Then, the germ of A<D at
Q@ € 00 is given by those holomorphic functions u defined over the trace on X\D of
a neighbourhood Q of @ in )N(, and such that for every compact K c €, for every
(Ni,...,N;) € N', there exists a constant Ck y > 0 satisfying

(1.2.1) lu(z)| < Cr.nlzy [N -« |z | for every z € K n (X\D)

From the formula (1.2.1), we deduce the following elementary lemma.

Lemma 1.2.2. — Let p: Y — X be a cyclic Galois cover of X ramified along D.
Put E = p~ (D). Let p: Y — X be the map induced by p at the level of the real
blow-up. Then, the canonical map A~P — pu A<F induces an isomorphism between
A<P and the sheaf of invariants of py A<F under the Galois group of p.

1.3. Good formal structure. — Let (X, D) be a regular pair. Meromorphic
connections in this paper will be supposed to be flat. Let P be a point in D. An
elementary local model at P denotes a meromorphic connection A of the form

N=@©P & ®Ra
aclp
where Ip is a finite set in Ox p(*D), where £ = (Ox p(*D),d—da) and where R, is
a regular singular meromorphic connection on X with poles along D. If furthermore
the following conditions are satisfied

(1) For an element a in Ip, if a does not belong to Ox p, then the divisor of a is
anti-effective with support in D,

(2) For an element a,b in Ip, if a — b does not belong to Ox p, then the divisor of
a — b is anti-effective with support in D,

we say that N is a good elementary local model at P. Let M be a meromorphic

connection on X with poles along D. Let Y be the stratum of D containing P.
Following [Ked10, 6.2.3], we say that M has an elementary local model at P if at
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the cost of shrinking X, there exists an elementary local model N at P and an
isomorphism of connections

(1.3.1) 0)/(‘5, ®oyx M 2(9}/(‘“7 ®ox N

If furthermore A is a good elementary local model at P, we say that M has a good
elementary local model at P. We say that M has a good formal structure at P if there
exists a cyclic Galois cover of some neighbourhood of P, ramified along D, on which
the pull-back of M admits a good elementary local model at some inverse image of
P. If this is true for every point P in D, we say that M has a good formal structure.

1.4. Irregular values. — Let (X, D) be a regular pair. Let M be a meromorphic
connection on X with poles along D. If M has a good elementary local model at
every point P in D, the images by Ox (D) — Ox(#D)/Ox of the finite sets Zp
appearing in 1.3 organize into a subsheaf of Ox (+D)/Ox on D. This is the sheaf of
irreqular values of M. Let us denote it by Z. We say that Z is very good if for every
point P in D, the difference of any two distinct elements of Zp has poles along every
component of D passing through P. These definitions extend in a straighforward way
to the case where M has good formal structure. See [Sab12, 9.c] for details.

1.5. Mochizuki’s definition of good formal structure and its use in the
paper. — As pointed out in [Ked10, 4.3.3], there is a small discrepancy between
the notion of good formal structure in [Ked10] and that from [Moc11b]. Mochizuki
further requires that the sets Ip appearing in the decomposition (1.3.1) satisfy the
extra assumption that the O x-modules generated by the differences a—b, a,b € Ip not
lying in Ox are totally ordered under containment. If M has good formal structure
in the sense of Mochizuki, then M has good formal structure in the sense of Kedlaya.
Due to [Ked10, 4.3.1], if M and End M have good formal structure in the sense of
Kedlaya, then M has good formal structure in the sense of Mochizuki.

Note that these notions coincide when D is smooth. Hence, this discrepancy is
invisible in the statement of Theorem 1. However, the notion of goodness used in
Theorem 3, Theorem 5 and Theorem 6 is that of Mochizuki. It will be needed to
ensure that for every point P in D, there exists a component Z of D passing through
P such that for every a,b € Ip distinct, a — b has poles along Z. If not explicitly
mentioned otherwise, good formal structure will be taken in the sense of Kedlaya.

1.6. The Stokes sheaf. — Let (X, D) be a regular pair. Let M be a meromorphic
connection defined on X with poles along D. Suppose that M has good formal
structure. We set

M =AQ, 10, Pp'M
and
Mp =Ap®,-10,,, Pp M

Let Dx be the sheaf of differential operators on X. The sheaf A is endowed with an
action of pBlDX|D. Hence, so does 0 M. We can thus form the De Rham complex of
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M with coefficients in A as

OM —— pp' Uy p ®y10, , M —— - ——pp Wy p @ oM

PBIOX\D
It is denoted by DR dM. Similarly, we denote by DR M the De Rham complex of
M with coefficients in A<P.

Let Z be a closed subset of D. Let St be the subsheaf of #° DR ¢ End M of
sections asymptotic to the Identity along Z that is of the form Id +f where f has
coefficients in .A<Z. The sheaf Stf\,lz is a sheaf of complex unipotent algebraic groups
on 0Z. This is the Stokes sheaf of M along Z. For every C-algebra R, the sheaf of
R-points of St37 is a sheaf of groups on 0Z. It is denoted by St37(R). This is the
Stokes sheaf of M along Z relative to R.

1.7. The Stokes locus. — Let (X, D) be a regular pair. Let pp : X — X be the
real blow-up of X along D. Let M be a meromorphic connection defined on X with
poles along D. Suppose that M has a good elementary local model at every point of
D. Let T be the sheaf of irregular values of M. Let P be a point in D. Let a,be Zp
distinct. Put F,; := Re(a — )|z~ °"4@=¥)| where (x1,...,x,) are local coordinates
centred at P such that D is given by x7---x,, = 0. By definition, the Stokes locus
of (a,b) is defined as F,;, o pp = 0. The Stokes locus of M is the union of the loci
of the form Fj, , o pp = 0, where a,b are as above. If M is ramified, then at the cost
of shrinking X, there exists a cyclic Galois cover p : Y — X ramified along D such
that p* M is unramified. Let p : Y — X be the map induced by p at the level of
the real blow-up. Then the Galois group G of p acts on Z. Hence, the action of G on
Y preserves the Stokes locus of pt M. Thus, the Stokes locus of pT M descends to
a closed subset in ¢D, called the Stokes locus of M. This locus depends only on M
and not on the choice of p.

1.8. Some facts on the Stokes sheaf. — Let (X, D) be a regular pair. Let M
be a meromorphic connection on X with poles along D. Suppose that M has good
formal structure. As a consequence of lemma 1.2.2, we have the following

Lemma 1.8.1. — Let p : Y — X be a cyclic Galois cover of X ramified along
D. Put E = p~Y(D). Letp p Y — X be the map induced by p at the level of the
real blow-up. Then, p—! St ~ Stp+M and the canonical map StM — Py Sthr/\/l

induces an isomorphism between St and the sheaf of invariants of py StZPM under
the Galois group of p.

Lemma 1.8.2. — The Stokes sheaf of M is constructible with respect to the
stratification of 0D induced by the Stokes locus of M.

Proof. — From lemma 1.8.1, we can suppose that M is unramified. The question is
local on ¢D. From Mochizuki’s asymptotic development theorem [Sab12, 12.5], we
can further suppose that M is a good elementary local model at a point P. In that
case, let us write

M=PE @Ra

acel
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where 7 is a good set of irregular values at P, where £ = (Ox(*D),d — da) and
where R, is regular with poles along D. Let i, : £ ® Rq — N be the canonical
inclusion and let p, : N' — £* ® R, be the canonical projection. Sections of StXAD
on an open set S are automorphisms of M on § n (X\D) of the form Id +f where
Pafip = 0 unless

(1.8.3) et el(S, A%P)

Lemma 1.8.2 then follows from the observation that the condition (1.8.3) is constant
on each stratum of the stratification of dD induced by the Stokes locus of (a,b). O

Lemma 1.8.4. — Let (X, D) be a germ of reqular pair at a point P. Let D1, ..., D,
be the components of D. Let M be a meromorphic connection on X with poles along
D. Suppose that M has good formal structure. Let p : Y — X be a cyclic Galois
cover of X ramified along D such that p™ M is unramified. Suppose that the difference
of any two distinct irreqular values for M at P has poles along p~1(D,,). Put I =
[1,m —1]. Then, the adjunction morphism

-1 <D -1 -1 <D
(1.8.5) VD, St — tp,tDsxtpe Stiu
s an isomorphism.

Proof. — From lemma 1.8.1, we can suppose that M is unramified. Injectivity is
obvious, so we are left to prove surjectivity at a point @) in dP. This is a local question
around Q. From Mochizuki’s asymptotic development theorem [Sab12, 12.5], we can
thus suppose that M is a good elementary local model. Let us write

M=PE®R,
a€l

where 7 is a good set of irregular values at P, where £ = (Ox (xD), d—da) and where
Rq is regular with poles along D. Let i, : £ ® R, —> N be the canonical inclusion
and let p, : N — €% ® R, be the canonical projection. Let S be a neighbourhood
of @ in 0X of the form

([0,r[xI1) x -+ x ([0, r[xIm) x A

where r > 0, where A is a ball in C"~™ centred at 0 and where I, ..., I,, are closed
intervals in S*. To prove the surjectivity of (1.8.5) at @Q, it is enough to show that at
the cost of shrinking &, the restriction morphism

[(S n 0D, St3F) — I'(S n dDS,St3F)

is a bijection. Sections of Sti on S n @D are automorphisms of M on S n (X\D)
of the form Id +f where p, fi, = 0 unless

(1.8.6) et eT(SnaD, A=P)
Sections of St on
SnoDy = ({0} x I) x +-+ x ({0} x I, 1) x (]0,7[x L) x A
are automorphisms of M on § n (X\D) of the form Id +f where p, fi;, = 0 unless
(1.8.7) et e (S noDS, A<P)
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We thus have to show that for every distinct a, b € Z, the conditions (1.8.6) and (1.8.7)
are equivalent for a small enough choice of S. A change of variable reduces the problem
to the case where a — b = 1/z{* - - - 2% where (aq, ..., ;) € N1 x N*. Note that
condition (1.8.6) trivially implies condition (1.8.7). Suppose that e!/#™" =™ lies in
(S n 0D, A<P). At the cost of shrinking S, we can suppose that there exists a

constant C' > 0 such that for every

(@1, ) € (10,7[x11) x -+ x (10, /[ Lm_1) X ([%,r[x[m) x A

we have
1/ pom
le R i P Cley| - |Tm1]
Writing z; = (r;,0;) for i = 1,... m, this means
008(@1 01+ amOm) [T i Cri- Tm-1
In particular, a; > 0 for i = 1,...,m — 1 and cos(a161 + -+ - + ambp,) < 0 for every

(61,...,0m) € Iy x -+ x I,,. At the cost of shrinking S further, there exists ¢ > 0
such that cos(a16y + -+ + amby) < —con Iy x --- x I,,. Then, we have

e P L L

on §. Since o; > 0 for ¢ = 1,...,m, we deduce that (1.8.7) holds. This proves
the equivalence between conditions (1.8.6) and (1.8.7) and thus finishes the proof of
lemma 1.8.4. O

2. Stokes torsors

2.1. Why moduli of Stokes torsors?— Let us explain in this subsection how the
moduli of Stokes torsors were found to be relevant to the proof of Theorem 1. We use
the notations from the introduction and work in dimension 2. We suppose that 0 € D
lies in the smooth locus of (Sol M)|p and (Sol End M) p, and we want to prove that
0 is a good formal structure point for M.

From a theorem of Kedlaya [Ked10][Ked11] and Mochizuki [Moc09][Moc11b],
our connection M acquires good formal structure at any point after pulling-back by a
suitable sequence of blow-ups above D. To test the validity of the conjecture [Tey13,
15.0.5], a natural case to consider was the case where only one blow-up is needed.
Using results of André [And07], it was shown in [Tey14] that the conjecture reduces
in this case to the following

Question. — Given two good meromorphic connections M and N with poles along
the coordinate azis in C2 and formally isomorphic at 0, is it true that
(2.1.1) dim(#' Sol End M) = dim(#' SolEnd ), ?

It turns out that each side of (2.1.1) appeared as dimensions of moduli spaces of
Stokes torsors constructed by Babbitt-Varadarajan in [BV89]. These moduli were
associated with germs of meromorphic connections in dimension 1. Babbitt and
Varadarajan proved that they are affine spaces. This suggested the existence of a
moduli X with two points P, @ € X such that the left-hand side of (2.1.1) would be
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dimTpX and the right-hand side of (2.1.1) would be dim T X. The equality (2.1.1)
would then follow from the smoothness and connectedness of the putative moduli.
This is what led to [Tey19], but the question of smoothness and connectedness was
left open. In the meantime, a positive answer to the above question was given by
purely analytic means by C. Sabbah in [Sab17].

2.2. Relation with [Tey19]. — In [Tey19], a moduli for local Stokes torsors
was constructed in any dimension. This moduli suffers two drawbacks in view of
the proof of Theorem 1. First, the Stokes sheaf used in [Tey19| only makes sense
at a neigbourhood of a point, whereas our situation will be global as soon as we
apply Kedlaya-Mochizuki’s resolution of turning points. Second, the relation between
TIrregularity and the tangent spaces of the moduli from [Tey19] only holds in particular
cases. To convert the hypothesis on Irregularity appearing in Theorem 1 into a
geometric statement pertaining to moduli of torsors, we need to replace the Stokes
sheaf Staq of a connection M by a subsheaf denoted by Stf\,tD . We will abuse
terminology be also calling the torsors under St} Stokes torsors. The sheaf St3;
has the advantage of being globally defined when M is globally defined. Along the
smooth locus of D, the sheaf Stf\,lD is the usual Stokes sheaf. The only difference
between St and Stj,lD appears at a singular point of D.

2.3. The functor of relative Stokes torsors. — We use the notations from 1.6.
Let R be a C-algebra. Torsors under St37 (R) are the Stokes torsors along Z relative
to R. For every subset A C Z, let H'(0A,St%7) be the functor

C-alg — Set
R — H'Y(0A,St37(R))

From [Tey19, Th. 1], the functor H*(0P, St ) is an affine scheme of finite type over
C for every point P in D.

Lemma 2.3.1. — Let P be a point in D. Torsors under Stxi on 0P have no non
trivial automorphisms.

Proof. — The lemma 2.3.2 was proved in [Tey19, 1.8.1] in the case where M is a good
elementary local model. An inspection of the proof, relying on Babbitt-Varadarajan
representability theorem in dimension 1 as well as Malgrange-Sibuya theorem, shows
that it carries over verbatim to the case of an arbitrary connection with good formal
structure. O

Lemma 2.3.2. — Let A be a subset in D. Torsors under StF on 0A have no non
trivial automorphisms.

Proof. — Let P be a point in A. It is enough to show that torsors under Stj/lD on 0P
have no non trivial automorphisms. Let 7 be a St -torsor on dP. Let ¢ : T —> T
be an automorphism of Stj,lD—torsors. Since A<P is a subsheaf of A<F, there is an
injection ¢ : St3{ —> Stis . To show that ¢ is the identity of 7 amounts to show that
the push-forward t4¢ : 147 —> 14T is the identity of the Stf\,lp—torsor L+ T . This last
assertion is a consequence of lemma 2.3.1. This finishes the proof of lemma 2.3.2. [
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As a straighforward consequence of lemma 2.3.2, we deduce the following

Corollary 2.3.3. — Let A be a subset in D. We endow A with the topology induced
by D. Then, the presheaf of functors R'p s Stf\,lD defined as

Open(4) — Set
U — HY(U,StP)

is a sheaf of functors. That is, for every cover U of A by open subsets, the first arrow
in the following diagram of pointed functors

HY (0A,St50) — T ye H' (U, St30) —= [Ty.ye H'(OU 0 0V, St31)

is an equalizer.

Remark 2.3.4. — Observe that the sheaf condition in corollary 2.3.3 is still satisfied
if one takes instead of a cover by open subsets in A a cover IC by compact subsets K € K

such that the associated family of open subsets K form a cover of A.
As a consequence of 1.8.1, 2.3.4 and 8.1.1, we have the following

Corollary 2.3.5. — Let (X, D) be a regular pair. Let p: Y — X be a cyclic Galois
cover of X ramified along D. Let G be the Galois group of p. Put E = p~1(D). Let
A be a subset in D. Let M be a meromorphic connection on X with poles along D.
Suppose that M has good formal structure. Then, the canonical morphism of functors

H'(0A,St37) — H'(0p ' (A),St55,)°

s an tsomorphism.

2.4. Dévissage of the sheaf of relative Stokes torsors. — The goal of this
subsection is to relate Stokes torsors on a stratum with Stokes torsors on a suitably
chosen stratum which is less deep. This will be done in proposition 2.4.2.

Lemma 2.4.1. — Let (X, D) be a germ of regular pair at a point P. Let D1, ..., D,
be the components of D. Let M be a meromorphic connection on X with poles along
D. Suppose that M has good formal structure. Let I be a subset in [1,m]. For every
element T in H'(0D5, Stf/l ), the sheaf tpsxT is a LDo*LDO St D _torsor on dD.

Proof. — Let @ be a point in dD. From lemma 8.1.2, we have to show the existence
of a neighbourhood S of @ in X such that the Stokes torsors on S N 0D$ are trivial.
To do this, we can suppose that @ lies in dP. Let p: Y — X be a cychc Galois
cover of X ramified along D such that p* M is unramified. Let p : Y — X be the
Galois cover induced by p at the level of the real blow-up. Let U be a neighbourhood
of @ that decomposes p. By pulling-back the situation to a connected component
of p71(U), we reduce to the case where M is unramified. Since we are working in
a neighbourhood of @, Mochizuki’s asymptotic development theorem [Sab12, 12.5]
reduces the proof of lemma 2.4.1 to the case where M is a good elementary local
model. Then, lemma 2.4.1 is a consequence of the triviality criterion 8.4.1. O
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Proposition 2.4.2. — Let (X,D) be a germ of regular pair at a point P. Let
Dy, ..., Dy, be the components of D. Let M be a meromorphic connection on X
with poles along D. Suppose that M has good formal structure. Let p : Y —> X be
a cyclic Galois cover of X ramified along D such that p™ M is unramified. Suppose
that the difference of any two distinct irregular values for M at P has poles along
p Y (Dp). Put I = [1,m —1]. Then, the restriction morphism

(2.4.3) HY(0Dy, St3f) —— HY(0DS, St31)

is an isomorphism of functors.

Proof. — From lemma 2.4.1 and lemma 1.8.4, the functor LE tpox induces a well-
defined morphism H'(0DS,St3f) — HY(@Dy,Stx’), providing an inverse for
(2.4.3). O

2.5. The stalks of the sheaf of Stokes torsors. —

Lemma 2.5.1. — Let (X, D) be a regular pair. Let D1,...,D,, be the irreducible
components of D. Let M be a meromorphic connection on X with poles along D.
Suppose that M has good formal structure. Let I,J be subsets in [1,m] with J < I.
Let Z be a manifold in D. Then Z admits a fundamental system of neighbourhood
U in Dj such that the restriction morphism

(2.5.2) HY(0U, StxP) — HY(0Z,5t30P)
s an tsomorphism.

Proof. — Let Z be the sheaf of irregular values of M. It is enough to prove that
Stokes torsors on ¢Z and their morphisms extend uniquely over a neighbourhood
of Z in D; depending only on Z. To do this, we can suppose that Z is a point P
and that (X, D) is a germ of regular pair at P. Similarly as in [Tey19, 1.9.1], the
constructibility of St3{ allows to construct a ball U in D of radius 7 > 0 centred at
P and a cover V of U by subsets V' depending only on Z, of the form

[ [0} < L) x [ ([0, 7[x1;) x A
ieJ i¢EJ

where I, ..., I, are closed intervals in S*, where A is the ball of radius r centred at
0, and such that V trivializes every torsor under Stj,[D . At the cost of shrinking V,
the constructibility of Stf\/lD further allows to suppose that for every V.W € V. the
maps

T(V,St5f’) — T(V n 0P, St34)
and
D(V AW,Stif) — T(V AW n dP,St30)
are bijective. For the above choice of ball U, the bijectivity of (2.5.2) follows. O
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Corollary 2.5.83. — Let (X,D) be a regular pair. Let M be a meromorphic
connection on X with poles along D. Suppose that M has good formal structure. Let
I be a subset in [1,m]. Let iz : Z — DY be a manifold in D3. Then, the canonical
morphism

ilelpD* Stf\,lD — Rlpz* St/<\,lD

18 an isomorphism.

Proof. — By definition, the sheaf i,'R'pp, Stir is the sheaf associated to the
presheaf

Fz:0pen(Z) — Set
V. — lim I'(U,R'pp« St31)
Uov

By taking J to be the empty set in lemma 2.5.1, we observe that the above inductive
limit identifies canonically with H'(dV,St3() = [(V, R'pz St34’). Hence, we have

Fz ~ R'pyy Stir

From lemma 2.3.3, the presheaf R'py, Stf\,lD is a sheaf. Corollary 2.5.3 thus follows.
O

Corollary 2.5.4. — Let (X,D) be a regular pair. Let M be a meromorphic
connection on X with poles along D. Suppose that M has good formal structure. Let
P be a point in D. Then, the stalk of R'pps SthD at P is canonically identified with
H' (0P, St3P).

2.6. Constructibility of the sheaf of Stokes torsors. —

Theorem 5. — Let (X,D) be a regular pair. Let Dy,...,D,, be the irreducible
components of D. Let M be a meromorphic connection on X with poles along D.
Suppose that M has good formal structure in the sense of Mochizuki. Then, the sheaf
R'%Yps Stf\,lD is constructible on D. More precisely, for every subset I c [1,m], the
restriction of R'pps Stf,lD to D5 s locally constant.

Proof. — The statement is local along D. Hence, we can suppose that (X, D) is a
germ of regular pair at a point P and that I = [1,m]. From lemma 2.3.5, we can
suppose that M is unramified. We argue recursively on m. The case where m = 1
will be treated last. Suppose that m > 2. Since R'pps SthD is a sheaf, to prove that
its restriction to D} = Dy is a local system, it is enough to find a connected open
neighbourhood Uy of P in D¢ = Dj such that any point ) in U; admits a fundamental
system of connected open neighbourhoods V; such that

(U, R'ppy Stif’) — T(Vi, R'pps St34)

is an isomorphism. From corollary 2.5.3, we have to find a connected open
neighbourhood U; of P in D} = Dj; such that any point @ in U; admits a
fundamental system of connected open neighbourhoods V; such that

HY(0U;,St3P) — HY(0Vr,StiP)
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is an isomorphism. Since M has good formal structure in the sense of Mochizuki, we
can suppose that the difference of any two distinct irregular values of M at P has
poles along D,,. Put J = [1,m—1]. Let U; be a small ball in D; centred at P. From
lemma 2.5.1, we can choose a ball U in D centred at P and containing U; such that

HY(0U,St3xP) — H'(0U,St37)

is an isomorphism. Let @ be a point in U;. Let V; be a ball in U; centred at ). From
lemma 2.5.1 again, we can choose a ball V in D centred at Q with V; ¢ V < Uy and
such that the morphism

HY(0V,Stxf) — H'(0V1,St3f)

is an isomorphism. Put U5 = U n DS and V; = V n DY. Then, we are left to prove
that the middle vertical arrow in the commutative diagram

(2.6.1) H'Y(0U;,St5p) «+—— H'(0U, St3F) —— H'(0US,St34)

J | J

HY(0Vy, StxP) «+=— H'(0V, StxP) —— HY(0V, St3P)

is an isomorphism. From lemma 2.4.2, the right horizontal arrows in (2.6.1) are
isomorphisms. Hence, we are left to prove that the right vertical arrow in (2.6.1) is
an isomorphism. By recursion assumption, the restriction of R'ppy Sti,lD to DY is a
local system. We observe that the map V7 — U§ is a product of the inclusion of two
discs AF < A% punctured at 0 with the inclusion of two balls By < By in C"~™. In
particular, V7 — UY is a homotopy equivalence. Hence the right vertical arrow in
(2.6.1) is an isomorphism. This concludes the reduction of the proof of Theorem 5 to
the case where D is smooth. We now treat the case where D is smooth. The question
is again local on D. Hence, we can suppose that (X, D) is a germ of smooth divisor
at a point P. From lemma 2.3.5, we can suppose that M is unramified. This case
was treated in [Sab02, IT 6.3]. Alternatively, since D is smooth, the sheaf of irregular
values for M is very good. Hence, lemma 8.3.2 reduces the proof of Theorem 5 with
D smooth to the analogous statement for marked Stokes filtered local systems. This
case follows from Mochizuki’s extension Theorem 4.13 in [Moc11a]. O

3. The geometry of the moduli of Stokes torsors

3.1. Representability by a scheme. — The first goal of this section is to prove
the following representability Theorem:

Theorem 6. — Let (X, D) be a regular pair. Let M be a meromorphic connection
on X with poles along D. Suppose that M has good formal structure in the sense of
Mochizuki 1.5. Then, the functor H*(0D, SthID) is representable by an affine scheme
of finite type over C.

Proof. — The idea is to analyse separately the contributions coming from each
stratum of D. Let Dq,...,D,, be the components of D. We argue by recursion
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on the depth of the deepest stratum of D. The case where D is smooth will be
treated last. Let Z be the deepest stratum of D. From lemma 2.5.1, there is an open
neighbourhood U of Z in dD such that the restriction morphism

HY(0U,St3Y) —— H'(0Z,St30)
is an isomorphism. Put V' = D\Z. From corollary 2.3.3, we have
H'(0D,St3) = H'(0U, StX0) X i1 owevy sezp) H' OV, StRL)

By recursion assumption, the functors H'(0V,St3+’) and H*(d(U n V),Stxs) are
affine schemes of finite type over C. Hence, we are left to prove that H'(Z, Stf\,lD) is
an affine scheme of finite type over C. To do this, we can suppose that Z is connected.
Hence, at the cost of shrinking the situation to a small enough open neighbourhood of
a connected component of Z, we can suppose that Z is D} = Dy for I = [1,m]. From
lemma 2.5.3, H(0D5, Stf\,lD) is the space of sections of the sheaf R'pp. Stj,tD on 0D3.
From Theorem 5, the restriction of R'ppy StjAD to DY is a local system. Hence, if B
is a small ball in DS centred at point P, the functor H'(0D3, StjAD) is the functor
of invariants for the action of 71 (DS, P) on H'(0B,St3f). That is, if (v1,...,7n)
denotes a set of generators for 1 (D5, P), the following diagram of functors

(3.1.1) H'(8D%,8t5f) ———— HY(6B,5t37)

J l(ldy’h,---ﬁN)

HY (0B, St3P) Diegona HY (0B, StyP)N+1
is cartesian. To prove Theorem 6, we are thus left to prove that H'(0B, Stf\,tD ) is an
affine scheme of finite type over C. In particular, we can suppose that (X, D) is a
germ of regular pair at P. Since M is good in the sense of Mochizuki, the conditions
of proposition 2.4.2 are satisfied. Put J = [1,m — 1]. From lemma 2.5.1, there is a
small ball U in Dj; centred at P such that

HY(0U, StxP) — H' (0B, St3P)

is an isomorphism. Hence we are left to prove that H'(dU, Stj/[D ) is an affine scheme
of finite type over C. Hence, if we put U = U n D3, proposition 2.4.2 implies that
the restriction morphism

HY(0U, St3xP) — HY(0US,St3P)
is an isomorphism. By recursion assumption, the functor H'(oU§, Stf\,lD ) is an affine
scheme of finite type over C. This concludes the reduction of Theorem 6 to the case
where D is smooth. If D is smooth, we reduce using (3.1.1) and corollary 2.5.1 to
prove that for a point P in D, the functor H' (0P, Stf\,lD) is a scheme of affine type over
C. Let i : C —> X be a smooth curve in X transverse to D at P. Let . : C' —> X be

the morphism induced by C at the level of the real blow-up. Observe that ¢ induces
an isomorphism above P. Since ¢~ ! St3{ =~ St7,, we deduce that

HY(0P,St3P) ~ HY (0P, St )
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Hence, we are left to prove Theorem 6 in the one dimensional case. This case was
treated by Babbit-Varadarajan [BV89]. This finishes the proof of Theorem 6. O

Remark 3.1.2. — Note that in the case where M has rank two, the moduli of Stokes
torsors whose existence is asserted by Theorem 6 is known to be an affine space
[Tey20].

The diagram (3.1.1) in the proof of Theorem 6 gives the following

Proposition 3.1.8. — Let (X, D) be a regular pair. Let M be a meromorphic
connection on X with poles along D. Suppose that M has good formal structure
in the sense of Mochizuki 1.5. Let Dq,..., Dy, be the components of D. Let I be a
subset of [1,m]. Suppose that D¢ is connected. Let P be a point in D9. Then, the
natural morphism

HY (0D, Stxf) —— HY(OP, St3P)
is a closed immersion.

We store the following immediate corollary of proposition 3.1.3 for later use.

Corollary 3.1.4. — Let (X,D) be a regular pair. Let M be a meromorphic
connection on X with poles along D. Suppose that M has good formal structure in
the sense of Mochizuki 1.5. Let Dy,...,D,, be the components of D. Let I be a
subset of [1,m]. Let U ¢ V < DY be non empty open subsets in D$ such that V is
connected. Then, the natural morphism

HY(0V,St3f) — H'(0U,St3F)
s a closed immersion.
Proof. — Choose a point P in U. Then, there is a factorization
HY(0V,St38) — H'(0U,St3F)
HY(OP,St3P)

From proposition 3.1.3, the diagonal arrow is a closed immersion between affine
schemes. Hence, the horizontal arrow is a closed immersion. O

3.2. Passing from one stratum to an other stratum is a closed immersion.
— The next proposition is the technical core of this paper.

Proposition 8.2.1. — Let (X,D) be a germ of regular pair at a point P. Let
Dy, ..., Dy, be the components of D. Put I = [1,m]. Leti € I. Then, for a small
enough ball A in D; centred at P, the morphism of schemes

(3.2.2) HY(OP,St3P) —— H'(0A*,St3P)

is a closed immersion, where A* = A\J;cp iy Dj < D5
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Proof. — Let us first construct the morphism (3.2.2). From lemma 2.5.1, for a small
enough ball A in D; centred at P, the restriction morphism

HY(0A,St3f) — HY(OP,St3P)
is an isomorphism. Then, the morphism (3.2.2) is defined as the composition
HY(0P,St5P) «+~— HY(0A, St3P) —— HY(0A*,StxP)

Note that both functors appearing in (3.2.2) are affine schemes as a consequence of
Theorem 6. Let j : 0A* — 0D be the canonical inclusion. The sheaf of algebraic
groups LB} Stx( is distinguished in St3,”*. We thus have an exact sequence of sheaves
of algebraic groups on 0D;

1—— ) St —— St Q 1
There is an adjunction morphism
(3.2.3) Lt Sttt 1 e T St = tpt el T StRL
Hence, there is a factorization
(3.2.4) HY(0P,St5P) —=— H (P, St 1)
\ J
H'(0A*,St5P)

From a similar argument to that in lemma 1.8.4, the adjunction morphism (3.2.3) is an
isomorphism of sheaves on 0P. Hence, the vertical arrow in (3.2.4) is an isomorphism
of functors. Hence, H' (0P, Stwai) is an affine scheme of finite type over C and to
prove proposition 3.2.1, it is enough to prove that

vt HY(OP,St3f) — H' (0P, St 1)
is a closed immersion. From [Fre57,1.2], there is an exact sequence of pointed functors
(3.2.5)  HO(OP,Q) — H'(0P,St3P) —— H (0P, St ) —— H'(0P, Q)
Let us prove that H°(0P, Q) is trivial. The complex of sheaves
Sty —— 0End Mp —— 0End M5

induces a sequence of sheaves

(3.2.6) Q—— dEnd Mp —— dEnd My

By applying pp. and then looking at the germs at P, we deduce from [Sab00, p44|
the following sequence

(3.2.7) 0—— H(0P,Q) —— End Mp p, —— End Mg, ,
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By flatness of End M over Ox, the second map in (3.2.7) is injective. Hence,
H°(0P, Q) is trivial. Thus, the following diagram of functors

(3.2.8) HY(0P,8t5f) ———— +

HY (0P, St3") — H (0P, Q)

is cartesian, where # denotes the trivial Q-torsor. If we knew that Hl(é’P, Q) is a
scheme, we would directly obtain that ¢, is a closed immersion. This question does
not seem to follow from the use of skeletons in [Tey19]. We will circumvent this
problem with a group theoretic argument.

From lemma 1.8.2, the sheaf StjAD ¢ is constructible with respect to the stratification
of 0D induced by the Stokes locus of M. Hence, the same argument as in [Tey19,
1.9.1] applies. In particular, there exists a cover U of 0P by open subsets such that
the morphism of affine schemes

(3.2.9) ZYU, St —— HY (0P, St5)

is surjective at the level of R-points for every C-algebra R. From [BV89, 2.7.3], the
morphism (3.2.9) admits a section. Composing this section with

ZYU, St —— ZH U, Q)
gives rise to a commutative triangle of functors

(3.2.10) HY(0P,St3*) — H (0P, Q)

|

z' U, Q)
The algebraic group
Gu=]],, U9
acts on Z1(U, Q). Let
(3.2.11) Gu — 2'(U, Q)

be the morphism of schemes obtained by restricting the action of Gy, to the trivial
cocycle. Since H(0P, Q) ~ 0, the morphism (3.2.11) is a monomorphism. There is a
commutative diagram

(3.2.12) H' (0P, St37) Gy 4>I
HY(0P,St3") —— Z'(U, Q) —— H' (4P, Q)

We would like to reduce the problem of proving that ¢4 is a closed immersion to the
problem of proving that (3.2.11) is a closed immersion. To do this, we would like to



20 J.-B. TEYSSIER

fill the left diagram in (3.2.12) into a cartesian square. Note that the right square
in (3.2.12) may not be cartesian since there may be cocycles in Z'(U, Q) that are
cohomologous to the trivial cocycle only after passing to a refinement of U. To treat
this problem, we argue by using the universal torsor under Stf\,lD on OP.

Let 7"V be the universal torsor under Stj,lD on 0P. Let A be the ring of functions
of H'(0P,St3f). From the commutativity of (3.2.10), the image ~ of 7"V in
ZYU, Q(A)) induces the trivial Q(A)-torsor. Hence, there exists a refinement V
of U such that 7)), is cohomologous to the trivial cocycle, that is, such that )y, lies in
the image of Gy,(4) — Z1(V, Q(A)). Hence, there is a commutative square

(3.2.13) H(AP,St5{) —— Gy

HY(0P,St0") —— Z'(V, Q)

This square is cartesian. Indeed, let F' be the fibre product of H!(dP, Stj/lD ) with
Gy over Z1(V, Q). By definition, there is a commutative diagram of functors

(3.2.14) HY(0P,St3f) —— F

T |

H'Y (0P, St3")

Since the right vertical arrow in (3.2.13) is a monomorphism, F is a sub-functor of
H(oP, SthD ). Hence, all maps in (3.2.14) are inclusions of functors. We are thus left
to prove that F' is a sub-functor of H' (0P, St} ). This is an immediate consequence
of the fact that H'(0P,St}(’) is the functor of torsors 7 € H'(AP,St3(") inducing
the trivial Q-torsor.

Hence, to prove that ¢y is a closed immersion, we are left to show that (3.2.11) for
V is a closed immersion. From the general theory of algebraic group actions, the map
(3.2.11) factors as

Gy — 05 721(v,0)

where « is faithfully flat, where O is the orbit of the trivial cocycle under Gy, and
where (3 is an immersion of schemes. Since smoothness is a local property for the fppf
topology [SPD, 05B5], the smoothness of Gy, implies that O is smooth. By definition,
« is an isomorphism at the level of C-points. Hence, « is an isomorphism of varieties.
We are thus left to show that O is closed in Z*(V, Q). It is enough to show that O is
closed in Z*(V, @)**d. From Kostant-Rosenlicht theorem [Bor91, I 4.10], it is enough
to show that Gy is a unipotent algebraic group, which is a consequence of the fact
that the Stokes sheaves are sheaves of unipotent algebraic groups. This concludes the
proof of proposition 3.2.1.

O
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3.3. Proof of Theorem 3. — Let U < V < D be non empty open subsets in D
such that V is connected. We want to show that the natural morphism

(3.3.1) HY(0V,Stif) — H'(0U,St3f)

is a closed immersion of affine schemes of finite type over C. Let A be the set of open
subsets U’ in V' containing U and such that the natural morphism

HY(oU',Stxf) — H'(0U, St3P)

is a closed immersion. We want to show that A contains V. Note that A is not empty
since it contains U. Let A’ be a subset of A which is totally ordered for the inclusion.
Let R be the ring of functions of H'(0U,StxP). For U’ € A’, let Zy» be the ideal
of functions of H'(OU’,St3¢) in H'(dU,Stt ). By assumption on A’, the family of
ideals (Zy)yrear is totally ordered for the inclusion. Hence, Z := UU,er, is an ideal
in R. Since R is noetherian, there exists Uj € A’ such that Z = Ty;. In particular,
Ty = Iy, for every U’ € A’ containing Uj. Set V' := |Jyic 0 U’ From lemma 2.3.3,
we deduce

HY(oV',St3P) ~ Jim HY(oU',St30)
Ie 7
~ i H(oU',StiP
U’eA'17rlIJl()<:U' (U, St5°)
~ HY(0U}, St3F)

Thus, V' € A. From Zorn lemma, we deduce that A admits a maximal element W. If
W is closed in V, then we have W = V by connectedness of V. Suppose now that W
is not closed in V. Let P € W\W and let B be a small ball in V containing P and such
that H'(0B, Sty ) —> H'(AP,St3{’) is an isomorphism. Set W’ := W u B c V.
We are going to show that W’ € A, which contradicts the fact that W is maximal in
A. From the factorization

(3.3.2) HY(OW',St3f) —— H' (0W,St3) —— H'(0U, St37)

we are left to show that the first arrow in (3.3.2) is a closed immersion. From lemma
2.3.3, the following diagram

(3.3.3) HY (oW’ ,St3f) —— H'(0B,St3d)

J |

HY(0W,St3f) —— HY(O(W n B),St34)

is cartesian. Hence, it is enough to show that the right vertical arrow in (3.3.3) is a
closed immersion. Let (P,).en be a sequence of points in W converging to P. Since
W is open, the sequence (P,)nen can be supposed to lie in some DY for ¢ € [1,m]. Let
A c B be a small enough neighbourhood of P in D;. Set A* = A\ Uje[\{i} D; c Dg.

From our choice for ¢, the open set W n A* is not empty. We have the following
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commutative diagram

(3.3.4) H'(0B,Stxf) ———— HY(0A*,St%7)

| |

HY(O(W n B),Stxf) —— HY(O(W n A*),St3f)

From proposition 3.2.1, the top horizontal arrow in (3.3.4) is a closed immersion. From
corollary 3.1.4, the right vertical arrow in (3.3.4) is a closed immersion. Hence, the
left vertical arrow in (3.3.4) is a closed immersion. Hence, W’ € A, which contradicts
the fact that W is maximal in A. Thus, W = V € A, which finishes the proof of
Theorem 3.

4. Stokes torsors and marked connections

4.1. Notations. — For a morphism of smooth complex varieties 7 : Y — X, we
denote by 7 the inverse image functor for D-modules and by 7, the direct image
functor for D-modules. For precise definitions, let us refer to [HTTO00].

In this section, (X, D) will denote a regular pair. Let M be a connection on X
with poles along D. Suppose that M has good formal structure.

4.2. Definition of marked connections and relation with Stokes torsors. —
Let us recall that a M-marked connection is the data of a pair (M, iso) where M is
a germ of meromorphic connection with poles along D defined in a neighbourhood
of D in X, and where iso : M7z — My is an isomorphism of formal connections.
We denote by Isomis, (M, M) the Stxs’ (C)-torsor of isomorphisms between dM and
0M which are asymptotic to iso along D. The proof of the following statement was
suggested to me by T. Mochizuki. I thank him for kindly sharing it. When D is
smooth, it was known to Malgrange [Mal83a]. See also [Sab02, II 6.3].

Lemma 4.2.1. — The map associating to every isomorphism class of M-marked
connection (M, iso) the Stif (C)-torsor Isomis, (M, M) is bijective.

Proof. — Let us construct an inverse. Take 7 € Stii (C) and let g = (gi;) be a
cocycle for T associated to a cover (U;);er of dD. Let £ be the Stokes filtered local
system on 0D associated to M. Set L; := Lyy,. Then, g allows to glue the £; into
a Stokes filtered local system L7 on 0D independent of the choice of g. From the
irregular Riemann-Hilbert correspondence [Moc1la, 4.11], L7 is the Stokes filtered
local system associated to a unique (up to isomorphism) good meromorphic connection
M defined in a neighbourhood of D and with poles along D. By construction, the
isomorphism Ly, — L)y, corresponds to an isomorphism oMy, — OM|y,.
We thus obtain a formal isomorphism iso; : 6MT’5|UI_, — aM@‘Ui. On Uy, the
discrepancy between iso; and iso; is measured by the asymptotic of g;; along D.
By definition, this asymptotic is Id. Hence, the iso; glue into a globally defined
isomorphism 6/\/17—715 — 0Mp. Applying pps thus yields an isomorphism iso :
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My 5 —> Mp. It is then standard to check that the map 7 — (M7, iso) is the
sought-after inverse. O

4.3. Proof of Theorem 4. — We are now in position to prove Theorem 4. Let X
be a germ of smooth algebraic variety around a point 0. Let D be a germ of divisor
passing through 0. Let M be a germ of meromorphic connection at 0 with poles
along D. Let C be a smooth curve passing through 0 and not contained in any of the
irreducible components of D. Let (M, iso1) and (Ms, is02) be M-marked connections
such that
(My,is01) |0 = (Mz,is02)|c

We want to show that (Mj,is01) and (Ms,isos) are isomorphic in a neighbourhood
of 0. Let 7 : Y — X be a resolution of turning points for M around 0. Such
a resolution exists by works of Kedlaya [Ked11] and Mochizuki [Moc11b]. Set
E := 77Y(D). At the cost of blowing up further, we can suppose that the strict
transform C’ of C' is transverse to E at a point P in the smooth locus of E. Note that
E is connected. From lemma 4.2.1, the 7+ M-marked connections (7 My, " iso1)
and (7+ My, 7+ is02) define two C-points of H(0E, St=F, ). For i = 1,2, the cone of
the canonical comparison morphism

(4.3.1) mont M; — M;

is supported on D. Note that the right-hand side of (4.3.1) is localized along D.
From [Meb04, 3.6-4], the left-hand side of (4.3.1) is localized along D. Hence, the
morphism (4.3.1) is an isomorphism. Thus

(ryomt My, ot iso;) ~ (M;,iso;)
Hence, it is enough to show (7t My, 71 is01) ~ (7 My, 7 isoy). By assumption,
(7t My, 7" iso)jor = (M, is01) (¢
~ (My,is02)|c
~ (7 My, m+ is0)cr
Hence, (7*M;, 7" is01)|cr and (77 My, 77 isoz)|c» define the same C-point in
H'(0P, St(fﬂM)‘C,). Let « : C' —> Y be the morphism induced by ¢’ —> Y at the

level of the real blow-up. Observe that ¢ induces an isomorphism above P. Since
TSR St(frﬁ./\/l)lcn we have

H' (0P, S5 M) = H' (0P, St=F)
Hence, the image of (71 Mj, 7% iso1) and (71 My, 7T iso2) by the restriction map

(4.3.2) HY(0E,St=F\,) — HY (0P, St=F,,

are the same. From Theorem 3, the map (4.3.2) is a closed immersion. Hence,
(7t My, 77 is01) ~ (7T Mo, 7w is0s), which concludes the proof of Theorem 4.
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4.4. Obstruction theory and tangent space. — We use the notations
from 4.1. Let us compute the obstruction theory of Hl((?D,StjAD) at a point
To € H' (0D, St3”(C)). We fix a morphism of infinitesimal extensions of C-algebras

R — R—C, I:=KerR' — R

such that I is annihilated by Ker R” — C. In particular, I? = 0 and I is endowed
with a structure of C-vector space, which we suppose to be finite dimensional. Let
T € H'(0D, St 5+ (R)) lifting T5. Choose a cover U = (U;)icxc of @D such that T comes
from a cocycle g = (gij)i jex. Set L;(R) := Lie StXAD(R)‘Ui. The identifications

M — g;'Mg,

allow to glue the L;(R) into a sheaf of R-Lie algebras over 0D denoted by
LieSti{ (R)7 and depending only on 7 and not on g. For t = (tjz) €
C'Q(U,LieStf\,lD(R)T), we denote by s;j, the unique representative of t;;, in
F(ka,Ll(R)) Then

(dt)ijer = tjwr — tiwg + tiji — tiji
= [gijsjkzg; — Sikl + Sijl — Sijk]
We have the following
Lemma 4.4.1. — There exists
ob(T) € I ®¢ H*(@D, Lie St31 (C)7)

such that ob(T) = 0 if and only if T lifts to H* (0D, St (R')).

Proof. — For every i,j € K, let hy; € F(Uij,Stj,lD(R’)) be an arbitrary lift of g;;
to R'. We can always choose the h;; to satisfy h;; = Id and h;;h;; = Id. Since
Lie St (R') is locally free,

I-LieStif (R) ~ I ®p LieStif (R') ~ I ®c Lie St (C)
We will use both descriptions without mention. We set
sijk 2= hijhjhg; —1d € T(Up, I - LieSt3 (R))

We see s;;i as a section of I ®¢ L;(C) over U,;, and denote by [s;;x] its class in
I®cLie St (C)7°. We want to prove that the [s;;] define a cocycle. As seen above,
this amounts to prove the following equality in T'\(Uyjx, I ®¢ Lie St (C))

(4.4.2) gij(O)Sjklgi_jl(O) — Sikl + Sijl — Sijk = 0
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Where g¢;;(0) is the image of g;; by R — C. We have
Qij(o)sjklgigl(o) = hijhjrhgihghy —1d
= (hijhjk — hix + hig) hrihighj — 1d
= (hijhjk — hik)gr1(0)91;(0) ;i (0) + highyihihji — 1d
= (hijhjr — hik)gri(0) + highgihiihj; —1d
= (hijhjx — hik)Pri + highgihighy; —1d
= hijhjihi; + hichiihighy —21d

We now see how the second term of the last line above interacts with the second term
of the left-hand side of (4.4.2).

hikhiihijhyi — sit = highrihighgs — haghirahe +1d
= highgi(hijhji — i) +1d
= 9ik(0)gr1(0)(hujhji — hy;) +1d
= gi(0)(hujhji — i) +1d
= hithijhji
Hence,
9i5(0)s5x19;;" (0) = sirt + sij1 = sij5 = harhujhyi + hijhjihy; — 21d
= (hizhjihi) ™" + hijhjihy — 21d
= (hizhjihe) " ((highjihi)® = 2hijhgihe + 1d)
= (hijhjihi) ™" s

)

where the last equality comes from I? = 0. Hence, the [s;;;] define a cocycle of
I ®c LieSti{ (C)7. An other choice of lift gives rise to homologous cocycles. We
denote by ob(T") the class of ([sijx])ijx in H2(0D, I®c Lie St5y (C)7). Tt is standard
to check that ob(7") has the sought-after property. O

Corollary 4.4.8. — Let (M,iso) be a M-marked connection. Then, the space
H?(D,Trr¥, End M) is an obstruction theory for H*(0D,StxP) at Tsomie, (M, M).

Proof. — Set T := Isomjso(M, M). As observed in [Teyl9, 5.2], the canonical
identification

HODR=P End M — Lie St 3¢ (C)T

induces

12

HY(0D,LieSt3(C)7) ~ H' (4D, Lie St 3¢ (C)7)

H(éD,H° DR~ End M)
H(éD,DR~P End M)
H(

D, Irr}, End M)

12

12

1
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The second identification comes from the fact [Hie09, Prop. 1] that DR<? End M
is concentrated in degree 0. The third identification comes from [Sab17, 2.2]. Then,
corollary 4.4.3 follows from lemma 4.4.1. O

Reasoning exactly as in [Tey19, 5.2.1], we prove the following

Lemma 4.4.4. — For every M-marked connection (M,iso), the tangent space of
HY(0D,St3f) at (M,iso) identifies canonically with H (D, Trr End M).

5. Reduction of Theorem 1 to extending the formal model

5.1. Reduction to the dimension 2 case. — In this subsection, we reduce the
proof of Theorem 1 to the dimension 2 case. The main tool is André’s goodness
criterion [And07, 3.4.3] in terms of Newton polygons. This reduction does not seem
superfluous. Of crucial importance for the sequel of the proof will be indeed the fact
that when X is an algebraic surface and D a smooth divisor in X, then for every point
0 € D and every meromorphic connection M on X with poles along D, the formal
model of M splits on a small enough punctured disc around 0. This fact is specific to
dimension 2, since it pertains to the property that turning points in dimension 2 are
isolated.

Lemma 5.1.1. — The converse inclusion in Theorem 1 is true in any dimension if
it is true in dimension 2.

Proof. — Take n > 2. We argue recursively by supposing that Theorem 1 holds in
dimension strictly less than n and we prove that Theorem 1 holds in dimension n.
Let X be a smooth complex algebraic variety of dimension n. Let D be a smooth
divisor in X. Let M be an algebraic meromorphic connection on X with poles along
D. Let 0 € D and suppose that Irrf, M and Irr§, End M are local systems in a
neighbourhood of 0. If j : X\D — X and i : D — X are the canonical inclusions,
we have a distinguished triangle

L —— Sol M —— i, Irrjy M

where L is a local system on the complement of D. Hence, the characteristic cycle of
Sol M is supported on the union of 7% X with T/5X. From a theorem of Kashiwara
and Schapira [KS90, 11.3.3], so does the characteristic cycle of M. Hence, any
smooth hypersurface transverse to D and passing through 0 is non characteristic with
respect to M in a neighbourhood of 0. Let us choose such a hypersurface Z and let
iz : Z — X be the canonical inclusion. From [And07, 3.4.3], the turning locus
of M is a closed subset of D which is either empty or purely of codimension 1 in
D. Since n > 2, the hypersurface Z can consequently be chosen such that M and
End M have good formal structure generically along Z n D. The connection i;M
is a meromorphic connection with poles along Z n D. It satisfies the hypothesis of
Theorem 1 at the point 0. Indeed by Kashiwara’s restriction theorem [Kas95],

ity piyM = (Solif M) zap = (SOl M) z~p
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and similarly for End M. Hence, Irr} . i M and I}, , End i}, M are local systems
in a neighbourhood of 0 in Z n D. By recursion hypothesis, i, M is good at 0. In
particular, the Newton polygon of z}/\/l at 0 (which is also the Newton polygon of
M at 0) is the generic Newton polygon of i}, M along Z n D. From our choice for Z,
the generic Newton polygon of i, M along Z n D is the generic Newton polygon of
M along D. Hence, the Newton polygon of M at 0 is the generic Newton polygon of
M along D, and similarly with End M. By a theorem of André [And07, 3.4.1], we
deduce that M has good formal structure at 0, which proves lemma 5.1.1.

O

5.2. Setup and recollections. — From now on, we restrict the situation to
dimension 2. We use coordinates (z,y) on A2 and set D, := {y = 0}, D, := {z = 0}.
Let D be a neighbourhood of 0 in D, and let C[D] be the coordinate ring of D. Set
D* := D\{0}.

Let M be an algebraic meromorphic flat bundle on a neighbourhood of D in A%
with poles along D. In algebraic terms, M 5 defines a C[D]((y))-differential module.
At the cost of shrinking D if necessary, we can suppose that the restriction M* of
M to a neighbourhood of D* has good formal structure at every point of D*.

There is a ramification v = y*/?, d > 1 and a finite Galois extension L/C(z) such
that the set Z of generic irregular values for M lies in Frac L(v). If p: D —> D is
the normalization of D in L, the generic irregular values of M are thus meromorphic
functions on Dy, x Al. We have

(5.2.1) L(v)@M~@PE* @R,
a€l

where the R, are regular. Following [And07, 3.2.4], we recall the following

Definition 5.2.2. — We say that M is semi-stable at P € D if

(1) We have T c C[Dp]p((v)).
(2) The decomposition (5.2.1) descends to C[Dr]p((v)) ® M.

In this definition, C[D]p denotes the localization of C[Dy] above P. This is a
semi-local ring. Let 7, € L((v)) ® End M be the projector on the factor £E* @ R,. As
explained in [And07, 3.2.2], the point P is stable if and only if the generic irregular
values of M and the coefficients of the 7, in a basis of End M belong to C[Dp]p((v)).
Since M has good formal structure at any point of D*, the generic irregular values
of M and the coefficients of the 7, in a basis of End M belong to C[Dp]p((v)) for
every P € D*. Hence, they belong C[D¥]((v)) where D% := D\p~'(0). Thus

(5.2.3) CIDL]((v)) ® M ~ C[D]((v)) @ N[
where
Nf=PE ®R,
ael

is a germ of meromorphic connection defined on a neighbourhood of D¥ in Dy, x A}
and with poles along D7. The action of

Gal(L/C(x)) x Z/dZ
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on the left-hand side of (5.2.3) induces an action on Nj. Taking the invariants yields
a meromorphic flat bundle N* defined on a neighbourhood 2 of D* in AZ. By Galois
descent, (5.2.3) descents to an isomorphism iso* between the formalizations of M*
and A'* along D*.

5.3. Reduction to the problem of extending the formal model. — The
goal of this subsection is to show that Theorem 1 reduces to prove that the M?*-
marked connection (N*,is0*) defined in 5.2 extends into a M-marked connection in
a neighbourhood of 0. To do this, we need three preliminary lemmas. The notations
and constructions from 5.2 are in use.

Lemma 5.8.1. — Suppose that N'* extends into a meromorphic flat bundle N
defined in a neighbourhood of D in A} and with poles along D. Then, N is
semi-stable at 0.

Proof. — It is enough to treat the case where K = C(z) and d = 1. In that case,
discussion 5.2 shows that on a neighbourhood Q of D* in A2, we have
N* = DN
a€l

where N* is a meromorphic connection on Q with poles along D* and with single
irregular value a. The open D x A retracts on the small neighbourhood on which A/
is defined. Since N is smooth away from D, we deduce that N extends canonically
into a meromorphic connection on D X A%} with poles along D.

Let a € Z. The restriction of the projector 7, to the complement of D* in Q is
a flat section of End . Since D* x A retracts on 2, parallel transport allows to
extend 7, canonically with D* x A}. We still denote by m, this extension. Hence,
N extends into a meromorphic connection on D* x A}J with poles along D*. Let
v be a small loop in 2 going around the axis D,. By assumption, the monodromy
of N along « is trivial. Thus, 7, is invariant under the monodromy of End A/ along
7. Hence, 7, extends canonically to (D x A{)\{0}. By Hartog’s property, it extends
further into a section @, of End N on D x Af.

Set N, := w,(N) c N for every a € Z. We have w2 = w, and >, ., @, = Idy
because these equalities hold on a non empty open set. Hence, N' = @qezN,. Since
w, is flat, the connection on A preserves each A,. Let us prove that the A/, are
locally free as (’)DX% (#D)-modules.

Let E be a Deligne-Malgrange lattice [Mal96] for . Since we work in dimension
2, we know from [Mal96, 3.3.2] that F is a vector bundle. We observe that w,
stabilizes £ away from 0. By Hartog’s property, we deduce that w, stabilizes F.
Hence, w,(F) is a direct factor of E. So w,(F) is a vector bundle. Thus,

No = @a(N) = @a(E(xD)) = (wa(E))(+D)

is a locally free Op, 51 (+D)-module of finite rank with connection extending NF. To
prove lemma 5.3.1, we are thus left to consider the case where Z = {a}.

If Z = {a}, then [And07, 3.3.1] implies a € C[D]((y)). Hence, R := £ *QNp is a
formal meromorphic connection with poles along D. By assumption, R is generically
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regular along D. From [Del70, 4.1], we deduce that R is regular. Hence, N5 = E°@R
with R regular, which concludes the proof of lemma 5.3.1. O

Lemma 5.8.2. — Let N be a meromorphic flat connection with poles along D.
Suppose that N is semi-stable at 0 and that Irr, N and Irr}, End N are local systems
in a neighbourhood of 0. Then, N has good formal structure at 0.

Proof. — Let Z be the set of irregular values of N' at 0. There is a ramification
v =y"4 d > 1 and a finite Galois extension L/C(z) such that Z c L((v)). Let
Dy —> D be the normalization of D in L. At the cost of shrinking D, we can
suppose that every point of D is semi-stable for A”. Hence, Z c C[D]((v)) and

C[DL)(v)) QN = PE* @R,
a€l
where the connections R, are regular. As seen in the proof of lemma 5.1.1,
the assumption on Irr}, implies that any smooth curve transverse to D is non
characteristic for A/. Taking the axis D, yields

dim H' Irr§ Np, = dim(H' Irr}, N)o = Z (ordy, a)rk R,
acel
On the other hand, choose a point P € Dy above 0. Then, the irregular values of
Np, are the a(P), a € Z. Thus,

H' I Nip, = 2 ord, a(P)rk R,
a€l
Hence, ord, a(P) = ordy a for every a € Z. In particular, the coefficient function of
the highest power of 1/v contributing to a € Z does not vanish at P. Arguing similarly
for End V', we obtain that N has good formal structure at 0. O

Lemma 5.8.8. — Suppose that Trrs, M is a local system. For every M-marked
connection (N, iso), the complex Irr’y N is a local system.

Proof. — From [Meb90|, the complex Irr’y A is perverse. To prove that it is a
local system, it is thus enough to prove that the local Euler Poincaré characteristic
x(D, Ity N) ©+ D — Z of Irr;, N is constant. From the local index theorem
[Kas73][Mal81], the local Euler Poincaré characteristic of Irr}, N depends only on
the characteristic cycle of A/. Since the characteristic cycle of N' depends only on N
via N, we have
X(D7 II‘I‘T) N) = X(Dv II‘I‘T) M)

By assumption, x(D,Irr}, M) is constant. Hence, x(D,Irr}, N) is constant, which
finishes the proof of lemma 5.3.3. O

Proposition 5.3.4. — Let D be an open neighbourhood of 0 in an hyperplane of A%
Let M be an algebraic meromorphic flat bundle on a neighbourhood of D with poles
along D. Set D* = D\{0} and let M* be the restriction of M to a neighbourhood
of D¥. Let (N*,iso™) be the M*-marked connection constructed in 5.2. Suppose
that Trrs, M and Trry) End M are local systems in a neighbourhood of 0. Then, if
(N*,is0™) extends into a M-marked connection, M has good formal structure at 0.
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Proof. — Let (N, iso) be a M-marked connection extending (N*,iso*). From lemma
5.3.1, the extension A/ is semi-stable at 0. From lemma 5.3.3, we know that Irr}, N’
and Irr}, End A are local systems in a neighbourhood of 0. From lemma 5.3.2, we
deduce that N has good formal structure at 0. Hence, so does M. O

6. Extension via moduli of Stokes torsors

6.1. A geometric extension criterion. — In this subsection, we relate the
moduli of Stokes torsors to the problem of extending marked connections. Let D
be an open subset of a hyperplane in A2. Pick P € D. Set D* := D\{P}. Let
M be an algebraic meromorphic flat bundle in a neighbourhood U of D in A and
with poles along D. Let M* be the restriction of M to U\{P}. Let 7 : Y — A2
be a resolution of the turning point P for M. Such a resolution exists by works of
Kedlaya [Ked10] and Mochizuki [Moc09]. Let A be an open disc of D containing
P. Set A* = A\{P}. Set E := 7 !(A) and pick Q € A*. Let

®: H'(0F,St=F,,) —— H'(0Q,St3s)
be the restriction morphism of Stokes torsors.

Lemma 6.1.1. — Let (N*,is0*) be a M*-marked connection such that (Nj,isog)
lies in the image of ®. Then, (N*,is0™) extends into an M-marked connection.

Proof. — From lemma 4.2.1, any C-point of H'(0F,St=F,,) comes from a unique
7+ M-marked connection. Hence, there exists (N”,iso’) € H'(0F,St=F,,) such that
P(N,iso') = (Np,isop). From [Meb04, 3.6-4], the D-module N := 7, N’ is a
meromorphic connection defined in a neighbourhood of A and and with poles along
A. By flat base change

N ~ @@(@RW*(DX—)A% ®N)

~ Rﬂ’*(@ﬁ ®DX~>A‘% ®Nl)

~ RW*(DX_A% ®./\/']'§)

~ 7T+Nl/—2,
and similarly MR =~ 7 (7" M)z. Hence, iso := 74 iso’ defines an isomorphism
between Nz and My. So (VNV,iso) is a M-marked connection in a neighbourhood of
A. By definition, the germ of (V,iso) at @ is (N, isog). Since R'pax Stf\,tA* is a
local system on A*, we deduce

(N, is0)jax = (N*,is0%) %

Hence, the gluing of (N, iso) with (N*,iso*) provides the sought-after extension of
(N*,is0™) into an M-marked connection. So lemma 6.1.1 is proved. O

Let us now give a sufficient condition for the surjectivity of ® in terms of the
irregularity complex.
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Proposition 6.1.2. — With the notations from 6.1, suppose furthermore that the
perverse complex Irr}, End M is a local system on A. Then ® induces an isomorphism
between each irreducible component of H'(0F,St=E,,) and H'(6Q, Stxs).

Proof. — From [BV89], we know that H'(Q,St3+) is an affine space. Since affine
spaces in characteristic 0 have no non trivial finite étale covers, it is enough to prove
that @ is finite étale. From Theorem 3, the morphism & is a closed immersion. We
are thus left to show that ¢ is étale.

Etale morphisms between smooth schemes of finite type over C are those morphisms
inducing isomorphisms on the tangent spaces. Hence, we are left to prove that
H'(0E,St=F,,) is smooth and that ® induces isomorphisms on the tangent spaces.
Let (M,iso) be a m* M-marked connection. From corollary 4.4.3, an obstruction
theory to lifting infinitesimally the Stokes torsor of (M, iso) is given by

(6.1.3) H?(E,Trr End M) ~ H*(A,Trrdy my End M) ~ 0

The first identification expresses the compatibility of irregularity with proper
push-forward.  Furthermore, from lemma 5.3.3 applied to the End M-marked
connection (74 End M, 4 iso), the perverse complex Irr}, w4 End M is a local system
concentrated in degree 1. This implies the vanishing (6.1.3). Hence, H'(0E,St>F /)
is smooth at (M,iso). From lemma 4.2.1, any C-point of Hl(aE,St;fM) is of
the form (M,iso). Thus, H'(0E,St=F,,) is smooth. Furthermore, we have a
commutative diagram

Tariso) HH(OE, St5E0) —— T(arg is00) H (0Q, St31)
2 2

HY(E, It End M) ——— (H! Irr'f, End M) g

2 \
HY(A Ity 7 End M) ——— (H! Irr}, End M) g

! \

HY(AH Trr}y 7 End M) ——— (H' I}, End M)

The first vertical maps are isomorphisms by lemma 4.4.4. As already seen,
Irr}, 7 End M is a local system concentrated in degree 1. Hence, the last vertical
and the bottom arrows are isomorphisms. Thus, the tangent map of ® at (M, iso) is
an isomorphism. This finishes the proof of proposition 6.1.2.

O

6.2. Proof of Theorem 1. — Let X be a smooth complex algebraic variety. Let
D be a smooth divisor in X. Let M be an algebraic meromorphic connection with
poles along D.

We first prove the direct inclusion in Theorem 1. Suppose that M has good formal
structure at a closed point P € D. Since the good formal structure locus of M is
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open in D [And07], we can suppose at the cost of restricting the situation that M
has good formal structure along D. By Mebkhout’s theorem [Meb90], the complexes
Irr}, M and Irr}, End M are perverse. To prove that they are local systems on D, it is
thus enough to prove that their local Euler Poincaré characteristic is constant. From
the local index theorem [Kas73][Mal81], the local Euler Poincaré characteristic of
Irr’}, M depends only on the characteristic cycle of M. Since the characteristic cycle
of M depends only on M via M 5, we are reduced to treat the case where M = £°®@R
where a € Ox(+D) is good and where R is a regular singular meromorphic connection
with poles along D. Since Irr}, is exact, we can suppose further that the rank of R is
one. In that case, a standard computation shows that the characteristic cycle of M
is supported on the union of T% X with T/ X. Hence, any smooth transverse curve
to D is non-characteristic for M. Let P € D and let C be a smooth transverse curve
to D passing through P. From [Kas95], we have

(Irr}y M) p =~ Irrp Mo =~ €97 *[—1]

Hence, the local Euler-Poincaré characteristic of Irr}, M is constant and similarly for
Irr}, End M. This finishes the proof of the direct inclusion in Theorem 1.

We now prove the converse inclusion in Theorem 1. From lemma 5.1.1, we can
suppose that X is a surface. Let P € D such that Irrj, M and Irr}, End M are local
systems in a neighbourhood of P in D. At the cost of taking local coordinates around
P, we can suppose that D is an open subset of a hyperplane in AZ. Put D* := D\{P}.
Let M* be the restriction of M to a small neighbourhood of D* in X. Let (N*, iso™*)
be the M*-marked connection defined in 5.2. Such a connection exists at the cost
of replacing X by a small enough neighbourhood of P in X. From proposition 5.3.4,
we are left to show that (N*,iso™) extends into a M-marked connection. Let A be
a small enough disc in D containing P such that Irr§, M and Irr}, End M are local
systems on A. Put A* := A\{P}. Let 7 : Y — X be a resolution of turning points
for M at P. Set E := 7=(A) and pick Q € A*. Let

®: H'(0F,St=F,,) —— H'(Q,St3s)

be the restriction morphism of Stokes torsors. From lemma 6.1.1, to prove that
(N*,is0¥) extends into a M-marked connection, it is enough to prove that (N3, isog)
lies in the image of ®. This is indeed the case by lemma 6.1.2, which finishes the proof
of Theorem 1.

7. A boundedness theorem for turning points

7.1. Nearby slopes. — Let X be a smooth complex algebraic variety and let
M be an holonomic Dx-module. Let f € Ox be a non constant function. Let
1 s be the nearby cycle functor associated to f [Kas83][Mal83b]|[Meb89][MMO04].
Following [Tey16], we recall that the nearby slopes of M associated to f are the
rational numbers r € Q¢ such that there exists a germ N of meromorphic connection
at 0 € A, with slope r such that

(7.1.1) Yr(MQFTN) 0
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We denote by Sl?b(./\/l) the set of nearby slopes of M associated to f. In dimension 1,
the nearby slopes of M associated to a local coordinate centred at a point 0 are the
usual slopes of M at 0. See [Tey16, 3.3.1] for a proof. In general, the set Sl?b(M) is

finite [Del07]. If M is a meromorphic connection, an explicit bound for Slr}b(./\/l) is
given in [Tey16] in terms of a resolution of turning points of M. This bound behaves
poorly with respect to restriction. We will need a sharper bound in the case where f
is a smooth morphism. It will be provided by the following more general proposition.

Proposition 7.1.2. — Let M be a germ of meromorphic connection at 0 € A™ with
poles along the divisor D given by f := x1---xq = 0. Let r; be the highest generic
slope of M along x; = 0. Put rp(M) = Max{ry,...,rq}. Then,

SI> (M) < [0,7p(M)]

Proof. — To prove proposition 7.1.2, take r > rp(M) and let N be a germ of
meromorphic connection at 0 € Aﬂlj with slope r. We want to show the vanishing
(7.1.1) in a neigbourhood of 0. By a standard Galois argument, one reduces to the
case where r and the r;,7 = 1,...,d are integers. Since v ¢ is a formal invariant, we can
further suppose that N = t*£/t" where a € C. Let us accept for a moment that M
is generated as a Dx-module by a coherent Ox-submodule F stable by fTD(M)xiam,
i =1,...,d and such that M = F(+D). Let (e1,...,en) be a generating family for
F in a neighbourhood of 0. Then, the f*e/f"e;, i = 1,..., N generate M @ ftN
as a Dxy-module. Let ¢ : C* — C™ x C; be the graph of f. Set § := §(¢t — f).
Then, the s; = f®/"e;6, i = 1,..., N generate 14 (M ® f*N). To show that
the germ of ¢;(M ® f*N) at 0 vanishes, we are thus left to prove that s; belongs
to V_1(Denxe, )i+ F for every ¢ = 1,..., N, where Vo(Dgnyc,) is the Kashiwara-

Malgrange filtration on Dene,. For i = 1,..., N, we have
d
r
froU0z0,, 5 = fro0 (o - F)Si + X958 — [PV 0, 9j € Ox
j=1
Hence,

d
rs; = at’s; + 7P M) Z 985 — [Tw105,8i — 10,
j=1
Since r > rp(M), we have

d
¢r=roM) Z 9585 € V_1(Denxe, )+ F
j=1
Note furthermore that
frxlamlsi = xlaxlfrsi —rf's; = tr($1am1 - 7“)81' € Vfl(IDC”th)Si
and that
fr+16tsi = 0ttr+18i = (7’ + ].)tTSi + trtétsi € Vfl(DCn XCt)Si

Hence, s; € V_1(Dgnxe, )+ F, which proves the sought-after vanishing. We are thus
left to prove the lemma 7.1.3 below. O
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Lemma 7.1.3. — Let M be a germ of meromorphic connection at 0 € Ag with poles
along the divisor D given by f := x1,---xq = 0. Let r; be the highest generic slope of
M along x; = 0. Suppose that the r; are integers and put rp(M) = Max{ry,...,rq}.
Then, M is generated as a Dx-module by a coherent Ox-submodule F stable by
froMig;0,. for everyi=0,...,d and such that M = F(+D).

Proof. — Let E be a lattice in M as constructed by Malgrange in [Mal96]. By
construction, M = E(«D). Since holonomic Dx-modules are noetherian, M =
Dx f~*E for k big enough. Let us show that ' = f~*FE fits our purpose. For
m € E, we have

;o020 (fFm) = kTP m) 4 f (O 0, m)

Hence, it is enough to show that E is stable by f”D(M)ziaxi, i =20,...,d. Since
Oxan 5 is faithfully flat over Ox , for every z € D, we have £ = M n E*" in M?",
Hence, it is enough to show that E?" is stable by fTD(M)xi(?m, 1t =0,...,d. Let
j : U — X?" be the complement in X of the union of the singular locus of D with
the turning locus of M. By construction of the Deligne-Malgrange lattices, a section
of M belongs to E2" if and only if its restriction to U belongs to E‘a{]‘ Hence, we can
suppose that D is smooth and that M has good formal structure along D. We can
further suppose that M is unramified along D. Since O .. p is faithfully flat over
Oxean p, we can suppose that M is a good elementary local model, that is

M= &) E*®Ra

a€O xan (T‘D (M)D)

where the R, are regular meromorphic connections with poles along D. In that case,
E is by definition a direct sum of the form @ F, where F, is a Deligne lattice [Del70]
in R,. In that case, the sought-after stability is obvious. This finishes the proof of
lemma 7.1.3. O

Remark 7.1.4. — The bound for nearby slopes proved in proposition 7.1.2 was
suggested by the (-adic picture [HT21]. In loc. it. indeed, a similar bound was
obtained for L-adic nearby slopes of smooth morphisms [Teyl5|. In that setting, the
main tools are Beilinson’s and Saito’s work on the singular support [Beil6] and the
characteristic cycle [Sail7] for {-adic sheaves, as well as semi-continuity properties
[HY17|[Hul?] for various ramification invariants produced by Abbes and Saito’s
ramification theory [AS02]. From this perspective, proposition 7.1.2 is a positive
answer to a local variant for differential equations of a conjecture in [Leal6] on the
ramification of the étale cohomology groups for local systems on the generic fiber of a
strictly semi-stable pair. See Conjecture 5.8 from [HT21] for a precise statement.

7.2. Boundedness of the turning locus in the case of smooth proper relative
curves. — This subsection is devoted to the proof of Theorem 2. Let S be a smooth
complex algebraic curve. Let p : C — S be a relative smooth proper curve of genus
g- Let M be a meromorphic connection of rank r on C with poles along the fibre
Co. Let Z(M) be the subset of points in Cy at which M does not have good formal
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structure (that is, the turning locus of M). Let irr¢, M be the generic irregularity of
M along Cy. Let rp(M) be the highest generic slope of M along Cq. We put
K := (Sol M)\Cg [1] ® (Sol End M)|Co [1]
Then, K is a complex of C-vector spaces on Cy with constructible cohomology. It is
concentrated in degree 0 and 1. The generic rank of K is
rg = irrg, M +irr¢, End M
< rrp(M) +r?rp(End M)
< 2r%rp(M)

where the last inequality comes from rp(End M) < rp(M). The Euler-Poincaré
characteristic formula [Lau87, Th. 2.2.1.2] applied to K gives

X(Co, K) = (2—2g)rx — Z (rg —dimH°K,) + dimH' K,
xeSing K
where Sing K denotes the singular locus of K, that is the subset of points in Cy in
the neighbourhood of which K is not a local system concentrated in degree 0. From
Mebkhout perversity theorem [Meb90], the complex K is perverse. In particular,
H° K does not have sections with punctual support. Thus,
rg —dimH K, >0
for every x € Sing K. From perversity again [Tey13, 13.1.6], the local Euler-Poincaré
characteristic of K at x € Sing K differs from its generic value rg. Hence, for = €
Sing K, the quantity
(rg —dimHK,) + dimH'K,

is positive and non zero. It is thus strictly positive. Hence, we have a bound

|Sing K| < (2 = 29)rx — x(Co, K)

From Theorem 1, the singular points of K are exactly the points in Cy at which M
does not have good formal structure. Hence

|Z(M)| < 2ri + [x(Co, K)|

We are now left to bound x(Co, K). Since the irregularity complex is compatible with
proper push-forward [Meb04, 3.6-6], we have

X(Co, (Sol M)ie,)| = [x(0, Rp«(Sol M) c, )|
= [x(0, (Solp+ M) o)|
= [ (=) im0 H'py M|

< Z irrg H'py M

K2

< D rkHipy M x Max S (H'p. M)

K3

< Zrk’}-[ierM x Max SI'® (py M)

7
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Since nearby slopes are compatible with proper push-forward [Tey16, Th. 3 (i7)], we
have SI™®(py M) Slzb(/\/l). Since p is smooth, proposition 7.1.2 yields

x(Co, (Sol M) ¢,)| < 7p(M) Dk Hip M

?

For a generic point s € S, we have furthermore

itk Hip M =) dim(Sol H'p M),

= > dim(H' Sol py M),
= 2 dim(R'py Sol M),
i
= > dim H'(C,, £)
where £ denotes the local system of solutions of M|c,. Then Hi(C, L) = 0 for every
1 #0,1,2 and we have
dim H°(Cy, £) <tk L =tk M, =7
From Poincaré-Verdier duality, we have
dim H?(C;, £) = dim H%(Cy, £*) <tk L* =1tk M, =7
Finally,
dim H'(C,, £) = —x(Cs, £) + dim H°(Cy, £) + dim H?(C, £)
= —x(Cs,C) rk £ + dim H°(Cs, £) + dim H?(C,, L)
<2r(g+1)
Putting everything together yields
1Z(M)] < 8r%(g + 1)rp(M)
This finishes the proof of Theorem 2.

8. Appendix

8.1. Torsors. — In this subsection, we collect elementary facts and definitions on
torsors under a sheaf of groups.

Let X be a topological space. Let G be a sheaf of groups on X. We recall that
a torsor under G is a sheaf F on X endowed with a left action of G such that there
exists a cover U/ by open subsets of X such that for every U € U, there exists an
isomorphism of sheaves F|;; ~ Gy commuting with the action of G, where G acts on
itself by multiplication on the left. We denote by Tors(X, G) the category of G-torsors
on X. It is a standard fact that isomorphism classes of G-torsors are in bijection with
H'(X,G), the set of non abelian cohomology classes of G.

The following lemma is due to Babbit-Varadarajan [BV 89, 1.3.3].
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Lemma 8.1.1. — Let p : Y — X be a Galois finite covering of compact metric
spaces with Galois group G. Let G be a sheaf of groups on X. Suppose that the
p*G-torsors have no non trivial automorphisms. Then, the canonical morphism

H'(X,G) — H'(Y,p*G)¢
is bijective.

In [BV89, 1.3.3], the condition on p*G is expressed in terms of the triviality of
the set of global sections of the twist [BV89, 1.3] of p*G by a p*G-torsor 7. Observe
that this set is also the set of automorphisms of 7.

Lemma 8.1.2. — Let p: Y — X be a morphism of topological spaces. Let G be a
sheaf of groups on' Y. Let T be a G-torsor on Y. Suppose that X admits a cover U
by open subsets such that for every U € U, the torsor T is trivial on p~1(U). Then
DT is a pxG-torsor on X.

8.2. Recollections on Stokes filtered local systems. — The goal of this
subsection is to recall the notion of Stokes filtered local systems. Note that our use of
Stokes filtered local systems in this paper is a purely technical detour to obtain the
triviality criterion 8.4.1. Hence, we don’t claim for completeness in these recollections
and they can be omitted in a first reading. For more background material, let us
refer to [Mocl1a] and [Sab12].

We fix a germ of regular pair (X, D) at a point P and denote by pp : X —> X the
real blow-up of X along D. Let Z be a good sheaf of irregular values in Ox (*D)/Ox.
Let us recall the following fact [Mocl1a, 3.5].

Fact 8.2.1. — For every point Q) in 0D, there is an open neighbourhood Ug of Q) in
0D such that for every point Q' in Ug, the induced map

Typ@)<@) — pp@y, <)

is well-defined and order preserving.
The following definition appears in the absolute case in [Mocl1la, 3.6].

Definition 8.2.2. — Let R be a ring. Let U be a locally connected subset in 0D.
An Z-Stokes filtered local system on U is the data of a local system L of projective R-
modules of finite type on U, and for every point Q in U, a split (I, q), <q@)-filtration
L¢ o on Lg by projective submodules. We further require the following compatibility
conditions when @ varies. For every point () in U, for every neighbourhood Uy of Q
as in 8.2.1 such that Ug n U is connected, the filtration L< o on Lg s induced by
that on Lq via (Z,,qQ), <@) — (Tpp (), <@')-

Remark 8.2.3. — Let U be a locally connected subset in 0D. Put Z = pp(U)
and suppose that I, is constant. Then, the notion of I z-graded local system on U
makes sense. Observe that any Z,z-graded local system on U gives rise to an I -
Stokes filtered local system on U. On the other hand, the grading operation Gr from
[Mocl1a, 3.6] is a well defined functor converting Z,z-Stokes filtered local systems on
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U into 1,z-Stokes graded local systems on U. The case of interest to us will be the
case where Z lies in a stratum of 0D or when T is very good.

The following is a relative variant of Proposition 3.16 from [Moc11a] which can
easily be deduced from it.

Proposition 8.2.4. — Let (X,D) be a germ of regular pair at a point P. Let
Dy, ..., Dy, be the components of D. Let I be a subset in [1,m]. LetZT c Ox(+D)/Ox
be a g00d~sheaf of irregular values. Let Q) be a point in 0P. Let S be a neighbourhood
of Q in X of the form

m

H([O,r[x[i) x A

i=1
where v > 0, where I,...,1I,, are closed intervals in S', and where A is a ball in
C"~™ centred at 0. We have

S noD; =[]0} x L) x [ J(J0,r[x1;) x A
iel il
Let R be a ring. Then, at the cost of shrinking S, every T-Stokes filtered local system
on S n 0DY relative to R comes from an Z-Stokes graded local system on S n 0DY.

The relationship between Stokes filtered local systems and Stokes torsors will be
made via the notion of marked Stokes filtered local systems, that we now introduce.

Definition 8.2.5. — Let U be a locally connected subset in 0D. Put Z = pp(U)
and suppose that I,z is constant. Let R be a ring. Let (L,L<) be an I-Stokes filtered
local system on U relative to R. A (L, L<)-marked Stokes filtered local system on U
is the data of a pair ((L,L<),iso) where (L, L<) is an I-Stokes filtered local system
on U and where iso is an isomorphism between Gr L and Gr L.

8.3. Relation with Stokes torsors. — Let (X, D) be a germ of regular pair at a
point P. Let Dq,...,D,, be the components of D. Let I be a subset in [1,m]. Let
M be a good elementary local model on X with poles along D, that is

M=PE®R,
acl
where 7 is a good set of irregular values at P, where £ = (Ox(*D),d — da) and
where R, is a regular singular meromorphic connection on X with poles along D.

For a € Z, we denote by £7(a) the truncation of ¢ which consists in keeping only the
monomials in a having poles along every component D;,i € I. Put

M([) = @giz(a) R,
a€l
With the help of proposition 8.2.4, the lemma 8.3.1 that follows allows to transfer
splitting statements for Stokes filtered local systems to triviality statements for Stokes
torsors.
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Lemma 8.3.1. — Let (L, L) be the Stokes filtered local system on 0D associated
to M(I). Let U be a locally connected subset in 0DY. Let R be a C-algebra.
Let (L(R),L(R)<) be the Stokes filtered local system relative to R induced by
(L,L<). Then, there is a canonical bijection between H'(U,St3f(R)) and the
set of isomorphisms classes of (L(R), L(R)<)-marked Stokes filtered local systems
on U. Via this identification, the trivial torsor under Stj,lD(R) corresponds to

((L(R), L(R)<),1d).

Proof. — Observe that the restriction of St3{ to dD$ is the sheaf St;tD(I)- Hence, we

are left to construct a bijection between H! (U, Stf\,lD(I) (R)) and the set of isomorphisms
classes of (L(R), L(R)<)-marked Stokes filtered local systems on U. Note that the
sheaf £;(Z) of irregular values of M(I) is very good on D$. Then, lemma 8.3.1 is
consequence of the next lemma 8.3.2. O

Lemma 8.3.2. — Let (X, D) be a germ of regular pair at a point P. Let M be
a meromorphic connection on X with poles along D. Suppose that M has a good
elementary local model at every point. Suppose that the sheaf of irreqular values of
M is very good. Let (L,L<) be the Stokes filtered local system on 0D associated to
M. Let U be a locally connected subset in 0D. Let R be a C-algebra. Then, there is
a canonical bijection between H'(U,Stx+ (R)) and the set of isomorphism classes of
(L(R), L(R)<)-marked Stokes filtered local systems on U. Via this identification, the
trivial torsor under Sti (R) corresponds to ((L(R), L(R)<),id).

Proof. — Let ((L,L<),is0) be a (L(R),L(R)<)-marked Stokes filtered local
system on U. Consider the sheaf Isomis, (L, L(R)) on U whose sections on an
open subset V in U is the set of isomorphisms of Stokes filtered local systems
f (L, Ls) — (L(R),L(R)<) on V such that Grf = iso. Since L is locally
isomorphic to the Stokes filtered local system associated to Gr £, and similarly with
L, the sheaf Tsoms, (£, L(R)) is a torsor for the action of St (R) on Isomis, (£, L(R))
by post-composition. On the other hand, let 7 be an element in H!(U, Stj,lD (R)).
Choose a cover V = (V;);ex of U such that T comes from a cocycle g = (gi5)i jex. Set
L; := L(R)y,- The identifications g;; : L;y,, — Lju,, allow to glue the L; into a
Stokes filtered local system (£, L<) on U. Since the g;; lie in St (R), the graded of
the identity morphisms L; — L(R)y, glue into an isomorphism iso : Gr £L — Gr L.
Hence, ((£, L<),is0) defines an (L(R), L(R)<)-marked Stokes filtered local systems
on U whose isomorphism class does not depend on any choice. It is then a standard
check to verify that the two constructions above are mutually inverse bijections. [

8.4. Trivialization of Stokes torsors. — As a consequence of the relationship
8.3.1 between Stokes filtered local systems and Stokes torsors, the variant 8.2.4 of
Mochizuki’s splitting criterion gives the following triviality criterion for torsors under
the Stokes sheaf of a good elementary local model.

Lemma 8.4.1. — Let (X, D) be a germ of reqular pair at a point P. Let Dy, ..., D,
be the components of D. Let I be a subset in [1,m]. Let M be a good elementary local
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model on X with poles along D. Let Q be a point in OP. Let S be a neighbourhood of
Q in X of the form

[0, r[x1;) x A
i=1
where v > 0, where I,...,1I,, are closed intervals in S', and where A is a ball in
C"~™ centred at 0. We have
S oD =0} x L) x [ J(J0,r[x1;) x A
iel i¢l
Then, at the cost of shrinking S, Stokes torsors on S n 0D} are trivial.

Proof. — We use the notations from 8.3. Let (L, L<) be the &;(Z)-Stokes filtered
local system on 0D associated with M(I). From lemma 8.3.1, we are left to show
that at the cost of shrinking S, the (L, L<)-marked Stokes filtered local systems on
S n 0DY are trivial. To do this, it is enough to show that at the cost of shrinking
S, the &7(7)-Stokes filtered local systems on S n D¢ come from &;(Z)-graded local
systems on & n 0D7. Then, lemma 8.4.1 is a consequence of proposition 8.2.4. O

References

[And07] Y. André, Structure des connezions méromorphes formelles de plusieurs variables
et semi-continuité de l'irrégularité, Invent. Math. 170 (2007).

[AS02] A. Abbes and T. Saito, Ramification of local fields with imperfect residue fields,
Amer. J. Math. 124 (2002).

[Beil6]  A. Beilinson, Constructible sheaves are holonomic, Sel. Math. New. Ser. 22 (2016).

[Bor91] A. Borel, Linear Algebraic Groups, Second Enlarged Edition, Graduate Texts in
Mathematics, 1991.

[BV89] D.G. Babbitt and V.S. Varadarajan, Local Moduli For Meromorphic Differential
Equations, Astérisque, vol. 169-170, 1989.

[CDG19] G. Cotti, B. Dubrovin, and D. Guzzetti, Isomonodromy deformations at an
irreqular singularity with coalescing eigenvalues, Duke Math. J. 168 (2019).

[Del70]  P. Deligne, Equations différentielles & points singuliers réguliers, Lecture Notes in
Mathematics, vol. 163, Springer-Verlag, 1970.

, Lettre a Malgrange. 20 décembre 1983, Singularités irréguliéres (Société
Mathématique de France, ed.), Documents Mathématiques, vol. 5, 2007.

[EK12] H. Esnault and M. Kerz, A finiteness theorem for Galois representations of
function fields over finite fields (after Deligne), Acta Mathematica Vietnamica

[Del07]

4 (2012).

[Fre57]  J. Frenkel, Cohomologie non abélienne et espaces fibrés, Bulletin de la S.M.F 85
(1957).

[Hie09] M. Hien, Periods for flat algebraic connections, Inventiones Mathematicae 178
(2009).

[HT21] H. Hu and J.-B. Teyssier, Characteristic cycle and wild ramification for nearby
cycles of étale sheaves, J. Reine Angew. Math 776 (2021).

[HTT00] R. Hotta, K. Takeuchi, and T. Tanisaki, D-Modules, Perverse Sheaves, and
Representation Theory, vol. 236, Birkhauser, 2000.



MODULI OF STOKES TORSORS AND SINGULARITIES OF DIFFERENTIAL EQUATIONS 41

[Hul7]

[HY17]
[Kas73]
[Kas75]

[Kas83]

[Kas95]

[Ked10]
[Ked11]

[KS90]
[Lau87]

[Leal6]

[Mal81]

[Mal83a]
[Mal83b]

[Mal96]
[Meb8o]

[Meb90]

[Meb04]

[MMO04]

[Moc09]

[Moc11a]

H. Hu, Logarithmic ramifications of étale sheaves by restricting to curves, IMRN
rnx228 (2017).

H. Hu and E. Yang, Semi-continuity for total dimension divisors of étale sheaves,
Internat. J. Math. 28 (2017).

M. Kashiwara, Index theorem for a mazimally overdetermined system of linear
differential equations, Proc. Jap Acad., vol. 49-10, 1973.

, On the mazimally overdetermined systems of linear differential equations
I, Publ. RIMS 10 (1975).

, Vanishing cycle sheaves and holonomic systems of differential equations,
Algebraic Geometry (Springer, ed.), Lecture Notes in Mathematics, vol. 1016,
1983.

, Algebraic study of systems of partial differential equations. Thesis, Tokyo
University, 1970 (Translated by Andrea D’Agnolo and Pierre Schneiders, with a
foreword by Pierre Schapira), Mémoire de la SMF 63 (1995).

K. Kedlaya, Good formal structures for flat meromorphic connections I: Surfaces,
Duke Math.J. 154 (2010).

, Good formal structures for flat meromorpohic connexions II: excellent
schemes, J. Amer. Math. Soc. 24 (2011).

M. Kashiwara and P. Schapira, Sheaves on manifolds, Springer-Verlag, 1990.

G. Laumon, Transformation de Fourier, constantes d’équations fonctionnelles et
congecture de Weil, Publications Mathématiques de 'THES 65 (1987).

I. Leal, On the ramification of étale cohomology groups, J. reine angew. Math.
(2016).

B. Malgrange, Rapport sur les théorémes d’indice de Boutet de Monuvel et
Kashiwara, Analyse et topologie sur les espaces singuliers II-IIT, Astérisque, vol.
101-102, Soc. Math. France, 1981.

, Mathématique et Physique, vol. 37, ch. La classification des connections
irréguliéres & une variable, Birkhduser, 1983.

, Polynémes de Bernstein-Sato et cohomologie évanescente, Astérisque, vol.
101-102, 1983.
, Connezions méromorphes 2: Le réseau canonique, Inv. Math. 124 (1996).

Z. Mebkhout, Le formalisme des siz opérations de Grothendieck pour les D-
modules cohérents, vol. 35, Hermann, 1989.

, Le théoréme de positivité de lirrégularité pour les Dx-modules, The
Grothendieck Festschrift III, vol. 88, Birkhauser, 1990.

, Le théoréme de positivité, le théoréeme de comparaison et le théoréme
d’eristence de Riemann, Eléements de la théorie des systémes différentiels
géométriques, Cours du C.I.LM.P.A. | Séminaires et Congreés, vol. 8 SMF, 2004.

P. Maisonobe and Z. Mebkhout, Le théoréme de comparaison pour les cycles
évanescents, Eléments de la théorie des systémes différentiels géométriques, Cours
du C.I.M.P.A., Séminaires et Congrés, vol. 8, SMF, 2004.

T. Mochizuki, Good formal structure for meromorphic flat connections on smooth
projective surfaces., Algebraic analysis and around in honor of Professor Masaki
Kashiwara’s 60th birthday, Tokyo: Mathematical Society of Japan, 2009.

, The Stokes structure of a good meromorphic flat bundle, Journal of the
Institute of Mathematics of Jussieu 10 (2011).




42

[Moc11b]
[Sab]
[Sab00]
[Sab02]
[Sab12]

[Sab17]
[Sail7]

[SPD]
[Sv00]

[Tey13]

[Tey14]
[Tey15]

[Tey16]
[Tey19]

[Tey20]

J.-B. TEYSSIER

, Wild Harmonic Bundles and Wild Pure Twistor D-modules, Astérisque,
vol. 340, SMF, 2011.

C. Sabbah, Integrable deformations and degenerations of some irreqular
singularities, To appear at Publ. RIMS Kyoto Univ.

, Equations différentielles a points singuliers irréguliers et phénomene de
Stokes en dimension 2, Astérisque, vol. 263, SMF, 2000.

, Déformations isomonodromiques et variétés de Frobenius, Savoirs actuels,
vol. 2060, CNRS Edition, 2002.

, Introduction to Stokes Structures, Lecture Notes in Mathematics, vol.
2060, Springer, 2012.

, A remark on the Irregularity Complez, Journal of Singularities 16 (2017).

T. Saito, The characteristic cycle and the singular support of a constructible sheaf,
Invent. Math. 207(2) (2017).

Stack Project, ch. Descent.

M.T Singer and M. van der Put, Galois Theory of Linear Differential Equations,
Grundlehren der mathematischen Wissenschaften, vol. 328, Springer, 2000.

J.-B. Teyssier, Autour de lirrégularité des connexions méromorphes, Ph.D. thesis,
Ecole Polytechnique, 2013.

, Mail to C. Sabbah, May 2014.

,  Nearby slopes and boundedness for {-adic sheaves in positive
characteristic. Preprint, 2015.

, A boundedness theorem for mearby slopes of holonomic D-modules,
Compositio Mathematica 152 (2016).

, Skeletons and moduli of Stokes torsors, Annales Scientifiques de 1’Ecole
Normale Supérieure 52 (2019).

, Higher dimensional Stokes structures are rare, Contemporary
Mathematics 742 (2020).

J.-B. TEYSSIER, Institut de Mathématiques de Jussieu. 4 place Jussieu. Paris.
E-mail : jean-baptiste.teyssier@imj-prg.fr



